1
|
Zhai C, Ding X, Mao L, Ge Y, Huang A, Yang F, Ding Y. MEF2A, MEF2C, and MEF2D as potential biomarkers of pancreatic cancer? BMC Cancer 2025; 25:775. [PMID: 40281485 PMCID: PMC12023379 DOI: 10.1186/s12885-025-14107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The myocyte enhancer factor-2 (MEF2) family genes were involved in the carcinogenesis and prognosis of multiple human tumors. The impact of MEF2s on the occurrences, progression, and clinical outcome of pancreatic cancer (PAAD) remains unknown. METHODS This study used the CCLE, HPA, EMBL-EBI, and GEPIA2 databases to study MEF2s expression in PAAD patients. We also investigated the relationship between MEF2s expression and methylation through the DiseaseMeth database, and used MEXPRESS to verify the association. Then we utilized the Kaplan-Meier Plotter and GEPIA2 databases to evaluate the prognostic value of MEF2s in PAAD. The cBioPortal database was used to explore the alteration features of MEF2s in PAAD. We then investigated the association between MEF2s expression, immune cells infiltration, and immune infiltration markers using the TIMER database. Finally, Metascape, STRING, and Cytoscape tools were used for functional enrichment analysis. RESULTS MEF2A, MEF2C, and MEF2D were found to be highly expressed in PAAD patients' tissues compared to normal tissues, whereas MEF2B expression did not show significant differential expression. In addition, the protein expression of MEF2A, MEF2C, and MEF2D was higher in PAAD tissues. Negative correlations were observed between the expression level of MEF2A, MEF2C, and MEF2D and the methylation levels in multiple sites. High expression of MEF2A was related to poor overall survival (p = 0.0071) and relapse-free survival (RFS) (p = 0.0089) of PAAD. High expression of MEF2C was associated with worse RFS of PAAD (p = 0.043). MEF2A was a Truncating mutation, and it was shown that the "G27Wfs*8" mutation point was distributed in the SRF-TF domain. Both MEF2C and MEF2D were a Missense mutation. MEF2A, MEF2C, and MEF2D expression was positively corresponded with five immune cells infiltration (CD8 + T cells, B-cells, neutrophils, macrophages, and dendritic cells), especially for CD8 + T cells and macrophages. Among the 20 pathways, hsa05140 (Leishmania infection), hsa04022 (cGMP-PKG signaling pathway), hsa05145 (Toxoplasmosis), hsa04371 (Apelin signaling pathway), and hsa04064 (NF-kappa B signaling pathway), were closely connected with the occurrence and development of PAAD. CONCLUSIONS Our results indicated that the overexpression of MEF2A, MEF2C, and MEF2D in patients with PAAD. MEF2A could be used as a prognostic biomarker for PAAD, MEF2C might be a potential oncogene for PAAD, and MEF2D had potential biological significance.
Collapse
Affiliation(s)
- Chunxia Zhai
- Department of Public Health, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, 226011, China.
| | - Xiaorong Ding
- Department of Public Health, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, 226011, China
| | - Liping Mao
- Department of Oncology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, 226011, China
| | - Yang Ge
- Department of Public Health, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, 226011, China
| | - Anqi Huang
- Department of Public Health, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, 226011, China
| | - Fan Yang
- Department of Public Health, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, 226011, China
| | - Yi Ding
- Department of Public Health, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, 226011, China.
| |
Collapse
|
2
|
Ng GYQ, Loh ZWL, Fann DY, Mallilankaraman K, Arumugam TV, Hande MP. Role of Mitogen-Activated Protein (MAP) Kinase Pathways in Metabolic Diseases. Genome Integr 2024; 15:e20230003. [PMID: 38770527 PMCID: PMC11102075 DOI: 10.14293/genint.14.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Physiological processes that govern the normal functioning of mammalian cells are regulated by a myriad of signalling pathways. Mammalian mitogen-activated protein (MAP) kinases constitute one of the major signalling arms and have been broadly classified into four groups that include extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and ERK5. Each signalling cascade is governed by a wide array of external and cellular stimuli, which play a critical part in mammalian cells in the regulation of various key responses, such as mitogenic growth, differentiation, stress responses, as well as inflammation. This evolutionarily conserved MAP kinase signalling arm is also important for metabolic maintenance, which is tightly coordinated via complicated mechanisms that include the intricate interaction of scaffold proteins, recognition through cognate motifs, action of phosphatases, distinct subcellular localisation, and even post-translational modifications. Aberration in the signalling pathway itself or their regulation has been implicated in the disruption of metabolic homeostasis, which provides a pathophysiological foundation in the development of metabolic syndrome. Metabolic syndrome is an umbrella term that usually includes a group of closely associated metabolic diseases such as hyperglycaemia, hyperlipidaemia, and hypertension. These risk factors exacerbate the development of obesity, diabetes, atherosclerosis, cardiovascular diseases, and hepatic diseases, which have accounted for an increase in the worldwide morbidity and mortality rate. This review aims to summarise recent findings that have implicated MAP kinase signalling in the development of metabolic diseases, highlighting the potential therapeutic targets of this pathway to be investigated further for the attenuation of these diseases.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
3
|
Tsitsikov EN, Phan KP, Liu Y, Tsytsykova AV, Kinter M, Selland L, Garman L, Griffin C, Dunn IF. TRAF7 is an essential regulator of blood vessel integrity during mouse embryonic and neonatal development. iScience 2023; 26:107474. [PMID: 37583551 PMCID: PMC10424150 DOI: 10.1016/j.isci.2023.107474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Targeted deletion of TRAF7 revealed that it is a crucial part of shear stress-responsive MEKK3-MEK5-ERK5 signaling pathway induced in endothelial cells by blood flow. Similar to Mekk3-, Mek5- or Erk5-deficient mice, Traf7-deficient embryos died in utero around midgestation due to impaired endothelium integrity. They displayed significantly lower expression of transcription factor Klf2, an essential regulator of vascular hemodynamic forces downstream of the MEKK3-MEK-ERK5 signaling pathway. In addition, deletion of Traf7 in endothelial cells of postnatal mice was associated with severe cerebral hemorrhage. Here, we show that besides MEKK3 and MEK5, TRAF7 associates with a planar cell polarity protein SCRIB. SCRIB binds with an N-terminal region of TRAF7, while MEKK3 associates with the C-terminal WD40 domain. Downregulation of TRAF7 as well as SCRIB inhibited fluid shear stress-induced phosphorylation of ERK5 in cultured endothelial cells. These findings suggest that TRAF7 and SCRIB may comprise an upstream part of the MEKK3-MEK5-ERK5 signaling pathway.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mike Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lauren Selland
- Histology, Immunohistochemistry, Microscopy Core-COBRE Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
5
|
He S, Dong D, Lin J, Wu B, Nie X, Cai G. Overexpression of TRAF4 promotes lung cancer growth and EGFR-dependent phosphorylation of ERK5. FEBS Open Bio 2022; 12:1747-1760. [PMID: 35748027 PMCID: PMC9527583 DOI: 10.1002/2211-5463.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 4 (TRAF4) is overexpressed in a variety of carcinomas of different origins, but its role in tumorigenesis remains incompletely understood. Previous studies suggest that TRAF4 promotes epidermal growth factor receptor (EGFR) activation in non-small cell lung cancer (NSCLC). However, the downstream signaling pathway of TRAF4-mediated EGFR activation, as well as its effects on tumor cells, have not been fully elucidated. Here we report that TRAF4 overexpression is associated with increased activity of extracellular signal-regulated kinase 5 (ERK5) in NSCLC tissues. Activation of ERK5 was dependent on TRAF4-mediated EGFR activation, since inhibition of either TRAF4 or EGFR dramatically abolished phosphorylation of ERK5. Mechanistically, EGFR recruited mitogen-activated protein kinase kinase kinase 3 (MEKK3), an upstream kinase of ERK5, in a TRAF4-dependent manner. Thus, our data suggest that an EGFR-TRAF4-MEKK3-ERK5 axis promotes the proliferation of tumor cells, and this may be a potential target for therapeutic intervention of NSCLC.
Collapse
Affiliation(s)
- Siwei He
- Department of Laboratory MedicineRuijin Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Danfeng Dong
- Department of Laboratory MedicineRuijin Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Jiafei Lin
- Department of Laboratory MedicineRuijin Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Beiying Wu
- Department of Laboratory MedicineRuijin Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Xiaomeng Nie
- Department of Respiratory DiseasesChanghai Hospital, the Second Military Medical UniversityShanghaiChina
| | - Gang Cai
- Department of Laboratory MedicineRuijin Hospital, Shanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
6
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
7
|
Howell SJ, Lee CA, Batoki JC, Zapadka TE, Lindstrom SI, Taylor BE, Taylor PR. Retinal Inflammation, Oxidative Stress, and Vascular Impairment Is Ablated in Diabetic Mice Receiving XMD8-92 Treatment. Front Pharmacol 2021; 12:732630. [PMID: 34456740 PMCID: PMC8385489 DOI: 10.3389/fphar.2021.732630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
The global number of diabetics continues to rise annually. As diabetes progresses, almost all of Type I and more than half of Type II diabetics develop diabetic retinopathy. Diabetic retinopathy is a microvascular disease of the retina, and is the leading cause of blindness in the working-age population worldwide. With such a significant health impact, new drugs are required to halt the blinding threat posed by this visual disorder. The cause of diabetic retinopathy is multifactorial, and an optimal therapeutic would halt inflammation, cease photoreceptor cell dysfunction, and ablate vascular impairment. XMD8-92 is a small molecule inhibitor that blocks inflammatory activity downstream of ERK5 (extracellular signal-related kinase 5) and BRD4 (bromodomain 4). ERK5 elicits inflammation, is increased in Type II diabetics, and plays a pathologic role in diabetic nephropathy, while BRD4 induces retinal inflammation and plays a role in retinal degeneration. Further, we provide evidence that suggests both pERK5 and BRD4 expression are increased in the retinas of our STZ (streptozotocin)-induced diabetic mice. Taken together, we hypothesized that XMD8-92 would be a good therapeutic candidate for diabetic retinopathy, and tested XMD8-92 in a murine model of diabetic retinopathy. In the current study, we developed an in vivo treatment regimen by administering one 100 μL subcutaneous injection of saline containing 20 μM of XMD8-92 weekly, to STZ-induced diabetic mice. XMD8-92 treatments significantly decreased diabetes-mediated retinal inflammation, VEGF production, and oxidative stress. Further, XMD8-92 halted the degradation of ZO-1 (zonula occludens-1), which is a tight junction protein associated with vascular permeability in the retina. Finally, XMD8-92 treatment ablated diabetes-mediated vascular leakage and capillary degeneration, which are the clinical hallmarks of non-proliferative diabetic retinopathy. Taken together, this study provides strong evidence that XMD8-92 could be a potentially novel therapeutic for diabetic retinopathy.
