1
|
Verwimp S, Wagoner J, Arenas EG, De Coninck L, Abdelnabi R, Hyde JL, Schiffer JT, White JM, Matthijnssens J, Neyts J, Polyak SJ, Delang L. Combinations of approved oral nucleoside analogues confer potent suppression of alphaviruses in vitro and in vivo. Antiviral Res 2025; 239:106186. [PMID: 40379030 DOI: 10.1016/j.antiviral.2025.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Alphaviruses, including chikungunya virus (CHIKV), pose a significant global health threat, yet specific antiviral therapies remain unavailable. We evaluated combinations of three oral directly acting antiviral drugs (sofosbuvir (SOF), molnupiravir (MPV), and favipiravir (FAV)), which are approved for other indications, against CHIKV, Semliki Forest virus (SFV), Sindbis virus (SINV), and Venezuelan Equine Encephalitis virus (VEEV) in vitro and in vivo. We assessed antiviral efficacy in human skin fibroblasts and liver cells, as well as in a mouse model of CHIKV-induced arthritis. In human skin fibroblasts, synergistic antiviral effects were observed for combinations of MPV + SOF and FAV + SOF against CHIKV, and for FAV + SOF against SFV. In human liver cells, FAV + MPV conferred additive to synergistic activity against VEEV and SINV, while SOF synergized with FAV against SINV. In mice, MPV improved CHIKV-induced foot swelling and reduced systemic infectious virus titres. Combination treatment with MPV and SOF significantly reduced swelling and infectious titres compared to monotherapies of each drug. Sequencing of CHIKV RNA from joint tissue revealed that MPV caused dose-dependent increases in mutations in the CHIKV genome. Upon combination therapy of MPV with SOF, the number of mutations was significantly lower compared to monotherapy with several higher doses of MPV. Combining these approved oral nucleoside analogues confers potent suppression of multiple alphaviruses in vitro and in vivo with enhanced control of viral genetic evolution in face of antiviral pressure. These drug combinations may ultimately lead to the development of potent combinations of pan-family alphavirus inhibitors.
Collapse
Affiliation(s)
- Sam Verwimp
- Virus-host Interactions & Therapeutic Approaches (VITA) Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research - KU Leuven, Leuven, Belgium
| | - Jessica Wagoner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | | | - Lander De Coninck
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research - KU Leuven, Leuven, Belgium
| | - Rana Abdelnabi
- Virology, Antiviral Drug & Vaccine Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research - KU Leuven, Leuven, Belgium; VirusBank Platform, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jennifer L Hyde
- Department of Microbiology, University of Washington, Seattle, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Centre, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Jelle Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research - KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Virology, Antiviral Drug & Vaccine Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research - KU Leuven, Leuven, Belgium
| | - Stephen J Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Leen Delang
- Virus-host Interactions & Therapeutic Approaches (VITA) Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research - KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Rosenke K, Griffin A, Kaiser F, Altynova E, Mukesh R, Bushmaker T, Flagg M, Tipih T, Goldin K, Wickenhagen A, Williamson BN, Gallogly S, Leventhal SS, Lutterman T, Okumura A, Lewis MC, Kanakabandi K, Martens C, Yinda KC, Rao D, Smith BJ, Shaia C, Saturday G, Hanley P, van Doremalen N, de Wit E, Munster VJ, Feldmann H. Pathogenesis of bovine H5N1 clade 2.3.4.4b infection in macaques. Nature 2025; 640:1017-1021. [PMID: 39814072 DOI: 10.1038/s41586-025-08609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Since early 2022, highly pathogenic avian influenza (HPAI) H5N1 virus infections have been reported in wild aquatic birds and poultry throughout the USA with spillover into several mammalian species1-6. In March 2024, HPAIV H5N1 clade 2.3.4.4b was first detected in dairy cows in Texas, USA, and continues to circulate on dairy farms in many states7,8. Milk production and quality are diminished in infected dairy cows, with high virus titres in milk raising concerns of exposure to mammals including humans through consumption9-12. Here we investigated routes of infection with bovine HPAIV H5N1 clade 2.3.4.4b in cynomolgus macaques, a surrogate model for human infection13. We show that intranasal or intratracheal inoculation of macaques could cause systemic infection resulting in mild and severe respiratory disease, respectively. By contrast, infection by the orogastric route resulted in limited infection and seroconversion of macaques that remained subclinical.
Collapse
Affiliation(s)
- Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Amanda Griffin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Franziska Kaiser
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Ekaterina Altynova
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Reshma Mukesh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Thomas Tipih
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kerry Goldin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Brandi N Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Shane Gallogly
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Tessa Lutterman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Matthew C Lewis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kishore Kanakabandi
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Craig Martens
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kwe C Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
3
|
Detrille A, Huvelle S, van Gils MJ, Geara T, Pascal Q, Snitselaar J, Bossevot L, Cavarelli M, Dereuddre-Bosquet N, Relouzat F, Contreras V, Chapon C, Caillé F, Sanders RW, Le Grand R, Naninck T. Whole-body visualization of SARS-CoV-2 biodistribution in vivo by immunoPET imaging in non-human primates. Nat Commun 2025; 16:2816. [PMID: 40118860 PMCID: PMC11928647 DOI: 10.1038/s41467-025-58173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
The COVID-19 pandemic has caused at least 780 million cases globally. While available treatments and vaccines have reduced the mortality rate, spread and evolution of the virus are ongoing processes. Despite extensive research, the long-term impact of SARS-CoV-2 infection is still poorly understood and requires further investigation. Routine analysis provides limited access to the tissues of patients, necessitating alternative approaches to investigate viral dissemination in the organism. We address this issue by implementing a whole-body in vivo imaging strategy to longitudinally assess the biodistribution of SARS-CoV-2. We demonstrate in a COVID-19 non-human primate model that a single injection of radiolabeled [89Zr]COVA1-27-DFO human monoclonal antibody targeting a preserved epitope of the SARS-CoV-2 spike protein allows longitudinal tracking of the virus by positron emission tomography with computed tomography (PET/CT). Convalescent animals exhibit a persistent [89Zr]COVA1-27-DFO PET signal in the lungs, as well as in the brain, three months following infection. This imaging approach also allows viral detection in various organs, including the airways and kidneys, of exposed animals during the acute infection phase. Overall, the technology we developed offers a comprehensive assessment of SARS-CoV-2 distribution in vivo and provides a promising approach for the non-invasive study of long-COVID pathophysiology.
