1
|
Granlund L, Lundberg M. Loss of insulin-expressing extra-islet cells in type 1 diabetes is accompanied with increased number of glucagon-expressing extra-islet cells. Virchows Arch 2025; 486:687-695. [PMID: 38922355 PMCID: PMC12018523 DOI: 10.1007/s00428-024-03842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
The presence of remaining insulin-positive cells in type 1 diabetes (T1D) is well-known. These cells are part of islets or appear as extra-islet insulin-positive cells scattered in the exocrine parenchyma. The latter are poorly described, and the presence of scattered endocrine cells expressing other islet hormones than insulin has not been explored. This study aimed to compare the extra-islet insulin- or glucagon-positive cells concerning their frequency, transcription-factor expression, and mitotic activity in subjects with and without T1D. Multispectral imaging was used to examine extra-islet cells by staining for insulin, glucagon, ARX, PDX1, and Ki67. This was done in well-preserved pancreatic tissue obtained from heart-beating organ donors with or without T1D. In three T1D donors, lobes with insulin-containing islets (ICI) were found. Within these, a higher frequency of extra-islet insulin-positive cells was observed compared to lobes with insulin-deficient islets (IDI). Increased frequency of glucagon-positive extra-islet cells was observed in donors with T1D (median 53 cells/mm2) when compared with non-diabetic donors (11 cells/mm2, p = 0.004). Proliferating endocrine cells were present in donors with, and without T1D, as demonstrated by Ki67-positive staining (0-3% of the cells expressing insulin or glucagon). The reduced frequency of extra-islet insulin-positive cells in lobes with IDI in donors with T1D suggests that the pathological mechanism causing beta cell demise in T1D affects entire lobes. The presence of an increased frequency of glucagon-positive extra-islet cells supports the notion of a preserved capacity to regenerate the endocrine pancreas in donors with T1D.
Collapse
Affiliation(s)
- Louise Granlund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Zhu S, Waeckel-Énée E, Oshima M, Moser A, Bessard MA, Gdoura A, Roger K, Mode N, Lipecka J, Yilmaz A, Bertocci B, Diana J, Saintpierre B, Guerrera IC, Scharfmann R, Francesconi S, Mauvais FX, van Endert P. Islet cell stress induced by insulin-degrading enzyme deficiency promotes regeneration and protection from autoimmune diabetes. iScience 2024; 27:109929. [PMID: 38799566 PMCID: PMC11126816 DOI: 10.1016/j.isci.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-βH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.
Collapse
Affiliation(s)
- Shuaishuai Zhu
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | | | - Masaya Oshima
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Anna Moser
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Marie-Andrée Bessard
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Abdelaziz Gdoura
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Kevin Roger
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Nina Mode
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Joanna Lipecka
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Ayse Yilmaz
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Barbara Bertocci
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Julien Diana
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
| | | | - Ida Chiara Guerrera
- Université Paris Cité, INSERM, CNRS, Structure Fédérative de Recherche Necker, Proteomics Platform, F-75015 Paris, France
| | - Raphael Scharfmann
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Stefania Francesconi
- Genome Dynamics Unit, Institut Pasteur, Centre National de la Recherche Scientifique, UMR3525, F-75015 Paris, France
| | - François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
- Service de Physiologie – Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
3
|
Patel S, Remedi MS. Loss of β-cell identity and dedifferentiation, not an irreversible process? Front Endocrinol (Lausanne) 2024; 15:1414447. [PMID: 38915897 PMCID: PMC11194313 DOI: 10.3389/fendo.2024.1414447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Type 2 diabetes (T2D) is a polygenic metabolic disorder characterized by insulin resistance in peripheral tissues and impaired insulin secretion by the pancreas. While the decline in insulin production and secretion was previously attributed to apoptosis of insulin-producing β-cells, recent studies indicate that β-cell apoptosis rates are relatively low in diabetes. Instead, β-cells primarily undergo dedifferentiation, a process where they lose their specialized identity and transition into non-functional endocrine progenitor-like cells, ultimately leading to β-cell failure. The underlying mechanisms driving β-cell dedifferentiation remain elusive due to the intricate interplay of genetic factors and cellular stress. Understanding these mechanisms holds the potential to inform innovative therapeutic approaches aimed at reversing β-cell dedifferentiation in T2D. This review explores the proposed drivers of β-cell dedifferentiation leading to β-cell failure, and discusses current interventions capable of reversing this process, thus restoring β-cell identity and function.
Collapse
Affiliation(s)
- Sumit Patel
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, South Euclid Avenue, St. Louis, MO, United States
| | - Maria S. Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, South Euclid Avenue, St. Louis, MO, United States
- Deparment of Cell Biology and Physiology, Washington University School of Medicine, South Euclid Avenue, St. Louis, MO, United States
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, South Euclid Avenue, St. Louis, MO, United States
| |
Collapse
|
4
|
Webster KL, Mirmira RG. Beta cell dedifferentiation in type 1 diabetes: sacrificing function for survival? Front Endocrinol (Lausanne) 2024; 15:1427723. [PMID: 38904049 PMCID: PMC11187278 DOI: 10.3389/fendo.2024.1427723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
The pathogeneses of type 1 and type 2 diabetes involve the progressive loss of functional beta cell mass, primarily attributed to cellular demise and/or dedifferentiation. While the scientific community has devoted significant attention to unraveling beta cell dedifferentiation in type 2 diabetes, its significance in type 1 diabetes remains relatively unexplored. This perspective article critically analyzes the existing evidence for beta cell dedifferentiation in type 1 diabetes, emphasizing its potential to reduce beta cell autoimmunity. Drawing from recent advancements in both human studies and animal models, we present beta cell identity as a promising target for managing type 1 diabetes. We posit that a better understanding of the mechanisms of beta cell dedifferentiation in type 1 diabetes is key to pioneering interventions that balance beta cell function and immunogenicity.
Collapse
Affiliation(s)
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Tanday N, Tarasov AI, Moffett RC, Flatt PR, Irwin N. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable? Diabetes Obes Metab 2024; 26:16-31. [PMID: 37845573 DOI: 10.1111/dom.15300] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β-cell dedifferentiation or promoting the transdifferentiation of non-β-cells towards an insulin-positive β-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β-cell loss or generating new β-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β-cell decline in diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrei I Tarasov
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| |
Collapse
|
6
|
Liu H, Geravandi S, Grasso AM, Sikdar S, Pugliese A, Maedler K. Enteroviral infections are not associated with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1236574. [PMID: 38027145 PMCID: PMC10643152 DOI: 10.3389/fendo.2023.1236574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction For more than a century, enteroviral infections have been associated with autoimmunity and type 1 diabetes (T1D). Uncontrolled viral response pathways repeatedly presented during childhood highly correlate with autoimmunity and T1D. Virus responses evoke chemokines and cytokines, the "cytokine storm" circulating through the body and attack cells especially vulnerable to inflammatory destruction. Intra-islet inflammation is a major trigger of β-cell failure in both T1D and T2D. The genetic contribution of islet inflammation pathways is apparent in T1D, with several mutations in the interferon system. In contrast, in T2D, gene mutations are related to glucose homeostasis in β cells and insulin-target tissue and rarely within viral response pathways. Therefore, the current study evaluated whether enteroviral RNA can be found in the pancreas from organ donors with T2D and its association with disease progression. Methods Pancreases from well-characterized 29 organ donors with T2D and 15 age- and BMI-matched controls were obtained from the network for pancreatic organ donors with diabetes and were analyzed in duplicates. Single-molecule fluorescence in-situ hybridization analyses were performed using three probe sets to detect positive-strand enteroviral RNA; pancreas sections were co-stained by classical immunostaining for insulin and CD45. Results There was no difference in the presence or localization of enteroviral RNA in control nondiabetic and T2D pancreases; viral infiltration showed large heterogeneity in both groups ranging from 0 to 94 virus+ cells scattered throughout the pancreas, most of them in the exocrine pancreas. Very rarely, a single virus+ cell was found within islets or co-stained with CD45+ immune cells. Only one single T2D donor presented an exceptionally high number of viruses, similarly as seen previously in T1D, which correlated with a highly reduced number of β cells. Discussion No association of enteroviral infection in the pancreas and T2D diabetes could be found. Despite great similarities in inflammatory markers in islets in T1D and T2D, long-term enteroviral infiltration is a distinct pathological feature of T1D-associated autoimmunity and in T1D pancreases.
