1
|
Argüello-García R, Carrero JC, Ortega-Pierres MG. Extracellular Cysteine Proteases of Key Intestinal Protozoan Pathogens-Factors Linked to Virulence and Pathogenicity. Int J Mol Sci 2023; 24:12850. [PMID: 37629029 PMCID: PMC10454693 DOI: 10.3390/ijms241612850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Intestinal diseases caused by protistan parasites of the genera Giardia (giardiasis), Entamoeba (amoebiasis), Cryptosporidium (cryptosporidiosis) and Blastocystis (blastocystosis) represent a major burden in human and animal populations worldwide due to the severity of diarrhea and/or inflammation in susceptible hosts. These pathogens interact with epithelial cells, promoting increased paracellular permeability and enterocyte cell death (mainly apoptosis), which precede physiological and immunological disorders. Some cell-surface-anchored and molecules secreted from these parasites function as virulence markers, of which peptide hydrolases, particularly cysteine proteases (CPs), are abundant and have versatile lytic activities. Upon secretion, CPs can affect host tissues and immune responses beyond the site of parasite colonization, thereby increasing the pathogens' virulence. The four intestinal protists considered here are known to secrete predominantly clan A (C1- and C2-type) CPs, some of which have been characterized. CPs of Giardia duodenalis (e.g., Giardipain-1) and Entamoeba histolytica (EhCPs 1-6 and EhCP112) degrade mucin and villin, cause damage to intercellular junction proteins, induce apoptosis in epithelial cells and degrade immunoglobulins, cytokines and defensins. In Cryptosporidium, five Cryptopains are encoded in its genome, but only Cryptopains 4 and 5 are likely secreted. In Blastocystis sp., a legumain-activated CP, called Blastopain-1, and legumain itself have been detected in the extracellular medium, and the former has similar adverse effects on epithelial integrity and enterocyte survival. Due to their different functions, these enzymes could represent novel drug targets. Indeed, some promising results with CP inhibitors, such as vinyl sulfones (K11777 and WRR605), the garlic derivative, allicin, and purified amoebic CPs have been obtained in experimental models, suggesting that these enzymes might be useful drug targets.
Collapse
Affiliation(s)
- Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico;
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico;
| |
Collapse
|
2
|
Moon EK, Choi HS, Park SM, Kong HH, Quan FS. Comparison of Proteins Secreted into Extracellular Space of Pathogenic and Non-pathogenic Acanthamoeba castellanii. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:553-558. [PMID: 30630275 PMCID: PMC6327195 DOI: 10.3347/kjp.2018.56.6.553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/31/2018] [Indexed: 11/23/2022]
Abstract
Pathogenic Acanthamoeba spp. cause granulomatous amoebic encephalitis and keratitis. Acanthamoeba keratitis (AK) is a rare but serious ocular infection that can result in permanent visual impairment or blindness. However, pathogenic factors of AK remain unclear and treatment for AK is arduous. Expression levels of proteins secreted into extracellular space were compared between A. castellanii pathogenic (ACP) and non-pathogenic strains. Two-dimensional polyacrylamide gel electrophoresis revealed 123 differentially expressed proteins, including 34 increased proteins, 7 qualitative increased proteins, 65 decreased proteins, and 17 qualitative decreased proteins in ACP strain. Twenty protein spots with greater than 5-fold increase in ACP strain were analyzed by liquid chromatography triple quadrupole mass spectrometry. These proteins showed similarity each to inosine-uridine preferring nucleoside hydrolase, carboxylesterase, oxygen-dependent choline dehydrogenase, periplasmic-binding protein proteinases and hypothetical proteins. These proteins expressed higher in ACP may provide some information to understand pathogenicity of Acanthamoeba.
Collapse
Affiliation(s)
- Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea
| | - Hyun-Seo Choi
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea
| | - So-Min Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan 49201, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea.,Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
3
|
Ujang JA, Kwan SH, Ismail MN, Lim BH, Noordin R, Othman N. Proteome analysis of excretory-secretory proteins of Entamoeba histolytica HM1:IMSS via LC-ESI-MS/MS and LC-MALDI-TOF/TOF. Clin Proteomics 2016; 13:33. [PMID: 27895543 PMCID: PMC5120466 DOI: 10.1186/s12014-016-9135-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Excretory-secretory (ES) proteins of E. histolytica are thought to play important roles in the host invasion, metabolism, and defence. Elucidation of the types and functions of E. histolytica ES proteins can further our understanding of the disease pathogenesis. Thus, the aim of this study is to use proteomics approach to better understand the complex ES proteins of the protozoa. METHODS E. histolytica ES proteins were prepared by culturing the trophozoites in protein-free medium. The ES proteins were identified using two mass spectrometry tools, namely, LC-ESI-MS/MS and LC-MALDI-TOF/TOF. The identified proteins were then classified according to their biological processes, molecular functions, and cellular components using the Panther classification system (PantherDB). RESULTS A complementary list of 219 proteins was identified; this comprised 201 proteins detected by LC-ESI-MS/MS and 107 proteins by LC-MALDI-TOF/TOF. Of the 219 proteins, 89 were identified by both mass-spectrometry systems, while 112 and 18 proteins were detected exclusively by LC-ESI-MS/MS and LC-MALDI-TOF/TOF respectively. Biological protein functional analysis using PantherDB showed that 27% of the proteins were involved in metabolic processes. Using molecular functional and cellular component analyses, 35% of the proteins were found to be involved in catalytic activity, and 21% were associated with the cell parts. CONCLUSION This study showed that complementary use of LC-ESI-MS/MS and LC-MALDI-TOF/TOF has improved the identification of ES proteins. The results have increased our understanding of the types of proteins excreted/secreted by the amoeba and provided further evidence of the involvement of ES proteins in intestinal colonisation and evasion of the host immune system, as well as in encystation and excystation of the parasite.
Collapse
Affiliation(s)
- Jorim Anak Ujang
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | - Soon Hong Kwan
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | - Boon Huat Lim
- School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| |
Collapse
|
4
|
Eakin AE, McKerrow JH, Craik CS. A Cysteine Protease is a Target for the Enzyme Structure-Based Design of Antiparasitic Drugs. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/00928615950290s102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ann E. Eakin
- Departments of Pharmaceutical Chemistry and Pathology, University of California, San Francisco, California
| | - James H. McKerrow
- Department of Pathology, University of California, San Francisco, California
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry University of California, San Francisco, California
| |
Collapse
|
5
|
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J Trop Med 2013; 2013:890603. [PMID: 23476670 PMCID: PMC3582061 DOI: 10.1155/2013/890603] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 02/01/2023] Open
Abstract
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.