Collapse
Affiliation(s)
- Alexandra Detrille
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Steve Huvelle
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Orsay, France
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention of the Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Tatiana Geara
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Quentin Pascal
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Jonne Snitselaar
- Department of Medical Microbiology and Infection Prevention of the Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Catherine Chapon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, Orsay, France
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention of the Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMRS1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Fontenay-aux-Roses, France.
| |
Collapse
|
4
|
Verwimp S, Wagoner J, Arenas EG, De Coninck L, Abdelnabi R, Hyde JL, Schiffer JT, White JM, Matthijnssens J, Neyts J, Polyak SJ, Delang L. Combinations of approved oral nucleoside analogues confer potent suppression of alphaviruses in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.633564. [PMID: 39896535 PMCID: PMC11785157 DOI: 10.1101/2025.01.24.633564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Alphaviruses, including chikungunya virus (CHIKV), pose a significant global health threat, yet specific antiviral therapies remain unavailable. Methods We evaluated combinations of three oral directly acting antiviral drugs (sofosbuvir (SOF), molnupiravir (MPV), and favipiravir (FAV)), which are approved for other indications, against CHIKV, Semliki Forest virus (SFV), Sindbis virus (SINV), and Venezuelan Equine Encephalitis virus (VEEV) in vitro and in vivo . We assessed antiviral efficacy in human skin fibroblasts and liver cells, as well as in a mouse model of CHIKV-induced arthritis. Findings In human skin fibroblasts, synergistic antiviral effects were observed for combinations of MPV + SOF and FAV + SOF against CHIKV, and for FAV + SOF against SFV. In human liver cells, FAV + MPV conferred additive to synergistic activity against VEEV and SINV, while SOF synergized with FAV against SINV. In mice, MPV improved CHIKV-induced foot swelling and reduced systemic infectious virus titres. Combination treatment with MPV and SOF significantly reduced swelling and infectious virus titres compared to monotherapies of each drug. Sequencing of CHIKV RNA from joint tissue revealed that MPV caused dose- dependent increases in mutations in the CHIKV genome. Upon combination therapy of MPV with SOF, the number of mutations was significantly lower compared to monotherapy with several higher doses of MPV. Interpretation Combining these approved oral nucleoside analogues confers potent suppression of multiple alphaviruses in vitro and in vivo with enhanced control of viral genetic evolution in face of antiviral pressure. These drug combinations may ultimately lead to the development of potent combinations of pan-family alphavirus inhibitors. Funding This work was supported by a PhD fellowship granted to S.V. by the Research Foundation - Flanders (FWO) (11D5923N). L.D.C. was also supported by Research Foundation - Flanders (FWO) PhD fellowship (11L1325N). Dr. Polyak and Schiffer are partially supported by R01AI121129. Research in Context Evidence before this study: Alphaviruses such as chikungunya virus (CHIKV), Sindbis virus (SINV), and Venezuelan Equine Encephalitis virus (VEEV) are a major threat for global health. Alphaviruses are responsible for debilitating diseases with major public health implications, yet no antiviral drugs are currently approved for treating these virus infections. Existing treatment options are limited to supportive care and are unlikely to provide protection against future outbreaks of other alphaviruses. Previous studies have shown that oral approved nucleoside analogues such as favipiravir (FAV), molnupiravir (MPV), and sofosbuvir (SOF) have antiviral activity against certain RNA viruses, including alphaviruses. However, systematic in vivo evaluations of these drugs and testing of drug combinations in both in vitro and in vivo settings are limited. Added value of this study: This study provides a comprehensive evaluation of combinations of FAV, MPV and SOF against multiple alphaviruses in two human cell lines and a CHIKV mouse model. We demonstrate that certain combinations of these drugs confer synergistic antiviral activity, effectively suppressing CHIKV, SFV, SINV, and VEEV replication in vitro . Moreover, in vivo , we show for the first time that MPV treatment results in reduced CHIKV-induced foot swelling and systemic virus replication. Combining MPV with SOF enhances antiviral activity in mice as compared to monotherapy. By sequencing the viral genome, we show that MPV increases the number of mutations in a dose-dependent manner. Combination therapy of MPV and SOF reduces the number of mutations compared to higher doses of MPV. These findings highlight the potential of nucleoside analogue combinations as a promising therapeutic strategy against alphavirus infections. Implications of all the available evidence: The results of this study suggest that combination therapy with approved nucleoside analogues could provide an effective treatment strategy for alphavirus infections. The observed increased efficacy of drug combinations supports the potential for dose optimization to enhance efficacy while reducing toxicity and development of resistance. Future research should focus on clinical evaluation of these drug combinations, pharmacokinetic studies, and further exploration of their impact on viral evolution. Given the expanding geographical distribution of alphaviruses and the lack of available treatments, these findings provide a foundation for developing pan-alphavirus antiviral therapies that could improve patient outcomes and global outbreak preparedness.
Collapse
|
5
|
Esmaeili S, Owens K, Standing JF, Lowe DM, Zhang S, Watson JA, Schilling WHK, Wagoner J, Polyak SJ, Schiffer JT. Molnupiravir clinical trial simulation suggests that polymerase chain reaction underestimates antiviral potency against SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.11.21.24317726. [PMID: 39830263 PMCID: PMC11741452 DOI: 10.1101/2024.11.21.24317726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Molnupiravir is an antiviral medicine that induces lethal copying errors during SARS-CoV-2 RNA replication. Molnupiravir reduced hospitalization in one pivotal trial by 50% and had variable effects on reducing viral RNA levels in three separate trials. We used mathematical models to simulate these trials and closely recapitulated their virologic outcomes. Model simulations suggest lower antiviral potency against pre-omicron SARS-CoV-2 variants than against omicron. We estimate that in vitro assays underestimate in vivo potency 7-8 fold against omicron variants. Our model suggests that because polymerase chain reaction detects molnupiravir mutated variants, the true reduction in non-mutated viral RNA is underestimated by ~0.5 log10 in the two trials conducted while omicron variants dominated. Viral area under the curve estimates differ significantly between non-mutated and mutated viral RNA. Our results reinforce past work suggesting that in vitro assays are unreliable for estimating in vivo antiviral drug potency and suggest that virologic endpoints for respiratory virus clinical trials should be catered to the drug mechanism of action.