Collapse
Affiliation(s)
- Huan Liu
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| | - Ausilia Maria Grasso
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Saheri Sikdar
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Alberto Pugliese
- The JDRF nPOD-Virus Group
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology and Metabolism, Miami, FL, United States
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Diabetes Immunology & The Wanek Family Project for Type 1 Diabetes, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| |
Collapse
|
7
|
Perakakis N, Harb H, Hale BG, Varga Z, Steenblock C, Kanczkowski W, Alexaki VI, Ludwig B, Mirtschink P, Solimena M, Toepfner N, Zeissig S, Gado M, Abela IA, Beuschlein F, Spinas GA, Cavelti-Weder C, Gerber PA, Huber M, Trkola A, Puhan MA, Wong WWL, Linkermann A, Mohan V, Lehnert H, Nawroth P, Chavakis T, Mingrone G, Wolfrum C, Zinkernagel AS, Bornstein SR. Mechanisms and clinical relevance of the bidirectional relationship of viral infections with metabolic diseases. Lancet Diabetes Endocrinol 2023; 11:675-693. [PMID: 37524103 DOI: 10.1016/s2213-8587(23)00154-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023]
Abstract
Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Hani Harb
- Medical Microbiology and Virology, Technische Universität Dresden, Dresden 01307, Germany
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University of Zürich, Zürich, Switzerland
| | - Charlotte Steenblock
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Vasileia Ismini Alexaki
- Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Barbara Ludwig
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Peter Mirtschink
- Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Department of Molecular Diabetology, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Toepfner
- Department of Pediatrics, Technische Universität Dresden, Dresden 01307, Germany
| | - Sebastian Zeissig
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; Department of Medicine I, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Manuel Gado
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Irene Alma Abela
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University of Zürich, Zürich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giatgen A Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Claudia Cavelti-Weder
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Milo A Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zürich, Switzerland
| | - Wendy Wei-Lynn Wong
- and Department of Molecular Life Science, University of Zürich, Zürich, Switzerland
| | - Andreas Linkermann
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, Tamil Nadu, India
| | - Hendrik Lehnert
- Presidential Office, Paris Lodron Universität Salzburg, Salzburg, Austria
| | - Peter Nawroth
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; Institute for Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy; Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University of Zürich, Zürich, Switzerland
| | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden 01307, Germany; Paul Langerhans Institute Dresden, Helmholtz Munich, Technische Universität Dresden, Dresden 01307, Germany; German Center for Diabetes Research, Neuherberg, Germany; Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
8
|
Huerta-Chagoya A, Schroeder P, Mandla R, Deutsch AJ, Zhu W, Petty L, Yi X, Cole JB, Udler MS, Dornbos P, Porneala B, DiCorpo D, Liu CT, Li JH, Szczerbiński L, Kaur V, Kim J, Lu Y, Martin A, Eizirik DL, Marchetti P, Marselli L, Chen L, Srinivasan S, Todd J, Flannick J, Gubitosi-Klug R, Levitsky L, Shah R, Kelsey M, Burke B, Dabelea DM, Divers J, Marcovina S, Stalbow L, Loos RJF, Darst BF, Kooperberg C, Raffield LM, Haiman C, Sun Q, McCormick JB, Fisher-Hoch SP, Ordoñez ML, Meigs J, Baier LJ, González-Villalpando C, González-Villalpando ME, Orozco L, García-García L, Moreno-Estrada A, Aguilar-Salinas CA, Tusié T, Dupuis J, Ng MCY, Manning A, Highland HM, Cnop M, Hanson R, Below J, Florez JC, Leong A, Mercader JM. The power of TOPMed imputation for the discovery of Latino-enriched rare variants associated with type 2 diabetes. Diabetologia 2023; 66:1273-1288. [PMID: 37148359 PMCID: PMC10244266 DOI: 10.1007/s00125-023-05912-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/03/2023] [Indexed: 05/08/2023]
Abstract
AIMS/HYPOTHESIS The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique opportunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population. METHODS We evaluated the TOPMed imputation performance using genotyping array and whole-exome sequence data in six Latino cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2 diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort. RESULTS Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants. We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10-9). A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance. CONCLUSIONS/INTERPRETATION Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores. DATA AVAILABILITY Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal ( https://t2d.hugeamp.org/downloads.html ) and through the GWAS catalog ( https://www.ebi.ac.uk/gwas/ , accession ID: GCST90255648). Polygenic score (PS) weights for each ancestry are available via the PGS catalog ( https://www.pgscatalog.org , publication ID: PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).
Collapse
Affiliation(s)
- Alicia Huerta-Chagoya
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico.
| | - Philip Schroeder
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ravi Mandla
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron J Deutsch
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Wanying Zhu
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Miriam S Udler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Dornbos
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bianca Porneala
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel DiCorpo
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Josephine H Li
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lukasz Szczerbiński
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | | | - Joohyun Kim
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yingchang Lu
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alicia Martin
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO, Université Libre de Bruxelles, Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, and AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Ling Chen
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shylaja Srinivasan
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer Todd
- Department of Pediatrics, University of Vermont, Burlington, VT, USA
| | - Jason Flannick
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Rose Gubitosi-Klug
- Pediatric Endocrinology, Diabetes, and Metabolism, Case Western Reserve University and Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Lynne Levitsky
- Department of Pediatrics, Division of Pediatric Endocrinology and Pediatric Diabetes Center, Massachusetts General Hospital, Boston, MA, USA
| | - Rachana Shah
- Pediatric Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan Kelsey
- Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brian Burke
- Biostatistics Center, The George Washington University, Rockville, MD, USA
| | - Dana M Dabelea
- Department of Epidemiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | - Lauren Stalbow
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Burcu F Darst
- Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Charles Kooperberg
- Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher Haiman
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph B McCormick
- School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Susan P Fisher-Hoch
- School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Maria L Ordoñez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - James Meigs
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Clicerio González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Pública, Mexico City, Mexico
| | - Maria Elena González-Villalpando
- Centro de Estudios en Diabetes, Unidad de Investigacion en Diabetes y Riesgo Cardiovascular, Centro de Investigacion en Salud Poblacional, Instituto Nacional de Salud Pública, Mexico City, Mexico
| | - Lorena Orozco
- Laboratorio Inmunogénomica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Andrés Moreno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada (UGA), CINVESTAV, Irapuato, Mexico
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas y Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Teresa Tusié
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Maggie C Y Ng
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alisa Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Hanson
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Jennifer Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Endocrine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron Leong
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Endocrine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Josep M Mercader
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Anindya R, Rutter GA, Meur G. New-onset type 1 diabetes and severe acute respiratory syndrome coronavirus 2 infection. Immunol Cell Biol 2023; 101:191-203. [PMID: 36529987 PMCID: PMC9877852 DOI: 10.1111/imcb.12615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of insulin. Loss of insulin-producing pancreatic islet β cells is one of the many causes of T1D. Viral infections have long been associated with new-onset T1D and the balance between virulence and host immunity determines whether the viral infection would lead to T1D. Herein, we detail the dynamic interaction of pancreatic β cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the host immune system with respect to new-onset T1D. Importantly, β cells express the crucial entry receptors and multiple studies confirmed that β cells are infected by SARS-CoV-2. Innate immune system effectors, such as natural killer cells, can eliminate such infected β cells. Although CD4+ CD25+ FoxP3+ regulatory T (TREG ) cells provide immune tolerance to prevent the destruction of the islet β-cell population by autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2 infection may compromise self-tolerance by depleting TREG -cell numbers or diminishing TREG -cell functions by repressing Forkhead box P3 (FoxP3) expression. However, the expansion of β cells by self-duplication, and regeneration from progenitor cells, could effectively replace lost β cells. Appearance of islet autoantibodies following SARS-CoV-2 infection was reported in a few cases, which could imply a breakdown of immune tolerance in the pancreatic islets. However, many of the cases with newly diagnosed autoimmune response following SARS-CoV-2 infection also presented with significantly high HbA1c (glycated hemoglobin) levels that indicated progression of an already set diabetes, rather than new-onset T1D. Here we review the potential underlying mechanisms behind loss of functional β-cell mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore.,Centre of Research of Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Gargi Meur
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Han D, Liu G, Oh Y, Oh S, Yang S, Mandjikian L, Rani N, Almeida MC, Kosik KS, Jang J. ZBTB12 is a molecular barrier to dedifferentiation in human pluripotent stem cells. Nat Commun 2023; 14:632. [PMID: 36759523 PMCID: PMC9911396 DOI: 10.1038/s41467-023-36178-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Development is generally viewed as one-way traffic of cell state transition from primitive to developmentally advanced states. However, molecular mechanisms that ensure the unidirectional transition of cell fates remain largely unknown. Through exact transcription start site mapping, we report an evolutionarily conserved BTB domain-containing zinc finger protein, ZBTB12, as a molecular barrier for dedifferentiation of human pluripotent stem cells (hPSCs). Single-cell RNA sequencing reveals that ZBTB12 is essential for three germ layer differentiation by blocking hPSC dedifferentiation. Mechanistically, ZBTB12 fine-tunes the expression of human endogenous retrovirus H (HERVH), a primate-specific retrotransposon, and targets specific transcripts that utilize HERVH as a regulatory element. In particular, the downregulation of HERVH-overlapping long non-coding RNAs (lncRNAs) by ZBTB12 is necessary for a successful exit from a pluripotent state and lineage derivation. Overall, we identify ZBTB12 as a molecular barrier that safeguards the unidirectional transition of metastable stem cell fates toward developmentally advanced states.
Collapse
Affiliation(s)
- Dasol Han
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Guojing Liu
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Novogene Co., Ltd, Beijing, China
| | - Yujeong Oh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Seyoun Oh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Lori Mandjikian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Neha Rani
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Maria C Almeida
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Federal University of ABC, Center for Natural and Human Sciences São Bernardo do Campo, Santo André, Brazil
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| |
Collapse
|
11
|
Dobosz AM, Janikiewicz J, Krogulec E, Dziewulska A, Ajduk A, Szpila M, Nieznańska H, Szczepankiewicz AA, Wypych D, Dobrzyn A. Inhibition of stearoyl-CoA desaturase 1 in the mouse impairs pancreatic islet morphogenesis and promotes loss of β-cell identity and α-cell expansion in the mature pancreas. Mol Metab 2022; 67:101659. [PMID: 36529318 PMCID: PMC9801219 DOI: 10.1016/j.molmet.2022.101659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Abnormalities that characterize the pathophysiology of type 2 diabetes (T2D) include deficiencies of β-cells and the expansion of α-cells in pancreatic islets, manifested by lower insulin release and glucagon oversecretion. The molecular mechanisms that determine intra-islet interactions between pancreatic α- and β-cells are still not fully understood. The present study showed that stearoyl-coenzyme A (CoA) desaturase 1 (SCD1), an enzyme that is implicated in fatty acid metabolism, serves as a checkpoint in the control of endocrine cell equilibrium in pancreatic islets. Our data showed that SCD1 activity is essential for proper α-cell and β-cell lineage determination during morphogenesis of the pancreas and the maintenance of mature β-cell identity. The inhibition of SCD1 expression/activity led to both a decrease in the expression of β-cell signature genes (e.g., Pdx1, Nkx6.1, MafA, and Neurod1, among others) and induction of the expression of the dedifferentiation marker Sox9 in mature pancreatic islets. The transcriptional repression of Pdx1 and MafA in SCD1-deficient β-cells was related to the excessive methylation of promoter regions of these transcription factors. In contrast, SCD1 ablation favored the formation of α-cells over β-cells throughout pancreas organogenesis and did not compromise α-cell identity in adult pancreatic islets. Such molecular changes that were caused by SCD1 downregulation resulted in the mislocalization of α-cells within the core of islets and increased the ratio of pancreatic α- to β-cell mass. This was followed by islet dysfunction, including impairments in glucose-stimulated insulin release, simultaneously with elevations of basal glucagon secretion. Altogether, these findings provide additional mechanistic insights into the role of SCD1 in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Aneta M. Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland,Corresponding author.
