1
|
Abousaad S, Ahmed F, Abouzeid A, Adhiambo C, Ongeri E. Meprin β activity modulates cellular proliferation via trans-signaling IL-6-mediated AKT/ERK pathway in IR-induced kidney injury. RESEARCH SQUARE 2025:rs.3.rs-5901359. [PMID: 39975921 PMCID: PMC11838750 DOI: 10.21203/rs.3.rs-5901359/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inflammation plays a central role in the progression of kidney injury induced by ischemia/reperfusion (IR). Meprin metalloproteinases have been implicated in the pathophysiology of IR-induced kidney injury. Existing data from in vitro and in vivo studies show that meprins modulate interleukin-6 (IL-6)-mediated inflammation via proteolytic processing of IL-6 and its receptor. IL-6 trans-signaling induces proliferation through either MAPK/ERK or PI3K/AKT pathway or in crosstalk with AKT/ERK. We previously showed that meprin β modulates cellular survival (BCL-2) through IL-6/JAK/STAT signaling pathway in IR-induced kidney injury. However, it's not known how meprin β modulation of the IL-6 signaling pathway impacts the cellular proliferation in IR-induced acute kidney injury. The goal of the current study was to determine how meprin β modulation of the IL-6 signaling pathway impacts downstream cellular proliferation in IR-induced kidney injury. We used the unilateral IR as a model of renal inflammation in wild-type (WT) and meprin β knockout (βKO) mice, with the contralateral kidneys serving as controls. The mice were sacrificed at 96 h post-IR, and kidney tissue processed for evaluation by RT-PCR and immunohistochemistry. Statistical analysis utilized two-way ANOVA. RT-PCR data showed a significant increase in mRNA levels for IL-6 and proliferating cell nuclear antigen (PCNA) in WT and βKO mice at 96 h-post IR when compared to WT control kidneys. However, the baseline mRNA levels for PCNA were significantly higher in βKO when compared to WT kidneys. Immunohistochemical data showed significant increases in IL-6, PCNA, p-AKT and p-ERK in select tubules in both genotypes at 96 h post-IR when compared to control kidneys for each genotype. Data from immunofluorescence counterstaining of kidney tissues revealed that at 96 hours post-IR, IL-6, PCNA, p-AKT, and p-ERK were primarily expressed in meprin β-expressing proximal tubules (PTs), where meprins are abundantly present. However, high levels of IL-6 were also present in the lumen of PTs and DTs from WT and βKO kidneys at 96 h post-IR, suggesting increased release/shedding into filtrate and subsequently into urine. In conclusion, this study highlights the role of meprin β activity in regulating cellular proliferation through PCNA regulation, driven by the IL-6-mediated AKT/ERK signaling pathway during the recovery phase following IR-induced kidney injury.
Collapse
Affiliation(s)
| | - Faihaa Ahmed
- the College of Veterinary Medicine, North Carolina State University
| | | | | | | |
Collapse
|
2
|
Yu R, Tian M, He P, Chen J, Zhao Z, Zhang Y, Zhang B. Suppression of LMCD1 ameliorates renal fibrosis by blocking the activation of ERK pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119200. [PMID: 34968577 DOI: 10.1016/j.bbamcr.2021.119200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/29/2022]
Abstract
Tubulointerstitial fibrosis is a common pathway of chronic kidney disease (CKD) and is closely related to the progression of CKD. LMCD1, acting as an intermediary, has been reported to play a role in cardiac fibrosis. However, its role in renal fibrosis is yet to be deciphered. Based on the GEO database, we found the expression of LMCD1 is increased in kidney tissues of CKD patients and in human proximal tubular epithelial (HK-2) cells treated with transforming growth factor-β1 (TGF-β1), suggesting that LMCD1 may be involved in tubulointerstitial fibrosis. Herein, we investigated the role of LMCD1 in mice with unilateral ureteral obstruction (UUO) and in TGF-β1-stimulated HK-2 cells. In the UUO model, the expression of LMCD1 was upregulated. UUO-induced renal histopathological changes were mitigated by knockdown of LMCD1. LMCD1 silence alleviated renal interstitial fibrosis in UUO mice by decreasing the expression of TGF-β1, fibronectin, collagen I, and collagen III. LMCD1 deficiency suppressed cell apoptosis in kidney to prevent UUO-triggered renal injury. Furthermore, LMCD1 deficiency blocked the activation of ERK signaling in UUO mice. In vitro, LMCD1 was upregulated in HK-2 cells after TGF-β1 stimulation. LMCD1 silence abrogated TGF-β1-mediated upregulation of fibrotic genes. Treatment of HK-2 cells with ERK-specific inhibitor SCH772984 and agonist TPA validated LMCD1 exerted its function via activating ERK signaling. Together, our findings suggest that inhibition of LMCD1 protects against renal interstitial fibrosis by impeding ERK activation.
Collapse
Affiliation(s)
- Rui Yu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jie Chen
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yongzhe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
3
|
Dissecting the Involvement of Ras GTPases in Kidney Fibrosis. Genes (Basel) 2021; 12:genes12060800. [PMID: 34073961 PMCID: PMC8225075 DOI: 10.3390/genes12060800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Many different regulatory mechanisms of renal fibrosis are known to date, and those related to transforming growth factor-β1 (TGF-β1)-induced signaling have been studied in greater depth. However, in recent years, other signaling pathways have been identified, which contribute to the regulation of these pathological processes. Several studies by our team and others have revealed the involvement of small Ras GTPases in the regulation of the cellular processes that occur in renal fibrosis, such as the activation and proliferation of myofibroblasts or the accumulation of extracellular matrix (ECM) proteins. Intracellular signaling mediated by TGF-β1 and Ras GTPases are closely related, and this interaction also occurs during the development of renal fibrosis. In this review, we update the available in vitro and in vivo knowledge on the role of Ras and its main effectors, such as Erk and Akt, in the cellular mechanisms that occur during the regulation of kidney fibrosis (ECM synthesis, accumulation and activation of myofibroblasts, apoptosis and survival of tubular epithelial cells), as well as the therapeutic strategies for targeting the Ras pathway to intervene on the development of renal fibrosis.
Collapse
|
4
|
Hsieh WY, Chang TH, Chang HF, Chuang WH, Lu LC, Yang CW, Lin CS, Chang CC. Renal chymase-dependent pathway for angiotensin II formation mediated acute kidney injury in a mouse model of aristolochic acid I-induced acute nephropathy. PLoS One 2019; 14:e0210656. [PMID: 30633770 PMCID: PMC6329531 DOI: 10.1371/journal.pone.0210656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/28/2018] [Indexed: 01/20/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) is the primary enzyme that converts angiotensin I (Ang I) to angiotensin II (Ang II) in the renin-angiotensin system (RAS). However, chymase hydrates Ang I to Ang II independently of ACE in some kidney diseases, and it may play an important role. The present study investigated whether chymase played a crucial role in aristolochic acid I (AAI)-induced nephropathy. C57BL/6 mice were treated with AAI via intraperitoneal injection for an accumulated AAI dosage of 45 mg/kg body weight (BW) (15 mg/kg BW per day for 3 days). The animals were sacrificed after acute kidney injury development, and blood, urine and kidneys were harvested for biochemical and molecular assays. Mice exhibited increased serum creatinine, BUN and urinary protein after the AAI challenge. Significant infiltrating inflammatory cells and tubular atrophy were observed in the kidneys, and high immunocytokine levels were detected. Renal RAS-related enzyme activities were measured, and a significantly increased chymase activity and slightly decreased ACE activity were observed in the AAI-treated mice. The renal Ang II level reflected the altered profile of RAS enzymes and was significantly increased in AAI-treated mice. Treatment of AAI-induced nephropathic mice with an ACE inhibitor (ACEI) or chymase inhibitor (CI; chymostatin) reduced renal Ang II levels. The combination of ACEI and CI (ACEI+CI) treatment significantly reversed the AAI-induced changes of Ang II levels and kidney inflammation and injuries. AAI treatment significantly increased renal p-MEK without increasing p-STAT3 and p-Smad3 levels, and p-MEK/p-ERK1/2 signalling pathway was significantly activated. CI and ACEI+CI treatments reduced this AAI-activated signaling pathway. AAI-induced nephropathy progression was significantly mitigated with CI and ACEI+CI treatment. This study elucidates the role of RAS in the pathogenesis of AAI-induced nephropathy.
Collapse
Affiliation(s)
- Wen-Yeh Hsieh
- Division of Pulmonary Medicine, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Teng-Hsiang Chang
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Division of Endocrinology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Wan-Hsuan Chuang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Li-Che Lu
- Division of Nephrology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chung-Wei Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Chu Chang
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Environmental and Precision Medicine Laboratory, Changhua Christian Hospital, Changhua, Taiwan
- Department of Nutrition, Hungkuang University, Taichung, Taiwan
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Zhen Y, Lee IJ, Finkelman FD, Shao WH. Targeted inhibition of Axl receptor tyrosine kinase ameliorates anti-GBM-induced lupus-like nephritis. J Autoimmun 2018; 93:37-44. [PMID: 29895432 DOI: 10.1016/j.jaut.2018.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Glomerulonephritis (GN) is a typical lesion in autoantibody and immune complex disorders, including SLE. Because the Gas6/Axl pathway has been implicated in the pathogenesis of many types of GN, targeting this pathway might ameliorate GN. Consequently, we have studied the efficacy and mechanism of R428, a potent selective Axl inhibitor, in the prevention of experimental anti-GBM nephritis. Axl upregulation was investigated with Sp1/3 siRNA in the SV40-transformed mesangial cells. For Axl inhibition, a daily dose of R428 (125 mg/kg) or vehicle was administered orally. GN was induced with anti-GBM sera. Renal disease development was followed by serial blood urine nitrogen (BUN) determinations and by evaluation of kidney histology at the time of sacrifice. Axl-associated signaling proteins were analyzed by Western blotting and inflammatory cytokine secretion was analyzed by Proteome array. SiRNA data revealed the transcription factor Sp1 to be an important regulator of mesangial Axl expression. Anti-GBM serum induced severe nephritis with azotemia, protein casts and necrotic cell death. R428 treatment diminished renal Axl expression and improved kidney function, with significantly decreased BUN and glomerular proliferation. R428 treatment inhibited Axl and significantly decreased Akt phosphorylation and renal inflammatory cytokine and chemokine expression; similar effects were observed in anti-GBM antiserum-treated Axl-KO mice. These studies support a role for Axl inhibition in glomerulonephritis.
