1
|
Weiss-Haug AV, Haraszti RA, Hug S, Faul C, Bethge WA, Lengerke C. Allogeneic Hemopoietic Cell Transplantation as a Paradigm for Cellular Immunotherapy. Oncol Res Treat 2025; 48:280-293. [PMID: 39907999 DOI: 10.1159/000543928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Allogeneic hematopoietic cell transplantation (alloHCT) is an established curative treatment for hematological malignancies and other severe blood disorders. However, alloHCT is also known for its significant side effects. SUMMARY Here we review recent advances in targeted molecular therapy, immunotherapy, infectiology, and diagnostics that have enhanced the tolerability and efficacy of alloHCT, expanding its use to less fit and elderly patients. We analyze developments in conditioning regimens, donor selection, and the management of graft versus host disease (GVHD) and infections and discuss posttransplantation strategies to prevent relapse. KEY MESSAGE In a fresh perspective, alloHCT can serve as a platform to enhance the potential of emerging targeted and immune therapies.
Collapse
Affiliation(s)
- Alisha Vanessa Weiss-Haug
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Reka Agnes Haraszti
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| | - Stefan Hug
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Faul
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Wolfgang Andreas Bethge
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Wang Y, He S, Calendo G, Bui T, Tian Y, Lee CY, Zhou Y, Zhao X, Abraham C, Mo W, Chen M, Sanders-Braggs R, Madzo J, Issa JP, Hexner EO, Wiest DL, Reshef R, Xue HH, Zhang Y. Tissue-infiltrating alloreactive T cells require Id3 to deflect PD-1-mediated immune suppression during GVHD. Blood 2024; 143:166-177. [PMID: 37871574 PMCID: PMC10797551 DOI: 10.1182/blood.2023021126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
ABSTRACT Persisting alloreactive donor T cells in target tissues are a determinant of graft-versus-host disease (GVHD), but the transcriptional regulators that control the persistence and function of tissue-infiltrating T cells remain elusive. We demonstrate here that Id3, a DNA-binding inhibitor, is critical for sustaining T-cell responses in GVHD target tissues in mice, including the liver and intestine. Id3 loss results in aberrantly expressed PD-1 in polyfunctional T helper 1 (Th1) cells, decreased tissue-infiltrating PD-1+ polyfunctional Th1 cell numbers, impaired maintenance of liver TCF-1+ progenitor-like T cells, and inhibition of GVHD. PD-1 blockade restores the capacity of Id3-ablated donor T cells to mediate GVHD. Single-cell RNA-sequencing analysis revealed that Id3 loss leads to significantly decreased CD28- and PI3K/AKT-signaling activity in tissue-infiltrating polyfunctional Th1 cells, an indicator of active PD-1/PD-L1 effects. Id3 is also required for protecting CD8+ T cells from the PD-1 pathway-mediated suppression during GVHD. Genome-wide RNA-sequencing analysis reveals that Id3 represses transcription factors (e.g., Nfatc2, Fos, Jun, Ets1, and Prdm1) that are critical for PD-1 transcription, exuberant effector differentiation, and interferon responses and dysfunction of activated T cells. Id3 achieves these effects by restraining the chromatin accessibility for these transcription factors. Id3 ablation in donor T cells preserved their graft vs tumor effects in mice undergoing allogeneic hematopoietic stem cell transplantation. Furthermore, CRISPR/Cas9 knockout of ID3 in human CD19-directed chimeric antigen receptor T cells retained their antitumor activity in NOD/SCID/IL2Rg-/- mice early after administration. These findings identify that ID3 is an important target to reduce GVHD, and the gene-editing program of ID3 may have broad implications in T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Shan He
- Fels Institute and Department of Cancer Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tien Bui
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Yuanyuan Tian