| | - Justyna Janikiewicz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Marcin Szpila
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Hanna Nieznańska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Andrzej A. Szczepankiewicz
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wypych
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
12
|
Denner J. Xenotransplantation of pig islet cells: Potential adverse impact of virus infections on their functionality and insulin production. Xenotransplantation 2022; 30:e12789. [PMID: 36495163 DOI: 10.1111/xen.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Joachim Denner
- Institute of Virology Free University Berlin Berlin Germany
| |
Collapse
|
13
|
Wang Y, Xu L, Luo S, Sun X, Li J, Pang H, Zhou J, Zhou Y, Shi X, Li X, Huang G, Xie Z, Zhou Z. The m6A methylation profiles of immune cells in type 1 diabetes mellitus. Front Immunol 2022; 13:1030728. [PMID: 36457997 PMCID: PMC9707336 DOI: 10.3389/fimmu.2022.1030728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/26/2022] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is caused by immune cell-mediated β-cell dysfunction. In recent decades, N6-methyladenosine (m6A) has attracted widespread attention in the scientific research field because it plays vital roles in the pathogenesis of immunity-related diseases, including autoimmune diseases. However, neither the m6A modification profile nor the potential role it plays in T1DM pathogenesis has been investigated to date. MATERIALS AND METHODS An m6A mRNA epitranscriptomic microarray analysis was performed to analyze m6A regulator expression patterns and m6A methylation patterns in immune cells of T1DM patients (n=6) and healthy individuals (n=6). A bioinformatics analysis was subsequently performed to explore the potential biological functions and signaling pathways underlying T1DM pathogenesis. Furthermore, mRNA expression and m6A methylation levels were subsequently verified by qRT-PCR and methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), respectively, in the T1DM and healthy groups (n=6 per group). RESULTS Among the multiple m6A regulators, METTL3 and IGF2BP2 had significantly downregulated expression, and YTHDC1 and HNRNPA2B1 had significantly upregulated expression in the T1DM group relative to the healthy group. The microarray analysis revealed 4247 differentially methylated transcripts, including 932 hypermethylated and 3315 hypomethylated transcripts, and 4264 differentially expressed transcripts, including 1818 upregulated transcripts and 2446 downregulated transcripts in the T1DM group relative to the healthy group. An association analysis between methylation and gene expression demonstrated that the expression of 590 hypermethylated transcripts was upregulated, and that of 1890 hypomethylated transcripts was downregulated. Pearson correlation analysis showed significant correlations between the expression levels of differentially expressed m6A regulators and the methylation levels of differentially methylated transcripts and significant correlations between the expression levels of differentially expressed m6A regulators and that of differentially expressed transcripts. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that differentially methylated transcripts were involved in pathways related to immunity, including some closely associated with T1DM. CONCLUSIONS Our study presents m6A regulator expression patterns and m6A methylation patterns of immune cells in T1DM, showing that the m6A mark and m6A regulators are promising targets for T1DM diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | |
Collapse
|
14
|
Prosperi S, Chiarelli F. COVID-19 and diabetes in children. Ann Pediatr Endocrinol Metab 2022; 27:157-168. [PMID: 36203266 PMCID: PMC9537670 DOI: 10.6065/apem.2244150.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
This review describes the impact of coronavirus disease 2019 (COVID-19) in children and adolescents, investigating changes in diabetes presentation during the COVID-19 pandemic, possible links between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and diabetes, and mechanisms of pancreatic β-cell destruction. Although glycemic control in individuals with already known diabetes mellitus did not worsen during the pandemic, there was a worrying increase in diabetic ketoacidosis in children with new-onset diabetes, probably due to containment measures and delayed access to emergency departments. Moreover, new evidence suggests that SARS-CoV-2 has the capacity to directly and indirectly induce pancreatic β-cell destruction, and the risk of newly diagnosed diabetes after COVID-19 increased in both children and adults. While long-term studies continue to follow children with SARS-CoV-2 infection, this review discusses available findings on the relationship between COVID-19 and diabetes. It is important to emphasize the need to maintain close links between families of children with chronic conditions and their pediatricians, as well as to promote early access to healthcare services, in order to reduce dangerous delays in diabetes diagnosis and prevent diabetic ketoacidosis.
Collapse
Affiliation(s)
| | - Francesco Chiarelli
- Address for correspondence: Francesco Chiarelli Department of Pediatrics, University of Chieti, Via dei Vestini, 5, I-66100 Chieti, Italy
| |
Collapse
|
15
|
Abstract
The transcription factor MafB plays an essential role in β-cell differentiation during the embryonic stage in rodents. Although MafB disappears from β-cells after birth, it has been reported that MafB can be evoked in β-cells and is involved in insulin+β-cell number and islet architecture maintenance in adult mice under diabetic conditions. However, the underlying mechanism by which MafB protects β-cells remains unknown. To elucidate this, we performed RNA sequencing using an inducible diabetes model (A0BΔpanc mice) that we previously generated. We found that the deletion of Mafb can induce β-cell dedifferentiation, characterized by the upregulation of dedifferentiation markers, Slc5a10 and Cck, as well as several β-cell-disallowed genes, and by the downregulation of mature β-cell markers, Slc2a2 and Ucn3. However, there is no re-expression of well-known progenitor cell markers, Foxo1 and Neurog3. Further, the appearance of ALDH1A3+ cells and the disappearance of UCN3+ cells also verify the β-cell dedifferentiation state. Collectively, our results suggest that MafB can maintain β-cell identity under certain pathological conditions in adult mice, providing novel insight into the role of MafB in β-cell identity maintenance.
Collapse
|
16
|
Proprotein convertase PCSK9 affects expression of key surface proteins in human pancreatic beta cells via intra- and extracellular regulatory circuits. J Biol Chem 2022; 298:102096. [PMID: 35660019 PMCID: PMC9251788 DOI: 10.1016/j.jbc.2022.102096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/02/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in the degradation of the low-density lipoprotein receptor. PCSK9 also targets proteins involved in lipid metabolism (very low–density lipoprotein receptor), immunity (major histocompatibility complex I), and viral infection (cluster of differentiation 81). Recent studies have also indicated that PCSK9 loss-of-function mutations are associated with an increased incidence of diabetes; however, the expression and function of PCSK9 in insulin-producing pancreatic beta cells remain unclear. Here, we studied PCSK9 regulation and function by performing loss- and gain-of-function experiments in the human beta cell line EndoC-βH1. We demonstrate that PCSK9 is expressed and secreted by EndoC-βH1 cells. We also found that PCSK9 expression is regulated by cholesterol and sterol regulatory element–binding protein transcription factors, as previously demonstrated in other cell types such as hepatocytes. Importantly, we show that PCSK9 knockdown using siRNA results in deregulation of various elements of the transcriptome, proteome, and secretome, and increases insulin secretion. We also observed that PCSK9 decreases low-density lipoprotein receptor and very low–density lipoprotein receptor levels via an extracellular signaling mechanism involving exogenous PCSK9, as well as levels of cluster of differentiation 36, a fatty acid transporter, through an intracellular signaling mechanism. Finally, we found that PCSK9 regulates the cell surface expression of PDL1 and HLA-ABC, proteins involved in cell–lymphocyte interaction, also via an intracellular mechanism. Collectively, these results highlight PCSK9 as a regulator of multiple cell surface receptors in pancreatic beta cells.