Collapse
Affiliation(s)
- Shadisadat Esmaeili
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Seattle, WA, USA
| | - Katherine Owens
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Seattle, WA, USA
| | - Joseph F. Standing
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - David M. Lowe
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Shengyuan Zhang
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - James A. Watson
- Infectious Diseases Data Observatory, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield, Department of Medicine, University of Oxford, Oxford, UK
| | - William H. K. Schilling
- Centre for Tropical Medicine and Global Health, Nuffield, Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Jessica Wagoner
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA, USA
| | - Stephen J. Polyak
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Seattle, WA, USA
- Department of Medicine, University of Washington; Seattle, WA, USA
| |
Collapse
|
6
|
Kuritzkes DR. Molnupiravir in Combination With Nirmatrelvir/Ritonavir: No Cause for Alarm. J Infect Dis 2024; 230:1297-1298. [PMID: 38973073 PMCID: PMC11646577 DOI: 10.1093/infdis/jiae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
- Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Zhou S, Long N, Rosenke K, Jarvis MA, Feldmann H, Swanstrom R. Combined Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 Reduces Molnupiravir-Induced Mutagenicity and Prevents Selection for Nirmatrelvir/Ritonavir Resistance Mutations. J Infect Dis 2024; 230:1380-1383. [PMID: 38973065 PMCID: PMC11646606 DOI: 10.1093/infdis/jiae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/22/2024] [Indexed: 07/09/2024] Open
Abstract
We investigated the mutation profiles of severe acute respiratory syndrome coronavirus 2 in samples collected from a molnupiravir and nirmatrelvir/ritonavir combination therapy in macaques. We found that molnupiravir induced several nirmatrelvir resistance mutations at low abundance that were not further selected in combination therapy. Coadministration of nirmatrelvir/ritonavir lowered the magnitude of the mutagenetic effect of molnupiravir.
Collapse
Affiliation(s)
- Shuntai Zhou
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | | | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Michael A Jarvis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
- School of Biomedical Sciences, University of Plymouth
- The Vaccine Group Ltd, Plymouth, Devon, United Kingdom
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill
| |
Collapse
|
8
|
Sakai A, Singh G, Khoshbakht M, Bittner S, Löhr CV, Diaz-Tapia R, Warang P, White K, Luo LL, Tolbert B, Blanco M, Chow A, Guttman M, Li C, Bao Y, Ho J, Maurer-Stroh S, Chatterjee A, Chanda S, García-Sastre A, Schotsaert M, Teijaro JR, Moulton HM, Stein DA. Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102331. [PMID: 39376996 PMCID: PMC11456799 DOI: 10.1016/j.omtn.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) named 5'END-2, targeting a highly conserved sequence in the 5' UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth in vitro and in vivo. In HeLa-ACE 2 cells, 5'END-2 produced IC50 values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. In vivo, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5'END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0-2.0 mg/kg 5'END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5'END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5' UTR leader sequence, in an in-cell system, we observed that 5'END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5'END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.
Collapse
Affiliation(s)
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahsa Khoshbakht
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Scott Bittner
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luke Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Blanton Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mario Blanco
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cuiping Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joses Ho
- GISAID @ A∗STAR Bioinformatics Institute, Singapore 138632, Singapore
| | | | | | - Sumit Chanda
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
9
|
Chu H, Shuai H, Qiao J, Yoon C, Zhang G, Hou Y, Xia X, Wang L, Deng X, Wang Y, Li Q, Du L, Liu Y, Zhou M, Wong HT, Liu H, Hu B, Chen Y, Fang Z, Xia Z, Chai Y, Shi J, Wang Y, Zhu T, Zhang H, Yuan S, Zhou J, Chan J, Yuen KY, Xu C, Lei J, Yang S. An orally available Mpro/TMPRSS2 bispecific inhibitor with potent anti-coronavirus efficacy in vivo. RESEARCH SQUARE 2024:rs.3.rs-5454588. [PMID: 39606435 PMCID: PMC11601862 DOI: 10.21203/rs.3.rs-5454588/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Coronaviruses have caused three major endemics in the past two decades. Alarmingly, recent identification of novel zoonotic coronaviruses that caused human infections suggests the risk of future coronavirus outbreak caused by spillover infection from animal reservoirs remains high1,2. Therefore, development of novel therapeutic options with broad-spectrum anti-coronavirus activities are urgently needed. Here, we develop an orally-available bispecific inhibitor, TMP1, which simultaneously targets key coronavirus replication protease Mpro and the essential airway protease TMPRSS23,4. TMP1 shows broad-spectrum protection not only against different SARS-CoV-2 variants but also against multiple human-pathogenic coronaviruses in vitro. By using the K18-hACE2 transgenic mouse, hDPP4 knock-in mouse and golden Syrian hamster models, we demonstrate TMP1 cross-protects against highly-pathogenic coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) in vivo and efficiently abrogates SARS-CoV-2 transmission. Through structural and mutagenesis studies, we confirmed the direct interaction of TMP1 with Mpro and TMPRSS2, and pinpoint the key sites of interactions. Importantly, TMP1 inhibits the infection of nirmatrelvir-resistant SARS-CoV-2 escape mutants. Together, our findings demonstrate the antiviral potential of the novel bispecific Mpro/TMPRSS2 antiviral design against human-pathogenic coronaviruses and other emerging coronaviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhen Fang
- West China Hospital, Sichuan University
| | | | | | | | | | | | | | | | | | | | | | - Chunfu Xu
- National Institute of Biological Sciences, Beijing
| | | | | |
Collapse
|
10
|
Siegrist D, Jonsdottir HR, Bouveret M, Boda B, Constant S, Engler OB. Multidrug Combinations against SARS-CoV-2 Using GS-441524 or Ivermectin with Molnupiravir and/or Nirmatrelvir in Reconstituted Human Nasal Airway Epithelia. Pharmaceutics 2024; 16:1262. [PMID: 39458594 PMCID: PMC11510096 DOI: 10.3390/pharmaceutics16101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background. The emergence, global spread, and persistence of SARS-CoV-2 resulted in an unprecedented need for effective antiviral drugs. Throughout the pandemic, various drug development and treatment strategies were adopted, including repurposing of antivirals designed for other viruses along with a multitude of other drugs with varying mechanisms of action (MoAs). Furthermore, multidrug treatment against COVID-19 is an ongoing topic and merits further investigation. Method/Objectives. We assessed the efficacy of multidrug treatment against SARS-CoV-2 in reconstituted human nasal epithelia, using combinations of molnupiravir and nirmatrelvir as a baseline, adding suboptimal concentrations of either GS-441524 or ivermectin, attempting to increase overall antiviral activity while lowering the overall therapeutic dose. Results. Nirmatrelvir combined with molnupiravir, GS-441524, or ivermectin at suboptimal concentrations show increased antiviral activity compared to single treatment. No triple combinations showed improved inhibition of SARS-CoV-2 replication beyond what was observed for double treatments. Conclusions. In general, we observed that the addition of a third compound is not beneficial for antiviral activity, while various double combinations exhibit increased antiviral activity over single treatment.