Collapse
|
6
|
He GZ. RETRACTED: Entamoeba histolytica: Cloning, expression and evaluation of the efficacy of a recombinant amebiasis cysteine proteinase gene (ACP1) antigen in minipig. Exp Parasitol 2012; 130:126-9. [DOI: 10.1016/j.exppara.2011.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 12/28/2022]
|
7
|
Entamoeba histolytica induces intestinal cathelicidins but is resistant to cathelicidin-mediated killing. Infect Immun 2011; 80:143-9. [PMID: 22083705 DOI: 10.1128/iai.05029-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The enteric protozoan parasite Entamoeba histolytica is the cause of potentially fatal amebic colitis and liver abscesses. E. histolytica trophozoites colonize the colon, where they induce inflammation, penetrate the mucosa, and disrupt the host immune system. The early establishment of E. histolytica in the colon occurs in the presence of antimicrobial human (LL-37) and murine (CRAMP [cathelin-related antimicrobial peptide]) cathelicidins, essential components of the mammalian innate defense system in the intestine. Studying this early step in the pathogenesis of amebic colitis, we demonstrate that E. histolytica trophozoites or their released proteinases, including cysteine proteinase 1 (EhCP1), induce intestinal cathelicidins in human intestinal epithelial cell lines and in a mouse model of amebic colitis. Despite induction, E. histolytica trophozoites were found to be resistant to killing by these antimicrobial peptides, and LL-37 and CRAMP were rapidly cleaved by released amebic cysteine proteases. The cathelicidin fragments however, did maintain their antimicrobial activity against bacteria. Degradation of intestinal cathelicidins is a novel function of E. histolytica cysteine proteinases in the evasion of the innate immune system in the bowel. Thus, early intestinal epithelial colonization of invasive trophozoites involves a complex interplay in which the ultimate outcome of infection depends in part on the balance between degradation of cathelicidins by amebic released cysteine proteinases and upregulation of proinflammatory mediators which trigger the inflammatory response.
Collapse
|
8
|
PIAZZON C, LAMAS J, LEIRO JM. Role of scuticociliate proteinases in infection success in turbot, Psetta maxima (L.). Parasite Immunol 2011; 33:535-44. [DOI: 10.1111/j.1365-3024.2011.01310.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Kissoon-Singh V, Mortimer L, Chadee K. Entamoeba histolytica Cathepsin-Like Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:62-83. [DOI: 10.1007/978-1-4419-8414-2_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Affiliation(s)
- J P Ackers
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
| |
Collapse
|
11
|
Excreted/secreted proteins from trypanosome procyclic strains. J Biomed Biotechnol 2010; 2010:212817. [PMID: 20011064 PMCID: PMC2789517 DOI: 10.1155/2010/212817] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/19/2009] [Indexed: 01/27/2023] Open
Abstract
Trypanosoma secretome was shown to be involved in parasite virulence and is suspected of interfering in parasite life-cycle steps such as establishment in the Glossina midgut, metacyclogenesis. Therefore, we attempted to identify the proteins secreted by procyclic strains of T. brucei gambiense and T. brucei brucei, responsible for human and animal trypanosomiasis, respectively.
Using mass spectrometry, 427 and 483 nonredundant proteins were characterized in T. brucei brucei and T. brucei gambiense secretomes, respectively; 35% and 42% of the corresponding secretome proteins were specifically secreted by T. brucei brucei and T. brucei gambiense, respectively, while 279 proteins were common to both subspecies. The proteins were assigned to 12 functional classes. Special attention was paid to the most abundant proteases (14 families) because of their potential implication in the infection process and nutrient supply. The presence of proteins usually secreted via an exosome pathway suggests that this type of process is involved in trypanosome ESP secretion.
The overall results provide leads for further research to develop novel tools for blocking trypanosome transmission.
Collapse
|
12
|
Huang R, Que X, Hirata K, Brinen LS, Lee JH, Hansell E, Engel J, Sajid M, Reed S. The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol 2009; 164:86-94. [PMID: 19111576 PMCID: PMC2663568 DOI: 10.1016/j.molbiopara.2008.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite of all vertebrates, including man. Successful invasion and replication requires the synchronized release of parasite proteins, many of which require proteolytic processing. Unlike most parasites, T. gondii has a limited number of Clan CA, family C1 cysteine proteinases with one cathepsin B (TgCPB), one cathepsin L (TgCPL) and three cathepsin Cs (TgCPC1, 2, 3). Previously, we characterized toxopain, the only cathepsin B enzyme, which localizes to the rhoptry organelle. Two cathepsin Cs are trafficked through dense granules to the parasitophorous vacuole where they degrade peptides. We now report the cloning, expression, and modeling of the sole cathepsin L gene and the identification of two new endogenous inhibitors. TgCPL differs from human cathepsin L with a pH optimum of 6.5 and its substrate preference for leucine (vs. phenylalanine) in the P2 position. This distinct preference is explained by homology modeling, which reveals a non-canonical aspartic acid (Asp 216) at the base of the predicted active site S2 pocket, which limits substrate access. To further our understanding of the regulation of cathepsins in T. gondii, we identified two genes encoding endogenous cysteine proteinase inhibitors (ICPs or toxostatins), which are active against both TgCPB and TgCPL in the nanomolar range. Over expression of toxostatin-1 significantly decreased overall cysteine proteinase activity in parasite lysates, but had no detectable effect on invasion or intracellular multiplication. These findings provide important insights into the proteolytic cascades of T. gondii and their endogenous control.
Collapse
Affiliation(s)
- Robert Huang
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Xuchu Que
- Department of Medicine, University of California, San Diego, San Diego, California 92103
| | - Ken Hirata
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| | - Linda S. Brinen
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Ji Hyun Lee
- Departments of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Elizabeth Hansell
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Juan Engel
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Mohammed Sajid
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94143
| | - Sharon Reed
- Department of Medicine, University of California, San Diego, San Diego, California 92103
- Department of Pathology, University of California, San Diego, San Diego, California 92103
| |
Collapse
|
13
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Mitra BN, Saito-Nakano Y, Nakada-Tsukui K, Sato D, Nozaki T. Rab11B small GTPase regulates secretion of cysteine proteases in the enteric protozoan parasiteEntamoeba histolytica. Cell Microbiol 2007; 9:2112-25. [PMID: 17441984 DOI: 10.1111/j.1462-5822.2007.00941.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vesicular trafficking plays a pivotal role in the virulence of the enteric protozoan parasite Entamoeba histolytica. In the present study, we showed that one isotype of the small GTPase Rab11, EhRab11B, plays a central role in the secretion of a major virulence factor, cysteine proteases. EhRab11B did not colocalize with markers for the endoplasmic reticulum, early endosomes and lysosomes, but was partially associated with non-acidified vesicles in the endocytic pathway, likely recycling endosomes. Overexpression of EhRab11B resulted in a remarkable increase in both intracellular and secreted cysteine protease activity, concomitant with an augmentation of cytolytic activity as demonstrated by an increased ability to destroy mammalian cells. The oversecretion of cysteine proteases with EhRab11B overexpression was neither sensitive to brefeldin A nor specific to a certain cysteine protease species (e.g. CP1, 2 or 5), suggesting that these three major cysteine proteases are trafficked via an EhRab11B-associated secretory pathway, which is distinct from the classical brefeldin-sensitive pathway. Overexpression of EhRab11B also enhanced exocytosis of the incorporated fluid-phase marker, supporting the notion that it is involved in recycling. This is the first report demonstrating that Rab11 plays a central role in the transport and secretion of pathogenic factors.