Collapse
|
17
|
Liyanage DS, Lee S, Yang H, Lim C, Omeka WKM, Sandamalika WMG, Udayantha HMV, Kim G, Ganeshalingam S, Jeong T, Oh SR, Won SH, Koh HB, Kim MK, Jones DB, Massault C, Jerry DR, Lee J. Genome-wide association study of VHSV-resistance trait in Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:391-400. [PMID: 35462004 DOI: 10.1016/j.fsi.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/26/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
In flounder aquaculture, selective breeding plays a vital role in the development of disease-resistant traits and animals with high growth rates. Moreover, superior animals are required to achieve high profits. Unlike growth-related traits, disease-resistant experiments need to be conducted in a controlled environment, as the improper measurement of traits often leads to low genetic correlation and incorrect estimation of breeding values. In this study, viral hemorrhagic septicemia virus (VHSV) resistance was studied using a genome-wide association study (GWAS), and the genetic parameters were estimated. Genotyping was performed using a high-quality 70 K single nucleotide polymorphism (SNP) Affymetrix® Axiom® myDesign™ Genotyping Array of olive flounder. A heritability of ∼0.18 for resistance to VHSV was estimated using genomic information of the fish. According to the GWAS, significant SNPs were detected in chromosomes 21, 24, and contig AGQT02032065.1. Three SNPs showed significance at the genome-wide level (p < 1 × 10-6), while others showed significance above the suggestive cutoff (p < 1 × 10-4). The 3% phenotypic variation was explained by the highest significant SNP, named AX-419319631. Of the important genes for disease resistance, SNPs were associated with plcg1, epha4, clstn2, pik3cb, hes6, meis3, prx6, cep164, siae, and kirrel3b. Most of the genes associated with these SNPs have been previously reported with respect to viral entry, propagation, and immune mechanisms. Therefore, our study provides helpful information regarding VHSV resistance in olive flounder, which can be used for breeding applications.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seong-Rip Oh
- Ocean and Fisheries Research Institute, Jeju Self-Governing Province, 63629, Republic of Korea
| | - Seung-Hwan Won
- Ocean and Fisheries Research Institute, Jeju Self-Governing Province, 63629, Republic of Korea
| | - Hyoung-Bum Koh
- Ocean and Fisheries Research Institute, Jeju Self-Governing Province, 63629, Republic of Korea
| | - Mun-Kwan Kim
- Ocean and Fisheries Research Institute, Jeju Self-Governing Province, 63629, Republic of Korea
| | - David B Jones
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Cecile Massault
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia; Tropical Futures Institute, James Cook University, Singapore.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
18
|
Ryaboshapkina M, Saitoski K, Hamza GM, Jarnuczak AF, Pechberty S, Berthault C, Sengupta K, Underwood CR, Andersson S, Scharfmann R. Characterization of the Secretome, Transcriptome, and Proteome of Human β Cell Line EndoC-βH1. Mol Cell Proteomics 2022; 21:100229. [PMID: 35378291 PMCID: PMC9062487 DOI: 10.1016/j.mcpro.2022.100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/26/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022] Open
Abstract
Early diabetes research is hampered by limited availability, variable quality, and instability of human pancreatic islets in culture. Little is known about the human β cell secretome, and recent studies question translatability of rodent β cell secretory profiles. Here, we verify representativeness of EndoC-βH1, one of the most widely used human β cell lines, as a translational human β cell model based on omics and characterize the EndoC-βH1 secretome. We profiled EndoC-βH1 cells using RNA-seq, data-independent acquisition, and tandem mass tag proteomics of cell lysate. Omics profiles of EndoC-βH1 cells were compared to human β cells and insulinomas. Secretome composition was assessed by data-independent acquisition proteomics. Agreement between EndoC-βH1 cells and primary adult human β cells was ∼90% for global omics profiles as well as for β cell markers, transcription factors, and enzymes. Discrepancies in expression were due to elevated proliferation rate of EndoC-βH1 cells compared to adult β cells. Consistently, similarity was slightly higher with benign nonmetastatic insulinomas. EndoC-βH1 secreted 783 proteins in untreated baseline state and 3135 proteins when stressed with nontargeting control siRNA, including known β cell hormones INS, IAPP, and IGF2. Further, EndoC-βH1 secreted proteins known to generate bioactive peptides such as granins and enzymes required for production of bioactive peptides. EndoC-βH1 secretome contained an unexpectedly high proportion of predicted extracellular vesicle proteins. We believe that secretion of extracellular vesicles and bioactive peptides warrant further investigation with specialized proteomics workflows in future studies.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Kevin Saitoski
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Ghaith M Hamza
- Discovery Sciences, AstraZeneca, Boston, Massachusetts, USA; Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Andrew F Jarnuczak
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Séverine Pechberty
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Claire Berthault
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Kaushik Sengupta
- Alliance Management, Business Development, Licensing and Strategy, Biopharmaceuticals R&D, Astra Zeneca, Gothenburg, Sweden
| | - Christina Rye Underwood
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Raphael Scharfmann
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| |
Collapse
|
19
|
Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T, Kovač J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes (Basel) 2022; 13:genes13040706. [PMID: 35456512 PMCID: PMC9032728 DOI: 10.3390/genes13040706] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the T-cell-mediated destruction of insulin-producing β-cells in pancreatic islets. It generally occurs in genetically susceptible individuals, and genetics plays a major role in the development of islet autoimmunity. Furthermore, these processes are heterogeneous among individuals; hence, different endotypes have been proposed. In this review, we highlight the interplay between genetic predisposition and other non-genetic factors, such as viral infections, diet, and gut biome, which all potentially contribute to the aetiology of T1D. We also discuss a possible active role for β-cells in initiating the pathological processes. Another component in T1D predisposition is epigenetic influences, which represent a link between genetic susceptibility and environmental factors and may account for some of the disease heterogeneity. Accordingly, a shift towards personalized therapies may improve the treatment results and, therefore, result in better outcomes for individuals in the long-run. There is also a clear need for a better understanding of the preclinical phases of T1D and finding new predictive biomarkers for earlier diagnosis and therapy, with the final goal of reverting or even preventing the development of the disease.
Collapse
Affiliation(s)
- Ana Zajec
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Robert Šket
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Barbara Čugalj Kern
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Šmigoc Schweiger
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
20
|
Van Simaeys D, De La Fuente A, Zilio S, Zoso A, Kuznetsova V, Alcazar O, Buchwald P, Grilli A, Caroli J, Bicciato S, Serafini P. RNA aptamers specific for transmembrane p24 trafficking protein 6 and Clusterin for the targeted delivery of imaging reagents and RNA therapeutics to human β cells. Nat Commun 2022; 13:1815. [PMID: 35383192 PMCID: PMC8983715 DOI: 10.1038/s41467-022-29377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
The ability to detect and target β cells in vivo can substantially refine how diabetes is studied and treated. However, the lack of specific probes still hampers a precise characterization of human β cell mass and the delivery of therapeutics in clinical settings. Here, we report the identification of two RNA aptamers that specifically and selectively recognize mouse and human β cells. The putative targets of the two aptamers are transmembrane p24 trafficking protein 6 (TMED6) and clusterin (CLUS). When given systemically in immune deficient mice, these aptamers recognize the human islet graft producing a fluorescent signal proportional to the number of human islets transplanted. These aptamers cross-react with endogenous mouse β cells and allow monitoring the rejection of mouse islet allografts. Finally, once conjugated to saRNA specific for X-linked inhibitor of apoptosis (XIAP), they can efficiently transfect non-dissociated human islets, prevent early graft loss, and improve the efficacy of human islet transplantation in immunodeficient in mice.
Collapse
Affiliation(s)
- Dimitri Van Simaeys
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adriana De La Fuente
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alessia Zoso
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Victoria Kuznetsova
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea Grilli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jimmy Caroli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Serafini
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
21
|
Nigi L, Brusco N, Grieco GE, Fignani D, Licata G, Formichi C, Aiello E, Marselli L, Marchetti P, Krogvold L, Jorgensen KD, Sebastiani G, Dotta F. Increased Expression of Viral Sensor MDA5 in Pancreatic Islets and in Hormone-Negative Endocrine Cells in Recent Onset Type 1 Diabetic Donors. Front Immunol 2022; 13:833141. [PMID: 35359976 PMCID: PMC8963204 DOI: 10.3389/fimmu.2022.833141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
The interaction between genetic and environmental factors determines the development of type 1 diabetes (T1D). Some viruses are capable of infecting and damaging pancreatic β-cells, whose antiviral response could be modulated by specific viral RNA receptors and sensors such as melanoma differentiation associated gene 5 (MDA5), encoded by the IFIH1 gene. MDA5 has been shown to be involved in pro-inflammatory and immunoregulatory outcomes, thus determining the response of pancreatic islets to viral infections. Although the function of MDA5 has been previously well explored, a detailed immunohistochemical characterization of MDA5 in pancreatic tissues of nondiabetic and T1D donors is still missing. In the present study, we used multiplex immunofluorescence imaging analysis to characterize MDA5 expression and distribution in pancreatic tissues obtained from 22 organ donors (10 nondiabetic autoantibody-negative, 2 nondiabetic autoantibody-positive, 8 recent-onset, and 2 long-standing T1D). In nondiabetic control donors, MDA5 was expressed both in α- and β-cells. The colocalization rate imaging analysis showed that MDA5 was preferentially expressed in α-cells. In T1D donors, we observed an increased colocalization rate of MDA5-glucagon with respect to MDA5-insulin in comparison to nondiabetic controls; such increase was more pronounced in recent-onset with respect to long-standing T1D donors. Of note, an increased colocalization rate of MDA5-glucagon was found in insulin-deficient-islets (IDIs) with respect to insulin-containing-islets (ICIs). Strikingly, we detected the presence of MDA5-positive/hormone-negative endocrine islet-like clusters in T1D donors, presumably due to dedifferentiation or neogenesis phenomena. These clusters were identified exclusively in donors with recent disease onset and not in autoantibody-positive nondiabetic donors or donors with long-standing T1D. In conclusion, we showed that MDA5 is preferentially expressed in α-cells, and its expression is increased in recent-onset T1D donors. Finally, we observed that MDA5 may also characterize the phenotype of dedifferentiated or newly forming islet cells, thus opening to novel roles for MDA5 in pancreatic endocrine cells.
Collapse
Affiliation(s)
- Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- *Correspondence: Laura Nigi,
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giuseppina E. Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lars Krogvold
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl Jorgensen
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|
22
|
Secco B, Saitoski K, Drareni K, Soprani A, Pechberty S, Rachdi L, Venteclef N, Scharfmann R. Loss of Human Beta Cell Identity in a Reconstructed Omental Stromal Cell Environment. Cells 2022; 11:cells11060924. [PMID: 35326375 PMCID: PMC8946101 DOI: 10.3390/cells11060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
In human type 2 diabetes, adipose tissue plays an important role in disturbing glucose homeostasis by secreting factors that affect the function of cells and tissues throughout the body, including insulin-producing pancreatic beta cells. We aimed here at studying the paracrine effect of stromal cells isolated from subcutaneous and omental adipose tissue on human beta cells. We developed an in vitro model wherein the functional human beta cell line EndoC-βH1 was treated with conditioned media from human adipose tissues. By using RNA-sequencing and western blotting, we determined that a conditioned medium derived from omental stromal cells stimulates several pathways, such as STAT, SMAD and RELA, in EndoC-βH1 cells. We also observed that upon treatment, the expression of beta cell markers decreased while dedifferentiation markers increased. Loss-of-function experiments that efficiently blocked specific signaling pathways did not reverse dedifferentiation, suggesting the implication of more than one pathway in this regulatory process. Taken together, we demonstrate that soluble factors derived from stromal cells isolated from human omental adipose tissue signal human beta cells and modulate their identity.