Collapse
Affiliation(s)
- Denise Siegrist
- Spiez Laboratory, Federal Office for Civil Protection, 3700 Spiez, Switzerland
| | - Hulda R. Jonsdottir
- Spiez Laboratory, Federal Office for Civil Protection, 3700 Spiez, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Rheumatology and Immunology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Mendy Bouveret
- Epithelix Sàrl, Plan-les-Ouates, 1228 Geneva, Switzerland
| | - Bernadett Boda
- Epithelix Sàrl, Plan-les-Ouates, 1228 Geneva, Switzerland
| | | | - Olivier B. Engler
- Spiez Laboratory, Federal Office for Civil Protection, 3700 Spiez, Switzerland
| |
Collapse
|
11
|
Tamura TJ, Choudhary MC, Deo R, Yousuf F, Gomez AN, Edelstein GE, Boucau J, Glover OT, Barry M, Gilbert RF, Reynolds Z, Li Y, Tien D, Vyas TD, Passell E, Su K, Drapkin S, Abar EG, Kawano Y, Sparks JA, Wallace ZS, Vyas JM, Shafer RW, Siedner MJ, Barczak AK, Lemieux JE, Li JZ. Emerging SARS-CoV-2 Resistance After Antiviral Treatment. JAMA Netw Open 2024; 7:e2435431. [PMID: 39320890 PMCID: PMC11425144 DOI: 10.1001/jamanetworkopen.2024.35431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Importance Previous studies have identified mutations in SARS-CoV-2 strains that confer resistance to nirmatrelvir, yet how often this resistance arises and its association with posttreatment virologic rebound is not well understood. Objective To examine the prevalence of emergent antiviral resistance after nirmatrelvir treatment and its association with virologic rebound. Design, Setting, and Participants This cohort study enrolled outpatient adults with acute COVID-19 infection from May 2021 to October 2023. Participants were divided into those who received antiviral therapy and those who did not. The study was conducted at a multicenter health care system in Boston, Massachusetts. Exposure Treatment regimen, including none, nirmatrelvir, and remdesivir. Main Outcomes and Measures The primary outcome was emergent SARS-CoV-2 antiviral resistance, defined as the detection of antiviral resistance mutations, which were not present at baseline, were previously associated with decreased antiviral efficacy, and emerged during or after completion of a participant's treatment. Next-generation sequencing was used to detect low frequency mutations down to 1% of the total viral population. Results Overall, 156 participants (114 female [73.1%]; median [IQR] age, 56 [38-69] years) were included. Compared with 63 untreated individuals, the 79 who received nirmatrelvir were older and more commonly immunosuppressed. After sequencing viral RNA from participants' anterior nasal swabs, nirmatrelvir resistance mutations were detected in 9 individuals who received nirmatrelvir (11.4%) compared with 2 of those who did not (3.2%) (P = .09). Among the individuals treated with nirmatrelvir, those who were immunosuppressed had the highest frequency of resistance emergence (5 of 22 [22.7%]), significantly greater than untreated individuals (2 of 63 [3.1%]) (P = .01). Similar rates of nirmatrelvir resistance were found in those who had virologic rebound (3 of 23 [13.0%]) vs those who did not (6 of 56 [10.7%]) (P = .86). Most of these mutations (10 of 11 [90.9%]) were detected at low frequencies (<20% of viral population) and reverted to the wild type at subsequent time points. Emerging remdesivir resistance mutations were only detected in immunosuppressed individuals (2 of 14 [14.3%]) but were similarly low frequency and transient. Global Initiative on Sharing All Influenza Data analysis showed no evidence of increased nirmatrelvir resistance in the United States after the authorization of nirmatrelvir. Conclusions and Relevance In this cohort study of 156 participants, treatment-emergent nirmatrelvir resistance mutations were commonly detected, especially in individuals who were immunosuppressed. However, these mutations were generally present at low frequencies and were transient in nature, suggesting a low risk for the spread of nirmatrelvir resistance in the community with the current variants and drug usage patterns.
Collapse
Affiliation(s)
| | - Manish C Choudhary
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Rinki Deo
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Fizah Yousuf
- Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Gregory E Edelstein
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge
| | - Owen T Glover
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge
| | | | | | | | - Yijia Li
- Brigham and Women's Hospital, Boston, Massachusetts
- Massachusetts General Hospital, Boston
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | - Karry Su
- Massachusetts General Hospital, Boston
| | | | | | - Yumeko Kawano
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Sparks
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Zachary S Wallace
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Boston
| | - Jatin M Vyas
- Brigham and Women's Hospital, Boston, Massachusetts
- Massachusetts General Hospital, Boston
- Broad Institute, Cambridge, Massachusetts
| | - Robert W Shafer
- Stanford University School of Medicine, Palo Alto, California
| | - Mark J Siedner
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Boston
| | - Amy K Barczak
- Harvard Medical School, Boston, Massachusetts
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge
- Massachusetts General Hospital, Boston
| | - Jacob E Lemieux
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Boston
- Broad Institute, Cambridge, Massachusetts
| | - Jonathan Z Li
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Ojha D, Hill CS, Zhou S, Evans A, Leung JM, Schneider CA, Amblard F, Woods TA, Schinazi RF, Baric RS, Peterson KE, Swanstrom R. N4-Hydroxycytidine/molnupiravir inhibits RNA virus-induced encephalitis by producing less fit mutated viruses. PLoS Pathog 2024; 20:e1012574. [PMID: 39348391 PMCID: PMC11493283 DOI: 10.1371/journal.ppat.1012574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/21/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
A diverse group of RNA viruses have the ability to gain access to the central nervous system (CNS) and cause severe neurological disease. Current treatment for people with this type of infection is generally limited to supportive care. To address the need for reliable antivirals, we utilized a strategy of lethal mutagenesis to limit virus replication. We evaluated ribavirin (RBV), favipiravir (FAV) and N4-hydroxycytidine (NHC) against La Crosse virus (LACV), which is one of the most common causes of pediatric arboviral encephalitis cases in North America and serves as a model for viral CNS invasion during acute infection. NHC was approximately 3 to 170 times more potent than RBV or FAV in neuronal cells. Oral administration of molnupiravir (MOV), the prodrug of NHC, decreased neurological disease development (assessed as limb paralysis, ataxia and weakness, repeated seizures, or death) by 31% (4 mice survived out of 13) when treatment was started on the day of infection. MOV also reduced disease by 23% when virus was administered intranasally (IN). NHC and MOV produced less fit viruses by incorporating predominantly G to A or C to U mutations. Furthermore, NHC also inhibited virus production of two other orthobunyaviruses, Jamestown Canyon virus and Cache Valley virus. Collectively, these studies indicate that NHC/MOV has therapeutic potential to inhibit viral replication and subsequent neurological disease caused by orthobunyaviruses and potentially as a generalizable strategy for treating acute viral encephalitis.