Collapse
Affiliation(s)
- Yuxuan Zhen
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Iris J Lee
- Division of Nephrology, Department of Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Fred D Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267 USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229 USA
| | - Wen-Hai Shao
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267 USA.
| |
Collapse
|
6
|
Atsaves V, Makri P, Detsika MG, Tsirogianni A, Lianos EA. Glomerular Epithelial Cells-Targeted Heme Oxygenase-1 Over Expression in the Rat: Attenuation of Proteinuria in Secondary But Not Primary Injury. Nephron Clin Pract 2016; 133:270-8. [PMID: 27442135 DOI: 10.1159/000445755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Induction of heme oxygenase 1 (HO-1) in glomerular epithelial cells (GEC) in response to injury is poor and this may be a disadvantage. We, therefore, explored whether HO-1 overexpression in GEC can reduce proteinuria induced by puromycin aminonucleoside (PAN) or in anti-glomerular basement membrane (GBM) antibody (Ab)-mediated glomerulonephritis (GN). METHODS HO-1 overexpression in GEC (GECHO-1) of Sprague-Dawley rats was achieved by targeting a FLAG-human (h) HO-1 using transposon-mediated transgenesis. Direct GEC injury was induced by a single injection of PAN. GN was induced by administration of an anti-rat GBM Ab and macrophage infiltration in glomeruli was assessed by immunohistochemistry and western blot analysis, which was also used to assess glomerular nephrin expression. RESULTS In GECHO-1 rats, FLAG-hHO-1 transprotein was co-immunolocalized with nephrin. Baseline glomerular HO-1 protein levels were higher in GECHO-1 compared to wild type (WT) rats. Administration of either PAN or anti-GBM Ab to WT rats increased glomerular HO-1 levels. Nephrin expression markedly decreased in glomeruli of WT or GECHO-1 rats treated with PAN. In anti-GBM Ab-treated WT rats, nephrin expression also decreased. In contrast, it was preserved in anti-GBM Ab-treated GECHO-1 rats. In these, macrophage infiltration in glomeruli and the ratio of urine albumin to urine creatinine (Ualb/Ucreat) were markedly reduced. There was no difference in Ualb/Ucreat between WT and GECHO-1 rats treated with PAN. CONCLUSION Depending on the type of injury, HO-1 overexpression in GEC may or may not reduce proteinuria. Reduced macrophage infiltration and preservation of nephrin expression are putative mechanisms underlying the protective effect of HO-1 overexpression following immune injury.
Collapse
Affiliation(s)
- Vassilios Atsaves
- Department of Medicine, Division of Critical Care Medicine and Pulmonary Services, University of Athens School of Health Sciences, Athens, Greece
| | | | | | | | | |
Collapse
|
7
|
Nutter FH, Haylor JL, Khwaja A. Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis. PLoS One 2015; 10:e0137321. [PMID: 26415098 PMCID: PMC4586140 DOI: 10.1371/journal.pone.0137321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/15/2015] [Indexed: 11/27/2022] Open
Abstract
Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1.
Collapse
Affiliation(s)
- Faith Hannah Nutter
- Academic Unit of Nephrology, Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, England
- * E-mail:
| | - John L. Haylor
- Academic Unit of Nephrology, Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, England
| | - Arif Khwaja
- Sheffield Kidney Institute, Northern General Hospital, Sheffield, England
| |
Collapse
|
8
|
Chen HH, Lu PJ, Chen BR, Hsiao M, Ho WY, Tseng CJ. Heme oxygenase-1 ameliorates kidney ischemia-reperfusion injury in mice through extracellular signal-regulated kinase 1/2-enhanced tubular epithelium proliferation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2195-201. [PMID: 26232688 DOI: 10.1016/j.bbadis.2015.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/01/2023]
Abstract
Heme oxygenase (HO)-1 confers transient resistance against oxidative damage, including renal ischemia-reperfusion injury (IRI). We investigated the potential protective effect of HO-1 induction in a mouse model of renal IRI induced by bilateral clamping of the kidney arteries. The mice were randomly assigned to five groups to receive an intraperitoneal injection of PBS, hemin (an HO-1 inducer, 100μmol/kg), hemin+ZnPP (an HO-1 inhibitor, 5mg/kg), hemin+PD98059 (a MEK-ERK inhibitor, 10mg/kg) or a sham operation. All of the groups except for the sham-operated group underwent 25min of ischemia and 24 to 72h of reperfusion. Renal function and tubular damage were assessed in the mice that received hemin or the vehicle treatment prior to IRI. The renal injury score and HO-1 protein levels were evaluated via H&E and immunohistochemistry staining. Hemin-preconditioned mice exhibited preserved renal cell function (BUN: 40±2mg/dl, creatinine: 0.53±0.06mg/dl), and the tubular injury score at 72h (1.65±0.12) indicated that tubular damage was prevented. Induction of HO-1 induced the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2. However, these effects were abolished with ZnPP treatment. Kidney function (BUN: 176±49mg/dl, creatinine: 1.54±0.39mg/dl) increased, and the tubular injury score (3.73±0.09) indicated that tubular damage also increased with ZnPP treatment. HO-1-induced tubular epithelial proliferation was attenuated by PD98059. Our findings suggest that HO-1 preconditioning promotes ERK1/2 phosphorylation and enhances tubular recovery, which subsequently prevents further renal injury.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Pei-Jung Lu
- Graduate Institute of Clinical Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Bo-Ron Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Yu Ho
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Zhang N, Ji Z. Effects of caveolin-1 and P-ERK1/2 on Ang II-induced glomerular mesangial cell proliferation. Ren Fail 2013; 35:971-7. [PMID: 23826745 DOI: 10.3109/0886022x.2013.808956] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This study explored the effects of caveolin-1, p-ERK1/2 and transient receptor potential channel 6 (TRPC6) on angiotensin II (Ang II)-induced glomerular mesangial cell (GMC) proliferation, and investigated the role of Ang II on GMC proliferation. GMC cultures were divided into Control, Ang II (Ang II 10(-7 )mol/L), PD98059 (Ang II 10(-7 )mol/L + PD98059 5 × 10(-5 )mol/L) and MβCD groups (Ang II 10(-7 )mol/L + MβCD 10(-2 )mol/L). GMCs proliferation was measured by the methyl thiazolil tetracolium and trypan blue assays. The distribution of caveolin-1, p-ERK1/2 and TRPC6 was monitored by immunocytochemistry. Real time polymerase chain reaction (PCR) was used to assess mRNA expression of caveolin-1 and TRPC6. Western blot analysis was used to assess protein expression of caveolin-1, p-ERK1/2 and TRPC6. The results showed that Ang II promoted GMC proliferation. PD98059 and MβCD blocked Ang II-induced GMC proliferation, by 31.06% and 48.96%, respectively. In comparison with the control group, the expression of p-ERK1/2 and TRPC6 was significantly higher and caveolin-1 expression was significantly lower in the Ang II group. PD98059 markedly decreased p-ERK1/2 and TRPC6 expression and increased caveolin-1 expression. MβCD decreased the expression of p-ERK1/2 and TRPC6, but had no significant effect on caveolin-1 protein expression. These findings suggested that the intact caveolae structure was associated with Ang II-induced GMC proliferation, ERK1/2 activation and TRPC6 expression. And p-ERK1/2 acted as an upstream signal molecule for TRPC6. Moreover, p-ERK1/2 and caveolin-1 appeared to be inhibited reciprocally, thus regulated GMC proliferation by regulating TRPC6 expression.
Collapse
Affiliation(s)
- Na Zhang
- Department of Pediatrics, Second Affiliated Hospital of Guangzhou Medical University, No. 195 Dongfeng Xi Road, Guangzhou, China
| | | |
Collapse
|
10
|
Chiluiza D, Krishna S, Schumacher VA, Schlöndorff J. Gain-of-function mutations in transient receptor potential C6 (TRPC6) activate extracellular signal-regulated kinases 1/2 (ERK1/2). J Biol Chem 2013; 288:18407-20. [PMID: 23645677 DOI: 10.1074/jbc.m113.463059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gain-of-function mutations in the canonical transient receptor potential 6 (TRPC6) gene are a cause of autosomal dominant focal segmental glomerulosclerosis (FSGS). The mechanisms whereby abnormal TRPC6 activity results in proteinuria remain unknown. The ERK1/2 MAPKs are activated in glomeruli and podocytes in several proteinuric disease models. We therefore examined whether FSGS-associated mutations in TRPC6 result in activation of these kinases. In 293T cells and cultured podocytes, overexpression of gain-of-function TRPC6 mutants resulted in increased ERK1/2 phosphorylation, an effect dependent upon channel function. Pharmacologic inhibitor studies implicated several signaling mediators, including calmodulin and calcineurin, supporting the importance of TRPC6-mediated calcium influx in this process. Through medium transfer experiments, we uncovered two distinct mechanisms for ERK activation by mutant TRPC6, a cell-autonomous, EGF receptor-independent mechanism and a non-cell-autonomous mechanism involving metalloprotease-mediated release of a presumed EGF receptor ligand. The inhibitors KN-92 and H89 were able to block both pathways in mutant TRPC6 expressing cells as well as the prolonged elevation of intracellular calcium levels upon carbachol stimulation seen in these cells. However, these effects appear to be independent of their effects on calcium/calmodulin-dependent protein kinase II and PKA, respectively. Phosphorylation of Thr-70, Ser-282, and Tyr-31/285 were not necessary for ERK activation by mutant TRPC6, although a phosphomimetic TRPC6 S282E mutant was capable of ERK activation. Taken together, these results identify two pathways downstream of mutant TRPC6 leading to ERK activation that may play a role in the development of FSGS.
Collapse
Affiliation(s)
- David Chiluiza
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
11
|
Role of amino acid transporter LAT2 in the activation of mTORC1 pathway and the pathogenesis of crescentic glomerulonephritis. J Transl Med 2011; 91:992-1006. [PMID: 21403644 DOI: 10.1038/labinvest.2011.43] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Molecular mechanisms and signaling pathways leading to cellular proliferation and lesion formation in the crescentic glomerulonephritis (CGN) remain elusive. In the present study we have explored a potential role of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway and amino acid transporter (LAT) in the pathogenesis of CGN. Immunohistochemistry and western blot analysis of glomeruli isolated from a rat model of CGN revealed that activation of mTORC1 preceded crescent formation in glomerular parietal epithelial cells (PECs) and podocytes. Daily treatment of rats with the mTOR inhibitor everolimus just after induction of CGN was not beneficial and instead led to increased cellular necrosis of PECs. However, daily treatment starting 7 days after the onset of CGN was beneficial and maintained intact glomeruli. Out of three forms of L-type neutral amino acid transporters (LAT1-LAT3) studied here, only LAT2 was found to be upregulated in the PECs and podocytes in advance of the crescent formation as well as in the crescent lesion itself. Cell culture study revealed that plasma membrane expression of LAT2 markedly stimulated mTORC1 signaling pathway, which was significantly abrogated by coexistence of LAT inhibitor. Finally, LAT inhibitor significantly abrogated development of crescent formation of CGN on day 7. Our data suggest that LAT2 may have a pivotal role in the pathogenesis of CGN by activating the mTORC1 pathway in the glomerular epithelial cells.
Collapse
|
12
|
Shimizu H, Hori Y, Kaname S, Yamada K, Nishiyama N, Matsumoto S, Miyata K, Oba M, Yamada A, Kataoka K, Fujita T. siRNA-based therapy ameliorates glomerulonephritis. J Am Soc Nephrol 2010; 21:622-33. [PMID: 20203158 DOI: 10.1681/asn.2009030295] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
RNA interference by short interfering RNAs (siRNAs) holds promise as a therapeutic strategy, but use of siRNAs in vivo remains limited. Here, we developed a system to target delivery of siRNAs to glomeruli via poly(ethylene glycol)-poly(l-lysine)-based vehicles. The siRNA/nanocarrier complex was approximately 10 to 20 nm in diameter, a size that would allow it to move across the fenestrated endothelium to access to the mesangium. After intraperitoneal injection of fluorescence-labeled siRNA/nanocarrier complexes, we detected siRNAs in the blood circulation for a prolonged time. Repeated intraperitoneal administration of a mitogen-activated protein kinase 1 (MAPK1) siRNA/nanocarrier complex suppressed glomerular MAPK1 mRNA and protein expression in a mouse model of glomerulonephritis; this improved kidney function, reduced proteinuria, and ameliorated glomerular sclerosis. Furthermore, this therapy reduced the expression of the profibrotic markers TGF-beta1, plasminogen activator inhibitor-1, and fibronectin. In conclusion, we successfully silenced intraglomerular genes with siRNA using nanocarriers. This technique could aid the investigation of molecular mechanisms of renal disease and has potential as a molecular therapy of glomerular diseases.