Collapse
Affiliation(s)
- Blandine Secco
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Kevin Saitoski
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Karima Drareni
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Université de Paris, 75006 Paris, France; (K.D.); (A.S.); (N.V.)
| | - Antoine Soprani
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Université de Paris, 75006 Paris, France; (K.D.); (A.S.); (N.V.)
- Clinique Geoffroy Saint-Hilaire, Ramsey General de Santé, 75005 Paris, France
| | - Severine Pechberty
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Latif Rachdi
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Université de Paris, 75006 Paris, France; (K.D.); (A.S.); (N.V.)
| | - Raphaël Scharfmann
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
- Correspondence: ; Tel.: +(33)-1-76-53-55-68
| |
Collapse
|
23
|
SOX9 negatively regulates the RLR antiviral signaling by targeting MAVS. Virus Genes 2022; 58:122-132. [PMID: 35103914 DOI: 10.1007/s11262-022-01886-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
Mitochondrial virus-induced signal adaptor (MAVS), also known as VISA, IPS-1, and Cardif, is a crucial adaptor protein in the RIG-I-like receptor (RLR) signaling pathway. Upon viral infection, RIG-I recognizes viral dsRNA and further transfers it to mitochondria, where it binds to MAVS through its CARD domain, generating a series of signal cascades. Transduction through this signaling cascade leads to phosphorylation and nuclear translocation of interferon regulatory factor 3/7 (IRF3/IRF7) and activation of NF-κB, which ultimately produces type I interferon (IFN) and proinflammatory cytokines. Here, our experiments demonstrated that overexpression of SRY-related high-mobility group protein 9 (SOX9) significantly inhibited Sendai virus (SeV)-induced and MAVS-mediated activation of the IFN-β promoter and ISRE. However, knocking out the expression of SOX9 in cells promoted SeV-induced IFN-β promoter and ISRE activation. Further studies have shown that SOX9 interacts with MAVS and targets MAVS to inhibit the association of MAVS-TRAF2, thereby inhibiting MAVS-mediated TRAF2 ubiquitination. Taken together, these results indicate that SOX9 downregulates IFN-β expression and antiviral signal transduction by targeting MAVS.
Collapse
|
24
|
Mine K, Nagafuchi S, Mori H, Takahashi H, Anzai K. SARS-CoV-2 Infection and Pancreatic β Cell Failure. BIOLOGY 2021; 11:biology11010022. [PMID: 35053020 PMCID: PMC8772979 DOI: 10.3390/biology11010022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Accumulating evidence suggests that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have the potential to induce pancreatic β-cell damage, leading to diabetes onset in patients with coronavirus disease 2019 (COVID-19). However, controversial results have been reported among study groups. Here, we provide a comprehensive review of published findings that describe the potential relationship between SARS-CoV-2 infection (COVID-19) and pancreatic β-cell failure, and how this may contribute to the development of diabetes. Abstract SARS-CoV-2 infection primarily causes pulmonary symptoms; however, accumulating reports indicate that some patients with COVID-19 have multiple organ dysfunction or failure. Although diabetes is considered a risk factor for severe COVID-19, SARS-CoV-2 infection may also be a causal factor for diabetes mellitus in patients with COVID-19. According to the research reviewed in this paper, the pancreas and pancreatic β cells appear to be targets of SARS-CoV-2 and are damaged by direct or indirect effects of the infection. However, controversial results have been reported between study groups, mainly due to the limited number of cases with diabetes precipitated by COVID-19. In this review, we comprehensively discuss the published findings on the potential association between SARS-CoV-2 infection or COVID-19 and pancreatic β-cell damage leading to diabetes onset. These findings will further contribute to our understanding of the pathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- Keiichiro Mine
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
- Division of Mucosal Immunology, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Fukuoka 812-8582, Japan
- Correspondence:
| | - Seiho Nagafuchi
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
| | - Hitoe Mori
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
- Liver Center, Saga University Hospital, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (S.N.); (H.M.); (H.T.); (K.A.)
| |
Collapse
|
25
|
Groen N, Leenders F, Mahfouz A, Munoz-Garcia A, Muraro MJ, de Graaf N, Rabelink TJ, Hoeben R, van Oudenaarden A, Zaldumbide A, Reinders MJT, de Koning EJP, Carlotti F. Single-Cell Transcriptomics Links Loss of Human Pancreatic β-Cell Identity to ER Stress. Cells 2021; 10:3585. [PMID: 34944092 PMCID: PMC8700697 DOI: 10.3390/cells10123585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
The maintenance of pancreatic islet architecture is crucial for proper β-cell function. We previously reported that disruption of human islet integrity could result in altered β-cell identity. Here we combine β-cell lineage tracing and single-cell transcriptomics to investigate the mechanisms underlying this process in primary human islet cells. Using drug-induced ER stress and cytoskeleton modification models, we demonstrate that altering the islet structure triggers an unfolding protein response that causes the downregulation of β-cell maturity genes. Collectively, our findings illustrate the close relationship between endoplasmic reticulum homeostasis and β-cell phenotype, and strengthen the concept of altered β-cell identity as a mechanism underlying the loss of functional β-cell mass.
Collapse
Affiliation(s)
- Nathalie Groen
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.G.); (F.L.); (A.M.-G.); (N.d.G.); (T.J.R.); (E.J.P.d.K.)
| | - Floris Leenders
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.G.); (F.L.); (A.M.-G.); (N.d.G.); (T.J.R.); (E.J.P.d.K.)
| | - Ahmed Mahfouz
- Leiden Computational Biology Center, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.); (M.J.T.R.)
- Delft Bioinformatics Lab, Delft University of Technology, 2628 XE Delft, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Amadeo Munoz-Garcia
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.G.); (F.L.); (A.M.-G.); (N.d.G.); (T.J.R.); (E.J.P.d.K.)
| | - Mauro J. Muraro
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands; (M.J.M.); (A.v.O.)
| | - Natascha de Graaf
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.G.); (F.L.); (A.M.-G.); (N.d.G.); (T.J.R.); (E.J.P.d.K.)
| | - Ton. J. Rabelink
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.G.); (F.L.); (A.M.-G.); (N.d.G.); (T.J.R.); (E.J.P.d.K.)
| | - Rob Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.H.); (A.Z.)
| | - Alexander van Oudenaarden
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands; (M.J.M.); (A.v.O.)
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.H.); (A.Z.)
| | - Marcel J. T. Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.); (M.J.T.R.)
- Delft Bioinformatics Lab, Delft University of Technology, 2628 XE Delft, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Eelco J. P. de Koning
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.G.); (F.L.); (A.M.-G.); (N.d.G.); (T.J.R.); (E.J.P.d.K.)
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, The Netherlands; (M.J.M.); (A.v.O.)
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (N.G.); (F.L.); (A.M.-G.); (N.d.G.); (T.J.R.); (E.J.P.d.K.)
| |
Collapse
|
26
|
Leenders F, Groen N, de Graaf N, Engelse MA, Rabelink TJ, de Koning EJP, Carlotti F. Oxidative Stress Leads to β-Cell Dysfunction Through Loss of β-Cell Identity. Front Immunol 2021; 12:690379. [PMID: 34804002 PMCID: PMC8601632 DOI: 10.3389/fimmu.2021.690379] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Pancreatic β-cell failure is a critical event in the onset of both main types of diabetes mellitus but underlying mechanisms are not fully understood. β-cells have low anti-oxidant capacity, making them more susceptible to oxidative stress. In type 1 diabetes (T1D), reactive oxygen species (ROS) are associated with pro-inflammatory conditions at the onset of the disease. Here, we investigated the effects of hydrogen peroxide-induced oxidative stress on human β-cells. We show that primary human β-cell function is decreased. This reduced function is associated with an ER stress response and the shuttling of FOXO1 to the nucleus. Furthermore, oxidative stress leads to loss of β-cell maturity genes MAFA and PDX1, and to a concomitant increase in progenitor marker expression of SOX9 and HES1. Overall, we propose that oxidative stress-induced β-cell failure may result from partial dedifferentiation. Targeting antioxidant mechanisms may preserve functional β-cell mass in early stages of development of T1D.
Collapse
Affiliation(s)
- Floris Leenders
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Nathalie Groen
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Natascha de Graaf
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Marten A Engelse
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.,Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
27
|
Jhaveri R. How COVID-19 Is Helping Us Learn More About Diabetes Pathogenesis. Clin Ther 2021; 43:1435-1436. [PMID: 34588131 PMCID: PMC8429364 DOI: 10.1016/j.clinthera.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Ravi Jhaveri
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago; Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
28
|
Nimkulrat SD, Bernstein MN, Ni Z, Brown J, Kendziorski C, Blum B. The Anna Karenina Model of β-Cell Maturation in Development and Their Dedifferentiation in Type 1 and Type 2 Diabetes. Diabetes 2021; 70:2058-2066. [PMID: 34417264 PMCID: PMC8576426 DOI: 10.2337/db21-0211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022]
Abstract
Loss of mature β-cell function and identity, or β-cell dedifferentiation, is seen in both type 1 and type 2 diabetes. Two competing models explain β-cell dedifferentiation in diabetes. In the first model, β-cells dedifferentiate in the reverse order of their developmental ontogeny. This model predicts that dedifferentiated β-cells resemble β-cell progenitors. In the second model, β-cell dedifferentiation depends on the type of diabetogenic stress. This model, which we call the "Anna Karenina" model, predicts that in each type of diabetes, β-cells dedifferentiate in their own way, depending on how their mature identity is disrupted by any particular diabetogenic stress. We directly tested the two models using a β-cell-specific lineage-tracing system coupled with RNA sequencing in mice. We constructed a multidimensional map of β-cell transcriptional trajectories during the normal course of β-cell postnatal development and during their dedifferentiation in models of both type 1 diabetes (NOD) and type 2 diabetes (BTBR-Lepob/ob ). Using this unbiased approach, we show here that despite some similarities between immature and dedifferentiated β-cells, β-cell dedifferentiation in the two mouse models is not a reversal of developmental ontogeny and is different between different types of diabetes.