Collapse
Affiliation(s)
- Durbadal Ojha
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Collin S. Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alyssa Evans
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jacqueline M. Leung
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Christine A. Schneider
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Tyson A. Woods
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Karin E. Peterson
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
13
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
14
|
Payen SH, Adhikari K, Petereit J, Uppal T, Rossetto CC, Verma SC. SARS-CoV-2 superinfection in CD14 + monocytes with latent human cytomegalovirus (HCMV) promotes inflammatory cascade. Virus Res 2024; 345:199375. [PMID: 38642618 PMCID: PMC11061749 DOI: 10.1016/j.virusres.2024.199375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), has posed significant challenges to global health. While much attention has been directed towards understanding the primary mechanisms of SARS-CoV-2 infection, emerging evidence suggests co-infections or superinfections with other viruses may contribute to increased morbidity and mortality, particularly in severe cases of COVID-19. Among viruses that have been reported in patients with SARS-CoV-2, seropositivity for Human cytomegalovirus (HCMV) is associated with increased COVID-19 risk and hospitalization. HCMV is a ubiquitous beta-herpesvirus with a seroprevalence of 60-90 % worldwide and one of the leading causes of mortality in immunocompromised individuals. The primary sites of latency for HCMV include CD14+ monocytes and CD34+ hematopoietic cells. In this study, we sought to investigate SARS-CoV-2 infection of CD14+ monocytes latently infected with HCMV. We demonstrate that CD14+ cells are susceptible and permissive to SARS-CoV-2 infection and detect subgenomic transcripts indicative of replication. To further investigate the molecular changes triggered by SARS-CoV-2 infection in HCMV-latent CD14+ monocytes, we conducted RNA sequencing coupled with bioinformatic differential gene analysis. The results revealed significant differences in cytokine-cytokine receptor interactions and inflammatory pathways in cells superinfected with replication-competent SARS-CoV-2 compared to the heat-inactivated and mock controls. Notably, there was a significant upregulation in transcripts associated with pro-inflammatory response factors and a decrease in anti-inflammatory factors. Taken together, these findings provide a basis for the heightened inflammatory response, offering potential avenues for targeted therapeutic interventions among HCMV-infected severe cases of COVID-19. SUMMARY: COVID-19 patients infected with secondary viruses have been associated with a higher prevalence of severe symptoms. Individuals seropositive for human cytomegalovirus (HCMV) infection are at an increased risk for severe COVID-19 disease and hospitalization. HCMV reactivation has been reported in severe COVID-19 cases with respiratory failure and could be the result of co-infection with SARS-CoV-2 and HCMV. In a cell culture model of superinfection, HCMV has previously been shown to increase infection of SARS-CoV-2 of epithelial cells by upregulating the human angiotensin-converting enzyme-2 (ACE2) receptor. In this study, we utilize CD14+ monocytes, a major cell type that harbors latent HCMV, to investigate co-infection of SARS-CoV-2 and HCMV. This study is a first step toward understanding the mechanism that may facilitate increased COVID-19 disease severity in patients infected with SARS-CoV-2 and HCMV.
Collapse
Affiliation(s)
- Shannon Harger Payen
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Kabita Adhikari
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Juli Petereit
- Nevada Bioinformatics Center (RRID:SCR_017802), University of Nevada, Reno, NV 89557, United States
| | - Timsy Uppal
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Cyprian C Rossetto
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Subhash C Verma
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States.
| |
Collapse
|
15
|
Matos-Hernández ML, Samples R, Dyer G, Casimir Montán VM, Morales-Colón CA, Salvino JM, Montaner LJ, Cassel JA, Messick TE, Tietjen I, Caro-Diaz EJE. Metabolomic Analysis and Antiviral Screening of a Marine Algae Library Yield Jobosic Acid (2,5-Dimethyltetradecanoic Acid) as a Selective Inhibitor of SARS-CoV-2. JOURNAL OF NATURAL PRODUCTS 2024; 87:1513-1520. [PMID: 38781491 DOI: 10.1021/acs.jnatprod.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Current small-molecule-based SARS-CoV-2 treatments have limited global accessibility and pose the risk of inducing viral resistance. Therefore, a marine algae and cyanobacteria extract library was screened for natural products that could inhibit two well-defined and validated COVID-19 drug targets, disruption of the spike protein/ACE-2 interaction and the main protease (Mpro) of SARS-CoV-2. Following initial screening of 86 extracts, we performed an untargeted metabolomic analysis of 16 cyanobacterial extracts. This approach led to the isolation of an unusual saturated fatty acid, jobosic acid (2,5-dimethyltetradecanoic acid, 1). We confirmed that 1 demonstrated selective inhibitory activity toward both viral targets while retaining some activity against the spike-RBD/ACE-2 interaction of the SARS-CoV-2 omicron variant. To initially explore its structure-activity relationship (SAR), the methyl and benzyl ester derivatives of 1 were semisynthetically accessed and demonstrated acute loss of bioactivity in both SARS-CoV-2 biochemical assays. Our efforts have provided copious amounts of a fatty acid natural product that warrants further investigation in terms of SAR, unambiguous determination of its absolute configuration, and understanding of its specific mechanisms of action and binding site toward new therapeutic avenues for SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Marie L Matos-Hernández
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico 00935, United States
| | - Robert Samples
- Center for Mass Spectrometry, Smith College, Northampton, Massachusetts 01063, United States
| | - Grayce Dyer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico 00935, United States
| | - Victoria M Casimir Montán
- Department of Chemistry, Natural Sciences College, University of Puerto Rico-Rio Piedras Campus, San Juan, Puerto Rico 00925, United States
| | - Chris A Morales-Colón
- Department of Chemistry, Natural Sciences College, University of Puerto Rico-Rio Piedras Campus, San Juan, Puerto Rico 00925, United States
| | - Joseph M Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Luis J Montaner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Joel A Cassel
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Troy E Messick
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Eduardo J E Caro-Diaz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico 00935, United States
| |
Collapse
|
16
|
Focosi D, Franchini M, Maggi F, Shoham S. COVID-19 therapeutics. Clin Microbiol Rev 2024; 37:e0011923. [PMID: 38771027 PMCID: PMC11237566 DOI: 10.1128/cmr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