Collapse
Affiliation(s)
- Hideki Shimizu
- Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rufanova VA, Lianos E, Alexanian A, Sorokina E, Sharma M, McGinty A, Sorokin A. C3G overexpression in glomerular epithelial cells during anti-GBM-induced glomerulonephritis. Kidney Int 2008; 75:31-40. [PMID: 18784646 DOI: 10.1038/ki.2008.448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The guanine nucleotide exchange factor C3G, along with the CrkII adaptor protein, mediates GTP activation of the small GTPase proteins Rap1 and R-Ras, facilitating their activation of downstream signaling pathways, which had been found to be important in the pathogenesis of glomerulonephritis. We found that expression of C3G protein was upregulated in glomerular epithelial cells in an experimental model of accelerated anti-GBM antibody-induced glomerulonephritis expression. To determine the consequence of its increased expression, we transfected C3G (using adenoviral constructs) into cultured glomerular epithelial cells and measured the activated forms (i.e., GTP-bound) forms of Rap1 and R-Ras. Activation of Rap1 was not affected by C3G; however, the basal level of GTP-bound R-Ras was decreased. Further, C3G over-expression enhanced the activation of R-Ras in response to endothelin. Overexpression of C3G also led to a significant reduction in glomerular epithelial cell spreading and decreased the cells' E-cadherin expression and augmented their migration. We found that C3G was overexpressed in accelerated anti-GBM antibody-induced glomerulonephritis and suggest that this modulates glomerular epithelial cell morphology and behavior.
Collapse
Affiliation(s)
- Victoriya A Rufanova
- Division of Nephrology and Kidney Disease Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Chronic unilateral ureteral obstruction is a well characterized model of renal injury leading to tubulointerstitial fibrosis and distinct patterns of cell proliferation and apoptosis in the obstructed kidney. In this study we assessed the contribution of the mitogen activated protein kinase (MAPK)-ERK1/2 and the phosphatidylinositol 3 kinase (PI3K)-Akt pathways to early renal changes following unilateral obstruction. Increased activation of small Ras GTPase and its downstream effectors ERK1/2 and Akt was detected in ligated kidneys. The use of specific pharmacological inhibitors to either ERK1/2 or Akt activation led to decreased levels of fibroblast-myofibroblast markers in the interstitium while inhibition of PI3K reduced the number of proliferating cells and the amount of interstitial extracellular matrix deposition. Treatment with an ERK1/2 inhibitor diminished the number of apoptotic tubule and interstitial cells. Our results suggest a role for the MAPK-ERK1/2 and PI3K-Akt systems in early changes induced by ureteral obstruction and that inhibition of these signaling pathways may provide a novel approach to prevent progression of renal fibrosis.
Collapse
|
15
|
Ratnam KK, He CJ, Klotman P. Nef as a Proliferative Factor for Kidney Epithelial Cells in HIV-Associated Nephropathy. Clin Med Oncol 2008; 2:539-45. [PMID: 21892329 PMCID: PMC3161694 DOI: 10.4137/cmo.s661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Krishna K Ratnam
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, U.S.A
| | | | | |
Collapse
|
16
|
Kang TH, Kim KT. VRK3-mediated inactivation of ERK signaling in adult and embryonic rodent tissues. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:49-58. [PMID: 18035061 DOI: 10.1016/j.bbamcr.2007.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 10/11/2007] [Accepted: 10/22/2007] [Indexed: 12/15/2022]
Abstract
Vaccinia-related kinase 3 (VRK3), previously characterized as a direct activator of vaccinia H1-related (VHR) phosphatase, inactivates extracellular signal-regulated kinase (ERK) in the nucleus of neuronal cells. Here we show that VRK3 is expressed in various other rodent tissues and in embryos, and regulates VHR phosphatase activity in these tissues. We observed colocalization of VRK3 and VHR in the testis tissue and could detect protein complex containing VRK3, VHR and ERK in immunoprecipitation analysis. Notably, the addition of recombinant VRK3 protein to total protein lysates, obtained either from adult tissues or embryos, enhanced the phosphatase activity of VHR, but not the activity of MKP3. The results further indicate that the VHR-VRK3 complex is a phosphatase-active form. In addition, we found that VRK3 can regulate EGF-induced cellular growth signaling that is mediated by ERK activation. Our results suggest that in addition to neuronal cells, various other rodent adult tissues and embryos possess a common signaling mechanism which is involved in an indirect regulation of ERK activity by VRK3-mediated VHR activity.
Collapse
Affiliation(s)
- Tae-Hong Kang
- Department of Life Science, Biotechnology Research Center, Division of Molecular and Life Science, Pohang University of Science and Technology (POSTECH), San-31, Hyoja-Dong, Pohang, 790-784, Republic of Korea
| | | |
Collapse
|
17
|
Song CY, Kim BC, Hong HK, Lee HS. TGF-beta type II receptor deficiency prevents renal injury via decrease in ERK activity in crescentic glomerulonephritis. Kidney Int 2007; 71:882-8. [PMID: 17299519 DOI: 10.1038/sj.ki.5002149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of transforming growth factor-beta (TGF-beta) receptor complex in the pathogenesis of crescentic glomerulonephritis (GN) is not clear. To test the hypothesis that TGF-beta signaling plays a crucial role in the development and progression of crescentic GN by inducing the activation of extracellular signal-regulated kinase (ERK) and expression of its target genes, anti-glomerular basement membrane (GBM) GN was induced in TGF-beta type II receptor (TGF-betaIIR) gene heterozygous (TGF-betaIIR(+/-)) C57BL/6J mice and wild-type animals. GN was initiated in preimmunized mice by administration of rabbit anti-mouse GBM serum. TGF-betaIIR deficiency was significantly associated with decreased renal damage at days 14, 21, and 28 after induction of GN: renal function impairment, proteinuria, proportion of crescents, glomerular accumulation of periodic acid-Schiff-positive material, relative cortical interstitial volume, as well as renal cortical phosphorylation of ERK and plasminogen activator inhibitor type I (PAI-1) and alpha2(I) collagen mRNA levels were significantly decreased in TGF-betaIIR(+/-) mice compared with wild-type animals. These results provide the first direct evidence that TGF-betaIIR deficiency protects against renal injury in crescentic GN, possibly by inhibiting the sustained activation of ERK and PAI-1 and alpha2(I) collagen gene expression. Thus, TGF-beta signaling appears to play an important role in the development and progression of crescentic GN by inducing the ERK activity, and PAI-1 and alpha2(I) mRNA expression.
Collapse
Affiliation(s)
- C Y Song
- Department of Pathology, Seoul National University College of Medicine, Chongno-gu, Seoul, Korea
| | | | | | | |
Collapse
|
18
|
Okada H, Inoue T, Kikuta T, Watanabe Y, Kanno Y, Ban S, Sugaya T, Horiuchi M, Suzuki H. A possible anti-inflammatory role of angiotensin II type 2 receptor in immune-mediated glomerulonephritis during type 1 receptor blockade. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1577-89. [PMID: 17071582 PMCID: PMC1780194 DOI: 10.2353/ajpath.2006.060178] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously reported that angiotensin II type 1 receptor (AT1R) blockade attenuates renal inflammation/fibrogenesis in immune-mediated glomerulonephritis via angiotensin II type 2 receptor (AT2R). In the present study, further in vivo experiments revealed that AT2R was expressed in tubular epithelial cells of nephritic kidneys in mice, and feedback activation of the renin-angiotensin system during AT1R blockade significantly reduced p-ERK, but not intranuclear nuclear factor-kappaB, levels via AT2R. This led to reduction in mRNA levels of the proinflammatory mediator monocyte chemoattractant protein-1 and overall interstitial inflammation and subsequent fibrogenesis. Specific blockade of ERK expression in tubular epithelium by anti-sense oligodeoxynucleotides also attenuated interstitial inflammation, mimicking the anti-inflammatory action of AT2R in nephritic kidneys. Alternatively, we succeeded in confirming such an AT(2)R function by demonstrating that AT1R blockade did not confer renoprotection in nephritic, AT2R gene-deficient mice. Additional in vitro experiments revealed that AT2R activation did not affect nuclear factor-kappaB activation by tumor necrosis factor-alpha in cultured tubular epithelial cells, although it inhibited ERK phosphorylation, which reduced monocyte chemoattractant protein-1 mRNA levels. These results suggest that feedback activation of AT2Rs in tubular epithelium of nephritic kidneys plays an important role in attenuating interstitial inflammation.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Anti-Glomerular Basement Membrane Disease/immunology
- Anti-Glomerular Basement Membrane Disease/pathology
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Enzyme Activation/drug effects
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/pathology
- Epithelium/drug effects
- Epithelium/pathology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation/drug effects
- Inflammation/immunology
- Kidney Tubules/drug effects
- Male
- Mice
- NF-kappa B/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Time Factors
Collapse
Affiliation(s)
- Hirokazu Okada
- Department of Nephrology, Saitama Medical School, 38 Morohongo, Irumagun, Saitama 350-0495, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW HIV-associated nephropathy is characterized by a constellation of pathologic findings including a collapsing glomerulopathy, tubular dilatation, and interstitial infiltration with leukocytes. This review summarizes some of the recent advances in our understanding of the gene products and signaling pathways that contribute to the pathogenesis of HIV-associated nephropathy. RECENT FINDINGS Podocytes infected with HIV-associated nephropathy exhibit podocyte proliferation and de-differentiation. Restriction of HIV-1 transgene expression to the podocyte in a murine model supports the belief that podocyte infection is pivotal to the development of the disease. Recent studies have provided compelling in-vitro and in-vivo evidence that expression of the HIV-1 accessory gene nef is critical in altering the phenotype of mature podocytes and causing injury to these cells. An in-vitro study suggests that nef's effects in the podocyte appear to be mediated through Src kinase-dependent activation of the signal transducer and activator of transcription 3 and mitogen-activated protein kinase 1,2 signaling pathways. SUMMARY Recent evidence demonstrates that the viral protein nef plays a critical role in the development of HIV-associated nephropathy and provides a foundation for developing new therapeutic strategies for patients afflicted with this disease.
Collapse
|
20
|
Datta PK, Sharma M, Duann P, Lianos EA. Effect of nitric oxide synthase inhibition on proteinuria in glomerular immune injury. Exp Biol Med (Maywood) 2006; 231:576-84. [PMID: 16636306 DOI: 10.1177/153537020623100512] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In glomerular immune injury, the inducible isoform of nitric oxide synthase (iNOS) becomes a major catalyst of NO production. Although iNOS-catalyzed NO production is sustained and can be cytotoxic, iNOS inhibition exacerbates the magnitude of proteinuria that accompanies immune injury. To investigate putative mechanisms of this effect, we assessed changes in glomerular permeability to albumin by using the following two approaches: (i) an in vivo rat model of glomerular immune injury induced by antibody against the glomerular basement membrane (GBM), in which urine albumin excretion was measured under conditions of iNOS inhibition, and (ii) an ex vivo model of isolated rat glomeruli, in which changes in glomerular capillary permeability to albumin were assessed under conditions of NOS inhibition. In rats with anti-GBM antibody-induced glomerular injury, there was an increase in urine albumin excretion. Treatment with two structurally dissimilar iNOS inhibitors at doses sufficient to decrease urine nitrate and/or nitrite exacerbated proteinuria. In these animals, urine excretion of the isoprostane 8-iso-PGF2alpha (marker of oxidative stress) was increased. In isolated glomeruli incubated with the NOS inhibitor L-NMMA, the permeability to albumin increased. This effect was reversed by the NO donor DETA NONOate and by the superoxide dismutase mimetic Tempol. We conclude that NOS-catalyzed NO production is an important mechanism in regulating glomerular permeability to protein. This mechanism involves control of the bioavailability of superoxide.