Collapse
Affiliation(s)
- Sutichot D Nimkulrat
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | | | - Zijian Ni
- Department of Statistics, University of Wisconsin-Madison, Madison, WI
| | - Jared Brown
- Department of Statistics, University of Wisconsin-Madison, Madison, WI
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| |
Collapse
|
29
|
Tang X, Uhl S, Zhang T, Xue D, Li B, Vandana JJ, Acklin JA, Bonnycastle LL, Narisu N, Erdos MR, Bram Y, Chandar V, Chong ACN, Lacko LA, Min Z, Lim JK, Borczuk AC, Xiang J, Naji A, Collins FS, Evans T, Liu C, tenOever BR, Schwartz RE, Chen S. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab 2021; 33:1577-1591.e7. [PMID: 34081913 PMCID: PMC8133495 DOI: 10.1016/j.cmet.2021.05.015] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.
Collapse
Affiliation(s)
- Xuming Tang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Skyler Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Bo Li
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, the Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Lori L Bonnycastle
- The Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Narisu Narisu
- The Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Michael R Erdos
- The Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Angie Chi Nok Chong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Lauretta A Lacko
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Zaw Min
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Francis S Collins
- The Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA.
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
30
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
31
|
Viral infiltration of pancreatic islets in patients with COVID-19. Nat Commun 2021; 12:3534. [PMID: 34112801 PMCID: PMC8192507 DOI: 10.1038/s41467-021-23886-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023] Open
Abstract
Metabolic diseases are associated with an increased risk of severe COVID-19 and conversely, new-onset hyperglycemia and complications of preexisting diabetes have been observed in COVID-19 patients. Here, we performed a comprehensive analysis of pancreatic autopsy tissue from COVID-19 patients using immunofluorescence, immunohistochemistry, RNA scope and electron microscopy and detected SARS-CoV-2 viral infiltration of beta-cells in all patients. Using SARS-CoV-2 pseudoviruses, we confirmed that isolated human islet cells are permissive to infection. In eleven COVID-19 patients, we examined the expression of ACE2, TMPRSS and other receptors and factors, such as DPP4, HMBG1 and NRP1, that might facilitate virus entry. Whereas 70% of the COVID-19 patients expressed ACE2 in the vasculature, only 30% displayed ACE2-expression in beta-cells. Even in the absence of manifest new-onset diabetes, necroptotic cell death, immune cell infiltration and SARS-CoV-2 viral infection of pancreatic beta-cells may contribute to varying degrees of metabolic dysregulation in patients with COVID-19. New-onset hyperglycemia and complications of preexisting diabetes have been observed in COVID-19 patients, however, the underlying mechanisms are not fully understood. Here, the authors show that SARS-CoV-2 is detectable in both endocrine and exocrine cells of the pancreata of patients with COVID-19.
Collapse
|
32
|
de Jesus DS, Mak TCS, Wang YF, von Ohlen Y, Bai Y, Kane E, Chabosseau P, Chahrour CM, Distaso W, Salem V, Tomas A, Stoffel M, Rutter GA, Latreille M. Dysregulation of the Pdx1/Ovol2/Zeb2 axis in dedifferentiated β-cells triggers the induction of genes associated with epithelial-mesenchymal transition in diabetes. Mol Metab 2021; 53:101248. [PMID: 33989778 PMCID: PMC8184664 DOI: 10.1016/j.molmet.2021.101248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE β-cell dedifferentiation has been revealed as a pathological mechanism underlying pancreatic dysfunction in diabetes. We previously showed that increased miR-7 levels trigger β-cell dedifferentiation and diabetes. We used β-cell-specific miR-7 overexpressing mice (Tg7) to test the hypothesis that loss of β-cell identity triggered by miR-7 overexpression alters islet gene expression and islet microenvironment in diabetes. METHODS We performed bulk and single-cell RNA sequencing (RNA-seq) in islets obtained from β-cell-specific miR-7 overexpressing mice (Tg7). We carried out loss- and gain-of-function experiments in MIN6 and EndoC-bH1 cell lines. We analysed previously published mouse and human T2D data sets. RESULTS Bulk RNA-seq revealed that β-cell dedifferentiation is associated with the induction of genes associated with epithelial-to-mesenchymal transition (EMT) in prediabetic (2-week-old) and diabetic (12-week-old) Tg7 mice. Single-cell RNA-seq (scRNA-seq) indicated that this EMT signature is enriched specifically in β-cells. These molecular changes are associated with a weakening of β-cell: β-cell contacts, increased extracellular matrix (ECM) deposition, and TGFβ-dependent islet fibrosis. We found that the mesenchymal reprogramming of β-cells is explained in part by the downregulation of Pdx1 and its inability to regulate a myriad of epithelial-specific genes expressed in β-cells. Notable among genes transactivated by Pdx1 is Ovol2, which encodes a transcriptional repressor of the EMT transcription factor Zeb2. Following compromised β-cell identity, the reduction in Pdx1 gene expression causes a decrease in Ovol2 protein, triggering mesenchymal reprogramming of β-cells through the induction of Zeb2. We provided evidence that EMT signalling associated with the upregulation of Zeb2 expression is a molecular feature of islets in T2D subjects. CONCLUSIONS Our study indicates that miR-7-mediated β-cell dedifferentiation induces EMT signalling and a chronic response to tissue injury, which alters the islet microenvironment and predisposes to fibrosis. This research suggests that regulators of EMT signalling may represent novel therapeutic targets for treating β-cell dysfunction and fibrosis in T2D.
Collapse
Affiliation(s)
- Daniel S de Jesus
- Cellular Identity and Metabolism Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Tracy C S Mak
- Cellular Identity and Metabolism Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Yi-Fang Wang
- Computing and Bioinformatics Facility, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Yorrick von Ohlen
- Cellular Identity and Metabolism Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ying Bai
- Cellular Identity and Metabolism Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Eva Kane
- Cellular Identity and Metabolism Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | - Catherine M Chahrour
- Computing and Bioinformatics Facility, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | | | - Victoria Salem
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern Weg 7, 8093 Zurich, Switzerland
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK; Lee Kong China School of Medicine, Nan Yang Technological University, Singapore
| | - Mathieu Latreille
- Cellular Identity and Metabolism Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
33
|
A Brief Review of the Mechanisms of β-Cell Dedifferentiation in Type 2 Diabetes. Nutrients 2021; 13:nu13051593. [PMID: 34068827 PMCID: PMC8151793 DOI: 10.3390/nu13051593] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a metabolic disease characterized by hyperglycemia. Over 90% of patients with diabetes have type 2 diabetes. Pancreatic β-cells are endocrine cells that produce and secrete insulin, an essential endocrine hormone that regulates blood glucose levels. Deficits in β-cell function and mass play key roles in the onset and progression of type 2 diabetes. Apoptosis has been considered as the main contributor of β-cell dysfunction and decrease in β-cell mass for a long time. However, recent studies suggest that β-cell failure occurs mainly due to increased β-cell dedifferentiation rather than limited β-cell proliferation or increased β-cell death. In this review, we summarize the current advances in the understanding of the pancreatic β-cell dedifferentiation process including potential mechanisms. A better understanding of β-cell dedifferentiation process will help to identify novel therapeutic targets to prevent and/or reverse β-cell loss in type 2 diabetes.
Collapse
|
34
|
Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, Weil T, Koepke L, Bozzo CP, Read C, Fois G, Eiseler T, Gehrmann J, van Vuuren J, Wessbecher IM, Frick M, Costa IG, Breunig M, Grüner B, Peters L, Schuster M, Liebau S, Seufferlein T, Stenger S, Stenzinger A, MacDonald PE, Kirchhoff F, Sparrer KMJ, Walther P, Lickert H, Barth TFE, Wagner M, Münch J, Heller S, Kleger A. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 2021; 3:149-165. [PMID: 33536639 DOI: 10.1038/s42255-021-00347-1] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Infection-related diabetes can arise as a result of virus-associated β-cell destruction. Clinical data suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), impairs glucose homoeostasis, but experimental evidence that SARS-CoV-2 can infect pancreatic tissue has been lacking. In the present study, we show that SARS-CoV-2 infects cells of the human exocrine and endocrine pancreas ex vivo and in vivo. We demonstrate that human β-cells express viral entry proteins, and SARS-CoV-2 infects and replicates in cultured human islets. Infection is associated with morphological, transcriptional and functional changes, including reduced numbers of insulin-secretory granules in β-cells and impaired glucose-stimulated insulin secretion. In COVID-19 full-body postmortem examinations, we detected SARS-CoV-2 nucleocapsid protein in pancreatic exocrine cells, and in cells that stain positive for the β-cell marker NKX6.1 and are in close proximity to the islets of Langerhans in all four patients investigated. Our data identify the human pancreas as a target of SARS-CoV-2 infection and suggest that β-cell infection could contribute to the metabolic dysregulation observed in patients with COVID-19.
Collapse
Affiliation(s)
- Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jana Krüger
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Uta Merle
- Department of Internal Medicine 4, University of Heidelberg, Heidelberg, Germany
| | | | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Joanne van Vuuren
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Isabel M Wessbecher
- Tissue Bank of the German Center for Infection Research, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Markus Breunig
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Beate Grüner
- Department of Internal Medicine 3, Ulm University Hospital, Ulm, Germany
| | - Lynn Peters
- Department of Internal Medicine 3, Ulm University Hospital, Ulm, Germany
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Steffen Stenger
- Institute for Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | | | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Martin Wagner
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany.