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Che Young Lee
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Yan Zhou
- Fox Chase Cancer Center, Temple University, Philadelphia, PA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Ciril Abraham
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
- Fels Institute and Department of Cancer Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Wenbin Mo
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Mimi Chen
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | | | - Jozef Madzo
- Coriell Institute for Medical Research, Camden, NJ
| | | | - Elizabeth O. Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David L. Wiest
- Fox Chase Cancer Center, Temple University, Philadelphia, PA
| | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Yi Zhang
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
- Fels Institute and Department of Cancer Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
3
|
Teshima T, Hashimoto D. Separation of GVL from GVHD -location, location, location. Front Immunol 2023; 14:1296663. [PMID: 38116007 PMCID: PMC10728488 DOI: 10.3389/fimmu.2023.1296663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for various hematologic malignancies. However, alloimmune response is a double-edged sword that mediates both beneficial graft-versus-leukemia (GVL) effects and harmful graft-versus-host disease (GVHD). Separation of GVL effects from GVHD has been a topic of intense research to improve transplant outcomes, but reliable clinical strategies have not yet been established. Target tissues of acute GVHD are the skin, liver, and intestine, while leukemic stem cells reside in the bone marrow. Tissue specific effector T-cell migration is determined by a combination of inflammatory and chemotactic signals that interact with specific receptors on T cells. Specific inhibition of donor T cell migration to GVHD target tissues while preserving migration to the bone marrow may represent a novel strategy to separate GVL from GVHD. Furthermore, tissue specific GVHD therapy, promoting tissue tolerance, and targeting of the tumor immune microenvironment may also help to separate GVHD and GVL.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | |
Collapse
|
4
|
Short S, Issa F. Research Highlights. Transplantation 2023; 107:2082-2083. [PMID: 37955397 DOI: 10.1097/tp.0000000000004806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
5
|
Senjo H, Harada S, Kubota SI, Tanaka Y, Tateno T, Zhang Z, Okada S, Chen X, Kikuchi R, Miyashita N, Onozawa M, Goto H, Endo T, Hasegawa Y, Ohigashi H, Ara T, Hasegawa Y, Murakami M, Teshima T, Hashimoto D. Calcineurin inhibitor inhibits tolerance induction by suppressing terminal exhaustion of donor T cells after allo-HCT. Blood 2023; 142:477-492. [PMID: 37216687 DOI: 10.1182/blood.2023019875] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Calcineurin inhibitor-based graft-versus-host disease (GVHD) prophylaxis is standard in allogeneic hematopoietic stem cell transplantation (HCT) but fails to induce long-term tolerance without chronic GVHD (cGVHD) in a considerable number of patients. In this study, we addressed this long-standing question in mouse models of HCT. After HCT, alloreactive donor T cells rapidly differentiated into PD-1+ TIGIT+ terminally exhausted T cells (terminal Tex). GVHD prophylaxis with cyclosporine (CSP) suppressed donor T-cell expression of TOX, a master regulator to promote differentiation of transitory exhausted T cells (transitory Tex), expressing both inhibitory receptors and effector molecules, into terminal Tex, and inhibited tolerance induction. Adoptive transfer of transitory Tex, but not terminal Tex, into secondary recipients developed cGVHD. Transitory Tex maintained alloreactivity and thus PD-1 blockade restored graft-versus-leukemia (GVL) activity of transitory Tex and not terminal Tex. In conclusion, CSP inhibits tolerance induction by suppressing the terminal exhaustion of donor T cells, while maintaining GVL effects to suppress leukemia relapse.