SUMMARYSince the emergence of COVID-19 in 2020, an unprecedented range of therapeutic options has been studied and deployed. Healthcare providers have multiple treatment approaches to choose from, but efficacy of those approaches often remains controversial or compromised by viral evolution. Uncertainties still persist regarding the best therapies for high-risk patients, and the drug pipeline is suffering fatigue and shortage of funding. In this article, we review the antiviral activity, mechanism of action, pharmacokinetics, and safety of COVID-19 antiviral therapies. Additionally, we summarize the evidence from randomized controlled trials on efficacy and safety of the various COVID-19 antivirals and discuss unmet needs which should be addressed.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Orth HM, Flasshove C, Berger M, Hattenhauer T, Biederbick KD, Mispelbaum R, Klein U, Stemler J, Fisahn M, Doleschall AD, Baermann BN, Koenigshausen E, Tselikmann O, Killer A, de Angelis C, Gliga S, Stegbauer J, Spuck N, Silling G, Rockstroh JK, Strassburg CP, Brossart P, Panse JP, Jensen BEO, Luedde T, Boesecke C, Heine A, Cornely OA, Monin MB. Early combination therapy of COVID-19 in high-risk patients. Infection 2024; 52:877-889. [PMID: 38017344 PMCID: PMC11142969 DOI: 10.1007/s15010-023-02125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/24/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been observed in immunocompromised hosts. Early monotherapy with direct-acting antivirals or monoclonal antibodies, as recommended by the international guidelines, does not prevent this with certainty. Dual therapies may therefore have a synergistic effect. METHODS This retrospective, multicentre study compared treatment strategies for corona virus disease-19 (COVID-19) with combinations of nirmatrelvir/ritonavir, remdesivir, molnupiravir, and/ or mABs during the Omicron surge. Co-primary endpoints were prolonged viral shedding (≥ 106 copies/ml at day 21 after treatment initiation) and days with SARS-CoV-2 viral load ≥ 106 copies/ml. Therapeutic strategies and risk groups were compared using odds ratios and Fisher's tests or Kaplan-Meier analysis and long-rank tests. Multivariable regression analysis was performed. RESULTS 144 patients were included with a median duration of SARS-CoV-2 viral load ≥ 106 copies/ml of 8.0 days (IQR 6.0-15.3). Underlying haematological malignancies (HM) (p = 0.03) and treatment initiation later than five days after diagnosis (p < 0.01) were significantly associated with longer viral shedding. Prolonged viral shedding was observed in 14.6% (n = 21/144), particularly in patients with underlying HM (OR 3.5; 95% CI 1.2-9.9; p = 0.02). Clinical courses of COVID-19 were mild to moderate with only few adverse effects potentially related to combination treatment. CONCLUSION Early combination treatment of COVID-19 effectively prevented prolonged viral shedding in 85.6% of cases. Considering the rapid viral clearance rates and low toxicity, individualized dual therapy approaches may be beneficial in high-risk patients.
Collapse
Affiliation(s)
- Hans Martin Orth
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Charlotte Flasshove
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Moritz Berger
- Institute for Medical Biometry, Informatics and Epidemiology, Bonn University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tessa Hattenhauer
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kaja D Biederbick
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Rebekka Mispelbaum
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Uwe Klein
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jannik Stemler
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department I of Internal Medicine, European Diamond Excellence Centre for Medical Mycology (ECMM), University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner-Site Cologne-Bonn, Kerpener Str. 62, 50937, Cologne, Germany
| | - Matthis Fisahn
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department I of Internal Medicine, European Diamond Excellence Centre for Medical Mycology (ECMM), University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner-Site Cologne-Bonn, Kerpener Str. 62, 50937, Cologne, Germany
| | - Anna D Doleschall
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ben-Niklas Baermann
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Hematology, Oncology, and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Eva Koenigshausen
- Department of Nephrology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Olga Tselikmann
- Department of Nephrology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Alexander Killer
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Clara de Angelis
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Smaranda Gliga
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Nikolai Spuck
- Institute for Medical Biometry, Informatics and Epidemiology, Bonn University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gerda Silling
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jürgen K Rockstroh
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner-Site Cologne-Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christian P Strassburg
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Peter Brossart
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jens P Panse
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Björn-Erik Ole Jensen
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Tom Luedde
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christoph Boesecke
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner-Site Cologne-Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Annkristin Heine
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Oliver A Cornely
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany
- Department I of Internal Medicine, European Diamond Excellence Centre for Medical Mycology (ECMM), University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner-Site Cologne-Bonn, Kerpener Str. 62, 50937, Cologne, Germany
| | - Malte B Monin
- Centre for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf, (ABCD), Aachen, Germany.
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- German Centre for Infection Research (DZIF), Partner-Site Cologne-Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Johanniter-Kliniken Bonn GmbH, Johanniter-Krankenhaus Bonn, Bonn, Germany.
| |
Collapse
|
18
|
Ullah I, Escudie F, Scandale I, Gilani Z, Gendron-Lepage G, Gaudette F, Mowbray C, Fraisse L, Bazin R, Finzi A, Mothes W, Kumar P, Chatelain E, Uchil PD. Bioluminescence imaging reveals enhanced SARS-CoV-2 clearance in mice with combinatorial regimens. iScience 2024; 27:109049. [PMID: 38361624 PMCID: PMC10867665 DOI: 10.1016/j.isci.2024.109049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Direct acting antivirals (DAAs) represent critical tools for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have escaped vaccine-elicited spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy regimens did not eradicate SARS-CoV-2 in mice, but combining molnupiravir with nirmatrelvir exhibited superior additive efficacy and led to virus clearance. Furthermore, combining molnupiravir with caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma demonstrated synergy, rapid virus clearance, and 100% survival. Thus, our study provides insights into in vivo treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fanny Escudie
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Zoela Gilani
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Fleur Gaudette
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
| | - Charles Mowbray
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Renée Bazin
- Hema-Quebec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
- Departement de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
19
|