Collapse
Affiliation(s)
- Biswa Nath Mitra
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-851, Japan
| | | | | | | | | |
Collapse
|
16
|
McGugan GC, Joshi MB, Dwyer DM. Identification and biochemical characterization of unique secretory nucleases of the human enteric pathogen, Entamoeba histolytica. J Biol Chem 2007; 282:31789-802. [PMID: 17766245 DOI: 10.1074/jbc.m705975200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ancient eukaryotic human pathogen, Entamoeba histolytica, is a nucleo-base auxotroph (i.e. lacks the ability to synthesize purines or pyrimidines de novo) and therefore is totally dependent upon its host for the supply of these essential nutrients. In this study, we identified two unique 28-kDa, dithiothreitol-sensitive nucleases and showed that they are constitutively released/secreted by parasites during axenic culture. Using several different molecular approaches, we identified and characterized the structure of EhNucI and EhNucII, genes that encode ribonuclease T2 family proteins. Homologous episomal expression of epitope-tagged EhNucI and EhNucII chimeric constructs was used to define the functional and biochemical properties of these released/secreted enzymes. Results of coupled immunoprecipitation-enzyme activity analyses demonstrated that these "secretory" enzymes could hydrolyze a variety of synthetic polynucleotides, as well as the natural nucleic acid substrate RNA. Furthermore, our results demonstrated that sera from acutely infected amebiasis patients recognized and immunoprecipitated these parasite secretory enzymes. Based on these observations, we hypothesize that within its host, these secretory nucleases could function, at a distance away from the parasite, to harness (i.e. hydrolyze/access) host-derived nucleic acids to satisfy the essential purine and pyrimidine requirements of these organisms. Thus, these enzymes might play an important role in facilitating the survival, growth, and development of this important human pathogen.
Collapse
Affiliation(s)
- Glen C McGugan
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
17
|
Hirata KK, Que X, Melendez-Lopez SG, Debnath A, Myers S, Herdman DS, Orozco E, Bhattacharya A, McKerrow JH, Reed SL. A phagocytosis mutant of Entamoeba histolytica is less virulent due to deficient proteinase expression and release. Exp Parasitol 2007; 115:192-9. [PMID: 16987516 DOI: 10.1016/j.exppara.2006.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/24/2006] [Accepted: 08/02/2006] [Indexed: 11/22/2022]
Abstract
Cysteine proteinases are key virulence factors of Entamoeba histolytica that are released during the process of invasion. We used a chemical mutant of E. histolytica strain HM-1:IMSS, clone L6, which is deficient in virulence, phagocytosis, and cysteine proteinase activity to help define the mechanisms of cysteine proteinase release. All cysteine proteinase genes of wild type HM-1 were present in the L6 mutant genome, but three of the major expressed proteinases, ehcp1, ehcp2, and ehcp5 were both transcribed, translated, and released at lower levels in L6. We hypothesized that a central protein such as the calcium binding protein 1, EhCaBP1, which is required for both phagocytosis and exocytosis might be deficient in this mutant. We found that both mRNA and proteinase levels of EhCaBP1 were decreased in L6. These findings provide an important link between phagocytosis, passive release of multiple cysteine proteinases, and attenuated virulence of this E. histolytica mutant.
Collapse
Affiliation(s)
- Ken K Hirata
- Departments of Pathology and Medicine, University of California, San Diego, CA 92103-8416, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lotter H, Tannich E. The current status of an amebiasis vaccine. Arch Med Res 2006; 37:292-6. [PMID: 16380335 DOI: 10.1016/j.arcmed.2005.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 11/25/2022]
Abstract
Efficient control of infectious diseases requires the development and application of suitable vaccines. Development of vaccines against amebiasis is still in its infancy. However, in recent years progress has been made in the identification of possible vaccine candidates, the route of application and the understanding of the immune response that is required for protection against amebiasis.
Collapse
Affiliation(s)
- Hannelore Lotter
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | |
Collapse
|
19
|
Clarke DW, Niederkorn JY. The pathophysiology of Acanthamoeba keratitis. Trends Parasitol 2006; 22:175-80. [PMID: 16500148 DOI: 10.1016/j.pt.2006.02.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 01/04/2006] [Accepted: 02/07/2006] [Indexed: 11/16/2022]
Abstract
Acanthamoeba keratitis is a sight-threatening infection of the ocular surface that is produced by several free-living amebae of the genus Acanthamoeba. Infection is usually initiated by Acanthamoeba-contaminated contact lenses and produces exquisite pain and ulceration of the ocular surface. The pathophysiology of this infection involves an intricate series of sequential events that includes the production of several pathogenic proteases that degrade basement membranes and induce cytolysis and apoptosis of the cellular elements of the cornea, culminating in dissolution of the collagenous corneal stroma. Targeting such proteases could lead to the development of vaccines that target the disease process rather than the pathogen itself.
Collapse
Affiliation(s)
- Daniel W Clarke
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9057, USA
| | | |
Collapse
|
20
|
Que X, Reed SL. The role of extracellular cysteine proteinases in pathogenesis of Entamoeba histolytica invasion. ACTA ACUST UNITED AC 2005; 13:190-4. [PMID: 15275090 DOI: 10.1016/s0169-4758(97)01043-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The extracellular cysteine proteinases of Entamoeba histolytica have been implicated as important virulence factors in the pathogenesis of amebiasis and play a key role in tissue invasion and disruption of host defenses. These proteinases have attracted considerable interest as targets for novel therapeutic agents and as vaccine candidates. Here, Xuchu Que and Sharon Reed highlight some of the more recent findings, focusing in particular on functional and structural features of the extracellular cysteine proteinases of E. histolytica.
Collapse
Affiliation(s)
- X Que
- Department of Pathology and Medicine, University of California, San Diego, CA 92103-8416, USA
| | | |
Collapse
|
21
|
Pillai DR, Kain KC. Entamoeba histolytica: identification of a distinct beta2 integrin-like molecule with a potential role in cellular adherence. Exp Parasitol 2005; 109:135-42. [PMID: 15713444 DOI: 10.1016/j.exppara.2004.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2002] [Revised: 11/30/2004] [Accepted: 12/06/2004] [Indexed: 11/15/2022]
Abstract
Entamoeba histolytica infection causes dysentery, intestinal colitis, and hepatic abscess in an estimated 50 million people worldwide. Attachment of E. histolytica trophozoites to intestinal epithelium and vascular endothelium during liver metastasis results in an inflammatory process. We report the identification of a distinct amebic beta2 integrin (CD18)-like molecule which affords adherence to TNF-alpha-activated endothelial cells. Data from flow cytometry and indirect immunofluorescence assays suggest the amebic beta2 integrin was localized to focal adhesion plates and was present in both E. histolytica and Entamoeba dispar. The amebic beta2 integrin appeared to be distinct from the amebic Gal/GalNAc lectin based on recombinant expression, amebic colocalization, and ELISA studies. Trophozoite adherence to endothelial cells expressing ICAM-1 (CD54) following activation with TNF-alpha or ICAM-1-transfected CHO cells was specifically inhibited with anti-CD18 or anti-CD54 MAbs. In summary, evidence in support of a distinct beta2 integrin-like molecule participating in amebic adherence to TNF-alpha-activated endothelial cells expressing ICAM-1 is presented. The presence of integrin-dependent binding may allow trophozoites to opportunistically adhere to activated intestinal epithelium or vascular endothelium expressing ICAM-1 during amebic colitis or hepatic abscess.
Collapse
Affiliation(s)
- Dylan R Pillai
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco 94143, USA.
| | | |
Collapse
|
22
|
Mora-Galindo J, Anaya-Velázquez F, Ramírez-Romo S, González-Robles A. Entamoeba histolytica: correlation of assessment methods to measure erythrocyte digestion, and effect of cysteine proteinases inhibitors in HM-1:IMSS and HK-9:NIH strains. Exp Parasitol 2004; 108:89-100. [PMID: 15582505 DOI: 10.1016/j.exppara.2004.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 08/17/2004] [Accepted: 08/17/2004] [Indexed: 01/01/2023]
Abstract
Entamoeba histolytica trophozoites are able to degrade human erythrocytes; the loss of erythrocyte cellular matrix and degradation of plasma membrane were observed, along with the decrease in the average size of digestive vacuoles. Ninety-six percent of hemoglobin ingested was hydrolyzed by trophozoites within 3h, as evidenced by electrophoresis. Accordingly, X-ray spectroscopy revealed the presence of iron inside vacuoles after erythrophagocytosis, the concentration of which decreased to control levels in a similar period. Quantification of erythrocyte digestion at the early and late periods was determined by a spectrophotometric procedure, with t(1/2)=1.67 h and 35-min for HM-1:IMSS and HK-9:NIH trophozoites, respectively. In the latter, activity was due to the combined action of intracellular enzymatic activity and exocytosis. E-64c and leupeptin totally inhibited erythrocyte digestion within a 3-h period, thereafter hydrolysis took place at lower rate. Our results suggest that erythrocyte digestion in E. histolytica proceeds in different ways in these two amebic strains, and can be blocked by proteinase inhibitors.