Collapse
Affiliation(s)
- Hajime Senjo
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinpei Harada
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takahiro Tateno
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zixuan Zhang
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satomi Okada
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Xuanzhong Chen
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Kikuchi
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Miyashita
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuta Hasegawa
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Ohigashi
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahide Ara
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
- Division of Biological Response Analysis, Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Pierini A. No tolerance with immune suppression! Blood 2023; 142:406-407. [PMID: 37535370 DOI: 10.1182/blood.2023021124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
|
7
|
Huang Y, Wu X, Tang S, Wu H, Nasri U, Qin Q, Song Q, Wang B, Tao H, Chong AS, Riggs AD, Zeng D. Donor programmed cell death 1 ligand 1 is required for organ transplant tolerance in major histocompatibility complex-mismatched mixed chimeras although programmed cell death 1 ligand 1 and major histocompatibility complex class II are not required for inducing chimerism. Am J Transplant 2023; 23:1116-1129. [PMID: 37105316 DOI: 10.1016/j.ajt.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Induction of major histocompatibility complex (MHC) human leukocyte antigen (HLA)-mismatched mixed chimerism is a promising approach for organ transplantation tolerance; however, human leukocyte antigen-mismatched stable mixed chimerism has not been achieved in the clinic. Tolerogenic dendritic cell (DC) expression of MHC class II (MHC II) and programmed cell death 1 ligand 1 (PD-L1) is important for immune tolerance, but whether donor-MHC II or PD-L1 is required for the induction of stable MHC-mismatched mixed chimerism and transplant tolerance is unclear. Here, we show that a clinically applicable radiation-free regimen can establish stable MHC-mismatched mixed chimerism and organ transplant tolerance in murine models. Induction of MHC-mismatched mixed chimerism does not require donor cell expression of MHC II or PD-L1, but donor-type organ transplant tolerance in the mixed chimeras (MC) requires the donor hematopoietic cells and the organ transplants to express PD-L1. The PD-L1 expressed by donor hematopoietic cells and the programmed cell death 1 expressed by host cells augment host-type donor-reactive CD4+ and CD8+ T cell anergy/exhaustion and differentiation into peripheral regulatory T (pTreg) cells in association with the organ transplant tolerance in the MC. Conversely, host-type Treg cells augment the expansion of donor-type tolerogenic CD8+ DCs that express PD-L1. These results indicate that PD-L1 expressed by donor-type tolerogenic DCs and expansion of host-type pTreg cells in MHC-mismatched MCs play critical roles in mediating organ transplant tolerance.
Collapse
Affiliation(s)
- Yaxun Huang
- Department of Liver Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Shanshan Tang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Huiqing Wu
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Ubaydah Nasri
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Qi Qin
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingxiao Song
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Bixin Wang
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Fujian Medical University Center of Translational Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hansen Tao
- Arthur Riggs Diabetes and Metabolism Research Institute, Summer Student Academy of City of Hope, Duarte, California, USA
| | - Anita S Chong
- The section of Transplantation, Department of Surgery, the University of Chicago, Chicago, Illinois, USA
| | - Arthur D Riggs
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Defu Zeng
- Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA; Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
8
|
Sacirbegovic F, Günther M, Greco A, Zhao D, Wang X, Zhou M, Rosenberger S, Oberbarnscheidt MH, Held W, McNiff J, Jain D, Höfer T, Shlomchik WD. Graft-versus-host disease is locally maintained in target tissues by resident progenitor-like T cells. Immunity 2023; 56:369-385.e6. [PMID: 36720219 PMCID: PMC10182785 DOI: 10.1016/j.immuni.2023.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023]
Abstract
In allogeneic hematopoietic stem cell transplantation, donor αβ T cells attack recipient tissues, causing graft-versus-host disease (GVHD), a major cause of morbidity and mortality. A central question has been how GVHD is sustained despite T cell exhaustion from chronic antigen stimulation. The current model for GVHD holds that disease is maintained through the continued recruitment of alloreactive effectors from blood into affected tissues. Here, we show, using multiple approaches including parabiosis of mice with GVHD, that GVHD is instead primarily maintained locally within diseased tissues. By tracking 1,203 alloreactive T cell clones, we fitted a mathematical model predicting that within each tissue a small number of progenitor T cells maintain a larger effector pool. Consistent with this, we identified a tissue-resident TCF-1+ subpopulation that preferentially engrafted, expanded, and differentiated into effectors upon adoptive transfer. These results suggest that therapies targeting affected tissues and progenitor T cells within them would be effective.