Collapse
Affiliation(s)
- Scott J. Howell
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Julia C. Batoki
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas E. Zapadka
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Sarah I. Lindstrom
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Brooklyn E. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| |
Collapse
|
8
|
Paudel R, Fusi L, Schmidt M. The MEK5/ERK5 Pathway in Health and Disease. Int J Mol Sci 2021; 22:ijms22147594. [PMID: 34299213 PMCID: PMC8303459 DOI: 10.3390/ijms22147594] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.
Collapse
|
9
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
10
|
Sreedurgalakshmi K, Srikar R, Rajkumari R. CRISPR-Cas deployment in non-small cell lung cancer for target screening, validations, and discoveries. Cancer Gene Ther 2020; 28:566-580. [PMID: 33191402 DOI: 10.1038/s41417-020-00256-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022]
Abstract
Continued advancements in CRISPR-Cas systems have accelerated genome research. Use of CRISPR-Cas in cancer research has been of great interest that is resulting in development of orthogonal methods for drug target validations and discovery of new therapeutic targets through genome-wide screens of cancer cells. CRISPR-based screens have also revealed several new cancer drivers through alterations in tumor suppressor genes (TSGs) and oncogenes inducing resistance to targeted therapies via activation of alternate signaling pathways. Given such dynamic status of cancer, we review the application of CRISPR-Cas in non-small cell lung cancer (NSCLC) for development of mutant models, drug screening, target validation, novel target discoveries, and other emerging potential applications. In addition, CRISPR-based approach for development of novel anticancer combination therapies is also discussed in this review.
Collapse
Affiliation(s)
- K Sreedurgalakshmi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India.,Division of Biosimilars and Gene Therapy, R&D, Levim Biotech LLP, Chennai, Tamilnadu, India
| | - R Srikar
- Division of Biosimilars and Gene Therapy, R&D, Levim Biotech LLP, Chennai, Tamilnadu, India.
| | - Reena Rajkumari
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India.
| |
Collapse
|
11
|
Craig JE, Miller JN, Rayavarapu RR, Hong Z, Bulut GB, Zhuang W, Sakurada SM, Temirov J, Low JA, Chen T, Pruett-Miller SM, Huang LJS, Potts MB. MEKK3-MEK5-ERK5 signaling promotes mitochondrial degradation. Cell Death Discov 2020; 6:107. [PMID: 33101709 PMCID: PMC7576125 DOI: 10.1038/s41420-020-00342-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are vital organelles that coordinate cellular energy homeostasis and have important roles in cell death. Therefore, the removal of damaged or excessive mitochondria is critical for maintaining proper cellular function. The PINK1-Parkin pathway removes acutely damaged mitochondria through a well-characterized mitophagy pathway, but basal mitochondrial turnover occurs via distinct and less well-understood mechanisms. Here we report that the MEKK3-MEK5-ERK5 kinase cascade is required for mitochondrial degradation in the absence of exogenous damage. We demonstrate that genetic or pharmacological inhibition of the MEKK3-MEK5-ERK5 pathway increases mitochondrial content by reducing lysosome-mediated degradation of mitochondria under basal conditions. We show that the MEKK3-MEK5-ERK5 pathway plays a selective role in basal mitochondrial degradation but is not required for non-selective bulk autophagy, damage-induced mitophagy, or restraint of mitochondrial biogenesis. This illuminates the MEKK3-MEK5-ERK5 pathway as a positive regulator of mitochondrial degradation that acts independently of exogenous mitochondrial stressors.
Collapse
Affiliation(s)
- Jane E Craig
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163 USA
| | - Joseph N Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163 USA
| | - Raju R Rayavarapu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Zhenya Hong
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 USA.,Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gamze B Bulut
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 USA
| | - Wei Zhuang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Jonathan A Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 USA
| | - Malia B Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| |
Collapse
|
12
|
Cristea S, Coles GL, Hornburg D, Gershkovitz M, Arand J, Cao S, Sen T, Williamson SC, Kim JW, Drainas AP, He A, Cam LL, Byers LA, Snyder MP, Contrepois K, Sage J. The MEK5-ERK5 Kinase Axis Controls Lipid Metabolism in Small-Cell Lung Cancer. Cancer Res 2020; 80:1293-1303. [PMID: 31969375 PMCID: PMC7073279 DOI: 10.1158/0008-5472.can-19-1027] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
Abstract
Small-cell lung cancer (SCLC) is an aggressive form of lung cancer with dismal survival rates. While kinases often play key roles driving tumorigenesis, there are strikingly few kinases known to promote the development of SCLC. Here, we investigated the contribution of the MAPK module MEK5-ERK5 to SCLC growth. MEK5 and ERK5 were required for optimal survival and expansion of SCLC cell lines in vitro and in vivo. Transcriptomics analyses identified a role for the MEK5-ERK5 axis in the metabolism of SCLC cells, including lipid metabolism. In-depth lipidomics analyses showed that loss of MEK5/ERK5 perturbs several lipid metabolism pathways, including the mevalonate pathway that controls cholesterol synthesis. Notably, depletion of MEK5/ERK5 sensitized SCLC cells to pharmacologic inhibition of the mevalonate pathway by statins. These data identify a new MEK5-ERK5-lipid metabolism axis that promotes the growth of SCLC. SIGNIFICANCE: This study is the first to investigate MEK5 and ERK5 in SCLC, linking the activity of these two kinases to the control of cell survival and lipid metabolism.
Collapse
Affiliation(s)
- Sandra Cristea
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Garry L Coles
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Daniel Hornburg
- Department of Genetics, Stanford University, Stanford, California
| | - Maya Gershkovitz
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Julia Arand
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Siqi Cao
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Triparna Sen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stuart C Williamson
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Jun W Kim
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Andrew He
- Department of Pediatrics, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, California
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California.
- Department of Genetics, Stanford University, Stanford, California
| |
Collapse
|
13
|
Sereno M, Haskó J, Molnár K, Medina SJ, Reisz Z, Malhó R, Videira M, Tiszlavicz L, Booth SA, Wilhelm I, Krizbai IA, Brito MA. Downregulation of circulating miR 802-5p and miR 194-5p and upregulation of brain MEF2C along breast cancer brain metastasization. Mol Oncol 2020; 14:520-538. [PMID: 31930767 PMCID: PMC7053247 DOI: 10.1002/1878-0261.12632] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer brain metastases (BCBMs) have been underinvestigated despite their high incidence and poor outcome. MicroRNAs (miRNAs), and particularly circulating miRNAs, regulate multiple cellular functions, and their deregulation has been reported in different types of cancer and metastasis. However, their signature in plasma along brain metastasis development and their relevant targets remain undetermined. Here, we used a mouse model of BCBM and next‐generation sequencing (NGS) to establish the alterations in circulating miRNAs during brain metastasis formation and development. We further performed bioinformatics analysis to identify their targets with relevance in the metastatic process. We additionally analyzed human resected brain metastasis samples of breast cancer patients for target expression validation. Breast cancer cells were injected in the carotid artery of mice to preferentially induce metastasis in the brain, and samples were collected at different timepoints (5 h, 3, 7, and 10 days) to follow metastasis development in the brain and in peripheral organs. Metastases were detected from 7 days onwards, mainly in the brain. NGS revealed a deregulation of circulating miRNA profile during BCBM progression, rising from 18% at 3 days to 30% at 10 days following malignant cells’ injection. Work was focused on those altered prior to metastasis detection, among which were miR‐802‐5p and miR‐194‐5p, whose downregulation was validated by qPCR. Using targetscan and diana tools, the transcription factor myocyte enhancer factor 2C (MEF2C) was identified as a target for both miRNAs, and its expression was increasingly observed in malignant cells along brain metastasis development. Its upregulation was also observed in peritumoral astrocytes pointing to a role of MEF2C in the crosstalk between tumor cells and astrocytes. MEF2C expression was also observed in human BCBM, validating the observation in mouse. Collectively, downregulation of circulating miR‐802‐5p and miR‐194‐5p appears as a precocious event in BCBM and MEF2C emerges as a new player in brain metastasis development.
Collapse
Affiliation(s)
- Marta Sereno
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Sarah J Medina
- Prion Diseases Section, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Zita Reisz
- Department of Pathology, University of Szeged, Hungary
| | - Rui Malhó
- Faculdade de Ciências, BioISI, Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, Portugal
| | - Mafalda Videira
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal.,Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Portugal
| | | | - Stephanie A Booth
- Prion Diseases Section, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Romania
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Romania
| | - Maria Alexandra Brito
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculdade de Farmmácia, Universidade de Lisboa, Portugal
| |
Collapse
|
14
|
Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy. Int J Mol Sci 2020; 21:ijms21030938. [PMID: 32023850 PMCID: PMC7038028 DOI: 10.3390/ijms21030938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared to other MAPK enables multiple levels of regulation of its expression and activity. In particular, the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5 nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus, and discuss how these processes might be exploited to design new strategies for cancer treatment.
Collapse
|
15
|
Chapman EM, Lant B, Ohashi Y, Yu B, Schertzberg M, Go C, Dogra D, Koskimäki J, Girard R, Li Y, Fraser AG, Awad IA, Abdelilah-Seyfried S, Gingras AC, Derry WB. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun 2019; 10:1791. [PMID: 30996251 PMCID: PMC6470173 DOI: 10.1038/s41467-019-09829-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Apoptotic death of cells damaged by genotoxic stress requires regulatory input from surrounding tissues. The C. elegans scaffold protein KRI-1, ortholog of mammalian KRIT1/CCM1, permits DNA damage-induced apoptosis of cells in the germline by an unknown cell non-autonomous mechanism. We reveal that KRI-1 exists in a complex with CCM-2 in the intestine to negatively regulate the ERK-5/MAPK pathway. This allows the KLF-3 transcription factor to facilitate expression of the SLC39 zinc transporter gene zipt-2.3, which functions to sequester zinc in the intestine. Ablation of KRI-1 results in reduced zinc sequestration in the intestine, inhibition of IR-induced MPK-1/ERK1 activation, and apoptosis in the germline. Zinc localization is also perturbed in the vasculature of krit1-/- zebrafish, and SLC39 zinc transporters are mis-expressed in Cerebral Cavernous Malformations (CCM) patient tissues. This study provides new insights into the regulation of apoptosis by cross-tissue communication, and suggests a link between zinc localization and CCM disease.