Collapse
Affiliation(s)
- Juan Mora-Galindo
- Centro de Investigación Biomédica de Occidente-Instituto Mexicano del Seguro Social, Ap. Postal 1-3838, Guadalajara, Jal. 44100, Mexico.
| | | | | | | |
Collapse
|
23
|
Paramá A, Iglesias R, Alvarez MF, Leiro J, Ubeira FM, Sanmartín ML. Cysteine proteinase activities in the fish pathogenPhilasterides dicentrarchi(Ciliophora: Scuticociliatida). Parasitology 2004; 128:541-8. [PMID: 15180322 DOI: 10.1017/s0031182004004883] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study investigated protease activities in a crude extract andin vitroexcretion/secretion (E/S) products ofPhilasterides dicentrarchi, a ciliate fish parasite causing economically significant losses in aquaculture. Gelatin/SDS–PAGE analysis (pH 4, reducing conditions) detected 7 bands with gelatinolytic activity (approximate molecular weights 30–63 kDa) in the crude extract. The banding pattern observed in analysis of E/S products was practically identical, except for 1 low-molecular-weight band detected in the crude extract but not in the E/S products. In assays with synthetic peptidep-nitroanilide substrates, the crude extract hydrolysed substrates characteristic of cysteine proteases, namely Z-Arg-Arg pNA, Bz-Phe-Val-Arg pNA and Z-Phe-Arg pNA. These activities were strongly inhibited by the cysteine protease inhibitor E-64 and by Ac-Leu-Val-Lys aldehyde, a potent inhibitor of cysteine proteases of the cathepsin B protease subfamily. The proteases present in the crude extract degraded both type-I collagen and haemoglobinin vitro, consistent with roles in tissue invasion and nutrition respectively. Again, E-64 completely (collagen) or markedly (haemoglobin) inhibited this degradation. Finally, the histolytic activity of the ciliate in turbot fibroblast monolayers was strongly reduced in the presence of E-64, confirming the importance of secreted cysteine proteinases in the biology ofPhilasterides dicentrarchi.
Collapse
Affiliation(s)
- A Paramá
- Laboratory of Parasitology, Institute of Food Investigation and Analysis, University of Santiago de Compostela, C/Constantino Candeira s.n., 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Akbar MA, Chatterjee NS, Sen P, Debnath A, Pal A, Bera T, Das P. Genes induced by a high-oxygen environment in Entamoeba histolytica. Mol Biochem Parasitol 2004; 133:187-96. [PMID: 14698431 DOI: 10.1016/j.molbiopara.2003.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Entamoeba histolytica, although a microaerophilic protozoan parasite, encounters a high-oxygen environment, during invasive amoebiasis. The parasite requires specific regulation of certain proteins to maintain its physiological functions to survive in the more oxygenated condition. Our endeavor was to know how does amoeba adapt itself in a high-oxygen environment. Reactive oxygen species (ROS) was found to accumulate in an increasing concentration within the stressed trophozoites in a time-dependent manner. Increased cytopathic activity was detected at 2h in high-oxygen-exposed E. histolytica lysate compared to lysate of normal E. histolytica trophozoites by Ussing chamber assay. The differential display and semi-quantitative polymerase chain reaction showed overexpression in the mRNA levels of thiol-dependent peroxidase (Eh29), superoxide dismutase (SOD), EhCP5, G protein, HSP70, and peptidylprolyl isomerase at different time periods of oxidative stressed trophozoites compared to normally cultured E. histolytica. Analyses of the up-regulated genes that are associated with stress response, viz., signal transduction, tissue destruction, and oxidative stress management, including enhanced expression of a 29-kDa Eh29, suggest that this organism has several protective mechanisms to deal with oxidative stress during invasion.
Collapse
Affiliation(s)
- Md Ali Akbar
- Department of Microbiology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Kolkata-700 010, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Peek R, Reedeker FR, van Gool T. Direct amplification and genotyping of Dientamoeba fragilis from human stool specimens. J Clin Microbiol 2004; 42:631-5. [PMID: 14766828 PMCID: PMC344490 DOI: 10.1128/jcm.42.2.631-635.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 09/21/2003] [Accepted: 10/24/2003] [Indexed: 11/20/2022] Open
Abstract
Dientamoeba fragilis is a globally occurring parasite that has been recognized as a causative agent of gastrointestinal symptoms. A single-round PCR was developed to detect D. fragilis DNA directly from human stool samples. The genetic diversity of D. fragilis from 93 patients and 6 asymptomatic carriers was examined by PCR followed by restriction fragment length polymorphism and sequencing of part of the small-subunit rRNA gene. The data show that D. fragilis sequences can be studied directly from fecal specimens despite the absence of a cyst stage and without the need for prior culturing. In addition, the results suggest strongly that D. fragilis shows remarkably little variation in its small-subunit rRNA gene.
Collapse
Affiliation(s)
- Ron Peek
- Department of Medical Microbiology, Tropical Medicine and AIDS, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
26
|
Bruchhaus I, Loftus BJ, Hall N, Tannich E. The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation. EUKARYOTIC CELL 2003; 2:501-9. [PMID: 12796295 PMCID: PMC161451 DOI: 10.1128/ec.2.3.501-509.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysteine proteases are known to be important pathogenicity factors of the protozoan parasite Entamoeba histolytica. So far, a total of eight genes coding for cysteine proteases have been identified in E. histolytica, two of which are absent in the closely related nonpathogenic species E. dispar. However, present knowledge is restricted to enzymes expressed during in vitro cultivation of the parasite, which might represent only a subset of the entire repertoire. Taking advantage of the current E. histolytica genome-sequencing efforts, we analyzed databases containing more than 99% of all ameba gene sequences for the presence of cysteine protease genes. A total of 20 full-length genes was identified (including all eight genes previously reported), which show 10 to 86% sequence identity. The various genes obviously originated from two separate ancestors since they form two distinct clades. Despite cathepsin B-like substrate specificities, all of the ameba polypeptides are structurally related to cathepsin L-like enzymes. None of the previously described enzymes but 7 of the 12 newly identified proteins are unique compared to cathepsins of higher eukaryotes in that they are predicted to have transmembrane or glycosylphosphatidylinositol anchor attachment domains. Southern blot analysis revealed that orthologous sequences for all of the newly identified proteases are present in E. dispar. Interestingly, the majority of the various cysteine protease genes are not expressed in E. histolytica or E. dispar trophozoites during in vitro cultivation. Therefore, it is likely that at least some of these enzymes are required for infection of the human host and/or for completion of the parasite life cycle.