Collapse
Affiliation(s)
- Prasun K Datta
- Center for Neurovirology/Cancer Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
21
|
Mitogen activated protein kinase signaling in the kidney: target for intervention? ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Pat B, Yang T, Kong C, Watters D, Johnson DW, Gobe G. Activation of ERK in renal fibrosis after unilateral ureteral obstruction: modulation by antioxidants. Kidney Int 2005; 67:931-43. [PMID: 15698432 DOI: 10.1111/j.1523-1755.2005.00157.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND A recent in vitro model of oxidative stress-induced renal fibrosis demonstrated that activated or phosphorylated extracellular signal-regulated protein kinase (pERK) played a role in apoptosis of renal fibroblasts, but not tubular epithelium where it promoted cell growth and survival. The present study utilized an in vivo model of renal fibrosis after unilateral ureteral obstruction (UUO) to examine the relationship between pERK, apoptosis, proliferation, and differentiation in renal fibroblast and tubular epithelial cells, in comparison with the in vitro results. METHODS UUO was induced in rats for 0 (controls, untreated), 6, and 24 hours, 2, 4, and 7 days (N= 4), and tissue analyzed for fibrotic characteristics using microscopy and special stains, Western immunoblots and reverse transcription-polymerase chain reaction (RT-PCR). Controls and UUO animals were also treated with vitamin E, N-acetylcysteine (NAC), or fluvastatin to assess any antioxidant effect on attenuation of fibrosis and pERK expression. RESULTS Azan stain and alpha-smooth muscle actin (alpha-SMA), collagen III, and fibronectin expression confirmed development of UUO-induced fibrosis. Oxidative stress markers heme oxygenase-1 (HO-1) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) confirmed oxidative stress at all UUO time points. Tubular epithelial and interstitial mitosis and apoptosis were significantly increased over controls at 2 to 7 days after UUO (P < 0.01). The pERK/ERK ratio increased significantly at 1 to 7 days of UUO in comparison with controls (three- to fivefold, P < 0.05). There was a significant spatiotemporal correlation between pERK and tubular epithelial proliferation (P < 0.001). pERK occasionally colocalized with apoptotic cells (dual labeling) in the interstitium but not in the tubular epithelium. Fluvastatin was the only treatment that attenuated fibrosis (decreased alpha-SMA, fibronectin, tubular epithelial apoptosis) and it also significantly decreased expression of 8-OHdG at 2 and 7 days (P < 0.05). It was associated with decreased pERK at 7 days, compared with UUO alone (P < 0.05). CONCLUSION Promotion of tubular epithelial proliferation and survival, and interstitial cell apoptosis, may minimize renal fibrosis after UUO. In the present study, both were linked spatially and temporally with increased pERK expression. Fluvastatin treatment attenuated UUO-induced fibrosis via an antioxidant and pERK-related mechanism.
Collapse
Affiliation(s)
- Betty Pat
- Department of Molecular and Cellular Pathology, School of Medicine, University of Queensland, Herston, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Terada Y, Kobayashi T, Kuwana H, Tanaka H, Inoshita S, Kuwahara M, Sasaki S. Aldosterone Stimulates Proliferation of Mesangial Cells by Activating Mitogen-Activated Protein Kinase 1/2, Cyclin D1, and Cyclin A. J Am Soc Nephrol 2005; 16:2296-305. [PMID: 15975997 DOI: 10.1681/asn.2005020129] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recently, attention has been focused on the role of aldosterone in the pathophysiology of hypertension and cardiovascular disease. Several clinical and experimental data support the hypothesis that aldosterone contributes to the progression of renal injury. However, the molecular mechanisms of the effects of aldosterone in signal transduction and the cell-cycle progression of mesangial cells are not well known. For determining the signaling pathway of aldosterone in cultured mesangial cells, the effects of aldosterone on the mitogen-activated protein kinase 1/2 (MAPK1/2) pathway and the promoter activities of cyclin D1, cyclin A, and cyclin E were investigated. First, it was shown that the mineralocorticoid receptor (MR) was expressed in rat mesangial cells and glomeruli and that aldosterone stimulated the proliferation of mesangial cells via the MR and MAPK1/2 pathway. Next, it was demonstrated that aldosterone stimulated Ki-RasA, c-Raf kinase, MEK1/2, and MAPK1/2 in rat mesangial cells. Aldosterone induced cyclin D1 and cyclin A promoter activities and protein expressions, as well as the increments of CDK2 and CDK4 kinase activities. The presence of CYP11B2 and 11beta-HSD2 mRNA in rat mesangial cells also was shown. In conclusion, aldosterone seems to exert mainly MR-induced effects that stimulate c-Raf, MEK1/2, MAPK1/2, the activities of CDK2 and CDK4, and the cell-cycle progression in mesangial cells. MR antagonists may serve as a potential therapeutic approach to mesangial proliferative disease.
Collapse
Affiliation(s)
- Yoshio Terada
- Department of Nephrology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Yun MS, Kim SE, Jeon SH, Lee JS, Choi KY. Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. J Cell Sci 2004; 118:313-22. [PMID: 15615777 DOI: 10.1242/jcs.01601] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Wnt family of proteins regulates development and cell growth. We identified Wnt3a-based regulatory mechanisms for cell proliferation in NIH3T3 fibroblast cells. The degree of Wnt3a-induced proliferation was reduced by beta-catenin small interfering RNA (siRNA) and extracellular signal-regulated kinase (ERK) siRNA, indicating that both the ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. Wnt3a immediately and transiently activated the Raf-1-MEK-ERK cascade in a manner distinct from that of the beta-catenin increase seen in cells treated with Wnt3a. Wnt3a-induced ERK activation was maintained even though basal ERK activities were reduced by beta-catenin siRNA, indicating that Wnt3a may activate the ERK pathway independently of beta-catenin. The ERK pathway was however, activated by beta-catenin transfection, which was abolished by co-transfection with dominant-negative Tcf-4. Therefore, ERK pathway activation by Wnt signaling could occur at multiple levels, including beta-catenin-independent direct signaling resulting from a Wnt3a and beta-catenin/Tcf-4-dependent post gene transcriptional event. Wnt3a stimulated the G1 to S phase cell cycle progression. This stimulation was reduced by the ERK pathway inhibitor, indicating that Wnt3a promotes proliferation by stimulating the ERK pathway. Wnt3a therefore stimulates the proliferation of fibroblast cells, at least in part, via activation of the ERK and Wnt/beta-catenin pathways.
Collapse
Affiliation(s)
- Mi-Sun Yun
- Department of Biotechnology, Yonsei University, Seoul 120-752, Korea
| | | | | | | | | |
Collapse
|
25
|
Fujita Y, Maruyama S, Kogo H, Matsuo S, Fujimoto T. Caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Kidney Int 2004; 66:1794-804. [PMID: 15496150 DOI: 10.1111/j.1523-1755.2004.00954.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Caveolin is a principal component of caveolae and regulates signaling in caveolae. Mesangial cells contain many caveolae, and thus manipulation of caveolin-1 expression level might be useful to control mesangial cell proliferation, which is an important aggravating factor in many renal diseases. METHODS In the present study, we transfected caveolin-1 cDNA to rat primary mesangial cells and MES13 cells, and examined the effects on Raf-extracellular signal-regulated protein kinase (ERK) kinase (MEK)-mitogen-activated protein (MAP) kinase pathway and cell proliferation stimulated by basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF). Activity of the kinases was analyzed by immunofluorescence labeling and Western blot analysis. RESULTS The overexpression of caveolin-1 inhibited the activation of Raf-1, MEK-1/2, and MAP kinase induced by either bFGF or PDGF. Furthermore, it suppressed the cell proliferation caused by the cytokines. The effect was specific to the Raf-MEK-MAP kinase pathway, because it did not influence activation of Smad2 induced by transforming growth factor-beta (TGF-beta). On the contrary, expression of a dominant-negative caveolin mutant, DGV-caveolin, augmented activation of MAP kinase. CONCLUSION The result showed that overexpression of caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Because bFGF and PDGF are two major cytokines involved in the mesangioproliferative nephritis, the result implies that introduction of caveolin-1 expression vector is a potential therapeutic tool for the disease.
Collapse
Affiliation(s)
- Yutaka Fujita
- Division of Clinical Immunology, Department of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
26
|
Park SJ, Jeong KS. Cell-type-specific activation of mitogen-activated protein kinases in PAN-induced progressive renal disease in rats. Biochem Biophys Res Commun 2004; 323:1-8. [PMID: 15351692 DOI: 10.1016/j.bbrc.2004.08.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 11/16/2022]
Abstract
We examined the time-course activation and the cell-type specific role of MAP kinases in puromycin aminonucleoside (PAN)-induced renal disease. The maximal activation of c-Jun-NH2-terminal kinase (JNK), extracellular signal regulated kinase (ERK), and p38 MAP kinase was detected on Days 52, 38, and 38 after PAN-treatment, respectively. p-JNK was localized in mesangial and proximal tubular cells at the early renal injury. It was expressed, therefore, in the inflammatory cells of tubulointerstitial lesions. While, p-ERK was markedly increased in the glomerular regions and macrophages p-p38 was observed in glomerular endothelial cells, tubular cells, and some inflammatory cells. The results show that the activation of MAP kinases in the early renal injury by PAN-treatment involves cellular changes such as cell proliferation or apoptosis in renal native cells. The activation of MAP kinases in infiltrated inflammatory cells and fibrotic cells plays an important role in destructive events such as glomerulosclerosis and tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Sang-Joon Park
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | |
Collapse
|
27
|
Fiorina P, Corradi D, Pinelli S, Maestri R, Lagrasta C, Buscaglia M, Davalli A, Folli F, Astorri E. Apoptotic/mytogenic pathways during human heart development. Int J Cardiol 2004; 96:409-17. [PMID: 15301895 DOI: 10.1016/j.ijcard.2003.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 07/28/2003] [Accepted: 08/11/2003] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of our study was to assess myocytes apoptosis/mitosis and associated intracellular signalling pathways during heart development. SETTING AND PATIENTS Eight human fetal hearts (at different gestation ages) and seven human adult hearts were chosen as controls (five normal and two pathological) and studied from both a histological and a molecular point of view. RESULTS Our results are as follows: (i) all Shc isoforms are expressed and activated in the human fetal heart; (ii) a progressive fading of Shc and ERK expression are evident during gestation; (iii) JNK is present but it is not activated in the human fetal heart; (iv) CD95 is present in the first week of gestation and fades progressively; (v) apoptotic/proliferative processes are present in the early gestation phase and fades progressively; (vi) in the human heart, Shc isoform with medium weight is 55 kD and not 52 kD and it is upregulated in adult myocardial ischaemia. CONCLUSIONS Myocyte underwent apoptosis/mitosis during gestation. Shc isoforms, together with ERK maintain the homeostasis of the heart.