Collapse
Affiliation(s)
- Eric M Chapman
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Benjamin Lant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Yota Ohashi
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Michael Schertzberg
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Christopher Go
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - Deepika Dogra
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, 14476, Germany
| | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Yan Li
- University of Chicago Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA
| | - Andrew G Fraser
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada.
| |
Collapse
|
16
|
Clapham KR, Singh I, Capuano IS, Rajagopal S, Chun HJ. MEF2 and the Right Ventricle: From Development to Disease. Front Cardiovasc Med 2019; 6:29. [PMID: 30984767 PMCID: PMC6448530 DOI: 10.3389/fcvm.2019.00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive and ultimately life-limiting disease in which survival is closely linked to right ventricular function. The right ventricle remains relatively understudied, as it is known to have key developmental and structural differences from the left ventricle. Here, we will highlight what is known about the right ventricle in normal physiology and in the disease state of pulmonary arterial hypertension. Specifically, we will explore the role of the family of MEF2 (myocyte enhancer factor 2) transcription factors in right ventricular development, its response to increased afterload, and in the endothelial dysfunction that characterizes pulmonary arterial hypertension. Finally, we will turn to review potentially novel therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Katharine R Clapham
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Inderjit Singh
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Isabella S Capuano
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States.,Choate Rosemary Hall, Wallingford, CT, United States
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Hyung J Chun
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
17
|
Chromosomal translocation-mediated evasion from miRNA induces strong MEF2D fusion protein expression, causing inhibition of PAX5 transcriptional activity. Oncogene 2018; 38:2263-2274. [PMID: 30478446 DOI: 10.1038/s41388-018-0573-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 08/29/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
Abstract
MEF2D fusion genes are newly discovered recurrent gene abnormalities that are detected in approximately 5% of acute lymphoblastic leukemia cases. We previously demonstrated that the vector-driven expression of MEF2D fusion proteins was markedly stronger than that of wild-type MEF2D; however, the underlying mechanisms and significance of this expression have yet to be clarified. We herein showed that the strong expression of MEF2D fusion proteins was caused by the loss of the target site of miRNA due to gene translocation. We identified the target region of miRNA located in the coding region and selected miR-122 as a candidate of the responsible miRNA. Mutations at a putative binding site of miR-122 increased MEF2D expression, while the transfection of its miRNA mimic reduced the expression of wild-type MEF2D, but not MEF2D fusion proteins. We also found that MEF2D fusion proteins inhibited the transcriptional activity of PAX5, a B-cell differentiation regulator in a manner that depended on fusion-specific strong expression and an association with histone deacetylase 4, which may lead to the differentiation disorders of B cells. Our results provide novel insights into the mechanisms underlying leukemia development by MEF2D fusion genes and the involvement of the deregulation of miRNA-mediated repression in cancer development.
Collapse
|
18
|
Loveridge CJ, van 't Hof RJ, Charlesworth G, King A, Tan EH, Rose L, Daroszewska A, Prior A, Ahmad I, Welsh M, Mui EJ, Ford C, Salji M, Sansom O, Blyth K, Leung HY. Analysis of Nkx3.1:Cre-driven Erk5 deletion reveals a profound spinal deformity which is linked to increased osteoclast activity. Sci Rep 2017; 7:13241. [PMID: 29038439 PMCID: PMC5643304 DOI: 10.1038/s41598-017-13346-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated protein kinase 5 (ERK5) has been implicated during development and carcinogenesis. Nkx3.1-mediated Cre expression is a useful strategy to genetically manipulate the mouse prostate. While grossly normal at birth, we observed an unexpected phenotype of spinal protrusion in Nkx3.1:Cre;Erk5 fl/fl (Erk5 fl/fl) mice by ~6-8 weeks of age. X-ray, histological and micro CT (µCT) analyses showed that 100% of male and female Erk5 fl/fl mice had a severely deformed curved thoracic spine, with an associated loss of trabecular bone volume. Although sex-specific differences were observed, histomorphometry measurements revealed that both bone resorption and bone formation parameters were increased in male Erk5 fl/fl mice compared to wild type (WT) littermates. Osteopenia occurs where the rate of bone resorption exceeds that of bone formation, so we investigated the role of the osteoclast compartment. We found that treatment of RANKL-stimulated primary bone marrow-derived macrophage (BMDM) cultures with small molecule ERK5 pathway inhibitors increased osteoclast numbers. Furthermore, osteoclast numbers and expression of osteoclast marker genes were increased in parallel with reduced Erk5 expression in cultures generated from Erk5 fl/fl mice compared to WT mice. Collectively, these results reveal a novel role for Erk5 during bone maturation and homeostasis in vivo.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Rob J van 't Hof
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK.
| | - Gemma Charlesworth
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Ayala King
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Ee Hong Tan
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Lorraine Rose
- Centre for Molecular Medicine, MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Anna Daroszewska
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Amanda Prior
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Michelle Welsh
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ernest J Mui
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Catriona Ford
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Mark Salji
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Owen Sansom
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK.
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
19
|
Wilkinson EL, Sidaway JE, Cross MJ. Statin regulated ERK5 stimulates tight junction formation and reduces permeability in human cardiac endothelial cells. J Cell Physiol 2017. [PMID: 28639275 PMCID: PMC5655747 DOI: 10.1002/jcp.26064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The MEKK3/MEK5/ERK5 signaling axis is required for cardiovascular development in vivo. We analyzed the physiological role of ERK5 in cardiac endothelial cells and the consequence of activation of this kinase by the statin class of HMG Co‐A reductase inhibitor drugs. We utilized human cardiac microvascular endothelial cells (HCMECs) and altered ERK5 expression using siRNA mediated gene silencing or overexpression of constitutively active MEK5 and ERK5 to reveal a role for ERK5 in regulating endothelial tight junction formation and cell permeability. Statin treatment of HCMECs stimulated activation of ERK5 and translocation to the plasma membrane resulting in co‐localization with the tight junction protein ZO‐1 and a concomitant reduction in endothelial cell permeability. Statin mediated activation of ERK5 was a consequence of reduced isoprenoid synthesis following HMG Co‐A reductase inhibition. Statin pretreatment could overcome the effect of doxorubicin in reducing endothelial tight junction formation and prevent increased permeability. Our data provide the first evidence for the role of ERK5 in regulating endothelial tight junction formation and endothelial cell permeability. Statin mediated ERK5 activation and the resulting decrease in cardiac endothelial cell permeability may contribute to the cardioprotective effects of statins in reducing doxorubicin‐induced cardiotoxicity.
Collapse
Affiliation(s)
- Emma L Wilkinson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - James E Sidaway
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Michael J Cross
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
20
|
Wang H, Dai YY, Zhang WQ, Hsu PC, Yang YL, Wang YC, Chan G, Au A, Xu ZD, Jiang SJ, Wang W, Jablons DM, You L. DCLK1 is correlated with MET and ERK5 expression, and associated with prognosis in malignant pleural mesothelioma. Int J Oncol 2017; 51:91-103. [PMID: 28560410 PMCID: PMC5467791 DOI: 10.3892/ijo.2017.4021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/20/2017] [Indexed: 01/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer for which more effective treatments are needed. In this study, strong to moderate staining of MET and ERK5 was detected in 67.1 and 48% of the analyzed 73 human mesothelioma tumors, and significant correlation of MET and ERK5 expression was identified (P<0.05). We evaluated the doublecortin-like kinase 1 (DCLK1) expression in human mesothelioma tumors. Our results showed that 50.7% of the immunohistochemistry analyzed human mesothelioma tumors have strong to moderate staining of DCLK1, and its expression is significantly correlated with MET or ERK5 expression (P<0.05). Also, the upregulation of DCLK1 is correlated with poor prognosis in MPM patients (P=0.0235). To investigate whether DCLK1 is downstream of MET/ERK5 signaling in human mesothelioma, the effect of DCLK1 expression was analyzed after treatments with either the MET inhibitor XL184 or the ERK5 inhibitor XMD8-92 in human mesothelioma cell lines. Our results showed that the MET inhibitor XL184 reduced the expression of phospho‑ERK5 and DCLK1 expression in human mesothelioma cell lines. In addition, the ERK5 inhibitor XMD8-92 reduced the expression of phospho-ERK5 and DCLK1 expression in human mesothelioma cell lines. Furthermore, XML184 and XMD8-92 treatment impaired invasion and tumor sphere formation ability of H290 mesothelioma cells. These results suggest that DCLK1 is regulated by MET/ERK5 signaling in human mesothelioma, and the MET/ERK5/DCLK1 signaling cascade could be further developed into a promising therapeutic target against mesothelioma.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pulmonary Medicine, Affiliated Shandong Provincial Hospital, Shandong university, Shandong, P.R. China
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Shandong
| | - Yu-Yuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Wen-Qian Zhang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital university of Medical Science, Beijing, P.R. China
| | - Ping-Chih Hsu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Yu-Cheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Geraldine Chan
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Alfred Au
- Division of Diagnostic Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Zhi-Dong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Shu-Juan Jiang
- Department of Pulmonary Medicine, Affiliated Shandong Provincial Hospital, Shandong university, Shandong, P.R. China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Shandong
| | - David M. Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Loveridge CJ, Mui EJ, Patel R, Tan EH, Ahmad I, Welsh M, Galbraith J, Hedley A, Nixon C, Blyth K, Sansom O, Leung HY. Increased T-cell Infiltration Elicited by Erk5 Deletion in a Pten-Deficient Mouse Model of Prostate Carcinogenesis. Cancer Res 2017; 77:3158-3168. [PMID: 28515147 PMCID: PMC5474317 DOI: 10.1158/0008-5472.can-16-2565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/09/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
Prostate cancer does not appear to respond to immune checkpoint therapies where T-cell infiltration may be a key limiting factor. Here, we report evidence that ablating the growth regulatory kinase Erk5 can increase T-cell infiltration in an established Pten-deficient mouse model of human prostate cancer. Mice that were doubly mutant in prostate tissue for Pten and Erk5 (prostate DKO) exhibited a markedly increased median survival with reduced tumor size and proliferation compared with control Pten-mutant mice, the latter of which exhibited increased Erk5 mRNA expression. A comparative transcriptomic analysis revealed upregulation in prostate DKO mice of the chemokines Ccl5 and Cxcl10, two potent chemoattractants for T lymphocytes. Consistent with this effect, we observed a relative increase in a predominantly CD4+ T-cell infiltrate in the prostate epithelial and stroma of tumors from DKO mice. Collectively, our results offer a preclinical proof of concept for ERK5 as a target to enhance T-cell infiltrates in prostate cancer, with possible implications for leveraging immune therapy in this disease. Cancer Res; 77(12); 3158-68. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Ernest J Mui
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Rachana Patel
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Ee Hong Tan
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Michelle Welsh
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Julie Galbraith
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Karen Blyth
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Owen Sansom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom.