D’Abramo A, Vita S, Beccacece A, Navarra A, Pisapia R, Fusco FM, Matusali G, Girardi E, Maggi F, Goletti D, Nicastri E. B-cell-depleted patients with persistent SARS-CoV-2 infection: combination therapy or monotherapy? A real-world experience. Front Med (Lausanne) 2024; 11:1344267. [PMID: 38487021 PMCID: PMC10937561 DOI: 10.3389/fmed.2024.1344267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Objectives The aim of the study was to describe a cohort of B-cell-depleted immunocompromised (IC) patients with prolonged or relapsing COVID-19 treated with monotherapy or combination therapy. Methods This is a multicenter observational retrospective study conducted on IC patients consecutively hospitalized with a prolonged or relapsing SARS-CoV-2 infection from November 2020 to January 2023. IC COVID-19 subjects were stratified according to the monotherapy or combination anti-SARS-CoV-2 therapy received. Results Eighty-eight patients were enrolled, 19 under monotherapy and 69 under combination therapy. The study population had a history of immunosuppression (median of 2 B-cells/mm3, IQR 1-24 cells), and residual hypogammaglobulinemia was observed in 55 patients. A reduced length of hospitalization and time to negative SARS-CoV-2 molecular nasopharyngeal swab (NPS) in the combination versus monotherapy group was observed. In the univariable and multivariable analyses, the percentage change in the rate of days to NPS negativity showed a significant reduction in patients receiving combination therapy compared to those receiving monotherapy. Conclusion In IC persistent COVID-19 patients, it is essential to explore new therapeutic strategies such as combination multi-target therapy (antiviral or double antiviral plus antibody-based therapies) to avoid persistent viral shedding and/or severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alessandra D’Abramo
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Serena Vita
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Alessia Beccacece
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Assunta Navarra
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Raffaella Pisapia
- Infectious Diseases Unit, "D. Cotugno" Hospital, AORN dei Colli, Naples, Italy
| | | | - Giulia Matusali
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Enrico Girardi
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| |
Collapse
|
20
|
Wu Y, Li K, Li M, Pu X, Guo Y. Attention Mechanism-Based Graph Neural Network Model for Effective Activity Prediction of SARS-CoV-2 Main Protease Inhibitors: Application to Drug Repurposing as Potential COVID-19 Therapy. J Chem Inf Model 2023; 63:7011-7031. [PMID: 37960886 DOI: 10.1021/acs.jcim.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Compared to de novo drug discovery, drug repurposing provides a time-efficient way to treat coronavirus disease 19 (COVID-19) that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 main protease (Mpro) has been proved to be an attractive drug target due to its pivotal involvement in viral replication and transcription. Here, we present a graph neural network-based deep-learning (DL) strategy to prioritize the existing drugs for their potential therapeutic effects against SARS-CoV-2 Mpro. Mpro inhibitors were represented as molecular graphs ready for graph attention network (GAT) and graph isomorphism network (GIN) modeling for predicting the inhibitory activities. The result shows that the GAT model outperforms the GIN and other competitive models and yields satisfactory predictions for unseen Mpro inhibitors, confirming its robustness and generalization. The attention mechanism of GAT enables to capture the dominant substructures and thus to realize the interpretability of the model. Finally, we applied the optimal GAT model in conjunction with molecular docking simulations to screen the Drug Repurposing Hub (DRH) database. As a result, 18 drug hits with best consensus prediction scores and binding affinity values were identified as the potential therapeutics against COVID-19. Both the extensive literature searching and evaluations on adsorption, distribution, metabolism, excretion, and toxicity (ADMET) illustrate the premium drug-likeness and pharmacokinetic properties of the drug candidates. Overall, our work not only provides an effective GAT-based DL prediction tool for inhibitory activity of SARS-CoV-2 Mpro inhibitors but also provides theoretical guidelines for drug discovery in the COVID-19 treatment.
Collapse
Affiliation(s)
- Yanling Wu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kun Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
21
|
Rasmussen HB, Hansen PR. Molnupiravir Revisited-Critical Assessment of Studies in Animal Models of COVID-19. Viruses 2023; 15:2151. [PMID: 38005828 PMCID: PMC10675540 DOI: 10.3390/v15112151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Molnupiravir, a prodrug known for its broad antiviral activity, has demonstrated efficacy in animal models of COVID-19, prompting clinical trials, in which initial results indicated a significant effect against the disease. However, subsequent clinical studies did not confirm these findings, leading to the refusal of molnupiravir for permanent market authorization in many countries. This report critically assessed 22 studies published in 18 reports that investigated the efficacy of molnupiravir in animal models of COVID-19, with the purpose of determining how well the design of these models informed human studies. We found that the administered doses of molnupiravir in most studies involving animal COVID-19 models were disproportionately higher than the dose recommended for human use. Specifically, when adjusted for body surface area, over half of the doses of molnupiravir used in the animal studies exceeded twice the human dose. Direct comparison of reported drug exposure across species after oral administration of molnupiravir indicated that the antiviral efficacy of the dose recommended for human use was underestimated in some animal models and overestimated in others. Frequently, molnupiravir was given prophylactically or shortly after SARS-CoV-2 inoculation in these models, in contrast to clinical trials where such timing is not consistently achieved. Furthermore, the recommended five-day treatment duration for humans was exceeded in several animal studies. Collectively, we suggest that design elements in the animal studies under examination contributed to a preference favoring molnupiravir, and thus inflated expectations for its efficacy against COVID-19. Addressing these elements may offer strategies to enhance the clinical efficacy of molnupiravir for the treatment of COVID-19. Such strategies include dose increment, early treatment initiation, administration by inhalation, and use of the drug in antiviral combination therapy.
Collapse
Affiliation(s)
- Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, 4000 Roskilde, Denmark
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Peter Riis Hansen
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2900 Hellerup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
22
|
Tipih T, Meade-White K, Rao D, Bushmaker T, Lewis M, Shaia C, Feldmann H, Hawman DW. Favipiravir and Ribavirin protect immunocompetent mice from lethal CCHFV infection. Antiviral Res 2023; 218:105703. [PMID: 37611878 DOI: 10.1016/j.antiviral.2023.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes Crimean-Congo hemorrhagic fever (CCHF) in humans with high morbidity and mortality. Currently, there is neither an approved antiviral drug nor a vaccine against CCHFV. In this study, we describe a lethal model of CCHFV infection using a mouse-adapted strain of CCHFV (MA-CCHFV) in adult wild-type male mice. Infected mice developed high viral loads, tissue pathology, and inflammatory immune responses before ultimately succumbing to the infection. We used the model to evaluate the protective efficacy of nucleoside analogs monulpiravir, favipiravir, ribavirin, the antibiotic tigecycline and the corticosteroids dexamethasone and methylprednisolone against lethal CCHFV infection. Tigecycline, monulpiravir and the corticosteroids failed to protect mice from lethal MA-CCHFV infection. In contrast, favipiravir and ribavirin protected animals from clinical disease and death even when treatment was delayed. Despite demonstrating uniform protection, CCHFV RNA persisted in survivors treated with favipiravir and ribavirin. Nevertheless, the study demonstrated the anti-CCHFV efficacy of favipiravir and ribavirin in a model with intact innate immunity and establishes this model for continued development of CCHFV countermeasures.