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Sandra Heller
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany.
| | - Alexander Kleger
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|
35
|
Good Cop, Bad Cop: The Opposing Effects of Macrophage Activation State on Maintaining or Damaging Functional β-Cell Mass. Metabolites 2020; 10:metabo10120485. [PMID: 33256225 PMCID: PMC7761161 DOI: 10.3390/metabo10120485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Loss of functional β-cell mass is a hallmark of Type 1 and Type 2 Diabetes. Macrophages play an integral role in the maintenance or destruction of pancreatic β-cells. The effect of the macrophage β-cell interaction is dependent on the activation state of the macrophage. Macrophages can be activated across a spectrum, from pro-inflammatory to anti-inflammatory and tissue remodeling. The factors secreted by these differentially activated macrophages and their effect on β-cells define the effect on functional β-cell mass. In this review, the spectrum of macrophage activation is discussed, as are the positive and negative effects on β-cell survival, expansion, and function as well as the defined factors released from macrophages that impinge on functional β-cell mass.
Collapse
|
36
|
Bernard H, Teijeiro A, Chaves-Pérez A, Perna C, Satish B, Novials A, Wang JP, Djouder N. Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing. CELL REPORTS MEDICINE 2020; 1:100125. [PMID: 33205075 PMCID: PMC7659558 DOI: 10.1016/j.xcrm.2020.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Enteroviruses are suspected to contribute to insulin-producing β cell loss and hyperglycemia-induced diabetes. However, mechanisms are not fully defined. Here, we show that coxsackievirus B type 4 (CVB4) infection in human islet-engrafted mice and in rat insulinoma cells displays loss of unconventional prefoldin RPB5 interactor (URI) and PDX1, affecting β cell function and identity. Genetic URI ablation in the mouse pancreas causes PDX1 depletion in β cells. Importantly, diabetic PDX1 heterozygous mice overexpressing URI in β cells are more glucose tolerant. Mechanistically, URI loss triggers estrogen receptor nuclear translocation leading to DNA methyltransferase 1 (DNMT1) expression, which induces Pdx1 promoter hypermethylation and silencing. Consequently, demethylating agent procainamide-mediated DNMT1 inhibition reinstates PDX1 expression and protects against diabetes in pancreatic URI-depleted mice . Finally, the β cells of human diabetes patients show correlations between viral protein 1 and URI, PDX1, and DNMT1 levels. URI and DNMT1 expression and PDX1 silencing provide a causal link between enterovirus infection and diabetes. Coxsackievirus B type 4 infection downregulates URI and affects β cell function Genetic URI ablation in mouse pancreas recapitulates diabetes URI controls Pdx1 methylation via ERα-activating DNMT1 Coxsackievirus B type 4, URI, PDX1, and DNMT1 expression correlate in human pancreata
Collapse
MESH Headings
- Animals
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/metabolism
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/virology
- Disease Models, Animal
- Enterovirus B, Human/genetics
- Enterovirus B, Human/metabolism
- Enterovirus B, Human/pathogenicity
- Female
- Gene Expression Regulation
- Glucose/metabolism
- Glucose/pharmacology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/transplantation
- Male
- Mice
- Mice, Transgenic
- Procainamide/pharmacology
- Rats
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Hugo Bernard
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana Teijeiro
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Almudena Chaves-Pérez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Basanthi Satish
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Novials
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute and, CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
- Corresponding author
| |
Collapse
|
37
|
Regulated expression and function of the GABA B receptor in human pancreatic beta cell line and islets. Sci Rep 2020; 10:13469. [PMID: 32778664 PMCID: PMC7417582 DOI: 10.1038/s41598-020-69758-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors are seven transmembrane signaling molecules that are involved in a wide variety of physiological processes. They constitute a large protein family of receptors with almost 300 members detected in human pancreatic islet preparations. However, the functional role of these receptors in pancreatic islets is unknown in most cases. We generated a new stable human beta cell line from neonatal pancreas. This cell line, named ECN90 expresses both subunits (GABBR1 and GABBR2) of the metabotropic GABAB receptor compared to human islet. In ECN90 cells, baclofen, a specific GABAB receptor agonist, inhibits cAMP signaling causing decreased expression of beta cell-specific genes such as MAFA and PCSK1, and reduced insulin secretion. We next demonstrated that in primary human islets, GABBR2 mRNA expression is strongly induced under cAMP signaling, while GABBR1 mRNA is constitutively expressed. We also found that induction and activation of the GABAB receptor in human islets modulates insulin secretion.
Collapse
|
38
|
Genetic Susceptibility of the Host in Virus-Induced Diabetes. Microorganisms 2020; 8:microorganisms8081133. [PMID: 32727064 PMCID: PMC7464158 DOI: 10.3390/microorganisms8081133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses, especially Coxsackie B viruses, are among the candidate environmental factors causative of type 1 diabetes. Host genetic factors have an impact on the development of virus-induced diabetes (VID). Host background, in terms of whether the host is prone to autoimmunity, should also be considered when analyzing the role of target genes in VID. In this review, we describe the genetic susceptibility of the host based on studies in humans and VID animal models. Understanding the host genetic factors should contribute not only to revealing the mechanisms of VID development, but also in taking measures to prevent VID.
Collapse
|
39
|
Blum SI, Tse HM. Innate Viral Sensor MDA5 and Coxsackievirus Interplay in Type 1 Diabetes Development. Microorganisms 2020; 8:microorganisms8070993. [PMID: 32635205 PMCID: PMC7409145 DOI: 10.3390/microorganisms8070993] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease characterized by immune-mediated destruction of insulin-producing β-cells. The concordance rate for T1D in monozygotic twins is ≈30-50%, indicating that environmental factors also play a role in T1D development. Previous studies have demonstrated that enterovirus infections such as coxsackievirus type B (CVB) are associated with triggering T1D. Prior to autoantibody development in T1D, viral RNA and antibodies against CVB can be detected within the blood, stool, and pancreata. An innate pathogen recognition receptor, melanoma differentiation-associated protein 5 (MDA5), which is encoded by the IFIH1 gene, has been associated with T1D onset. It is unclear how single nucleotide polymorphisms in IFIH1 alter the structure and function of MDA5 that may lead to exacerbated antiviral responses contributing to increased T1D-susceptibility. Binding of viral dsRNA via MDA5 induces synthesis of antiviral proteins such as interferon-alpha and -beta (IFN-α/β). Viral infection and subsequent IFN-α/β synthesis can lead to ER stress within insulin-producing β-cells causing neo-epitope generation, activation of β-cell-specific autoreactive T cells, and β-cell destruction. Therefore, an interplay between genetics, enteroviral infections, and antiviral responses may be critical for T1D development.
Collapse
|
40
|
Oshima M, Pechberty S, Bellini L, Göpel SO, Campana M, Rouch C, Dairou J, Cosentino C, Fantuzzi F, Toivonen S, Marchetti P, Magnan C, Cnop M, Le Stunff H, Scharfmann R. Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity. Diabetologia 2020; 63:395-409. [PMID: 31796987 PMCID: PMC6946759 DOI: 10.1007/s00125-019-05046-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS During the onset of type 2 diabetes, excessive dietary intake of saturated NEFA and fructose lead to impaired insulin production and secretion by insulin-producing pancreatic beta cells. The majority of data on the deleterious effects of lipids on functional beta cell mass were obtained either in vivo in rodent models or in vitro using rodent islets and beta cell lines. Translating data from rodent to human beta cells remains challenging. Here, we used the human beta cell line EndoC-βH1 and analysed its sensitivity to a lipotoxic and glucolipotoxic (high palmitate with or without high glucose) insult, as a way to model human beta cells in a type 2 diabetes environment. METHODS EndoC-βH1 cells were exposed to palmitate after knockdown of genes related to saturated NEFA metabolism. We analysed whether and how palmitate induces apoptosis, stress and inflammation and modulates beta cell identity. RESULTS EndoC-βH1 cells were insensitive to the deleterious effects of saturated NEFA (palmitate and stearate) unless stearoyl CoA desaturase (SCD) was silenced. SCD was abundantly expressed in EndoC-βH1 cells, as well as in human islets and human induced pluripotent stem cell-derived beta cells. SCD silencing induced markers of inflammation and endoplasmic reticulum stress and also IAPP mRNA. Treatment with the SCD products oleate or palmitoleate reversed inflammation and endoplasmic reticulum stress. Upon SCD knockdown, palmitate induced expression of dedifferentiation markers such as SOX9, MYC and HES1. Interestingly, SCD knockdown by itself disrupted beta cell identity with a decrease in mature beta cell markers INS, MAFA and SLC30A8 and decreased insulin content and glucose-stimulated insulin secretion. CONCLUSIONS/INTERPRETATION The present study delineates an important role for SCD in the protection against lipotoxicity and in the maintenance of human beta cell identity. DATA AVAILABILITY Microarray data and all experimental details that support the findings of this study have been deposited in in the GEO database with the GSE130208 accession code.
Collapse
Affiliation(s)
- Masaya Oshima
- Université Paris Descartes, Institut Cochin, Inserm U1016, 123 bd du Port-Royal, 75014, Paris, France
| | - Séverine Pechberty
- Université Paris Descartes, Institut Cochin, Inserm U1016, 123 bd du Port-Royal, 75014, Paris, France
| | - Lara Bellini
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Sven O Göpel
- Bioscience Metabolism, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mélanie Campana
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Claude Rouch
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Julien Dairou
- Université Paris Descartes CNRS UMR 8601, Paris, France
| | - Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Piero Marchetti
- University of Pisa, Department of Clinical and Experimental Medicine, Pisa, Italy
| | - Christophe Magnan
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Hervé Le Stunff
- Unité Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Paris, France
- Université Paris-Sud, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay (Neuro-PSI) - CNRS UMR 9197, Orsay, France
| | - Raphaël Scharfmann
- Université Paris Descartes, Institut Cochin, Inserm U1016, 123 bd du Port-Royal, 75014, Paris, France.
| |
Collapse
|
41
|
Mine K, Nagafuchi S, Hatano S, Tanaka K, Mori H, Takahashi H, Anzai K, Yoshikai Y. Impaired upregulation of Stat2 gene restrictive to pancreatic β-cells is responsible for virus-induced diabetes in DBA/2 mice. Biochem Biophys Res Commun 2020; 521:853-860. [PMID: 31708097 DOI: 10.1016/j.bbrc.2019.10.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
Viral infection is a putative causal factor for the development of type 1 diabetes, but the exact pathogenic mechanism of virus-induced diabetes (VID) remains unclear. Here, to identify the critical factors that regulate VID, we analyzed encephalomyocarditis D (EMC-D) VID-sensitive DBA/2 mice in comparison with resistant B6 mice. EMC-D virus-induced cell death occurred more frequently in DBA/2 β-cells than in B6 β-cells with 100U/ml IFN-β priming in vitro. We therefore purified β-cells using flow cytometry from mice two days after EMC-D virus infection and subjected them to microarray analysis. As a results, innate immune response pathway was found to be enriched in B6 β-cells. The signal transducer and activator of transcription 2 (Stat2) gene interacted with genes in the pathway. Stat2 gene expression levels were lower in DBA/2 mice than in B6 mice, restrictive to β-cells. Moreover, administration of IFN-β failed to upregulate Stat2 gene in DBA/2 β-cells than in those of B6 in vivo. The viral titer significantly increased only in the DBA/2 pancreas. Thus, these provided data suggest that impaired upregulation of Stat2 gene restrictive to β-cells at the early stage of infection is responsible for VID development in DBA/2 mice.