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| |
Collapse
|
22
|
Mitsuhashi T, Uemoto R, Ishikawa K, Yoshida S, Ikeda Y, Yagi S, Matsumoto T, Akaike M, Aihara KI. Endothelial Nitric Oxide Synthase-Independent Pleiotropic Effects of Pitavastatin Against Atherogenesis and Limb Ischemia in Mice. J Atheroscler Thromb 2017; 25:65-80. [PMID: 28592707 PMCID: PMC5770225 DOI: 10.5551/jat.37747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Statins have a protective impact against cardiovascular diseases through not only lipid-lowering effects but also pleiotropic effects, including activation of the endothelial nitric oxide synthase (eNOS) system. We aimed to clarify the protective effects of a statin against atherogenesis and ischemia in eNOS−/− mice. Methods: Study 1. eNOS−/−Apolipoprotein E (ApoE)−/− mice were treated with a vehicle or pitavastatin (0.3 mg/kg/day) for 4 weeks. Study 2. eNOS−/− mice were also treated with a vehicle or the same dose of pitavastatin for 2 weeks prior to hind-limb ischemia. Results: In Study 1, pitavastatin attenuated plaque formation and medial fibrosis of the aortic root with decreased macrophage infiltration in eNOS−/−ApoE−/− mice. PCR array analysis showed reductions in aortic gene expression of proatherogenic factors, including Ccl2 and Ccr2 in pitavastatin-treated double mutant mice. In addition, pitavastatin activated not only atherogenic p38MAPK and JNK but also anti-atherogenic ERK1/2 and ERK5 in the aorta of the double mutant mice. In Study 2, pitavastatin prolonged hind-limb survival after the surgery with increased BCL2-to-BAX protein ratio and inactivated JNK. Enhanced expression of anti-apoptotic genes, including Vegf, Api5, Atf5, Prdx2, and Dad1, was observed in the ischemic limb of pitavastatin-treated eNOS−/− mice. Furthermore, pitavastatin activated both aortic and skeletal muscle AMPK in the eNOS-deficient vascular injury models. Conclusion: Pitavastatin exerts eNOS-independent protective effects against atherogenesis and hindlimb ischemia in mice, which may occur via modifications on key molecules such as AMPK and diverse molecules.
Collapse
Affiliation(s)
| | - Ryoko Uemoto
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University
| | | | - Sumiko Yoshida
- Department of Hematology, Endocrinology & Metabolism, Tokushima University
| | | | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University
| | | | - Ken-Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders, Tokushima University
| |
Collapse
|
23
|
Hwang AR, Han JH, Lim JH, Kang YJ, Woo CH. Fluvastatin inhibits AGE-induced cell proliferation and migration via an ERK5-dependent Nrf2 pathway in vascular smooth muscle cells. PLoS One 2017; 12:e0178278. [PMID: 28542559 PMCID: PMC5439952 DOI: 10.1371/journal.pone.0178278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation endproduct (AGE)-induced vascular smooth muscle cell (VSMC) proliferation and reactive oxygen species (ROS) production are emerging as important mechanisms of diabetic vasculopathy, but little is known about the molecular mechanism responsible for the antioxidative effects of statins on AGEs. It has been reported that statins exert pleiotropic effects on the cardiovascular system due to decreases in AGE-induced cell proliferation, migration, and vascular inflammation. Thus, in the present study, the authors investigated the molecular mechanism by which statins decrease AGE-induced cell proliferation and VSMC migration. In cultured VSMCs, statins upregulated Nrf2-related antioxidant gene, NQO1 and HO-1, via an ERK5-dependent Nrf2 pathway. Inhibition of ERK5 by siRNA or BIX02189 (a specific ERK5 inhibitor) reduced the statin-induced upregulations of Nrf2, NQO1, and HO-1. Furthermore, fluvastatin was found to significantly increase ARE promoter activity through ERK5 signaling, and to inhibit AGE-induced VSMC proliferation and migration as determined by MTT assay, cell counting, FACS analysis, a wound scratch assay, and a migration chamber assay. In addition, AGE-induced proliferation was diminished in the presence of Ad-CA-MEK5α encoding a constitutively active mutant form of MEK5α (an upstream kinase of ERK5), whereas depletion of Nrf2 restored statin-mediated reduction of AGE-induced cell proliferation. Moreover, fluvastatin suppressed the protein expressions of cyclin D1 and Cdk4, but induced p27, and blocked VSMC proliferation by regulating cell cycle. These results suggest statin-induced activation of an ERK5-dependent Nrf2 pathway reduces VSMC proliferation and migration induced by AGEs, and that the ERK5-Nrf2 signal module be viewed as a potential therapeutic target of vasculopathy in patients with diabetes and complications of the disease.
Collapse
MESH Headings
- Animals
- Anticholesteremic Agents/pharmacology
- Apoptosis/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Fatty Acids, Monounsaturated/pharmacology
- Fluvastatin
- Gene Expression Regulation/drug effects
- Glycation End Products, Advanced/pharmacology
- Indoles/pharmacology
- Mitogen-Activated Protein Kinase 7/genetics
- Mitogen-Activated Protein Kinase 7/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Ae-Rang Hwang
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jung-Hwa Han
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Republic of Korea
- Smart-Aging Convergence Research Center, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Republic of Korea
- Smart-Aging Convergence Research Center, Yeungnam University College of Medicine, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Extracellular Signal-Regulated Kinase 5 is Required for Low-Concentration H 2O 2-Induced Angiogenesis of Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6895730. [PMID: 28540300 PMCID: PMC5429924 DOI: 10.1155/2017/6895730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 01/28/2023]
Abstract
Background. The aim of this study was to assess the effects of low concentrations of H2O2 on angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro and explore the underlying mechanisms. Methods. HUVECs were cultured and stimulated with different concentrations of H2O2. Flow cytometric analysis was used to select an optimal concentration of H2O2 for the following experiments. Cell proliferation, migration, and tubule formation were evaluated by Cell Counting Kit-8 (CCK-8) assays, scratch wound assays, and Matrigel tubule formation assays, respectively. For gain and loss of function studies, constitutively active MEK5 (CA-MEK5) and ERK5 shRNA lentiviruses were used to activate or knock down extracellular signal-regulated kinase 5 (ERK5). Results. We found that low concentrations of H2O2 promoted HUVECs proliferation, migration, and tubule formation. ERK5 in HUVECs was significantly activated by H2O2. Enhanced ERK5 activity significantly amplified the proangiogenic effects of H2O2; in contrast, ERK5 knock-down abrogated the effects of H2O2. Conclusions. Our results confirmed that low concentrations of H2O2 promoted HUVECs angiogenesis in vitro, and ERK5 is an essential mediator of this process. Therefore, ERK5 may be a potential therapeutic target for promoting angiogenesis and improving graft survival.
Collapse
|
25
|
Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. Nat Commun 2017; 8:14960. [PMID: 28393867 PMCID: PMC5394236 DOI: 10.1038/ncomms14960] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) regulates lipid and glucose metabolism in liver and adipose tissue. It is also involved in central nervous system regulation of food intake and leptin signalling. Here we demonstrate that endothelial Lrp1 regulates systemic energy homeostasis. Mice with endothelial-specific Lrp1 deletion display improved glucose sensitivity and lipid profiles combined with increased oxygen consumption during high-fat-diet-induced obesity. We show that the intracellular domain of Lrp1 interacts with the nuclear receptor Pparγ, a central regulator of lipid and glucose metabolism, acting as its transcriptional co-activator in endothelial cells. Therefore, Lrp1 not only acts as an endocytic receptor but also directly participates in gene transcription. Our findings indicate an underappreciated functional role of endothelium in maintaining systemic energy homeostasis.
Collapse
|
26
|
Metabolic and molecular insights into an essential role of nicotinamide phosphoribosyltransferase. Cell Death Dis 2017; 8:e2705. [PMID: 28333140 PMCID: PMC5386535 DOI: 10.1038/cddis.2017.132] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a pleiotropic protein implicated in the pathogenesis of acute respiratory distress syndrome, aging, cancer, coronary heart diseases, diabetes, nonalcoholic fatty liver disease, obesity, rheumatoid arthritis, and sepsis. However, the underlying molecular mechanisms of NAMPT in these physiological and pathological processes are not fully understood. Here, we provide experimental evidence that a Nampt gene homozygous knockout (Nampt−/−) resulted in lethality at an early stage of mouse embryonic development and death within 5–10 days in adult mice accompanied by a 25.24±2.22% body weight loss, after the tamoxifen induction of NamptF/F × Cre mice. These results substantiate that Nampt is an essential gene for life. In Nampt−/− mice versusNampt+/+ mice, biochemical assays indicated that liver and intestinal tissue NAD levels were decreased significantly; histological examination showed that mouse intestinal villi were atrophic and disrupted, and visceral fat was depleted; mass spectrometry detected unusual higher serum polyunsaturated fatty acid containing triglycerides. RNA-seq analyses of both mouse and human pediatric liver transcriptomes have convergently revealed that NAMPT is involved in key basic cellular functions such as transcription, translation, cell signaling, and fundamental metabolism. Notably, the expression of all eight enzymes in the tricarboxylic acid cycle were decreased significantly in the Nampt−/− mice. These findings prompt us to posit that adult Nampt−/− mouse lethality is a result of a short supply of ATP from compromised intestinal absorption of nutrients from digested food, which leads to the exhaustion of body fat stores.