Collapse
Affiliation(s)
- Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
| | | | | | | |
Collapse
|
27
|
Que X, Kim SH, Sajid M, Eckmann L, Dinarello CA, McKerrow JH, Reed SL. A surface amebic cysteine proteinase inactivates interleukin-18. Infect Immun 2003; 71:1274-80. [PMID: 12595442 PMCID: PMC148873 DOI: 10.1128/iai.71.3.1274-1280.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Revised: 10/05/2002] [Accepted: 11/25/2002] [Indexed: 11/20/2022] Open
Abstract
Amebiasis is a major cause of morbidity and mortality worldwide. Invasion by Entamoeba histolytica trophozoites causes secretion of proinflammatory cytokines from host epithelial cells, leading to a local acute inflammatory response, followed by lysis of colonic cells. Extracellular cysteine proteinases from amebic trophozoites are key virulence factors and have a number of important interactions with host defenses, including cleavage of immunoglobulin G (IgG), IgA, and complement components C3 and C5. Amebic lysates have also been shown to activate the precursor to interleukin 1-beta (proIL-1beta), mimicking the action of caspase-1. IL-18 is also a central cytokine, which induces gamma interferon (IFN-gamma) and activates macrophages, one of the main host defenses against invading trophozoites. Because proIL-18 is also activated by caspase-1, we evaluated whether amebic proteinases had a similar effect. Instead, we found that recombinant proIL-18 was cleaved into smaller fragments by the complex of surface-associated and released amebic proteinases. To evaluate the function of an individual proteinase from the complex pool, we expressed an active surface proteinase, EhCP5, which is functional only in E. histolytica. Recombinant EhCP5 expressed in Pichia pastoris had kinetic properties similar to those of the native enzyme with respect to substrate specificity and sensitivity to proteinase inhibitors. In contrast to the activation of proIL-1beta by amebic lysates, the purified proteinase cleaved proIL-18 and mature IL-18 to biologically inactive fragments. These studies suggest that the acute host response and amebic invasion result from a complex interplay of parasite virulence factors and host defenses. E. histolytica may block the host inflammatory response by a novel mechanism, inactivation of IL-18.
Collapse
Affiliation(s)
- Xuchu Que
- Department of Pathology, University of California, San Diego, California 92103, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Moncada D, Keller K, Chadee K. Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infect Immun 2003; 71:838-44. [PMID: 12540564 PMCID: PMC145371 DOI: 10.1128/iai.71.2.838-844.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adherent mucous gel layer lining the colonic epithelium is the first line of host defense against invasive pathogens, such as Entamoeba histolytica. The mucous layer prevents the attachment of amoeba to the colonic epithelium by trapping and aiding in the expulsion of the parasite. Disruption of the mucous layer is thought to occur in invasive amebiasis, and the mechanism by which the parasite overcomes this barrier is not known. The aim of this study was to characterize the specific interactions occurring between E. histolytica secreted cysteine proteinases and colonic mucin as a model to examine the initial events of invasive amebiasis. E. histolytica secreted products were examined for mucinase activity utilizing mucin metabolically labeled with [(35)S]cysteine as a substrate. Cysteine proteinases degraded mucin in a time- and dose-dependent manner. A significant reduction (>50%) in high-molecular-weight mucin with altered buoyant density was observed when degraded mucin was analyzed by Sepharose 4B column chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, and CsCl density gradient centrifugation. Mucinase activity was eliminated by the specific cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane and was independent of glycosidase activity. Moreover, the degraded mucin was 38% less effective than native mucin at inhibiting amebic adherence to target epithelial cells. These results are the first to show that E. histolytica cysteine proteinases alter the protective function of the mucous barrier by disrupting the structure of the MUC2 polymer. Mechanistically, the parasite achieves this via proteolytic degradation of the terminal cysteine-rich domains.
Collapse
Affiliation(s)
- Darcy Moncada
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
| | | | | |
Collapse
|
29
|
Que X, Ngo H, Lawton J, Gray M, Liu Q, Engel J, Brinen L, Ghosh P, Joiner KA, Reed SL. The cathepsin B of Toxoplasma gondii, toxopain-1, is critical for parasite invasion and rhoptry protein processing. J Biol Chem 2002; 277:25791-7. [PMID: 12000756 DOI: 10.1074/jbc.m202659200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine proteinases play a major role in invasion and intracellular survival of a number of pathogenic parasites. We cloned a single copy gene, tgcp1, from Toxoplasma gondii and refolded recombinant enzyme to yield active proteinase. Substrate specificity of the enzyme and homology modeling identified the proteinase as a cathepsin B. Specific cysteine proteinase inhibitors interrupted invasion by tachyzoites. The T. gondii cathepsin B localized to rhoptries, secretory organelles required for parasite invasion into cells. Processing of the pro-rhoptry protein 2 to mature rhoptry proteins was delayed by incubation of extracellular parasites with a cathepsin B inhibitor prior to pulse-chase immunoprecipitation. Delivery of cathepsin B to mature rhoptries was impaired in organisms with disruptions in rhoptry formation by expression of a dominant negative micro1-adaptin. Similar disruption of rhoptry formation was observed when infected fibroblasts were treated with a specific inhibitor of cathepsin B, generating small and poorly developed rhoptries. This first evidence for localization of a cysteine proteinase to the unusual rhoptry secretory organelle of an apicomplexan parasite suggests that the rhoptries may be a prototype of a lysosome-related organelle and provides a critical link between cysteine proteinases and parasite invasion for this class of organism.
Collapse
Affiliation(s)
- Xuchu Que
- Department of Pathology, University of California, San Diego 92103-8416, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Armstrong PB, Quigley JP. A role for protease inhibitors in immunity of long-lived animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:141-60. [PMID: 11418980 DOI: 10.1007/978-1-4615-1291-2_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- P B Armstrong
- Department of Molecular and Cellular Biology, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | | |
Collapse
|
31
|
Que X, Brinen LS, Perkins P, Herdman S, Hirata K, Torian BE, Rubin H, McKerrow JH, Reed SL. Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica. Mol Biochem Parasitol 2002; 119:23-32. [PMID: 11755183 DOI: 10.1016/s0166-6851(01)00387-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysteine proteinases, which are encoded by at least seven genes, play a critical role in the pathogenesis of invasive amebiasis caused by Entamoeba histolytica. The study of these enzymes has been hampered by the inability to obtain significant quantities of the individual native proteinases. We have now expressed functionally active recombinant ACP1 (EhCP3) and ACP2 (EhCP2) proteinases in baculoviral expression vectors. The purified recombinant ACP1 and ACP2 proteinases exhibited similar activities for fluorogenic peptide substrates, especially in their preference for an arginine residue at the P2 position. Although ACP1 and ACP2 are structurally cathepsin L, homology modeling revealed that the aspartic acid in the S2 pocket would result in a substrate specificity for positively charged amino acids, like cathepsin B. The hydrolysis of peptide substrates was strongly inhibited by small peptidyl inhibitors specifically designed for parasitic cysteine proteinases. Confocal and immunoelectron microscopy localization of the proteinases with monoclonal and monospecific antibodies raised to the recombinant enzymes and peptides demonstrated that ACP2 was membrane-associated while ACP1 was cytoplasmic. Following phagocytosis of erythrocytes, ACP1, as well as the membrane-associated cysteine proteinase, ACP2, were incorporated into phagocytic vesicles. These studies suggest that E. histolytica has a redundancy of cysteine proteinases for intracellular digestion and that they may be recruited from different cellular compartments to the site of digestion of phagocytosed cells. The production of active proteinases in baculovirus and large scale recombinant enzymes in bacteria should further our understanding of the role of different cysteine proteinase gene products in virulence.