Collapse
Affiliation(s)
- Keiichiro Mine
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga, 849-8501, Japan.
| | - Seiho Nagafuchi
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga, 849-8501, Japan.
| | - Shinya Hatano
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Hitoe Mori
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga, 849-8501, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
42
|
Giwa AM, Ahmed R, Omidian Z, Majety N, Karakus KE, Omer SM, Donner T, Hamad ARA. Current understandings of the pathogenesis of type 1 diabetes: Genetics to environment. World J Diabetes 2020; 11:13-25. [PMID: 31938470 PMCID: PMC6927819 DOI: 10.4239/wjd.v11.i1.13] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that usually strikes early in life, but can affect individuals at almost any age. It is caused by autoreactive T cells that destroy insulin-producing beta cells in the pancreas. Epidemiological studies estimate a prevalence of 1 in 300 children in the United States with an increasing incidence of 2%-5% annually worldwide. The daily responsibility, clinical management, and vigilance required to maintain blood sugar levels within normal range and avoid acute complications (hypoglycemic episodes and diabetic ketoacidosis) and long term micro- and macro-vascular complications significantly affects quality of life and public health care costs. Given the expansive impact of T1D, research work has accelerated and T1D has been intensively investigated with the focus to better understand, manage and cure this condition. Many advances have been made in the past decades in this regard, but key questions remain as to why certain people develop T1D, but not others, with the glaring example of discordant disease incidence among monozygotic twins. In this review, we discuss the field’s current understanding of its pathophysiology and the role of genetics and environment on the development of T1D. We examine the potential implications of these findings with an emphasis on T1D inheritance patterns, twin studies, and disease prevention. Through a better understanding of this process, interventions can be developed to prevent or halt it at early stages.
Collapse
Affiliation(s)
- Adebola Matthew Giwa
- Department of Pediatrics, Johns Hopkins Medical Center, Baltimore, MD 21287, United States
| | - Rizwan Ahmed
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| | - Neha Majety
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| | | | - Sarah M Omer
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins Medical Center, Baltimore, MD 21205, United States
| |
Collapse
|
43
|
Lietzén N, Hirvonen K, Honkimaa A, Buchacher T, Laiho JE, Oikarinen S, Mazur MA, Flodström-Tullberg M, Dufour E, Sioofy-Khojine AB, Hyöty H, Lahesmaa R. Coxsackievirus B Persistence Modifies the Proteome and the Secretome of Pancreatic Ductal Cells. iScience 2019; 19:340-357. [PMID: 31404834 PMCID: PMC6699423 DOI: 10.1016/j.isci.2019.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
The group B Coxsackieviruses (CVB), belonging to the Enterovirus genus, can establish persistent infections in human cells. These persistent infections have been linked to chronic diseases including type 1 diabetes. Still, the outcomes of persistent CVB infections in human pancreas are largely unknown. We established persistent CVB infections in a human pancreatic ductal-like cell line PANC-1 using two distinct CVB1 strains and profiled infection-induced changes in cellular protein expression and secretion using mass spectrometry-based proteomics. Persistent infections, showing characteristics of carrier-state persistence, were associated with a broad spectrum of changes, including changes in mitochondrial network morphology and energy metabolism and in the regulated secretory pathway. Interestingly, the expression of antiviral immune response proteins, and also several other proteins, differed clearly between the two persistent infections. Our results provide extensive information about the protein-level changes induced by persistent CVB infection and the potential virus-associated variability in the outcomes of these infections.
Collapse
Affiliation(s)
- Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Jutta E Laiho
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Magdalena A Mazur
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm 141 86, Sweden
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 Tampere, Finland
| | | | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; Fimlab Laboratories, Pirkanmaa Hospital District, FI-33520 Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland.
| |
Collapse
|
44
|
Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic β cell lines. J Clin Invest 2019; 129:3511-3520. [PMID: 31478912 PMCID: PMC6715382 DOI: 10.1172/jci129484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with type 1 or type 2 diabetes have an insufficiency in their functional β cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic β cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, β cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent β cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human β cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human β cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human β cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human β cell lines and share some perspectives on their use to advance diabetes research.
Collapse
Affiliation(s)
- Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Willem Staels
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Albagli
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW To discuss the current understanding of "β cell identity" and factors underlying altered identity of pancreatic β cells in diabetes, especially in humans. RECENT FINDINGS Altered identity of β cells due to dedifferentiation and/or transdifferentiation has been proposed as a mechanism of loss of β cells in diabetes. In dedifferentiation, β cells do not undergo apoptosis; rather, they lose their identity and function. Dedifferentiation is well characterized by the decrease in expression of key β cell markers such as genes encoding major transcription factors, e.g., MafA, NeuroD1, Nkx6.1, and Foxo1, and an increase in atypical or "disallowed" genes for β cells such as lactate dehydrogenase, monocarboxylate transporter MCT1, or progenitor cell genes (Neurog3, Pax4, or Sox9). Moreover, altered identity of mature β cells in diabetes also involves transdifferentiation of β cells into other islet hormone producing cells. For example, overexpression of α cell specific transcription factor Arx or ablation of Pdx1 resulted in an increase of α cell numbers and a decrease in β cell numbers in rodents. The frequency of α-β double-positive cells was also prominent in human subjects with T2D. These altered identities of β cells likely serve as a compensatory response to enhance function/expand cell numbers and may also camouflage/protect cells from ongoing stress. However, it is equally likely that this may be a reflection of new cell formation as a frank regenerative response to ongoing tissue injury. Physiologically, all these responses are complementary. In diabetes, (1) endocrine identity recapitulates the less mature/less-differentiated fetal/neonatal cell type, possibly representing an adaptive mechanism; (2) residual β cells may be altered in their subtype proportions or other molecular features; (3) in humans, "altered identity" is a preferable term to dedifferentiation as their cellular fate (differentiated cells losing identity or progenitors becoming more differentiated) is unclear as yet.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110 Doha, Qatar
| | - Alexandra E. Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110 Doha, Qatar
| |
Collapse
|
46
|
Shapiro MR, Atkinson MA, Brusko TM. Pleiotropic roles of the insulin-like growth factor axis in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2019; 26:188-194. [PMID: 31145130 PMCID: PMC7135378 DOI: 10.1097/med.0000000000000484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW We review studies demonstrating lowered levels of insulin-like growth factors (IGFs) in patients with recent-onset type 1 diabetes (T1D) and discuss their potential roles in the disorder's pathogenesis. RECENT FINDINGS IGFs have long been recognized as a class of hormones that promote growth, development, and cellular metabolism throughout the human body. More recently, studies have noted an association between reduced pancreatic weight/volume and T1D. Thus, we believe it is important to understand pancreatic regulation of IGF expression and bioavailability, as well as the impact of IGFs on pancreatic growth and islet health. Additional studies of IGFs have been extended to their influence on the inflammatory/regulatory balance of monocytes, B cells, and T cells; features which have been previously established to show dysregulation in settings of T1D. SUMMARY These data suggest that IGFs may prevent known impairments in the pancreas and immune system in T1D and underscore the need to extend these studies, some of which were performed in health or other autoimmune diseases, toward T1D specifically. Collectively, the work emphasized here support the potential therapeutic use of IGFs in T1D prevention efforts as pancreatic growth factors and/or immunoregulatory agents.
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida Diabetes Institute, Gainesville, Florida, USA
- Department of Pediatrics, The University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
47
|
Jiang Y, Fischbach S, Xiao X. The Role of the TGFβ Receptor Signaling Pathway in Adult Beta Cell Proliferation. Int J Mol Sci 2018; 19:3136. [PMID: 30322036 PMCID: PMC6212884 DOI: 10.3390/ijms19103136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a global epidemic and affects millions of individuals in the United States. Devising novel treatments for diabetes continues to be a great medical challenge. Postnatal beta cell growth or compensation is largely attributed to beta cell proliferation, which declines continuously with age. To boost beta cell proliferation to regenerate an adequate functional mass, there is a need to understand the signaling pathways that regulate beta cell proliferation for creating practical strategies to promote the process. Transforming growth factor β (TGFβ) belongs to a signaling superfamily that governs pancreatic development and the regeneration of beta cells after pancreatic diseases. TGFβ exerts its functions by activation of downstream Smad proteins and through its crosstalk with other pathways. Accumulating data demonstrate that the TGFβ receptor signaling pathway also participates in the control of beta cell proliferation. This review details the role of the TGFβ receptor signaling pathway in beta cell proliferation physiologically and in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Yinan Jiang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
| | - Shane Fischbach
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
- The Warren Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA.
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Ave, Pittsburgh, PA 15224, USA.
| |
Collapse
|