Collapse
|
27
|
Welten SMJ, de Vries MR, Peters EAB, Agrawal S, Quax PHA, Nossent AY. Inhibition of Mef2a Enhances Neovascularization via Post-transcriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624225 PMCID: PMC5415962 DOI: 10.1016/j.omtn.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Improving the efficacy of neovascularization is a promising strategy to restore perfusion of ischemic tissues in patients with peripheral arterial disease. The 14q32 microRNA cluster is highly involved in neovascularization. The Mef2a transcription factor has been shown to induce transcription of the microRNAs within this cluster. We inhibited expression of Mef2a using gene-silencing oligonucleotides (GSOs) in an in vivo hind limb ischemia model. Treatment with GSO-Mef2a clearly improved blood flow recovery within 3 days (44% recovery versus 25% recovery in control) and persisted until 14 days after ischemia induction (80% recovery versus 60% recovery in control). Animals treated with GSO-Mef2a showed increased arteriogenesis and angiogenesis in the relevant muscle tissues. Inhibition of Mef2a decreased expression of 14q32 microRNAs miR-329 (p = 0.026) and miR-494 (trend, p = 0.06), but not of other 14q32 microRNAs, nor of 14q32 microRNA precursors. Because Mef2a did not influence 14q32 microRNA transcription, we hypothesized it functions as an RNA-binding protein that influences processing of 14q32 microRNA miR-329 and miR-494. Mef2A immunoprecipitation followed by RNA isolation and rt/qPCR confirmed direct binding of MEF2A to pri-miR-494, supporting this hypothesis. Our study demonstrates a novel function for Mef2a in post-ischemic neovascularization via post-transcriptional regulation of 14q32 microRNAs miR-329 and miR-494.
Collapse
Affiliation(s)
- Sabine M J Welten
- Department of Surgery, Leiden University Medical Center, 2333 Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, 2333 Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Erna A B Peters
- Department of Surgery, Leiden University Medical Center, 2333 Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | | | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, 2333 Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, 2333 Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 Leiden, the Netherlands.
| |
Collapse
|
28
|
Gu N, Ge K, Hao C, Ji Y, Li H, Guo Y. Neuregulin1β Effects on Brain Tissue via ERK5-Dependent MAPK Pathway in a Rat Model of Cerebral Ischemia-Reperfusion Injury. J Mol Neurosci 2017; 61:607-616. [PMID: 28265860 DOI: 10.1007/s12031-017-0902-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
Neuregulin1β (NRG1β), a member of the excitomotor of tyrosine kinase receptor (erbB) family, was recently shown to play a neuroprotective role in cerebral ischemia-reperfusion injury. The present study analyzed the effects and its possible signaling pathway of NRG1β on brain tissues after cerebral ischemia-reperfusion injury. A focal cerebral ischemic model was established by inserting a monofilament thread to achieve middle cerebral artery occlusion, followed by an NRG1β injection via the internal carotid artery. NRG1β injection resulted in significantly improved neurobehavioral activity according to the modified neurological severity score test. Tetrazolium chloridestaining revealed a smaller cerebral infarction volume; hematoxylin-eosin staining and transmission electron microscopy showed significantly alleviated neurodegeneration in the middle cerebral artery occlusion rats. Moreover, expression of phosphorylated MEK5, phosphorylated ERK5, and phosphorylated MEK2C increased after NRG1β treatment, and the neuroprotective effect of NRG1β was attenuated by an injection of the MEK5 inhibitor, BIX02189. Results from the present study demonstrate that NRG1β provides neuroprotection following cerebral ischemia-reperfusion injury via the ERK5-dependent MAPK pathway.
Collapse
Affiliation(s)
- Ning Gu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Institute of Integrated Medicine, Qingdao University Medical College, Qingdao, Shandong, China
| | - Keli Ge
- Institute of Integrated Medicine, Qingdao University Medical College, Qingdao, Shandong, China
| | - Cui Hao
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yaqing Ji
- Institute of Integrated Medicine, Qingdao University Medical College, Qingdao, Shandong, China
| | - Hongyun Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
29
|
Shalaby SY, Chitragari G, Sumpio BJ, Sumpio BE. Shear Stress Induces Change in Extracellular Signal-Regulated Kinase 5 Levels with Sustained Activation under Disturbed and Continuous Laminar Flow. Int J Angiol 2017; 26:109-115. [PMID: 28566937 DOI: 10.1055/s-0037-1599057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) has been reported to regulate endothelial integrity and protect from vascular dysfunction under laminar flow. Previously reported research indicates that under laminar flow ERK5 is activated with production of atheroprotective molecules. However, the characterization of ERK5 activation and levels under different flow patterns has not been investigated. Confluent HUVECs were serum-starved then seeded on glass slides. HUVECs incubated in 1% FBS were exposed to continuous laminar flow (CLF), to-and-fro flow (TFF), or pulsatile forward flow (PFF) in a parallel plate flow chamber. At the end of experimentation, cell lysates were immunoblotted with antibodies to phospho-ERK5 and total ERK5. ERK5 activation was assessed by the levels of phosphorylated ERK5. The densitometric mean ± SEM is calculated and analyzed by ANOVA. p < 0.05 is considered significant. Levels of ERK5 decreased with all flow conditions with the largest decrease in TFF flow condition. TFF and CLF exhibited sustained ERK5 phosphorylation in HUVECs stimulated for up to 4 hours. PFF had transient phosphorylation of ERK5 at 2 hours, which then became undetectable at 4 hours of exposure to flow. Also, TFF and CLF both showed decreased levels at 4 hours, suggesting a decrease in activation for these flow conditions. Exposure of HUVEC to different types of shear stress results in varying patterns of activation of ERK5. Activation of ERK5 with TFF suggests a role in the pathogenesis of atherosclerosis and vascular remodeling under disturbed flow conditions.
Collapse
Affiliation(s)
- S Y Shalaby
- Section of Vascular Surgery, Yale University, New Haven, Connecticut
| | - G Chitragari
- Section of Vascular Surgery, Yale University, New Haven, Connecticut
| | - B J Sumpio
- Section of Vascular Surgery, Yale University, New Haven, Connecticut
| | - B E Sumpio
- Section of Vascular Surgery, Yale University, New Haven, Connecticut
| |
Collapse
|
30
|
Flow signaling and atherosclerosis. Cell Mol Life Sci 2016; 74:1835-1858. [PMID: 28039525 PMCID: PMC5391278 DOI: 10.1007/s00018-016-2442-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
Abstract
Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.
Collapse
|
31
|
Pon JR, Marra MA. MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget 2016; 7:2297-312. [PMID: 26506234 PMCID: PMC4823036 DOI: 10.18632/oncotarget.6223] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
The MEF2 transcription factors have roles in muscle, cardiac, skeletal, vascular, neural, blood and immune system cell development through their effects on cell differentiation, proliferation, apoptosis, migration, shape and metabolism. Altered MEF2 activity plays a role in human diseases and has recently been implicated in the development of several cancer types. In particular, MEF2B, the most divergent and least studied protein of the MEF2 family, has a role unique from its paralogs in non-Hodgkin lymphomas. The use of genome-scale technologies has enabled comprehensive MEF2 target gene sets to be identified, contributing to our understanding of MEF2 proteins as nodes in complex regulatory networks. This review surveys the molecular interactions of MEF2 proteins and their effects on cellular and organismal phenotypes. We include a discussion of the emerging roles of MEF2 proteins as oncogenes and tumor suppressors of cancer. Throughout this article we highlight similarities and differences between the MEF2 family proteins, including a focus on functions of MEF2B.
Collapse
Affiliation(s)
- Julia R Pon
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Sacilotto N, Chouliaras KM, Nikitenko LL, Lu YW, Fritzsche M, Wallace MD, Nornes S, García-Moreno F, Payne S, Bridges E, Liu K, Biggs D, Ratnayaka I, Herbert SP, Molnár Z, Harris AL, Davies B, Bond GL, Bou-Gharios G, Schwarz JJ, De Val S. MEF2 transcription factors are key regulators of sprouting angiogenesis. Genes Dev 2016; 30:2297-2309. [PMID: 27898394 PMCID: PMC5110996 DOI: 10.1101/gad.290619.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/29/2016] [Indexed: 12/24/2022]
Abstract
Angiogenesis, the fundamental process by which new blood vessels form from existing ones, depends on precise spatial and temporal gene expression within specific compartments of the endothelium. However, the molecular links between proangiogenic signals and downstream gene expression remain unclear. During sprouting angiogenesis, the specification of endothelial cells into the tip cells that lead new blood vessel sprouts is coordinated by vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 (Dll4)/Notch signaling and requires high levels of Notch ligand DLL4. Here, we identify MEF2 transcription factors as crucial regulators of sprouting angiogenesis directly downstream from VEGFA. Through the characterization of a Dll4 enhancer directing expression to endothelial cells at the angiogenic front, we found that MEF2 factors directly transcriptionally activate the expression of Dll4 and many other key genes up-regulated during sprouting angiogenesis in both physiological and tumor vascularization. Unlike ETS-mediated regulation, MEF2-binding motifs are not ubiquitous to all endothelial gene enhancers and promoters but are instead overrepresented around genes associated with sprouting angiogenesis. MEF2 target gene activation is directly linked to VEGFA-induced release of repressive histone deacetylases and concurrent recruitment of the histone acetyltransferase EP300 to MEF2 target gene regulatory elements, thus establishing MEF2 factors as the transcriptional effectors of VEGFA signaling during angiogenesis.
Collapse
Affiliation(s)
- Natalia Sacilotto
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Kira M Chouliaras
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Leonid L Nikitenko
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Yao Wei Lu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | - Martin Fritzsche
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Marsha D Wallace
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Svanhild Nornes
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Fernando García-Moreno
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Sophie Payne
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Esther Bridges
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Ke Liu
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Daniel Biggs
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Shane P Herbert
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Adrian L Harris
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 7LJ, United Kingdom
| | - Benjamin Davies
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Gareth L Bond
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - George Bou-Gharios
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - John J Schwarz
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | - Sarah De Val
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
33
|
ERK5 kinase activity is dispensable for cellular immune response and proliferation. Proc Natl Acad Sci U S A 2016; 113:11865-11870. [PMID: 27679845 DOI: 10.1073/pnas.1609019113] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Unlike other members of the MAPK family, ERK5 contains a large C-terminal domain with transcriptional activation capability in addition to an N-terminal canonical kinase domain. Genetic deletion of ERK5 is embryonic lethal, and tissue-restricted deletions have profound effects on erythroid development, cardiac function, and neurogenesis. In addition, depletion of ERK5 is antiinflammatory and antitumorigenic. Small molecule inhibition of ERK5 has been shown to have promising activity in cell and animal models of inflammation and oncology. Here we report the synthesis and biological characterization of potent, selective ERK5 inhibitors. In contrast to both genetic depletion/deletion of ERK5 and inhibition with previously reported compounds, inhibition of the kinase with the most selective of the new inhibitors had no antiinflammatory or antiproliferative activity. The source of efficacy in previously reported ERK5 inhibitors is shown to be off-target activity on bromodomains, conserved protein modules involved in recognition of acetyl-lysine residues during transcriptional processes. It is likely that phenotypes reported from genetic deletion or depletion of ERK5 arise from removal of a noncatalytic function of ERK5. The newly reported inhibitors should be useful in determining which of the many reported phenotypes are due to kinase activity and delineate which can be pharmacologically targeted.