Collapse
Affiliation(s)
- Xuchu Que
- Department of Pathology, University of California, San Diego, UCSD Medical Center, 200 West Arbor Drive, San Diego, CA 92103-8416, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pillai DR, Kobayashi S, Kain KC. Entamoeba dispar: molecular characterization of the galactose/N-acetyl-d-galactosamine lectin. Exp Parasitol 2001; 99:226-34. [PMID: 11888250 DOI: 10.1006/expr.2001.4672] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amebiasis contributes to approximately 50 million cases of life-threatening dysentery worldwide. Comparison of the lectins from Entamoeba histolytica (pathogenic) and Entamoeba dispar (nonpathogenic) was undertaken to elucidate the differential roles of this molecule in invasion versus colonization. Surface lectin was less abundant on axenic E. dispar than on axenic E. histolytica, commensurate with differences in lectin (heavy and light subunits) RNA when assessed by semiquantitative RT-PCR. The 1G7 epitope, which falls within the immunodominant and immunoprotective cysteine-rich region (480-900), was absent on axenic E. dispar. Indirect immunofluorescence, transient transection of COS7, and immunoprecipitation demonstrated that the 1G7 epitope was conserved in the nonpathogenic lectin homologue but not exposed on live E. dispar trophozoites. Hgl2 (E. histolytica) and Dhgl2 (E. dispar) lectin homologues demonstrated comparable high-affinity binding to multivalent GalNAc(19) BSA. These data provide evidence for relative gene and conformational regulation of the E.dispar lectin.
Collapse
Affiliation(s)
- D R Pillai
- Division of Infectious Diseases, Toronto General Hospital, Toronto, M5G 2C4, Canada
| | | | | |
Collapse
|
33
|
Stanley SL, Reed SL. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VI. Entamoeba histolytica: parasite-host interactions. Am J Physiol Gastrointest Liver Physiol 2001; 280:G1049-54. [PMID: 11352795 DOI: 10.1152/ajpgi.2001.280.6.g1049] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The protozoan intestinal parasite Entamoeba histolytica remains a significant cause of morbidity and mortality worldwide. E. histolytica causes two major clinical syndromes, amebic colitis and amebic liver abscess. Recent advances in the development of in vitro and in vivo models of disease, new genetic approaches, the identification of key E. histolytica virulence factors, and the recognition of crucial elements of the host response to infection have led to significant insights into the pathogenesis of amebic infection. E. histolytica virulence factors include 1) a surface galactose binding lectin that mediates E. histolytica binding to host cells and may contribute to amebic resistance to complement, 2) amebapores, small peptides capable of lysing cells, which may play a role in killing intestinal epithelial cells, hepatocytes, and host defense cells, and 3) a family of secreted cysteine proteinases that play a key role in E. histolytica tissue invasion, evasion of host defenses, and parasite induction of gut inflammation. Amebae can both lyse host cells and induce their suicide through programmed cell death. The host response is also an important factor in the outcome of infection, and neutrophils may play a key role in contributing to the tissue damage seen in amebiasis and in controlling amebic infection.
Collapse
Affiliation(s)
- S L Stanley
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
34
|
Kania SA, Reed SL, Thomford JW, BonDurant RH, Hirata K, Corbeil RR, North MJ, Corbeil LB. Degradation of bovine complement C3 by trichomonad extracellular proteinase. Vet Immunol Immunopathol 2001; 78:83-96. [PMID: 11182150 DOI: 10.1016/s0165-2427(00)00256-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bovine trichomoniasis is a local infection of the reproductive tract making interaction with mucosal host defenses crucial. Since the parasite is susceptible to killing by bovine complement, we investigated the role of the third component of complement (C3) in host parasite interactions. Bovine C3 was purified by anionic and cationic exchange chromatography. The purified protein was characterized by immunoreactivity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and peptide sequencing of the amino terminus of the beta chain. When purified bovine C3 was incubated for varying time periods with trichomonad extracellular proteinases, SDS-PAGE gels revealed digestion of the alpha chain to small fragments. Such degradation in vivo would prevent formation of C3b and completion of the complement cascade, resulting in evasion of killing. To evaluate the relevance of this data, we determined whether C3 was present in bovine genital secretions. With a quantitative ELISA assay, C3 could be demonstrated in both uterine and vaginal washes. To our knowledge, this is the first demonstration of bovine C3 in genital secretions. The C3 concentration increased significantly in vaginal secretions by 8 and 10 weeks in heifers infected with Tritrichomonas foetus. An increase was also seen in uterine secretions of infected heifers, but sample numbers were insufficient for statistical analysis. Transcription of the major extracellular cysteine proteinase (TFCP8) was demonstrated in T. foetus cells from uterine secretions of infected heifers by RT-PCR and Southern blotting. The results indicate that C3 may be important in genital defense and that trichomonad extracellular proteinases may play a role in evasion of complement-mediated killing.
Collapse
Affiliation(s)
- S A Kania
- Department of Comparative Medicine, University of Tennessee, Knoxville, TN 37901-1071, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Prakash A, Chakraborti A, Mahajan RC, Ganguly NK. Entamoeba histolytica: rapid detection of indian isolates by cysteine proteinase gene-specific polymerase chain reaction. Exp Parasitol 2000; 95:285-7. [PMID: 11038312 DOI: 10.1006/expr.2000.4513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amoebiasis, caused by Entamoeba histolytica, is still one of the major problems for developing countries like India. Early detection of the parasite is a must for its prevention and control. In this study, PCR analysis of the cysteine proteinase gene from clinical isolates of symptomatic intestinal and amoebic liver abscess (ALA) cases has been compared with the stool microscopy, serology, and ultrasonography methods. The clinical isolates negative for E. histolytica by stool microscopy demonstrated the presence of the cysteine proteinase gene by PCR amplification. Also the gene copy number was increased in ALA samples compared with intestinal cases. Hence an accurate, early, and easier detection was possible by cysteine proteinase gene amplification directly from the clinical samples.
Collapse
Affiliation(s)
- A Prakash
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
36
|
Carpeniseanu S, Hirata K, Que X, Orozco E, Reed SL. L6: a proteinase- and phagocytosis-deficient mutant of Entamoeba histolytica. Arch Med Res 2000; 31:S237-8. [PMID: 11070298 DOI: 10.1016/s0188-4409(00)00223-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S Carpeniseanu
- Department of Pathology, University of California, San Diego Medical Center, San Diego, CA 92103-8416, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Amebiasis is a major cause of morbidity and mortality throughout the tropical world. Entamoeba histolytica is now recognized as a separate species from the morphologically identical E. dispar, which cannot invade. Cysteine proteinases are a key virulence factor of E. histolytica and play a role in intestinal invasion by degrading the extracellular matrix and circumventing the host immune response through cleavage of secretory immunoglobulin A (sIgA), IgG, and activation of complement. Cysteine proteinases are encoded by at least seven genes, several of which are found in E. histolytica but not E. dispar. A number of new animal models, including the formation of liver abscesses in SCID mice and intestinal infection in human intestinal xenografts, have proven useful to confirm the critical role of cysteine proteinases in invasion. Detailed structural analysis of cysteine proteinases should provide further insights into their biochemical function and may facilitate the design of specific inhibitors which could be used as potential chemotherapeutic agents in the future.