Collapse
Affiliation(s)
- Paolo Fiorina
- Department of Medicine, San Raffaele Scientific Institute (HSR), Milan, Via Olgettina 60, Milan 20132, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ito C, Yamamoto H, Furukawa Y, Takeda SI, Akimoto T, Iimura O, Ando Y, Asano Y, Kusano E. Role of cyclins in cAMP inhibition of glomerular mesangial cell proliferation. Clin Sci (Lond) 2004; 107:81-7. [PMID: 14992682 DOI: 10.1042/cs20030335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 02/23/2004] [Accepted: 03/02/2004] [Indexed: 11/17/2022]
Abstract
MC (mesangial cell) proliferation is closely linked to the progression of glomerular disease. It has been reported that cAMP effectors suppress MC proliferation, inhibiting activation of MAPK (mitogen-activated protein kinase). In fibroblasts, activation of MAPK induces the expression of type D cyclin, whereas, in MCs, this induction has not been shown. In the present study, we explored the effects of cAMP on MAPK and expression of cell-cycle-regulated proteins. PDGF (platelet-derived growth factor) stimulated MAPK activity, up-regulated protein levels of cyclin D1, CDK2 (cyclin-dependent kinase 2) and PCNA (proliferating cell nuclear antigen), decreased the protein level of p27 and increased DNA synthesis. Fsk (forskolin) or PD98059 suppressed PDGF-induced DNA synthesis. Both agents inhibited PDGF-stimulated mRNA and protein expression of cyclin D1 and CDK2. Fsk or PD98059 also inhibited protein expression of PCNA and blocked a decrease in p27 protein. Fsk induced the phosphorylation of Raf-1 at Ser259, which was inhibited by KT5720. These data suggest that cAMP inhibits MC proliferation through inhibition of MAPK activity, and this mechanism partly involves alteration in the levels of cell-cycle-regulated proteins.
Collapse
Affiliation(s)
- Chiharu Ito
- Division of Nephrology, Department of Internal Medicine, Jichi Medical School, Tochigi, Japan. chiharu.@jichi.ac.jp
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Budisavljevic MN, Hodge L, Barber K, Fulmer JR, Durazo-Arvizu RA, Self SE, Kuhlmann M, Raymond JR, Greene EL. Oxidative stress in the pathogenesis of experimental mesangial proliferative glomerulonephritis. Am J Physiol Renal Physiol 2003; 285:F1138-48. [PMID: 14600028 DOI: 10.1152/ajprenal.00397.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reactive oxygen species (ROS) are increasingly believed to be important intracellular signaling molecules in mitogenic pathways involved in the pathogenesis of glomerulonephritis (GN). We explored the effects of the antioxidants α-lipoic acid and N-acetyl-l-cysteine on ERK activation in cultured mesangial cells and the role of ERK activation in the severity of glomerular injury in a rat model of anti-Thy 1 GN. In cultured mesangial cells, growth factors stimulated ERK phosphorylation by 150–450%. Antioxidants reduced this increase by 50–60%. Induction of anti-Thy 1 nephritis in rats led to a 210% increase in glomerular ERK phosphorylation. This increase in phosphorylated ERK was reduced by 50% in animals treated with α-lipoic acid. Treatment with α-lipoic acid resulted in significant improvement of glomerular injury. Cellular proliferation was reduced by 100%, and the number of proliferating cell nuclear antigen-positive cells was reduced by 64%. The increased expression of glomerular transforming growth factor-β1 protein and mRNA in rats with anti-Thy 1 nephritis was significantly attenuated and mesangial cell transformation into myofibroblasts was completely prevented by treatment with α-lipoic acid. The effects of α-lipoic acid were at least partially due to inhibition of oxidative stress. In rats with anti-Thy 1 nephritis, ROS production was increased 400–500%, and this increase was inhibited by 55% by treatment with α-lipoic acid. We suggest that ROS may mediate glomerular injury by inducing ERK phosphorylation. α-Lipoic acid should be considered a potential therapeutic agent in certain types of human GN.
Collapse
Affiliation(s)
- Milos N Budisavljevic
- Nephrology Division, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Masaki T, Foti R, Hill PA, Ikezumi Y, Atkins RC, Nikolic-Paterson DJ. Activation of the ERK pathway precedes tubular proliferation in the obstructed rat kidney. Kidney Int 2003; 63:1256-64. [PMID: 12631342 DOI: 10.1046/j.1523-1755.2003.00874.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In vitro studies suggest that activation of the extracellular signal-regulated kinase (ERK) pathway plays a critical role in the proliferation of tubular epithelial and myofibroblast-like cells. However, little is known of ERK activation in individual cell types in normal or diseased kidney. The aims of this study were to (1) localize ERK activation within the kidney, and (2) examine the relationship between ERK activation and cell proliferation in the injured kidney. METHODS Unilateral ureteric obstruction (UUO) was induced in groups of six Wistar rats, which were killed at 30 minutes, 6 hours, and 1, 4, or 7 days after obstruction. Activation of ERK was identified using antibodies specific for the phosphorylated form of ERK (pERK) in Western blots and immunostaining. Proliferating cells were detected using bromodeoxyuridine (BrdU). RESULTS Western blotting showed abundant expression of the two ERK isoforms, ERK-1 and ERK-2, in normal rat kidney. Low levels of activated ERK (pERK-2> pERK-1) were detected in normal rat kidney by Western blotting. Immunostaining showed that ERK activation in normal kidney was largely restricted to collecting ducts in the outer medulla. Within 30 minutes of ureter obstruction, Western blotting showed a sixfold increase in ERK activation followed by a second peak (14-fold increase) on days 4 and 7. The initial peak of ERK activation was localized to medullary collecting ducts and the thick ascending limb of Henle (TALH), whereas the second peak corresponded to a progressive increase in ERK activation in dilated collecting ducts and in interstitial cells in the cortex. Proliferation of tubular epithelial cells closely followed the pattern of ERK activation, being evident first in medullary collecting ducts and TALH on day 1, and then in cortical collecting ducts from day 4. CONCLUSION This study has identified a discrete pattern of ERK activation in normal rat kidney and an increase in ERK activation following obstruction. The temporal and spatial relationship in which ERK activation preceded tubular cell proliferation suggest that ERK signaling plays a key role in tubular epithelial cell proliferation in the injured kidney.
Collapse
Affiliation(s)
- Takao Masaki
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Kawano H, Kim S, Ohta K, Nakao T, Miyazaki H, Nakatani T, Iwao H. Differential contribution of three mitogen-activated protein kinases to PDGF-BB-induced mesangial cell proliferation and gene expression. J Am Soc Nephrol 2003; 14:584-92. [PMID: 12595493 DOI: 10.1097/01.asn.0000050415.97942.2f] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study examined the role of mitogen-activated protein (MAP) kinase in PDGF-BB-induced proliferation and gene expression of human mesangial cells (MC). PDGF-BB stimulation of MC increased mRNA for transforming growth factor-beta1 (TGF-beta1), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor-1 (PAI-1) and increased the cell numbers. To inhibit activation of extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38, MC were infected with recombinant adenovirus containing dominant-negative mutants of ERK, JNK, and p38 (Ad-DN-ERK, Ad-DN-JNK, Ad-DN-p38, respectively), respectively. Infection of MC with Ad-DN-ERK or Ad-DN-JNK inhibited PDGF-BB-induced increase in [(3)H]thymidine incorporation and cell numbers, whereas Ad-DN-p38 did not. Ad-DN-ERK inhibited MCP-1 and PAI-1 mRNA expression in MC, but not TGF-beta1. Ad-DN-JNK and Ad-DN-p38 inhibited TGF-beta1 and MCP-1 mRNA expression, but not PAI-1. The inhibition of activator protein-1 (AP-1) in MC, by adenovirus containing dominant-negative mutant of c-Jun (Ad-DN-c-Jun), inhibited PDGF-BB-induced cell proliferation and TGF-beta1, MCP-1, and PAI-1 expressions. Furthermore, Ad-DN-JNK or Ad-DN-p38, but not Ad-DN-ERK, attenuated PDGF-BB-induced AP-1 activation in MC, indicating the involvement of JNK and p38 in AP-1 activation. Our results indicated that ERK and JNK, but not p38, participated in PDGF-BB-induced MC proliferation. PDGF-BB-induced expression of TGF-beta1 was mediated by JNK and p38, MCP-1 expression was through ERK, JNK, and p38, whereas PAI-1 expression was due to only ERK. AP-1 activation, which was partially due to JNK and p38 activations, was involved in MC proliferation and these three gene expressions. Thus, three MAP kinases seem to contribute to progression of glomerular disease via different molecular mechanisms.
Collapse
Affiliation(s)
- Hitomi Kawano
- Department of Pharmacology, Osaka City University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Iwata Y, Wada T, Furuichi K, Sakai N, Matsushima K, Yokoyama H, Kobayashi KI. p38 Mitogen-activated protein kinase contributes to autoimmune renal injury in MRL-Fas lpr mice. J Am Soc Nephrol 2003; 14:57-67. [PMID: 12506138 DOI: 10.1097/01.asn.0000037402.83851.5f] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The phosphorylation of p38 mitogen-activated protein kinase (MAPK) is responsible for the production and signal transduction of cytokines and chemokines. This study hypothesized that p38 MAPK activation is required for spontaneous autoimmune renal injury in MRL-Fas(lpr) mice, resembling human lupus erythematosus. FR167653, a specific inhibitor of p38 MAPK, is orally administrated from 3 or 4 mo of age in MRL-Fas(lpr) mice (at doses of 10 or 32mg/kg per day) until 6 mo of age. The phosphorylated p38 MAPK in kidneys of MRL-Fas(lpr) mice was evaluated. The number of phosphorylated p38 MAPK-positive cells was increased in diseased kidneys. The daily oral administration of FR167653 decreased p38 MAPK phosphorylation in kidneys, especially in a group of mice administered FR167653 (32 mg/kg per day) daily from 3 to 6 mo of age. FR167653 reduced the accumulation of macrophages and T cell and prevented kidney pathology, resulting in prolonged survival. In addition, FR167653 reduced expression of MCP-1 and TNF-alpha in the diseased kidneys and cultured tubular epithelial cells. Furthermore, FR167653 decreased IgG levels in the diseased kidneys and circulation. These results suggest that the phosphorylation of p38 MAPK is required for the pathogenesis of renal injury in MRL-Fas(lpr) mice followed by subsequent expression of renal cytokine/chemokine and IgG production. This study provides evidence that the regulation of p38 MAPK is a novel target for the therapy of renal injury in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yasunori Iwata
- Department of Gastroenterology and Nephrology, Division of Blood Purification, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Cheng J, Grande JP. Transforming growth factor-beta signal transduction and progressive renal disease. Exp Biol Med (Maywood) 2002; 227:943-56. [PMID: 12486204 DOI: 10.1177/153537020222701102] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members are multifunctional growth factors that play pivotal roles in development and tissue homeostasis. Recent studies have underscored the importance of TGF-beta in regulation of cell proliferation and extracellular matrix synthesis and deposition. TGF-beta signaling is initiated by ligand binding to a membrane-associated receptor complex that has serine/threonine kinase activity. This receptor complex phosphorylates specific Smad proteins, which then transduce the ligand-activated signal to the nucleus. Smad complexes regulate target gene transcription either by directly binding DNA sequences, or by complexing with other transcription factors or co-activators. There is extensive crosstalk between the TGF-beta signaling pathway and other signaling systems, including the mitogen-activated protein kinase pathways. The importance of TGF-beta in regulation of cell growth has been emphasized by recent observations that mutations of critical elements of the TGF-beta signaling system are associated with tumor progression in patients with many different types of epithelial neoplasms. TGF-beta has emerged as a predominant mediator of extracellular matrix production and deposition in progressive renal disease and in other forms of chronic tissue injury. In this overview, recent advances in our understanding of TGF-beta signaling, cell cycle regulation by TGF-beta, and the role of TGF-beta in progressive renal injury are highlighted.