Collapse
Affiliation(s)
- Faruk Sacirbegovic
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthias Günther
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Alessandro Greco
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Daqiang Zhao
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xi Wang
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Meng Zhou
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Rosenberger
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin H Oberbarnscheidt
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Werner Held
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Jennifer McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany.
| | - Warren D Shlomchik
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Labrosse R, Boufaied I, Bourdin B, Gona S, Randolph HE, Logan BR, Bourbonnais S, Berthe C, Chan W, Buckley RH, Parrott RE, Cuvelier GDE, Kapoor N, Chandra S, Dávila Saldaña BJ, Eissa H, Goldman FD, Heimall J, O'Reilly R, Chaudhury S, Kolb EA, Shenoy S, Griffith LM, Pulsipher M, Kohn DB, Notarangelo LD, Pai SY, Cowan MJ, Dvorak CC, Haddad É, Puck JM, Barreiro LB, Decaluwe H. Aberrant T-cell exhaustion in severe combined immunodeficiency survivors with poor T-cell reconstitution after transplantation. J Allergy Clin Immunol 2023; 151:260-271. [PMID: 35987350 PMCID: PMC9924130 DOI: 10.1016/j.jaci.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) comprises rare inherited disorders of immunity that require definitive treatment through hematopoietic cell transplantation (HCT) or gene therapy for survival. Despite successes of allogeneic HCT, many SCID patients experience incomplete immune reconstitution, persistent T-cell lymphopenia, and poor long-term outcomes. OBJECTIVE We hypothesized that CD4+ T-cell lymphopenia could be associated with a state of T-cell exhaustion in previously transplanted SCID patients. METHODS We analyzed markers of exhaustion in blood samples from 61 SCID patients at a median of 10.4 years after HCT. RESULTS Compared to post-HCT SCID patients with normal CD4+ T-cell counts, those with poor T-cell reconstitution showed lower frequency of naive CD45RA+/CCR7+ T cells, recent thymic emigrants, and TCR excision circles. They also had a restricted TCR repertoire, increased expression of inhibitory receptors (PD-1, 2B4, CD160, BTLA, CTLA-4), and increased activation markers (HLA-DR, perforin) on their total and naive CD8+ T cells, suggesting T-cell exhaustion and aberrant activation, respectively. The exhaustion score of CD8+ T cells was inversely correlated with CD4+ T-cell count, recent thymic emigrants, TCR excision circles, and TCR diversity. Exhaustion scores were higher among recipients of unconditioned HCT, especially when further in time from HCT. Patients with fewer CD4+ T cells showed a transcriptional signature of exhaustion. CONCLUSIONS Recipients of unconditioned HCT for SCID may develop late post-HCT T-cell exhaustion as a result of diminished production of T-lineage cells. Elevated expression of inhibitory receptors on their T cells may be a biomarker of poor long-term T-cell reconstitution.