Collapse
|
38
|
Abstract
In spite of a wealth of knowledge on the biochemistry and cellular and molecular biology of Entamoeba histolytica, little has been done to apply these advances to our understanding of the lesions observed in patients with intestinal amebiasis. In this review, the pathological and histological findings in acute amebic colitis are related to the molecular mechanisms of E. histolytica pathogenicity described to date. Infection of the human colon by E. histolytica produces focal ulceration of the intestinal mucosa, resulting in dysentery (diarrhea with blood and mucus). Although a complete picture has not yet been achieved, the basic mechanisms involved in the production of focal lytic lesions include complex multifactorial processes in which lectins facilitate adhesion, proteases degrade extracellular matrix components, porins help nourish the parasite and may also kill incoming polymorphonuclear leukocytes and macrophages, and motility is used by the parasite to invade deeper layers of the colon. In addition, E. histolytica has developed mechanisms to modulate the immune response during acute infection. Nevertheless, much still needs to be unraveled to understand how this microscopic parasite has earned its well-deserved histolytic name.
Collapse
|
39
|
Abstract
Amebiasis is a major cause of morbidity and mortality throughout the tropical world. Entamoeba histolytica is now recognized as a separate species from the morphologically identical E. dispar, which cannot invade. Cysteine proteinases are a key virulence factor of E. histolytica and play a role in intestinal invasion by degrading the extracellular matrix and circumventing the host immune response through cleavage of secretory immunoglobulin A (sIgA), IgG, and activation of complement. Cysteine proteinases are encoded by at least seven genes, several of which are found in E. histolytica but not E. dispar. A number of new animal models, including the formation of liver abscesses in SCID mice and intestinal infection in human intestinal xenografts, have proven useful to confirm the critical role of cysteine proteinases in invasion. Detailed structural analysis of cysteine proteinases should provide further insights into their biochemical function and may facilitate the design of specific inhibitors which could be used as potential chemotherapeutic agents in the future.
Collapse
Affiliation(s)
- X Que
- Departments of Pathology and Medicine, University of California San Diego Medical Center, San Diego, CA 92103-8416, USA
| | | |
Collapse
|
40
|
Espinosa-Cantellano M, Martínez-Palomo A. Pathogenesis of intestinal amebiasis: from molecules to disease. Clin Microbiol Rev 2000; 13:318-31. [PMID: 10756002 PMCID: PMC100155 DOI: 10.1128/cmr.13.2.318] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In spite of a wealth of knowledge on the biochemistry and cellular and molecular biology of Entamoeba histolytica, little has been done to apply these advances to our understanding of the lesions observed in patients with intestinal amebiasis. In this review, the pathological and histological findings in acute amebic colitis are related to the molecular mechanisms of E. histolytica pathogenicity described to date. Infection of the human colon by E. histolytica produces focal ulceration of the intestinal mucosa, resulting in dysentery (diarrhea with blood and mucus). Although a complete picture has not yet been achieved, the basic mechanisms involved in the production of focal lytic lesions include complex multifactorial processes in which lectins facilitate adhesion, proteases degrade extracellular matrix components, porins help nourish the parasite and may also kill incoming polymorphonuclear leukocytes and macrophages, and motility is used by the parasite to invade deeper layers of the colon. In addition, E. histolytica has developed mechanisms to modulate the immune response during acute infection. Nevertheless, much still needs to be unraveled to understand how this microscopic parasite has earned its well-deserved histolytic name.
Collapse
|
41
|
Spinella S, Levavasseur E, Petek F, Rigothier MC. Purification and biochemical characterization of a novel cysteine protease of Entamoeba histolytica. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:170-80. [PMID: 10542062 DOI: 10.1046/j.1432-1327.1999.00841.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysteine proteases are important virulence factors of Entamoeba histolytica, the causative agent of amoebiasis. A novel cysteine protease from parasite extracts was purified 15-fold by a procedure including concanavalin A-Sepharose, hydroxylapatite and DEAE-Sepharose chromatography. The purification resulted in the obtainment of an homogeneous protein with a molecular mass of 66 kDa on native PAGE. In 10% SDS/PAGE, three bands of 60, 54 and 50 kDa were evident. Each of the three specific mouse antisera raised against these proteins showed cross-reactivity with the three bands obtained from the purified eluate. The N-terminal sequencing of the first 10 amino acids from the three proteins showed 100% identity. These results support the hypothesis of a common precursor for the 60, 54 and 50-kDa proteins. Protease activity of the purified enzyme was demonstrated by electrophoresis in a gelatine-acrylamide copolymerized gel. Its activity was quantified by cleaving a synthetic fluorogenic peptide substrate such as N-carbobenzyloxy-arginyl-arginyl-7-amido-4-methylcoumarin. The optimum pH for the protease activity was 6.5; however, enzymatic activity was observed between pH 5 and pH 7.5. Typical of cysteine proteases, the enzyme was inhibited by 4-[(2S, 3S)-carboxyoxiran-2-ylcarbonyl-L-leucylamido]butylg uanidine and iodoacetamide, and activated by free sulfhydryl groups. The cellular location of the enzyme was examined on trophozoites before and after contact with red blood cells using indirect immunofluorescence and cellular fractionation. The 60-kDa cysteine protease translocated to the amoebic surface upon the interaction of trophozoites with red blood cells. This result provided evidence for participation of the 60-kDa protease in erythrophagocytosis.
Collapse
Affiliation(s)
- S Spinella
- Biologie et Contrôle des Parasites, Faculté de Pharmacie, Chatenay-Malabry, France
| | | | | | | |
Collapse
|
42
|
Padilla-Vaca F, Ankri S, Bracha R, Koole LA, Mirelman D. Down regulation of Entamoeba histolytica virulence by monoxenic cultivation with Escherichia coli O55 is related to a decrease in expression of the light (35-kilodalton) subunit of the Gal/GalNAc lectin. Infect Immun 1999; 67:2096-102. [PMID: 10225860 PMCID: PMC115943 DOI: 10.1128/iai.67.5.2096-2102.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entamoeba histolytica virulence is related to a number of amebic components (lectins, cysteine proteinases, and amebapore) and host factors, such as intestinal bacterial flora. Trophozoites are selective in their interactions with bacteria, and the parasite recognition of glycoconjugates plays an important role in amebic virulence. Long-term monoxenic cultivation of pathogenic E. histolytica trophozoites, strains HK-9 or HM-1:IMSS, with Escherichia coli serotype O55, which binds strongly to the Gal/GalNAc amebic lectin, markedly reduced the trophozoites' adherence and cytopathic activity on cell monolayers of baby hamster kidney (BHK) cells. Specific probes prepared from E. histolytica lectin genes as well as antibodies directed against the light (35-kDa) and heavy (170-kDa) subunits of the Gal/GalNAc lectin revealed a decrease in the transcription and expression of the light subunit in trophozoites grown monoxenically with E. coli O55. This effect was not observed when E. histolytica was grown with E. coli 346, a mannose-binding type I pilated bacteria. Our results suggest that the light subunit of the amebic lectin is involved in the modulation of parasite adherence and cytopathic activity.
Collapse
Affiliation(s)
- F Padilla-Vaca
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
43
|
Abstract
Proteolytic enzymes seem to play important roles in the life cycles of all medically important protozoan parasites, including the organisms that cause malaria, trypanosomiasis, leishmaniasis, amebiasis, toxoplasmosis, giardiasis, cryptosporidiosis and trichomoniasis. Proteases from all four major proteolytic classes are utilized by protozoans for diverse functions, including the invasion of host cells and tissues, the degradation of mediators of the immune response and the hydrolysis of host proteins for nutritional purposes. The biochemical and molecular characterization of protozoan proteases is providing tools to improve our understanding of the functions of these enzymes. In addition, studies in multiple systems suggest that inhibitors of protozoan proteases have potent antiparasitic effects. This review will discuss recent advances in the identification and characterization of protozoan proteases, in the determination of the function of these enzymes, and in the evaluation of protease inhibitors as potential antiprotozoan drugs.