Collapse
Affiliation(s)
- Jingfei Cheng
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
34
|
Abstract
Cyclooxygenase-2 (Cox-2), an inducible form of the enzyme that catalyzes the first step in the synthesis of prostanoids, has been shown to be overexpressed in a wide range of tumors and possesses proangiogenic and antiapoptotic properties. To understand the molecular mechanism of Cox-2 action we used adenovirus-mediated transfer of rat Cox-2 cDNA into renal rat mesangial cells and determined the differential gene expression using cDNA microarrays. One of the several genes that were highly up-regulated by over expressed Cox-2 was MDR1. MDR1 or P-glycoprotein (P-gp), the product of the MDR1 gene, is implicated as the primary cause of multidrug resistance (MDR) in tumors where it acts as an efflux pump for chemotherapeutic agents. It is also expressed in normal tissues of the liver and kidney where it functions to actively transport lipophilic xenobiotics. Reverse transcriptase-PCR analysis confirmed the results of the microarray, showing increased mRNA levels for MDR1 in Cox-2 overexpressing cells. This increase in mRNA translated to an increase in MDR1 protein expression, which was dose-dependent on Cox-2 expression. Furthermore, using rhodamine 123 efflux assay we observed a significant increase in P-gp activity in Cox-2 overexpressing renal mesangial cells. The specific Cox-2 inhibitor NS398 was able to block the Cox-2-mediated increase in MDR1 expression and activity, suggesting that Cox-2 products may be implicated in this response. These results prove the existence of a causal link between Cox-2 and P-gp activity, which would have implications for kidney function and multidrug resistance in tumors where Cox-2 is overexpressed.
Collapse
Affiliation(s)
- Vimal A Patel
- Department of Medicine, Division of Nephrology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
35
|
Thirone ACP, Scarlett JA, Gasparetti AL, Araujo EP, Lima MHL, Carvalho CRO, Velloso LA, Saad MJA. Modulation of growth hormone signal transduction in kidneys of streptozotocin-induced diabetic animals: effect of a growth hormone receptor antagonist. Diabetes 2002; 51:2270-81. [PMID: 12086960 DOI: 10.2337/diabetes.51.7.2270] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Growth hormone (GH) and IGFs have a long distinguished history in diabetes, with possible participation in the development of renal complications. The implicated effect of GH in diabetic end-stage organ damage may be mediated by growth hormone receptor (GHR) or postreceptor events in GH signal transduction. The present study investigates the effects of diabetes induced by streptozotocin (STZ) on renal GH signaling. Our results demonstrate that JAK2, insulin receptor substrate (IRS)-1, Shc, ERKs, and Akt are widely distributed in the kidney, and after GH treatment, there is a significant increase in phosphorylation of these proteins in STZ-induced diabetic rats compared with controls. Moreover, the GH-induced association of IRS-1/phosphatidylinositol 3-kinase, IRS-1/growth factor receptor bound 2 (Grb2), and Shc/Grb2 are increased in diabetic rats as well. Immunohistochemical studies show that GH-induced p-Akt and p-ERK activation is apparently more pronounced in the kidneys of diabetic rats. Administration of G120K-PEG, a GH antagonist, in diabetic mice shows inhibitory effects on diabetic renal enlargement and reverses the alterations in GH signal transduction observed in diabetic animals. The present study demonstrates a role for GH signaling in the pathogenesis of early diabetic renal changes and suggests that specific GHR blockade may present a new concept in the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Ana C P Thirone
- Department of Internal Medicine, FCM, State University Of Campinas, 13080-970 Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bokemeyer D, Panek D, Kramer HJ, Lindemann M, Kitahara M, Boor P, Kerjaschki D, Trzaskos JM, Floege J, Ostendorf T. In vivo identification of the mitogen-activated protein kinase cascade as a central pathogenic pathway in experimental mesangioproliferative glomerulonephritis. J Am Soc Nephrol 2002; 13:1473-80. [PMID: 12039976 DOI: 10.1097/01.asn.0000017576.50319.ac] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Evidence was recently provided for the activation of extracellular signal-regulated kinase (ERK), the best characterized mitogen-activated protein kinase, as an intracellular convergence point for mitogenic stimuli in animal models of glomerulonephritis (GN). In this study, in vivo ERK activity was blocked, with a pharmacologic inhibitor (U0126) of the ERK-activating kinase, in rats with mesangioproliferative GN. After injection of the monoclonal anti-Thy1.1 antibody (OX-7), the rats were treated (days 3 to 6) with low (10 mg/kg body wt) or high (100 mg/kg body wt) doses of U0126 administered intraperitoneally twice daily. On day 6 after induction of the disease, whole cortical tissue and isolated glomeruli were examined by using kinase activity assays, Western blot analyses, and immunohistochemical assays. Treatment with U0126 significantly reduced glomerular stimulation of ERK in anti-Thy1 GN. In the high dose-treated group, this downregulation was accompanied by a reduction in the number of glomerular mitotic figures, back to healthy control levels, and significant decreases in the numbers of total (P < 0.05) and 5-bromo-2'-deoxyuridine-positive (P < 0.05) glomerular cells. Immunohistochemical double-staining of renal sections demonstrated that mesangial cells were the major glomerular targets of U0126 in anti-Thy1 GN. These observations point to ERK as a putative intracellular mediator of the proliferative response in GN and suggest that pharmacologic treatments that interfere with the activation of ERK may be of potential therapeutic interest.
Collapse
Affiliation(s)
- Dirk Bokemeyer
- Medical Policlinic, Division of Nephrology, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vonend O, Oberhauser V, von Kügelgen I, Apel TW, Amann K, Ritz E, Rump LC. ATP release in human kidney cortex and its mitogenic effects in visceral glomerular epithelial cells. Kidney Int 2002; 61:1617-26. [PMID: 11967011 DOI: 10.1046/j.1523-1755.2002.00315.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In chronic renal failure the sympathetic nervous system is activated. Sympathetic cotransmitters released within the kidney may contribute to the progression of renal disease through receptor-mediated proliferative mechanisms. METHODS In human renal cortex electrical stimulation induced adenosine 5'-triphosphate (ATP; luciferin-luciferase-assay) and norepinephrine (HPLC) release was measured. ATP release also was induced by alpha1- and alpha2-adrenergic agonists. [3H]-thymidine uptake was tested in human visceral glomerular epithelial cells (vGEC) and mitogen-activated protein kinase (MAPK42/44) activation in vGEC and kidney cortex. The involved P2-receptors were characterized pharmacologically and by RT-PCR. RESULTS Sympathetic nerve stimulation and alpha-adrenergic agonists induced release of ATP from human kidney cortex. Seventy-five percent of the ATP released originated from non-neuronal sources, mainly through activation of alpha2-adrenergic receptors. ATP (1 to 100 micromol/L) and related nucleotides (1 to 100 micromol/L) increased [3H]-thymidine uptake. The adenine nucleotides ATP, ATPgammaS, ADP and ADPbetaS were about equally potent. UTP, UDP and alpha,beta-methylene ATP had no effect. ATP, ADPbetaS but not alpha,beta-methylene ATP activated MAPK42/44. ATP induced MAPK42/44 activation, and [3H]-thymidine uptake was abolished in the presence of the MAPK inhibitor PD 98059 (100 micromol/L). mRNA for P2X4,5,6,7 and P2Y1,2,4,6,11 were detected in human vGEC by RT-PCR. CONCLUSIONS In human renal cortex, adrenergic stimulation releases ATP from neuronal and non-neuronal sources. ATP has mitogenic effects in vGEC and therefore the potential to contribute to progression in chronic renal disease. The pattern of purinoceptor agonist effects on DNA synthesis together with the mRNA expression suggests a major contribution of a P2Y1-like receptor.
Collapse
Affiliation(s)
- Oliver Vonend
- Department of Internal Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Although differentiated cells will usually maintain their specialized character, conversion of cellular specificities can be observed during adaptation or reparative regeneration. In pathological conditions, such as inflammation and carcinogenesis, even highly specialized cells can alter their properties, leading to a deranged control of cell differentiation and/or proliferation. Mitogen-activated protein kinases are central regulators of these processes.
Collapse
Affiliation(s)
- Herbert Schramek
- Department of Physiology, University of Innsbruck, A-6010 Innsbruck, Austria.
| |
Collapse
|
39
|
Takagi C, Ueki K, Ikeuchi H, Kuroiwa T, Kaneko Y, Tsukada Y, Maezawa A, Mitaka T, Sasaki T, Nojima Y. Increased expression of cell adhesion kinase beta in human and rat crescentic glomerulonephritis. Am J Kidney Dis 2002; 39:174-82. [PMID: 11774117 DOI: 10.1053/ajkd.2002.29912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell adhesion kinase beta (CAKbeta, also known as Pyk2/CadTK/RAFTK) is the second member of the focal adhesion kinase (FAK) subfamily. We examined the expression of CAKbeta in various human glomerulopathies by immunohistochemistry. Although CAKbeta expression in the normal kidney is confined to the brush border of the proximal tubule with no detectable glomerular staining, we found that glomerular crescents strongly expressed this kinase. Expression of CAKbeta was prominent in cellular crescents but was minimal in fibrocellular or fibrous crescents. Serial section analysis revealed that most CAKbeta-expressing cells were positive for cytokeratin but were negative for CD68 (a macrophage marker), suggesting that CAKbeta was expressed by parietal epithelium in the crescents. We also examined CAKbeta expression in a rat model of crescentic glomerulonephritis induced by anti-glomerular basement membrane antibody. Similar to human nephritis, enhanced expression of CAKbeta in glomerular crescents was apparent. Increased expression of CAKbeta also was confirmed by anti-CAKbeta immunoblotting and by real-time quantitative polymerase chain reaction. Previous studies have shown that CAKbeta is activated by various stimuli regulating cell growth and survival. Although our findings do not determine whether or not increased expression of CAKbeta is a primary event for the development of crescentic glomerulonephritis, further understanding of this pathway may be important to gain novel insights into the factors that promote crescent formation.