Collapse
Affiliation(s)
- Roxane Labrosse
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Ines Boufaied
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Saideep Gona
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Haley E Randolph
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis
| | - Sara Bourbonnais
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Chloé Berthe
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada
| | - Wendy Chan
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | | | | | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neena Kapoor
- Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Blachy J Dávila Saldaña
- Division of Blood and Marrow Transplantation, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Hesham Eissa
- Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, Colo
| | - Fred D Goldman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Ala
| | - Jennifer Heimall
- Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Richard O'Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sonali Chaudhury
- Division of Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Edward A Kolb
- Nemours Children's Health, Center for Cancer and Blood Disorders, Wilmington, Del
| | - Shalini Shenoy
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St Louis, Mo
| | - Linda M Griffith
- Division of Allergy, Immunology, and Transplantation, National Institutes of Health, Bethesda, Md
| | - Michael Pulsipher
- Blood and Marrow Transplant Program, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Donald B Kohn
- Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Calif
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Md
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Morton J Cowan
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Christopher C Dvorak
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Élie Haddad
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Jennifer M Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, and UCSF Benioff Children's Hospital, San Francisco, Calif
| | - Luis B Barreiro
- Genetics, Genomics, and Systems Biology, Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Ill
| | - Hélène Decaluwe
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada; Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Köhler N, Ruess DA, Kesselring R, Zeiser R. The Role of Immune Checkpoint Molecules for Relapse After Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:634435. [PMID: 33746972 PMCID: PMC7973115 DOI: 10.3389/fimmu.2021.634435] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint molecules represent physiological brakes of the immune system that are essential for the maintenance of immune homeostasis and prevention of autoimmunity. By inhibiting these negative regulators of the immune response, immune checkpoint blockade can increase anti-tumor immunity, but has been primarily successful in solid cancer therapy and Hodgkin lymphoma so far. Allogeneic hematopoietic cell transplantation (allo-HCT) is a well-established cellular immunotherapy option with the potential to cure hematological cancers, but relapse remains a major obstacle. Relapse after allo-HCT is mainly thought to be attributable to loss of the graft-versus-leukemia (GVL) effect and hence escape of tumor cells from the allogeneic immune response. One potential mechanism of immune escape from the GVL effect is the inhibition of allogeneic T cells via engagement of inhibitory receptors on their surface including PD-1, CTLA-4, TIM3, and others. This review provides an overview of current evidence for a role of immune checkpoint molecules for relapse and its treatment after allo-HCT, as well as discussion of the immune mediated side effect graft-vs.-host disease. We discuss the expression of different immune checkpoint molecules on leukemia cells and T cells in patients undergoing allo-HCT. Furthermore, we review mechanistic insights gained from preclinical studies and summarize clinical trials assessing immune checkpoint blockade for relapse after allo-HCT.
Collapse
Affiliation(s)
- Natalie Köhler
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center - University of Freiburg, Faculty of Medicine, ALU, Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Center of Surgery, Medical Center - University of Freiburg, Faculty of Medicine, ALU, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, Albert Ludwigs University (ALU), Freiburg, Germany
| |
Collapse
|
11
|
Dertschnig S, Evans P, Santos E Sousa P, Manzo T, Ferrer IR, Stauss HJ, Bennett CL, Chakraverty R. Graft-versus-host disease reduces lymph node display of tissue-restricted self-antigens and promotes autoimmunity. J Clin Invest 2020; 130:1896-1911. [PMID: 31917684 PMCID: PMC7108931 DOI: 10.1172/jci133102] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is initially triggered by alloreactive T cells, which damage peripheral tissues and lymphoid organs. Subsequent transition to chronic GVHD involves the emergence of autoimmunity, although the underlying mechanisms driving this process are unclear. Here, we tested the hypothesis that acute GVHD blocks peripheral tolerance of autoreactive T cells by impairing lymph node (LN) display of peripheral tissue–restricted antigens (PTAs). At the initiation of GVHD, LN fibroblastic reticular cells (FRCs) rapidly reduced expression of genes regulated by DEAF1, an autoimmune regulator-like transcription factor required for intranodal expression of PTAs. Subsequently, GVHD led to the selective elimination of the FRC population, and blocked the repair pathways required for its regeneration. We used a transgenic mouse model to show that the loss of presentation of an intestinal PTA by FRCs during GVHD resulted in the activation of autoaggressive T cells and gut injury. Finally, we show that FRCs normally expressed a unique PTA gene signature that was highly enriched for genes expressed in the target organs affected by chronic GVHD. In conclusion, acute GVHD damages and prevents repair of the FRC network, thus disabling an essential platform for purging autoreactive T cells from the repertoire.