Collapse
|
34
|
Song C, Xu Q, Jiang K, Zhou G, Yu X, Wang L, Zhu Y, Fang L, Yu Z, Lee JD, Yu SC, Yang Q. Inhibition of BMK1 pathway suppresses cancer stem cells through BNIP3 and BNIP3L. Oncotarget 2016; 6:33279-89. [PMID: 26432836 PMCID: PMC4741765 DOI: 10.18632/oncotarget.5337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSCs) possess many characteristics associated with stem cells and are believed to drive tumor initiation. Although targeting of CSCs offers great promise for the new generation of therapeutics, lack of the effective drugable target and appropriate pharmacological reagents significantly impedes the development of chemotherapies. Here, we show that the phosphorylation of BMK1 was significantly correlated with not only embryonic and induced pluripotent stem (iPS) cells, but also the CSCs. It was showed that activation of BMK1 by the expression of MEK5D enhanced the self-renew (sphere formation), proliferation (clone formation) and tumorigenic capacity of CSCs. While BMK1 inhibitor, XMD8-92, suppressed these capacities. RNA-seq and microarray analysis revealed that inhibition of BMK1 significantly enhanced the expression of BNIP3 and BNIP3L, which play important roles in cell death. Further study indicated that shRNA-mediated knock down of BNIP3 and BNIP3L impairs the BMK1 inhibitor, XMD8-92-induced suppression of sphere formation and clone formation of CSC. Collectively, these results not only indicate that BMK1 plays an important role in maintaining "stemness" of CSCs, but also implicate that BMK1 might be a potential drug target for CSCs.
Collapse
Affiliation(s)
- Chengli Song
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Qiang Xu
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Kui Jiang
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Guangyu Zhou
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Xuebin Yu
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Lina Wang
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Yuting Zhu
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Liping Fang
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Zhe Yu
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Jiing-Dwan Lee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qingkai Yang
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
35
|
Kyosseva SV. Targeting MAPK Signaling in Age-Related Macular Degeneration. OPHTHALMOLOGY AND EYE DISEASES 2016; 8:23-30. [PMID: 27385915 PMCID: PMC4920203 DOI: 10.4137/oed.s32200] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/08/2016] [Accepted: 05/13/2016] [Indexed: 12/26/2022]
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible blindness affecting elderly people in the world. AMD is a complex multifactorial disease associated with demographic, genetics, and environmental risk factors. It is well established that oxidative stress, inflammation, and apoptosis play critical roles in the pathogenesis of AMD. The mitogen-activated protein kinase (MAPK) signaling pathways are activated by diverse extracellular stimuli, including growth factors, mitogens, hormones, cytokines, and different cellular stressors such as oxidative stress. They regulate cell proliferation, differentiation, survival, and apoptosis. This review addresses the novel findings from human and animal studies on the relationship of MAPK signaling with AMD. The use of specific MAPK inhibitors may represent a potential therapeutic target for the treatment of this debilitating eye disease.
Collapse
Affiliation(s)
- Svetlana V Kyosseva
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
36
|
Chen H, Tucker J, Wang X, Gavine PR, Phillips C, Augustin MA, Schreiner P, Steinbacher S, Preston M, Ogg D. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site. Acta Crystallogr D Struct Biol 2016; 72:682-93. [PMID: 27139631 PMCID: PMC4854315 DOI: 10.1107/s2059798316004502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 03/16/2016] [Indexed: 01/20/2023] Open
Abstract
MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.
Collapse
Affiliation(s)
- Hongming Chen
- Chemistry Innovation Centre, Discovery Sciences, AstraZeneca R&D Mölndal, 431 83 Mölndal, Sweden
| | - Julie Tucker
- Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Alderley Park, Macclesfield SK10 4TG, England
| | - Xiaotao Wang
- Innovation Centre China, AstraZeneca Asia and Emerging Markets iMed, Shanghai 201203, People’s Republic of China
| | - Paul R. Gavine
- Innovation Centre China, AstraZeneca Asia and Emerging Markets iMed, Shanghai 201203, People’s Republic of China
| | - Chris Phillips
- Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Alderley Park, Macclesfield SK10 4TG, England
| | - Martin A. Augustin
- Proteros biostructures GmbH, Bunsenstrasse 7a, 82152 Martinsried, Germany
| | - Patrick Schreiner
- Proteros biostructures GmbH, Bunsenstrasse 7a, 82152 Martinsried, Germany
| | - Stefan Steinbacher
- Proteros biostructures GmbH, Bunsenstrasse 7a, 82152 Martinsried, Germany
| | - Marian Preston
- Screening Sciences, Discovery Sciences, AstraZeneca R&D Alderley Park, Macclesfield SK10 4TG, England
| | - Derek Ogg
- Structure and Biophysics, Discovery Sciences, AstraZeneca R&D Alderley Park, Macclesfield SK10 4TG, England
| |
Collapse
|
37
|
Chang E, Abe JI. Kinase-SUMO networks in diabetes-mediated cardiovascular disease. Metabolism 2016; 65:623-633. [PMID: 27085771 PMCID: PMC5226250 DOI: 10.1016/j.metabol.2016.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
Type II diabetes mellitus (DM) is a common comorbidity in patients with cardiovascular disease (CVD). Epidemiological studies including the Framingham, UKPDS, and MRFIT studies have shown diabetes to be an independent risk factor for cardiovascular disease associated with increased incidence of morbidity and mortality. However, major randomized controlled clinical trials including ADVANCE, VAD, and ACCORD have failed to demonstrate a significant reduction in CVD complications from longstanding DM with strict glycemic control. This suggests that despite the strong clinical correlation between DM and CVD, the precise mechanisms of DM-mediated CVD pathogenesis remain unclear. Signal transduction investigations have shed some light on this question with numerous studies demonstrating the role of kinase pathways in facilitating DM and CVD pathology. Abnormalities in endothelial, vascular smooth muscle, and myocardial function from the pathological insults of hyperglycemia and oxidative stress in diabetes are thought to accelerate the development of cardiovascular disease. Extensive interplay between kinase pathways that regulate the complex pathology of DM-mediated CVD is heavily regulated by a number of post-translational modifications (PTMs). In this review, we focus on the role of a dynamic PTM known as SUMOylation and its role in regulating these kinase networks to provide a mechanistic link between DM and CVD.
Collapse
Affiliation(s)
- Eugene Chang
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Rastogi B, Raut SK, Panda NK, Rattan V, Radotra BD, Khullar M. Overexpression of HDAC9 promotes oral squamous cell carcinoma growth, regulates cell cycle progression, and inhibits apoptosis. Mol Cell Biochem 2016; 415:183-96. [PMID: 26992905 DOI: 10.1007/s11010-016-2690-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/12/2016] [Indexed: 12/18/2022]
Abstract
Histone deacetylases (HDACs) are a family of deacetylase enzymes that regulate the acetylation state of histones and a variety of other non-histone proteins including key oncogenic and tumor suppressor proteins, which modulates chromatin conformation, leading to regulation of gene expression. HDACs has been grouped into classes I-IV and histone deacetylase 9 (HDAC9) belongs to class IIa which exhibits tissue-specific expression. Recent reports have demonstrated both pro-oncogenic and tumor suppressive role for HDAC9 in different cancers; however, its role in OSCC remains elusive. Here, we investigated the role of HDAC9 in pathogenesis of oral squamous cell carcinoma (OSCC). Our data showed significantly increased mRNA and protein expression of HDAC9 in clinical OSCC samples and UPCI-SCC-116 cells as compared to normal counterpart. Kaplan-Meier analysis showed that the patients with high-level of HDAC9 expression had significantly reduced overall survival than those with low-level of HDAC9 expression (p = 0.034). Knockdown of HDAC9 using siRNA interference suppressed cell proliferation, increased apoptosis, and induced G0/G1 cell cycle arrest in UPCI-SCC-116 cells. Immunofluorescence analysis showed increased nuclear localization of HDAC9 in frozen OSCC sections, and indicative of active HDAC9 that may transcriptionally repress its downstream target genes. Subsequent investigation revealed that overexpression of HDAC9 contributes to OSCC carcinogenesis via targeting a transcription factor, MEF2D, and NR4A1/Nur77, a pro-apoptotic MEF2 target.
Collapse
Affiliation(s)
- Bhawna Rastogi
- Department of Otolaryngology and Head and Neck Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Satish K Raut
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Naresh K Panda
- Department of Otolaryngology and Head and Neck Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vidya Rattan
- Department of Oral Health Sciences Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bishan D Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
39
|
Obara Y, Nagasawa R, Nemoto W, Pellegrino MJ, Takahashi M, Habecker BA, Stork PJS, Ichiyanagi O, Ito H, Tomita Y, Ishii K, Nakahata N. ERK5 induces ankrd1 for catecholamine biosynthesis and homeostasis in adrenal medullary cells. Cell Signal 2015; 28:177-189. [PMID: 26739108 DOI: 10.1016/j.cellsig.2015.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 01/04/2023]
Abstract
Extracellular signal-regulated kinases (ERKs) play important roles in proliferation, differentiation and gene expression. In our previous study, we demonstrated that both ERK5 and ERK1/2 were responsible for neurite outgrowth and tyrosine hydroxylase (TH) expression in rat pheochromocytoma cells (PC12) (J Biol Chem 284, 23,564-23,573, 2009). However, the functional differences between ERK5 and ERK1/2 signaling in neural differentiation remain unclear. In the present study, we show that ERK5, but not ERK1/2 regulates TH levels in rat sympathetic neurons. Furthermore, microarray analysis performed in PC12 cells using ERK5 and ERK1/2-specific inhibitors, identified ankyrin repeat domain 1 (ankrd1) as an ERK5-dependent and ERK1/2-independent gene. Here, we report a novel role of the ERK5/ankrd1 signaling in regulating TH levels and catecholamine biosynthesis. Ankrd1 mRNA was induced by nerve growth factor in time- and concentration-dependent manners. TH levels were reduced by ankrd1 knockdown with no changes in the mRNA levels, suggesting that ankrd1 was involved in stabilization of TH protein. Interestingly, ubiquitination of TH was enhanced and catecholamine biosynthesis was reduced by ankrd1 knockdown. Finally, we examined the relationship of ERK5 to TH levels in human adrenal pheochromocytomas. Whereas TH levels were correlated with ERK5 levels in normal adrenal medullas, ERK5 was down-regulated and TH was up-regulated in pheochromocytomas, indicating that TH levels are regulated by alternative mechanisms in tumors. Taken together, ERK5 signaling is required for catecholamine biosynthesis during neural differentiation, in part to induce ankrd1, and to maintain appropriate TH levels. This pathway is disrupted in pathological conditions.