Collapse
Affiliation(s)
- Chieko Takagi
- Third Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Datta PK, Reddy RS, Lianos EA. Effects of all-trans-retinoic acid (atRA) on inducible nitric oxide synthase (iNOS) activity and transforming growth factor beta-1 production in experimental anti-GBM antibody-mediated glomerulonephritis. Inflammation 2001; 25:351-9. [PMID: 11831438 DOI: 10.1023/a:1012888029442] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sustained high output release of Nitric oxide (NO) as result of activation of inducible nitric oxide synthase (iNOS), and increased production of the antiproliferative/profibrotic cytokine transforming growth factor-beta1 (TGF-beta1) are well documented in glomerulonephritis. Modulation of iNOS activity and of TGF-beta1 production can therefore be viewed as anti-inflammatory strategies. The present study employed all-trans retinoic acid (atRA) which is known to have anti-inflammatory effects and to modulate expression of iNOS and TGF-beta1, in order to explore its effect on iNOS enzyme activity and TGF-beta1 production in anti-GBM antibody induced glomerulonephritis. Glomerulonephritis was induced in Lewis rats by injection of anti-GBM antibody. A group of nephritic rats were given daily administration of atRA for 14-16 days. Extent of proteinuria was assessed by measuring urine protein and creatinine excretion. iNOS enzyme activity was measured by calculating conversion of L[14C]arginine to L-[14C]citrulline in glomerular protein lysates. Levels of TGF-beta1 in glomerular protein lysates were measured by quantitative ELISA. Levels of proliferating nuclear antigen (PCNA), TGF-beta receptor II (TGFbeta-RII), and fibronectin were assessed by Western blot analysis. Glomerular iNOS activity in atRA treated nephritic animals was attenuated in comparison to that in nephritic controls that were not. Glomerular expression of PCNA was also reduced. Levels of TGF-beta1 were increased in glomeruli of atRA treated nephritic animals. In these animals, there was no change in glomerular levels of TGF-beta receptor II (TGFbeta-RII) or fibronectin. and there was no reduction in urine protein excretion. These results suggest that atRA attenuates iNOS activity and proliferation in glomeruli of nephritic animals. The failure of atRA treatment to reduce proteinuria could be due to the increase in TGF-beta1 levels and to inhibition of iNOS-driven NO production.
Collapse
Affiliation(s)
- P K Datta
- Veterans Affairs New Jersey Health Care System, East Orange & Lyons, New Jersey 08903, USA
| | | | | |
Collapse
|
41
|
Suganami T, Mukoyama M, Sugawara A, Mori K, Nagae T, Kasahara M, Yahata K, Makino H, Fujinaga Y, Ogawa Y, Tanaka I, Nakao K. Overexpression of brain natriuretic peptide in mice ameliorates immune-mediated renal injury. J Am Soc Nephrol 2001; 12:2652-2663. [PMID: 11729234 DOI: 10.1681/asn.v12122652] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
One of major causes of end-stage renal disease is glomerulonephritis, the treatment of which remains difficult clinically. It has already been shown that transgenic mice that overexpress brain natriuretic peptide (BNP), with a potent vasorelaxing and natriuretic property, have ameliorated glomerular injury after subtotal nephrectomy. However, the role of natriuretic peptides in immune-mediated renal injury still remains unknown. Therefore, the effects of chronic excess of BNP on anti-glomerular basement membrane nephritis induced in BNP-transgenic mice (BNP-Tg) were investigated and the mechanisms how natriuretic peptides act on mesangial cells in vitro were explored. After induction of nephritis, severe albuminuria (approximately 21-fold above baseline), tissue damage, including mesangial expansion and cell proliferation, and functional deterioration developed in nontransgenic littermates. In contrast, BNP-Tg exhibited much milder albuminuria (approximately fourfold above baseline), observed only at the initial phase, and with markedly ameliorated histologic and functional changes. Up-regulation of transforming growth factor-beta (TGF-beta) and monocyte chemoattractant protein-1 (MCP-1), as well as increased phosphorylation of extracellular signal-regulated kinase (ERK), were also significantly inhibited in the kidney of BNP-Tg. In cultured mesangial cells, natriuretic peptides counteracted the effects of angiotensin II with regard to ERK phosphorylation and fibrotic action. Because angiotensin II has been shown to play a pivotal role in the progression of nephritis through induction of TGF-beta and MCP-1 that may be ERK-dependent, the protective effects of BNP are likely to be exerted, at least partly, by antagonizing the renin-angiotensin system locally. The present study opens a possibility of a novel therapeutic potential of natriuretic peptides for treating immune-mediated renal injury.
Collapse
Affiliation(s)
- Takayoshi Suganami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Sugawara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiyoshi Mori
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Nagae
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masato Kasahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kensei Yahata
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisashi Makino
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuriko Fujinaga
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Issei Tanaka
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
42
|
Foschi M, Sorokin A, Pratt P, McGinty A, Villa GLA, Franchi F, Dunn MJ. PreproEndothelin-1 Expression in Human Mesangial Cells: Evidence for a p38 Mitogen-Activated Protein Kinase/Protein Kinases-C—Dependent Mechanism. J Am Soc Nephrol 2001; 12:1137-1150. [PMID: 11373337 DOI: 10.1681/asn.v1261137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract. Endothelin-1 (ET-1) has been implicated in the pathogenesis of renal inflammation. This study investigated the mechanisms underlying the synergistic upregulation of preproET-1 gene expression in human mesangial cells after co-stimulation with thrombin and tumor necrosis factor α (TNFα). Whereas thrombin induced a moderate upregulation of preproET-1 mRNA, co-stimulation with TNFα resulted in a strong and protracted upregulation of this mRNA species. Thrombin+TNFα-induced upregulation of preproET-1 expression was found to require p38 mitogen-activated protein kinase and protein kinases C, whereas activation of extracellular signal-regulated kinase, c-Jun-N-terminal kinase, or intracellular Ca2+ release were not required. Actinomycin D chase experiments suggested that enhanced stability of preproET-1 mRNA did not account for the increase in transcript levels. PreproET-1 promoter analysis demonstrated that the 5′-flanking region of preproET-1 encompassed positive regulatory elements engaged by thrombin. Negative modulation of thrombin-induced activation exerted by the distal 5′ portion of preproET-1 promoter (-4.4 kbp to 204 bp) was overcome by co-stimulation with TNFα, providing a possible mechanism underlying the synergistic upregulation of preproET-1 expression by these two agonists. In conclusion, human mesangial cell expression of preproET-1 may be increased potently in the presence of two common proinflammatory mediators, thereby providing a potential mechanism for ET-1 production in inflammatory renal disease.
Collapse
Affiliation(s)
- Marco Foschi
- Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Internal Medicine, University of Florence, Florence, Italy
| | | | | | - Ann McGinty
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Giorgio LA Villa
- Department of Internal Medicine, University of Florence, Florence, Italy
| | - Franco Franchi
- Department of Internal Medicine, University of Florence, Florence, Italy
| | | |
Collapse
|
43
|
Datta PK, Moulder JE, Fish BL, Cohen EP, Lianos EA. Induction of heme oxygenase 1 in radiation nephropathy: role of angiotensin II. Radiat Res 2001; 155:734-9. [PMID: 11302771 DOI: 10.1667/0033-7587(2001)155[0734:iohoir]2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Datta, P. K., Moulder, J. E., Fish, B. L., Cohen, E. P. and Lianos, E. A. Induction of Heme Oxygenase 1 in Radiation Nephropathy: Role of Angiotensin II. Radiat. Res. 155, 734-739 (2001). In a rat model of radiation-induced nephropathy, we investigated changes in expression of heme oxygenase 1 (Hmox1, also known as HO-1), an enzyme that catalyzes conversion of heme into biliverdin, carbon monoxide and iron. The study explored whether radiation induces Hmox1 expression in the irradiated kidney and whether angiotensin II (AII) mediates Hmox1 expression in glomeruli isolated from irradiated kidneys. To assess the effects of radiation on Hmox1 expression, rats received 20 Gy bilateral renal irradiation and were randomized to groups receiving an AII type 1 (AT(1)) receptor antagonist (L-158,809) or no treatment. Drug treatment began 9 days prior to bilateral renal irradiation and continued for the duration of the study. Estimation of Hmox1 levels in glomerular protein lysates assessed by Western blot analysis revealed a significant increase in Hmox1 protein at 50 and 65 days postirradiation. In animals treated with the AT(1) receptor antagonist, there was no induction of Hmox1, suggesting that AII may be a mediator of Hmox1 induction. To confirm that AII stimulates Hmox1 expression, animals were infused with 200, 400 or 800 ng/kg min(-1) of AII for 18-19 days, and Hmox1 protein levels in glomeruli were assessed. There was a significant induction of Hmox1 in glomeruli of animals infused with 800 ng/kg min(-1) of AII. These studies demonstrate that glomerular Hmox1 expression is elevated in the middle phase of radiation nephropathy and that AII can increase glomerular Hmox1 levels.
Collapse
Affiliation(s)
- P K Datta
- Division of Nephrology, Department of Medicine, Robert Wood Johnson Medical School/UMDNJ, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Following an overview of the biochemistry of mitogen-activated protein kinase (MAPK) pathways, the relevance of these signaling events to specific models of renal cell function and pathophysiology, both in vitro and in vivo, will be emphasized. In in vitro model systems, events activating the principal MAPK families [extracellular signal-regulated and c-Jun NH(2)-terminal kinase and p38] have been best characterized in mesangial and tubular epithelial cell culture systems and include peptide mitogens, cytokines, lipid mediators, and physical stressors. Several in vivo models of proliferative or toxic renal injury are also associated with aberrant MAPK regulation. It is anticipated that elucidation of downstream effector signaling mechanisms and a clearer understanding of the immediate and remote upstream activating pathways, when applied to these highly clinically relevant model systems, will ultimately provide much greater insight into the basis for specificity now seemingly absent from these signaling events.
Collapse
Affiliation(s)
- W Tian
- Divisions of Nephrology and Molecular Medicine, Oregon Health Sciences University, and Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
45
|
Kiroycheva M, Ahmed F, Anthony GM, Szabo C, Southan GJ, Bank N. Mitogen-activated protein kinase phosphorylation in kidneys of beta(s) sickle cell mice. J Am Soc Nephrol 2000; 11:1026-1032. [PMID: 10820166 DOI: 10.1681/asn.v1161026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Previous studies in beta(s) sickle cell mice demonstrated renal immunostaining for nitrotyrosine, which is putative evidence of peroxynitrite (ONOO(-)) formation. ONOO(-) is known to nitrate tyrosine residues of various enzymes, thereby interfering with phosphorylation and inactivating them. The present study examined the state of phosphorylation of mitogen-activated protein (MAP) kinase signal transduction enzymes, i.e., p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Western blot performed with antibodies directed against specific phosphorylated threonine/tyrosine residues of these enzymes demonstrated reduced phosphorylation of renal p38 and a trend toward reduced phosphorylation of ERK. In contrast, phosphorylation of renal JNK was markedly increased compared with normal mice. The abundance of MAP kinase phosphatase-1 (MKP-1), a key upstream enzyme that modulates phosphorylation of MAP kinases, was not different in beta(s) versus normal mice. To determine whether nitration of tyrosine by ONOO(-) was responsible for reduced phosphorylation of p38 and ERK, mercaptoethylguanidine (MEG), a compound known to reduce inducible isoform of nitric oxide synthase activity and to scavenge ONOO(-), was administered to beta(s) mice for 5 d. MEG was found to restore phosphorylation of p38 and ERK toward normal levels. These observations provide evidence that ONOO(-) (or closely related reaction products of NO) contributes to dephosphorylation of p38 and ERK, and presumably reduces activity of these enzymes. The increased phosphorylation of JNK, which suggests activation of this signaling pathway by extracellular stress signals, may play a role in apoptosis in the kidneys of these mice. The changes in phosphorylation of MAP kinase pathways found in this study could have important consequences for regulation of nuclear transcription factors, and thus renal function and pathology in sickle cell kidneys.