Collapse
Affiliation(s)
- P J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California 94143-0811, USA
| |
Collapse
|
44
|
Franco E, de Araujo Soares RM, Meza I. Specific and reversible inhibition of Entamoeba histolytica cysteine-proteinase activities by Zn2+: implications for adhesion and cell damage. Arch Med Res 1999; 30:82-8. [PMID: 10372439 DOI: 10.1016/s0188-0128(98)00017-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cysteine-proteinases are thought to play an important role in E. histolytica pathogenicity. Although effective blockage of proteolytic activities can be obtained with several known inhibitors, the high cellular toxicity of most of the inhibitors precludes experimentation with live cells or animal models. Specific cysteine-proteinase inhibitors that could be utilized in studies of virulence are of great need in the field of amebiasis. METHODS Cysteine-proteinase activities were determined in trophozoite lysates by azocasein degradation and after PAGE and gelatin zymograms. Inhibition of the activities was assessed in the presence of 0.01-2.5 mM concentrations of divalent cations of the IIB and VIII series such as Zn, Cd, Hg, Ni, and Co. Reversibility was induced with 25 mM L-cysteine or 50 mM L-histidine and by metal chelation with 5 mM phenantroline. The inhibitory effect of ZnCl2 was tested with live cells in fibronectin-binding and cytotoxicity assays. RESULTS ZnCl2 specifically inhibited cysteine-proteinase activities in trophozoite lysates in a concentration-dependent manner. Additionally, 1.0-2.5 mM ZnCl2 blocked proteolysis in more than 70%. This inhibition was completely reverted by L-cysteine, L-histidine, or phenantroline. Similar results were obtained by analyzing individual cysteine-proteinase activities separated in gelatin zymograms. At these concentrations, ZnCl2 significantly interfered with trophozoite adhesion, thus making amebas deficient in substrate degradation and cell damage. CONCLUSIONS ZnCl2 is an effective inhibitor of amebic cysteine-proteinases. Its low toxicity at relatively high concentrations, high solubility, and low cost make it adequate for live cell experimentation and animal models of amebic virulence.
Collapse
Affiliation(s)
- E Franco
- Departamento de Biologia Celular Instituto Politéchico Nacional (IPN) Mexico D.F. Mexio
| | | | | |
Collapse
|
45
|
Ankri S, Stolarsky T, Bracha R, Padilla-Vaca F, Mirelman D. Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters. Infect Immun 1999; 67:421-2. [PMID: 9864246 PMCID: PMC96327 DOI: 10.1128/iai.67.1.421-422.1999] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trophozoites of virulent Entamoeba histolytica transfected with the antisense gene encoding cysteine proteinase 5 (CP5) have only 10% of the CP activity but retain their cytopathic activity on mammalian monolayers. In the present study we found that the transfected trophozoites with low levels of CP activity were incapable of inducing the formation of liver lesions in hamsters.
Collapse
Affiliation(s)
- S Ankri
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
46
|
Matsuo T, Shinzawa H, Sugahara K, Mitsuhashi H, Watanabe H, Abe T, Ohno S, Terashita M, Saito K, Saito T, Misawa H, Togashi H, Takahashi T. Case report: a patient who developed an amoebic liver abscess during treatment with interferon. J Gastroenterol Hepatol 1998; 13:1068-71. [PMID: 9835326 DOI: 10.1111/j.1440-1746.1998.tb00572.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
A 65-year-old female received recombinant interferon (IFN) alpha-2b daily for the treatment of chronic hepatitis C. Fever (39 degrees C or higher) developed 14 days after the start of administration. Abdominal computed tomography suggested multiple liver abscesses, which had not been detected before IFN administration. An autopsy revealed an amoebic liver abscess. A subclinical infection of Entamoeba histolytica in this case developed into amoebic liver abscess during IFN administration.
Collapse
Affiliation(s)
- T Matsuo
- Second Department of Internal Medicine, Yamagata University School of Medicine, Yamagata City, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
GUERRERO-MANRÍQUEZ GLORIAG, SÁNCHEZ-IBARRA FRANCISCO, AVILA EVAE. Inhibition ofEntamoeba histolyticaproteolytic activity by human salivary IgA antibodies. APMIS 1998. [DOI: 10.1111/j.1699-0463.1998.tb00263.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Ankri S, Stolarsky T, Mirelman D. Antisense inhibition of expression of cysteine proteinases does not affect Entamoeba histolytica cytopathic or haemolytic activity but inhibits phagocytosis. Mol Microbiol 1998; 28:777-85. [PMID: 9643545 DOI: 10.1046/j.1365-2958.1998.00837.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of most of the expression of the cysteine proteinases of Entamoeba histolytica strain HM-1:IMSS was successfully performed by transcription of ehcp5 antisense RNA using the promoter of ehg34, which encodes a L21 ribosomal protein of E. histolytica. We have generated a stable transfectant in which the overall level of cysteine proteinase activity is strongly reduced ( 90%). This transfectant has a normal growth rate in Diamond's TYI-S-33 medium, a cytopathic and haemolytic activity similar to the control HM-1:IMSS pEhAct-Neo transfectant but with a significantly lower phagocytic activity.
Collapse
Affiliation(s)
- S Ankri
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
49
|
Jacobs T, Bruchhaus I, Dandekar T, Tannich E, Leippe M. Isolation and molecular characterization of a surface-bound proteinase of Entamoeba histolytica. Mol Microbiol 1998; 27:269-76. [PMID: 9484883 DOI: 10.1046/j.1365-2958.1998.00662.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Major pathogenic functions of Entamoeba histolytica involved in destruction of host tissues are the degradation of extracellular matrix proteins mediated by secreted cysteine proteinases and contact-dependent killing of host cells via membrane-active factors. A soluble protein with an affinity for membranes was purified from amoebic extracts to apparent homogeneity. N-terminal sequencing and subsequent molecular cloning of the factor revealed that it is a member of the cysteine proteinase family of E. histolytica, which we termed CP5. Further experiments with the purified protein showed that it has potent proteolytic activity that is abrogated in the presence of inhibitors specific for cysteine proteinases. The enzyme firmly associates with membranes retaining its proteolytic activity and it produces cytopathic effects on cultured monolayers. A model of the three-dimensional structure of CP5 revealed the presence of a hydrophobic patch that may account for the potential of the protein to associate with membranes. Immunocytochemical localization of the enzyme to the surface of the amoeba in combination with the recent finding that the gene encoding CP5 is missing in the closely related but non-pathogenic Entamoeba dispar suggests a potential role of the protein in host tissue destruction of E. histolytica.
Collapse
Affiliation(s)
- T Jacobs
- Department of Molecular Biology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Ankri S, Miron T, Rabinkov A, Wilchek M, Mirelman D. Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. Antimicrob Agents Chemother 1997; 41:2286-8. [PMID: 9333064 PMCID: PMC164109 DOI: 10.1128/aac.41.10.2286] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ability of Entamoeba histolytica trophozoites to destroy monolayers of baby hamster kidney cells is inhibited by allicin, one of the active principles of garlic. Cysteine proteinases, an important contributor to amebic virulence, as well as alcohol dehydrogenase, are strongly inhibited by allicin.
Collapse
Affiliation(s)
- S Ankri
- Department of Membrane Research and Biophysics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|