Collapse
Affiliation(s)
- Yutaro Obara
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan; Department of Pharmacology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan.
| | - Ryusuke Nagasawa
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Wataru Nemoto
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Michael J Pellegrino
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Maho Takahashi
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Philip J S Stork
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Osamu Ichiyanagi
- Department of Urology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan
| | - Hiromi Ito
- Department of Urology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan
| | - Yoshihiko Tomita
- Department of Urology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University School of Medicine, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan
| | - Norimichi Nakahata
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
40
|
Chen X, Cai H, Chen Q, Xie H, Liu Y, Lu Q, Tang Y. Effects of Wenyangzhenshuai Granule on ERK1/2 and ERK5 activity in the myocardial tissue in a rabbit model of adriamycin-induced chronic heart failure. Int J Clin Exp Med 2015; 8:20732-20741. [PMID: 26884996 PMCID: PMC4723841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To elucidate the effects of Wenyangzhenshuai granule on expression of extracellular signal-regulated kinase 1/2 (ERK1/2) and 5 (ERK5) in the myocardial tissue using a rabbit model of adriamycin-induced chronic heart failure. MATERIALS AND METHODS Rabbits were divided into heart failure positive control, adriamycin injection, and adriamycin injection with Wenyangzhenshuai treatment (low, medium and high dose) groups. Cardiac function and cardiac hypotrophy were measured in all groups. Besides, myocardial expression of ERK1/2 and ERK5 phosphorylation were evaluated by Western blotting and ERK1/2 and ERK5 mRNA levels by RT-PCR. The cardiac structure and cardiac function were also compared using histology staining and electron microscope. RESULTS Adriamycin injection led to cardiac failure reflected by decreased left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), E/A ratio, and increased cardiac hypertrophy, both of which have been improved by Wenyangzhenshuai granule treatment (all P<0.05). Mechanistically, increased P-ERK1/2 and decreased P-ERK5 levels were observed in myocardial tissues of mice treated with Adriamycin for 8 weeks. However, such signaling change could be partially corrected by Wenyangzhenshuai treatment. In addition, no significant difference was detected in the expression of ERK1/2 and ERK5 mRNA levels between adriamycin injection groups and Wenyangzhenshuai treatment groups (P>0.05), indicating an alteration in the activity/phosphorylation levels of these proteins instead of the transcription levels. CONCLUSION we found a beneficial effect of Wenyangzhenshuai treatment in partially decelerating the progression of CHF. Such effect was probably through the role of Wenyangzhenchuan in diminishing p-ERK1/2 and raising p-ERK5 level in myocardial tissue.
Collapse
Affiliation(s)
- Xinyu Chen
- The First Affiliated Hospital of Hunan University of Traditional Chinese MedicineChangsha 410007, Hunan Province, China
| | - Huzhi Cai
- The First Affiliated Hospital of Hunan University of Traditional Chinese MedicineChangsha 410007, Hunan Province, China
| | - Qingyang Chen
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan Province, China
| | - Haibo Xie
- The First Affiliated Hospital of Hunan University of Traditional Chinese MedicineChangsha 410007, Hunan Province, China
| | - Yuemei Liu
- The First Affiliated Hospital of Hunan University of Traditional Chinese MedicineChangsha 410007, Hunan Province, China
| | - Qing Lu
- The First Affiliated Hospital of Hunan University of Traditional Chinese MedicineChangsha 410007, Hunan Province, China
| | - Yanping Tang
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan Province, China
| |
Collapse
|
41
|
p21-Activated Kinase 2 Regulates Endothelial Development and Function through the Bmk1/Erk5 Pathway. Mol Cell Biol 2015; 35:3990-4005. [PMID: 26391956 DOI: 10.1128/mcb.00630-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/08/2015] [Indexed: 02/03/2023] Open
Abstract
p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements, cell proliferation, attachment, and migration in a variety of cellular contexts, including endothelial cells. However, the role of endothelial Pak in embryo development has not been reported, and currently, there is no consensus on the endothelial function of individual Pak isoforms, in particular p21-activated kinase 2 (Pak2), the main Pak isoform expressed in endothelial cells. In this work, we employ genetic and molecular studies that show that Pak2, but not Pak1, is a critical mediator of development and maintenance of endothelial cell function. Endothelial depletion of Pak2 leads to early embryo lethality due to flawed blood vessel formation in the embryo body and yolk sac. In adult endothelial cells, Pak2 depletion leads to severe apoptosis and acute angiogenesis defects, and in adult mice, endothelial Pak2 deletion leads to increased vascular permeability. Furthermore, ubiquitous Pak2 deletion is lethal in adult mice. We show that many of these defects are mediated through a newly unveiled Pak2/Bmk1 pathway. Our results demonstrate that endothelial Pak2 is essential during embryogenesis and also for adult blood vessel maintenance, and they also pinpoint the Bmk1/Erk5 pathway as a critical mediator of endothelial Pak2 signaling.
Collapse
|
42
|
Wilhelmsen K, Xu F, Farrar K, Tran A, Khakpour S, Sundar S, Prakash A, Wang J, Gray NS, Hellman J. Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation. Sci Signal 2015; 8:ra86. [PMID: 26307013 DOI: 10.1126/scisignal.aaa3206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammatory critical illness is a syndrome that is characterized by acute inflammation and organ injury, and it is triggered by infections and noninfectious tissue injury, both of which activate innate immune receptors and pathways. Although reports suggest an anti-inflammatory role for the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5), we previously found that ERK5 mediates proinflammatory responses in primary human cells in response to stimulation of Toll-like receptor 2 (TLR2). We inhibited the kinase activities and reduced the abundances of ERK5 and MEK5, a MAPK kinase directly upstream of ERK5, in primary human vascular endothelial cells and monocytes, and found that ERK5 promoted inflammation induced by a broad range of microbial TLR agonists and by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Furthermore, we found that inhibitors of MEK5 or ERK5 reduced the plasma concentrations of proinflammatory cytokines in mice challenged with TLR ligands or heat-killed Staphylococcus aureus, as well as in mice that underwent sterile lung ischemia-reperfusion injury. Finally, we found that inhibition of ERK5 protected endotoxemic mice from death. Together, our studies support a proinflammatory role for ERK5 in primary human endothelial cells and monocytes, and suggest that ERK5 is a potential therapeutic target in diverse disorders that cause inflammatory critical illness.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine Farrar
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alphonso Tran
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Samira Khakpour
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shirin Sundar
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arun Prakash
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA. Division of Critical Care Medicine and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Zhao Y, Li Y, Ma Y, Wang S, Cheng J, Yang T, Sun Z, Kuang Y, Huang H, Fan K, Gu J. Myocyte enhancer factor 2D promotes tumorigenicity in malignant glioma cells. Tumour Biol 2015; 37:601-10. [PMID: 26234765 DOI: 10.1007/s13277-015-3791-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
The prognosis of patients with malignant glioma is always quite poor, and this poor prognosis is probably due to our incomplete understanding of the molecular mechanisms underlying malignant glioma. It is known that myocyte enhancer factor-2D (MEF2D) plays an oncogenic role in hepatocellular carcinoma and promotes the survival of various types of cells. However, little is known about the expression profile and function of MEF2D in malignant glioma. In this study, we investigated the function and expression of MEF2D in malignant glioma. We found that in malignant glioma, there is an aberrantly high expression of MEF2D, which leads to poor prognosis of malignant glioma. The downregulation of MEF2D suppresses the proliferation of malignant glioma cell lines by inducing delay of S and G2/M phases of cell cycle and promoting apoptosis. Furthermore, the overexpression of MEF2D in astrocytes accelerates cell proliferation by regulating cell cycle progression. Furthermore, a mouse malignant glioma model demonstrated that MEF2D deficiency blocks malignant glioma formation in vivo. We conclude that MEF2D may act as a potential oncogene in malignant glioma and thus serve as a candidate target for malignant glioma therapy.
Collapse
Affiliation(s)
- Youguang Zhao
- Department of Postgraduate, Third Military Medical University, Chongqing, People's Republic of China.,Department of Urology, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Ying Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Yuan Ma
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Songtao Wang
- Section of Scientific Research and Training, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Jingmin Cheng
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Tao Yang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Zhiyong Sun
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Yongqin Kuang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Haidong Huang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Kexia Fan
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Jianwen Gu
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China. .,The 306th Hospital of PLA, Beijing, People's Republic of China.
| |
Collapse
|
44
|
Gavine PR, Wang M, Yu D, Hu E, Huang C, Xia J, Su X, Fan J, Zhang T, Ye Q, Zheng L, Zhu G, Qian Z, Luo Q, Hou YY, Ji Q. Identification and validation of dysregulated MAPK7 (ERK5) as a novel oncogenic target in squamous cell lung and esophageal carcinoma. BMC Cancer 2015; 15:454. [PMID: 26040563 PMCID: PMC4453990 DOI: 10.1186/s12885-015-1455-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/20/2015] [Indexed: 01/23/2023] Open
Abstract
Background MAPK7/ERK5 (extracellular-signal-regulated kinase 5) functions within a canonical three-tiered MAPK (mitogen activated protein kinase) signaling cascade comprising MEK (MAPK/ERK kinase) 5, MEKK(MEK kinase) 2/3 and ERK5 itself. Despite being the least well studied of the MAPK-modules, evidence supports a role for MAPK7-signaling in the pathology of several cancer types. Methods and results Fluorescence in situ hybridization (FISH) analysis identified MAPK7 gene amplification in 4 % (3/74) of non-small cell lung cancers (NSCLC) (enriched to 6 % (3/49) in squamous cell carcinoma) and 2 % (2/95) of squamous esophageal cancers (sqEC). Immunohistochemical (IHC) analysis revealed a good correlation between MAPK7 gene amplification and protein expression. MAPK7 was validated as a proliferative oncogenic driver by performing in vitro siRNA knockdown of MAPK7 in tumor cell lines. Finally, a novel MEK5/MAPK7 co-transfected HEK293 cell line was developed and used for routine cell-based pharmacodynamic screening. Phosphorylation antibody microarray analysis also identified novel downstream pharmacodynamic (PD) biomarkers of MAPK7 kinase inhibition in tumor cells (pMEF2A and pMEF2D). Conclusions Together, these data highlight a broader role for dysregulated MAPK7 in driving tumorigenesis within niche populations of highly prevalent tumor types, and describe current efforts in establishing a robust drug discovery screening cascade. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1455-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul R Gavine
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Mei Wang
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Dehua Yu
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Eva Hu
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Chunlei Huang
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Jenny Xia
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Xinying Su
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Joan Fan
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Tianwei Zhang
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Qingqing Ye
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Li Zheng
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Guanshan Zhu
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Ziliang Qian
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| | - Qingquan Luo
- Shanghai Chest Hospital, Shanghai, People's Republic of China.
| | - Ying Yong Hou
- Shanghai Zhongshan Hospital, Shanghai, People's Republic of China.
| | - Qunsheng Ji
- Innovation Center China, AstraZeneca Global R&D, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
45
|
Arabacilar P, Marber M. The case for inhibiting p38 mitogen-activated protein kinase in heart failure. Front Pharmacol 2015; 6:102. [PMID: 26029107 PMCID: PMC4428223 DOI: 10.3389/fphar.2015.00102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022] Open
Abstract
This minireview discusses the evidence that the inhibition of p38 mitogen-activated protein kinases (p38 MAPKs) maybe of therapeutic value in heart failure. Most previous experimental studies, as well as past and ongoing clinical trials, have focussed on the role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is now growing evidence that these kinases are activated within the myocardium of the failing human heart and in the heart and blood vessels of animal models of heart failure. Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress pathways that lead to the activation of p38 MAPKs in heart failure is analogous to the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin systems. These have provided some of the most effective therapies for heart failure. This minireview questions whether similar and synergistic advantages would follow the inhibition of p38 MAPKs.