Collapse
Affiliation(s)
- Militza Kiroycheva
- Renal Division, Department of Medicine, Montefiore Medical Center, Bronx, New York
| | - Fayyaz Ahmed
- Renal Division, Department of Medicine, Montefiore Medical Center, Bronx, New York
| | - Gillian M Anthony
- Renal Division, Department of Medicine, Montefiore Medical Center, Bronx, New York
| | | | | | - Norman Bank
- Renal Division, Department of Medicine, Montefiore Medical Center, Bronx, New York
| |
Collapse
|
46
|
McGinty A, Chang YW, Sorokin A, Bokemeyer D, Dunn MJ. Cyclooxygenase-2 expression inhibits trophic withdrawal apoptosis in nerve growth factor-differentiated PC12 cells. J Biol Chem 2000; 275:12095-101. [PMID: 10766843 DOI: 10.1074/jbc.275.16.12095] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclooxygenase-2 (Cox-2), an enzyme responsible for catalyzing the committed step in prostanoid biosynthesis, is the product of an immediate early gene capable of being up-regulated by diverse stimuli. Significantly Cox-2 mRNA is absent from rat pheochromocytoma (PC12) cells, both basally and following stimulation with a range of agonists. Using PC12 cells engineered to stably express isopropyl-1-thio-beta-D-galactopyranoside-inducible Cox-2 (PCXII-4), we have investigated the putative effects of Cox-2 expression on differentiation, proliferation, and trophic withdrawal apoptosis. Cox-2 bioactivity had no effect on nerve growth factor-induced differentiation, epidermal growth factor-induced proliferation, or aromatic L-amino acid decarboxylase expression. However, trophic withdrawal apoptosis, induced by the removal of nerve growth factor following differentiation, was markedly reduced in the PCXII-4 when compared with control cells, as assessed by annexin V staining, DNA laddering, and Hoechst 33258 staining. The specificity of this effect was confirmed using two pharmacologically distinct nonsteroidal anti-inflammatory drugs, indomethacin and NS398. Investigations showed that the activity of the pro-apoptotic protease caspase-3 was reduced in PCXII cells. This study demonstrates that Cox-2-derived prostaglandins exert cytoprotective effects in trophic factor withdrawal apoptosis and provides evidence that this is, at least in part, due to suppression of caspase-3 activity.
Collapse
Affiliation(s)
- A McGinty
- Department of Medicine and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
47
|
Greene EL, Houghton O, Collinsworth G, Garnovskaya MN, Nagai T, Sajjad T, Bheemanathini V, Grewal JS, Paul RV, Raymond JR. 5-HT(2A) receptors stimulate mitogen-activated protein kinase via H(2)O(2) generation in rat renal mesangial cells. Am J Physiol Renal Physiol 2000; 278:F650-8. [PMID: 10751227 DOI: 10.1152/ajprenal.2000.278.4.f650] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT) stimulates mitogenesis in rat renal mesangial cells through a G protein-coupled 5-HT(2A) receptor. We tested the hypothesis that oxidants might be involved in the signal transduction pathway linking the receptor to extracellular signal-regulated protein kinase (ERK). 5-HT rapidly increased the activity and phosphorylation of ERK. These effects were blocked by the 5-HT(2A) receptor antagonist ketanserin. The peak effect was noted at 5-10 min, and half-maximal stimulation was achieved at 10-30 nM 5-HT. Chemical inhibitor and activator studies supported the involvement of phospholipase C, protein kinase C (PKC), and reactive oxygen species (ROS, i.e., H(2)O(2) and superoxide) generated by an NAD(P)H oxidase-like enzyme in the ERK activation cascade. Mapping studies supported a location for the NAD(P)H oxidase enzyme and the ROS downstream from PKC. Our studies are most consistent with an ERK activation pathway as follows: 5-HT(2A) receptor --> G(q) protein --> phospholipase C --> diacylglycerol --> classical PKC --> NAD(P)H oxidase --> superoxide --> superoxide dismutase --> H(2)O(2) --> mitogen-activated extracellular signal-regulated kinase --> ERK. These studies demonstrate a role for the 5-HT(2A) receptor in rapid, potent, and efficacious activation of ERK in rat renal mesangial cells. They support a role for oxidants in conveying the stimulatory signal from 5-HT, because 1) chemical antioxidants attenuate the 5-HT signal, 2) oxidants and 5-HT selectively activate ERK to a similar degree, 3) 5-HT produces superoxide and H(2)O(2) in these cells, and 4) a specific enzyme [NAD(P)H oxidase] has been implicated as the source of the ROS, which react selectively downstream of classical PKC.
Collapse
Affiliation(s)
- E L Greene
- Nephrology Division, Department of Internal Medicine, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bokemeyer D, Ostendorf T, Kunter U, Lindemann M, Kramer HJ, Floege J. Differential activation of mitogen-activated protein kinases in experimental mesangioproliferative glomerulonephritis. J Am Soc Nephrol 2000; 11:232-240. [PMID: 10665930 DOI: 10.1681/asn.v112232] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Multiple extracellular mitogens are involved in the pathogenesis of proliferative forms of glomerulonephritis (GN). In vitro studies demonstrate the pivotal role of mitogen-activated protein (MAP) kinases in the regulation of cellular proliferation. This study was conducted to examine whether these kinases, as a convergence point of mitogenic stimuli, are activated in mesangioproliferative GN in vivo. Therefore, anti-Thy1 GN was induced in rats using a monoclonal anti-Thy1.1 antibody (OX-7). Whole cortical tissue as well as isolated glomeruli were examined at different time points using kinase activity assays and Western blot analysis. A maximal increase in the number of glomerular mitotic figures (9.7-fold) was demonstrated 6 d after injection of the anti-Thy1.1 antibody. In parallel with this finding, a significant increase in cortical, and more dramatically glomerular, activity of extracellular signal-regulated kinase (ERK) was detected. Maximal activation of ERK was detectable on day 6. This activation of ERK was accompanied by an increase in the expression of MEK (MAP kinase/ERK kinase), the ERK-activating kinase. A marked induction of glomerular apoptosis at 2 h after injection of the anti-Thy1.1 antibody, which subsided subsequently, was demonstrated using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay as well as staining for single-stranded DNA. However, no significant activation of stress-activated protein kinase or p38 MAP kinase, both MAP kinases that are suggested to induce apoptosis and to inhibit cellular growth, was detectable at this early time point. Rather, on day 6 a dramatic decrease in the activity of p38 MAP kinase, which might have contributed to the overshooting glomerular cellular proliferation, was observed. Treatment of rats with heparin blunted glomerular proliferation as well as ERK activation and restored p38 MAP kinase activity. These observations point to ERK and p38 MAP kinase as putative mediators of the proliferative response in mesangioproliferative GN and suggest that upregulation of MEK is involved in the long-term regulation of ERK in vivo.
Collapse
Affiliation(s)
- Dirk Bokemeyer
- Medizinische Poliklinik, Division of Nephrology, University of Bonn, Germany
| | - Tammo Ostendorf
- Division of Nephrology, Medizinische Hochschule Hannover, Germany
| | - Uta Kunter
- Division of Nephrology, Medizinische Hochschule Hannover, Germany
| | - Marion Lindemann
- Medizinische Poliklinik, Division of Nephrology, University of Bonn, Germany
| | - Herbert J Kramer
- Medizinische Poliklinik, Division of Nephrology, University of Bonn, Germany
| | - Jürgen Floege
- Division of Nephrology, Medizinische Hochschule Hannover, Germany
| |
Collapse
|
49
|
Hamaguchi A, Kim S, Izumi Y, Iwao H. Chronic activation of glomerular mitogen-activated protein kinases in Dahl salt-sensitive rats. J Am Soc Nephrol 2000; 11:39-46. [PMID: 10616838 DOI: 10.1681/asn.v11139] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The in vivo role of mitogen-activated protein kinases (MAPK) in the development of glomerular injury is poorly understood. In the present study, glomerular MAPK activities, including extracellular signal-regulated kinases (ERK), c-Jun NH2-terminal kinases (JNK), and transcriptional factor, activator protein-1 (AP-1) were examined in glomerular injury of salt-induced hypertensive rats. Six-week-old Dahl salt-sensitive (Dahl-S) and salt-resistant (Dahl-R) rats were maintained on a high-salt (8.0% NaCl) diet for 1, 5, and 10 wk. In Dahl-S rats, as shown by in-gel kinase assay, an increase in BP by a high-salt diet was followed by chronic activation of glomerular ERK and JNK, which continued until 10 wk after a high-salt diet. Western blot analysis demonstrated a significant increase in the protein expression of glomerular ERK and JNK in Dahl-S rats fed a high-salt diet. As determined by gel-mobility shift assay, ERK and JNK activations were associated with an increase in glomerular AP-1 DNA binding activity. On the other hand, in Dahl-R rats fed a high-salt diet, BP remained normal throughout the experiments. However, glomerular ERK and JNK activities and AP-1 DNA binding activity in Dahl-R rats were not affected by 1 or 5 wk of a high-salt diet, but significantly increased by 10 wk of treatment with a high-salt diet, indicating that chronic sodium overload itself stimulated glomerular ERK and JNK and AP-1 activities. These kinase activations in both Dahl-S and Dahl-R rats were accompanied by an increase in urinary protein excretion and renal growth. These observations provide the first evidence that salt-sensitive hypertension causes chronic activation of glomerular ERK and JNK, probably leading to the activation of AP-1. Thus, glomerular MAPK may be responsible for the development of salt-induced glomerular injury.
Collapse
Affiliation(s)
- Akinori Hamaguchi
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| | - Shokei Kim
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| | - Yasukatsu Izumi
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| | - Hiroshi Iwao
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| |
Collapse
|
50
|
Cybulsky AV, Takano T, Papillon J, McTavish AJ. Complement C5b-9 induces receptor tyrosine kinase transactivation in glomerular epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1701-11. [PMID: 10550326 PMCID: PMC1866958 DOI: 10.1016/s0002-9440(10)65485-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the passive Heymann nephritis (PHN) model of membranous nephropathy, C5b-9 induces glomerular epithelial cell (GEC) injury and proteinuria, which is partially mediated via production of eicosanoids. Using rat GEC in culture, we demonstrated that sublytic C5b-9 induced tyrosine phosphorylation of the epidermal growth factor receptor (EGF-R), Neu, fibroblast growth factor receptor-2, and hepatocyte growth factor receptor. In addition, C5b-9 stimulated increases in tyrosine(204) phosphorylation of extracellular signal-regulated kinase-2 (ERK2), as well as free [(3)H]arachidonic acid (AA) and prostaglandin E(2) (PGE(2)). Phosphorylated EGF-R bound the adaptor protein, Grb2, and the EGF-R-selective tyrphostin, AG1478, blocked the C5b-9-induced ERK2 phosphorylation, [(3)H]AA release, and PGE(2) production by 45 to 65%, supporting a functional role for EGF-R kinase in mediating the activation of these pathways. Glomeruli isolated from rats with PHN demonstrated increases in ERK2 tyrosine(204) phosphorylation and PGE(2) production, as compared with glomeruli from control rats, and these increases were partially inhibited with AG1478. Thus, C5b-9 induces transactivation of receptor tyrosine kinases, in association with ERK2 activation, AA release, and PGE(2) production in cultured GEC and glomerulonephritis in vivo. Transactivated tyrosine kinases may serve as scaffolds for assembly and/or activation of proteins, which then lead to activation of the ERK2 cascade and AA metabolism.
Collapse
Affiliation(s)
- A V Cybulsky
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|