Collapse
Affiliation(s)
- Thomas Tipih
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Mathew Lewis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
23
|
Hu Y, Lewandowski EM, Tan H, Zhang X, Morgan RT, Zhang X, Jacobs LMC, Butler SG, Gongora MV, Choy J, Deng X, Chen Y, Wang J. Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmatrelvir. ACS CENTRAL SCIENCE 2023; 9:1658-1669. [PMID: 37637734 PMCID: PMC10451032 DOI: 10.1021/acscentsci.3c00538] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/29/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) is the drug target of Pfizer's oral drug nirmatrelvir. The emergence of SARS-CoV-2 variants with mutations in Mpro raised the alarm of potential drug resistance. To identify potential clinically relevant drug-resistant mutants, we systematically characterized 102 naturally occurring Mpro mutants located at 12 residues at the nirmatrelvir-binding site, among which 22 mutations in 5 residues, including S144M/F/A/G/Y, M165T, E166 V/G/A, H172Q/F, and Q192T/S/L/A/I/P/H/V/W/C/F, showed comparable enzymatic activity to the wild-type (kcat/Km < 10-fold change) while being resistant to nirmatrelvir (Ki > 10-fold increase). X-ray crystal structures were determined for six representative mutants with and/or without GC-376/nirmatrelvir. Using recombinant SARS-CoV-2 viruses generated from reverse genetics, we confirmed the drug resistance in the antiviral assay and showed that Mpro mutants with reduced enzymatic activity had attenuated viral replication. Overall, our study identified several drug-resistant hotspots in Mpro that warrant close monitoring for possible clinical evidence of nirmatrelvir resistance, some of which have already emerged in independent viral passage assays conducted by others.
Collapse
Affiliation(s)
- Yanmei Hu
- Department
of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Eric M. Lewandowski
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Haozhou Tan
- Department
of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Xiaoming Zhang
- Department
Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, United States
- Oklahoma
Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Ryan T. Morgan
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lian M. C. Jacobs
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Shane G. Butler
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Maura V. Gongora
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - John Choy
- Department
Biology, School of Arts and Sciences, the
Catholic University of America, Washington, DC 20064, United States
| | - Xufang Deng
- Department
Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, United States
- Oklahoma
Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Yu Chen
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Wang
- Department
of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08854, United States
| |
Collapse
|
24
|
Marangoni D, Antonello RM, Coppi M, Palazzo M, Nassi L, Streva N, Povolo L, Malentacchi F, Zammarchi L, Rossolini GM, Vannucchi AM, Bartoloni A, Spinicci M. Combination regimen of nirmatrelvir/ritonavir and molnupiravir for the treatment of persistent SARS-CoV-2 infection: A case report and a scoping review of the literature. Int J Infect Dis 2023; 133:53-56. [PMID: 37150351 PMCID: PMC10198768 DOI: 10.1016/j.ijid.2023.04.412] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Immunocompromised patients still experience unpredictable courses of COVID-19, despite that effective vaccines and drugs against SARS-CoV-2 are now available. Antiviral combination regimens may have a role in SARS-CoV-2 infection in immunocompromised hosts, but current knowledge is still limited. We describe the case of a 73-year-old Italian man affected by follicular lymphoma with persistent SARS-CoV-2 infection who was successfully treated with co-administration of oral antivirals (10-day molnupiravir and nirmatrelvir/ritonavir). The therapy was well tolerated both from a clinical and biochemical standpoint, with no signs of toxicity. We also performed a scoping review, to sum up available knowledge on combined antiviral regimens including remdesivir, molnupiravir, or nirmatrelvir/ritonavir. Pending further studies on larger cohorts of patients, our report is consistent with available pre-clinical and clinical data, supporting the possible use of combination therapy in selected difficult-to-treat COVID-19 cases.
Collapse
Affiliation(s)
- Davide Marangoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Marianna Palazzo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luca Nassi
- Department of Hematology, Careggi University Hospital, Florence, Italy
| | - Noemi Streva
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Povolo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Zammarchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Hematology, Careggi University Hospital, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Michele Spinicci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
25
|
Ivachtchenko AV, Ivashchenko AA, Shkil DO, Ivashchenko IA. Aprotinin-Drug against Respiratory Diseases. Int J Mol Sci 2023; 24:11173. [PMID: 37446350 PMCID: PMC10342444 DOI: 10.3390/ijms241311173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Aprotinin (APR) was discovered in 1930. APR is an effective pan-protease inhibitor, a typical "magic shotgun". Until 2007, APR was widely used as an antithrombotic and anti-inflammatory drug in cardiac and noncardiac surgeries for reduction of bleeding and thus limiting the need for blood transfusion. The ability of APR to inhibit proteolytic activation of some viruses leads to its use as an antiviral drug for the prevention and treatment of acute respiratory virus infections. However, due to incompetent interpretation of several clinical trials followed by incredible controversy in the literature, the usage of APR was nearly stopped for a decade worldwide. In 2015-2020, after re-analysis of these clinical trials' data the restrictions in APR usage were lifted worldwide. This review discusses antiviral mechanisms of APR action and summarizes current knowledge and prospective regarding the use of APR treatment for diseases caused by RNA-containing viruses, including influenza and SARS-CoV-2 viruses, or as a part of combination antiviral treatment.
Collapse
Affiliation(s)
- Alexandre V. Ivachtchenko
- ChemDiv Inc., San Diego, CA 92130, USA; (A.A.I.); (I.A.I.)
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | | - Dmitrii O. Shkil
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | |
Collapse
|
26
|
Pagliano P, Spera A, Sellitto C, Scarpati G, Folliero V, Piazza O, Franci G, Conti V, Ascione T. Preclinical discovery and development of nirmatrelvir/ritonavir combinational therapy for the treatment of COVID-19 and the lessons learned from SARS-COV-2 variants. Expert Opin Drug Discov 2023; 18:1301-1311. [PMID: 37614103 DOI: 10.1080/17460441.2023.2248879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Nirmatrelvir/ritonavir (Paxlovid®) represent an oral antiviral therapy approved for the treatment of COVID-19. Extensive in vitro and in vivo studies have reported the promising activity of nirmatrelvir/ritonavir against numerous emerging viruses. This combination consists of nirmatrelvir, a protease reversible inhibitor of coronavirus 3CLpro mainly metabolized by cytochrome P450 (CYP)3A4, and ritonavir, an inhibitor of the CYP3A isoforms that enhances the efficacy of nirmatrelvir by fixing its suboptimal pharmacokinetic properties. AREAS COVERED This review comprehensively examines the efficacy of nirmatrelvir/ritonavir through rigorous analysis of in vitro and in vivo studies. Moreover, it thoroughly assesses its safety, tolerability, pharmacokinetics, and antiviral efficacy against SARS-COV-2 infection, based on the main pre-authorization randomized controlled trials. EXPERT OPINION Nirmatrelvir/ritonavir has a good tolerability profile. Its administration during the early stages of mild-to-moderate COVID-19 holds potential benefits, as it can help prevent the onset of an aberrant immune response that could lead to pulmonary and extra-pulmonary complications. However, its drug - drug interactions can be a factor limiting its use, at least in populations on some chronic therapies, along with the risk of infection relapse after treatment.
Collapse
Affiliation(s)
- Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Annamaria Spera
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Unit of Microbiology, University of Salerno, Baronissi, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Unit of Microbiology, University of Salerno, Baronissi, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Diseases, Cardarelli Hospital, Naples, Italy
| |
Collapse
|