Collapse
Affiliation(s)
- Pelin Arabacilar
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital London, UK
| | - Michael Marber
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital London, UK
| |
Collapse
|
46
|
Cameron SJ, Ture SK, Mickelsen D, Chakrabarti E, Modjeski KL, McNitt S, Seaberry M, Field DJ, Le NT, Abe JI, Morrell CN. Platelet Extracellular Regulated Protein Kinase 5 Is a Redox Switch and Triggers Maladaptive Platelet Responses and Myocardial Infarct Expansion. Circulation 2015; 132:47-58. [PMID: 25934838 DOI: 10.1161/circulationaha.115.015656] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Platelets have a pathophysiologic role in the ischemic microvascular environment of acute coronary syndromes. In comparison with platelet activation in normal healthy conditions, less attention is given to mechanisms of platelet activation in diseased states. Platelet function and mechanisms of activation in ischemic and reactive oxygen species-rich environments may not be the same as in normal healthy conditions. Extracellular regulated protein kinase 5 (ERK5) is a mitogen-activated protein kinase family member activated in hypoxic, reactive oxygen species-rich environments and in response to receptor-signaling mechanisms. Prior studies suggest a protective effect of ERK5 in endothelial and myocardial cells after ischemia. We present evidence that platelets express ERK5 and that platelet ERK5 has an adverse effect on platelet activation via selective receptor-dependent and receptor-independent reactive oxygen species-mediated mechanisms in ischemic myocardium. METHODS AND RESULTS Using isolated human platelets and a mouse model of myocardial infarction (MI), we found that platelet ERK5 is activated post-MI and that platelet-specific ERK5(-/-) mice have less platelet activation, reduced MI size, and improved post-MI heart function. Furthermore, the expression of downstream ERK5-regulated proteins is reduced in ERK5(-/-) platelets post-MI. CONCLUSIONS ERK5 functions as a platelet activator in ischemic conditions, and platelet ERK5 maintains the expression of some platelet proteins after MI, leading to infarct expansion. This demonstrates that platelet function in normal healthy conditions is different from platelet function in chronic ischemic and inflammatory conditions. Platelet ERK5 may be a target for acute therapeutic intervention in the thrombotic and inflammatory post-MI environment.
Collapse
Affiliation(s)
- Scott J Cameron
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Sara K Ture
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Deanne Mickelsen
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Enakshi Chakrabarti
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Kristina L Modjeski
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Scott McNitt
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Michael Seaberry
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - David J Field
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Nhat-Tu Le
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Jun-Ichi Abe
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.)
| | - Craig N Morrell
- From Aab Cardiovascular Research Institute, University of Rochester School of Medicine, NY (S.J.C., S.K.T., D.M., E.C., K.L.M., M.S., D.J.F., C.N.M.); Department of Medicine (S.J.C., C.N.M.) and Heart Research Follow-Up Program (S.M.), Division of Cardiology, University of Rochester School of Medicine, NY; and Department of Cardiology Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (N.-T.L., J.-i.A.).
| |
Collapse
|
47
|
Chu UB, Duellman T, Weaver SJ, Tao Y, Yang J. Endothelial protective genes induced by statin are mimicked by ERK5 activation as triggered by a drug combination of FTI-277 and GGTI-298. Biochim Biophys Acta Gen Subj 2015; 1850:1415-25. [PMID: 25829196 DOI: 10.1016/j.bbagen.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/08/2015] [Accepted: 03/23/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Statins are potent inhibitors of cholesterol biosynthesis and are clinically beneficial in preventing cardiovascular diseases, however, the therapeutic utility of these drugs is limited by myotoxicity. Here, we explored the mechanism of statin-mediated activation of ERK5 in the human endothelium with the goal of identifying compounds that confer endothelial protection but are nontoxic to muscle. METHODS An ERK5-one hybrid luciferase reporter transfected into COS-7 cells with pharmacological and molecular manipulations dissected the signaling pathway leading to statin activation of ERK5. qRT-PCR of HUVEC cells documented the transcriptional activation of endothelial-protective genes. Lastly, morphological and cellular ATP analysis, and induction of atrogin-1 in C2C12 myotubes were used to assess statin-induced myopathy. RESULTS Statin activation of ERK5 is dependent on the cellular reduction of GGPPs. Furthermore, we found that the combination of FTI-277 (inhibitor of farnesyl transferase) and GGTI-298 (inhibitor of geranylgeranyl transferase I) mimicked the statin-mediated activation of ERK5. FTI-277 and GGTI-298 together recapitulated the beneficial effects of statins by transcriptionally upregulating anti-inflammatory mediators such as eNOS, THBD, and KLF2. Finally, C2C12 skeletal myotubes treated with both FTI-277 and GGTI-298 evoked less morphological and cellular changes recognized as biomarkers of statin-associated myopathy. CONCLUSIONS Statin-induced endothelial protection and myopathy are mediated by distinct metabolic intermediates and co-inhibition of farnesyl transferase and geranylgeranyl transferase I confer endothelial protection without myopathy. GENERAL SIGNIFICANCE The combinatorial FTI-277 and GGTI-298 drug regimen provides a promising alternative avenue for endothelial protection without myopathy.
Collapse
Affiliation(s)
- Uyen B Chu
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Tyler Duellman
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA; Training Program in Translational Cardiovascular Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Sara J Weaver
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Yunting Tao
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA; Training Program in Translational Cardiovascular Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA.
| |
Collapse
|
48
|
Finegan KG, Perez-Madrigal D, Hitchin JR, Davies CC, Jordan AM, Tournier C. ERK5 is a critical mediator of inflammation-driven cancer. Cancer Res 2015; 75:742-53. [PMID: 25649771 PMCID: PMC4333217 DOI: 10.1158/0008-5472.can-13-3043] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic inflammation is a hallmark of many cancers, yet the pathogenic mechanisms that distinguish cancer-associated inflammation from benign persistent inflammation are still mainly unclear. Here, we report that the protein kinase ERK5 controls the expression of a specific subset of inflammatory mediators in the mouse epidermis, which triggers the recruitment of inflammatory cells needed to support skin carcinogenesis. Accordingly, inactivation of ERK5 in keratinocytes prevents inflammation-driven tumorigenesis in this model. In addition, we found that anti-ERK5 therapy cooperates synergistically with existing antimitotic regimens, enabling efficacy of subtherapeutic doses. Collectively, our findings identified ERK5 as a mediator of cancer-associated inflammation in the setting of epidermal carcinogenesis. Considering that ERK5 is expressed in almost all tumor types, our findings suggest that targeting tumor-associated inflammation via anti-ERK5 therapy may have broad implications for the treatment of human tumors.
Collapse
Affiliation(s)
- Katherine G Finegan
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | - James R Hitchin
- Drug Discovery Unit Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Clare C Davies
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Allan M Jordan
- Drug Discovery Unit Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Cathy Tournier
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
49
|
Wu Y, Chakrabarti S. ERK5 Mediated Signalling in Diabetic Retinopathy. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2015; 4:17-26. [PMID: 25861671 PMCID: PMC4389294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diabetic retinopathy is the lead among causes of blindness in North America. Glucose-induced endothelial injury is the most important cause of diabetic retinopathy and other vascular complications. Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (BMK1), is a member of mitogen-activated protein kinases (MAPK) family. Physiologically, it is critical for cardiovascular development and maintenance of the endothelial cell integrity. Extracellular signal-regulated kinase 5 is protective for endothelial cells under stimulation and stress. Decreased activation of ERK5 results in increased endothelial cell death. Extracellular signal-regulated kinase 5 signaling may be subject to alteration by hyperglycemia, while signaling pathway including ERK5 may be subject to alteration during pathogenesis of diabetic complications. In this review, the role of ERK5 in diabetic macro- and microvascular complications with a focus on diabetic retinopathy are summarized and discussed.
Collapse
|
50
|
Shalaby S, Chitragari G, Sumpio BJ, Sumpio BE. Characterization of extracellular signal-regulated kinase 5 levels in human umbilical vein endothelial cells exposed to disturbed and uniform flow. Int J Angiol 2014; 23:187-92. [PMID: 25317031 DOI: 10.1055/s-0034-1378136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) has been reported to regulate endothelial cell integrity and protect from vascular dysfunction under continuous laminar flow. However, the effect of flow on ERK5 levels has not been determined. Confluent human umbilical vein endothelial cells (HUVECs) were seeded on fibronectin coated glass slides and serum starved for 2 hours with 1% fetal bovine serum (FBS). HUVECs were then exposed to to and fro flow (TFF), pulsatile forward flow (PFF), or continuous laminar flow (CLF) in a parallel plate flow chamber for up to 2 hours. At the end of experiment, cell lysates were prepared and immunoblotted with antibodies to total ERK5. Both CLF and TFF exhibited a decrease in ERK5 after levels after 2-hour exposure. However, the level of ERK5 for PFF remained the same. Disturbed, but not uniform pulsatile, flow decreases ERK5 levels in HUVECs.
Collapse
Affiliation(s)
- Sherif Shalaby
- Department of Vascular Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Gautham Chitragari
- Department of Vascular Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Brandon J Sumpio
- Department of Vascular Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Bauer E Sumpio
- Department of Vascular Surgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|