Collapse
Affiliation(s)
- Simone Dertschnig
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Pamela Evans
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Pedro Santos E Sousa
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | | | - Ivana R Ferrer
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Hans J Stauss
- Institute of Immunity and Transplantation, London, United Kingdom
| | - Clare L Bennett
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Ronjon Chakraverty
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| |
Collapse
|
12
|
Ferrer IR, West HC, Henderson S, Ushakov DS, Santos E Sousa P, Strid J, Chakraverty R, Yates AJ, Bennett CL. A wave of monocytes is recruited to replenish the long-term Langerhans cell network after immune injury. Sci Immunol 2020; 4:4/38/eaax8704. [PMID: 31444235 DOI: 10.1126/sciimmunol.aax8704] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
A dense population of embryo-derived Langerhans cells (eLCs) is maintained within the sealed epidermis without contribution from circulating cells. When this network is perturbed by transient exposure to ultraviolet light, short-term LCs are temporarily reconstituted from an initial wave of monocytes but thought to be superseded by more permanent repopulation with undefined LC precursors. However, the extent to which this process is relevant to immunopathological processes that damage LC population integrity is not known. Using a model of allogeneic hematopoietic stem cell transplantation, where alloreactive T cells directly target eLCs, we have asked whether and how the original LC network is ultimately restored. We find that donor monocytes, but not dendritic cells, are the precursors of long-term LCs in this context. Destruction of eLCs leads to recruitment of a wave of monocytes that engraft in the epidermis and undergo a sequential pathway of differentiation via transcriptionally distinct EpCAM+ precursors. Monocyte-derived LCs acquire the capacity of self-renewal, and proliferation in the epidermis matched that of steady-state eLCs. However, we identified a bottleneck in the differentiation and survival of epidermal monocytes, which, together with the slow rate of renewal of mature LCs, limits repair of the network. Furthermore, replenishment of the LC network leads to constitutive entry of cells into the epidermal compartment. Thus, immune injury triggers functional adaptation of mechanisms used to maintain tissue-resident macrophages at other sites, but this process is highly inefficient in the skin.
Collapse
Affiliation(s)
- Ivana R Ferrer
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Heather C West
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Stephen Henderson
- Bill Lyons Informatics Centre, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Dmitry S Ushakov
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, New Hunt's House, Newcomen Street, London SE1 1UL, UK
| | - Pedro Santos E Sousa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Ronjon Chakraverty
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Clare L Bennett
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK.
| |
Collapse
|
13
|
Thummalapalli R, Knaus HA, Gojo I, Zeidner JF. Immune Checkpoint Inhibitors in AML-A New Frontier. Curr Cancer Drug Targets 2020; 20:545-557. [PMID: 32316893 DOI: 10.2174/1568009620666200421081455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
Despite recent therapeutic advancements, acute myeloid leukemia (AML) remains a challenging clinical entity with overall poor outcomes. Given the evident role of T cell-mediated immunity in response to allogeneic stem cell transplantation and donor lymphocyte infusions, strategies that enhance immune activation and mitigate immune dysfunction represent attractive therapeutic platforms to improve clinical outcomes in AML. Pre-clinical data suggest that immune dysfunction is a major contributor to AML progression and relapse. Increased expression of immune checkpoints such as programmed death 1 (PD-1) contributes to AML immune evasion and is associated with disease progression. Immune checkpoint inhibition is being explored in AML with early evidence of clinical activity, particularly in combination with cytotoxic chemotherapy and hypomethylating agents. In this review, we explore the scientific rationale behind the use of immune checkpoint inhibition either as single agents or in combination with hypomethylating agents or cytotoxic chemotherapy and provide a clinical update of both completed and ongoing trials in AML.
Collapse
Affiliation(s)
- Rohit Thummalapalli
- Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Hanna A Knaus
- Medical University of Vienna, Department of Medicine, Division of Bone Marrow Transplantation and Cellular Therapies, Vienna, Austria
| | - Ivana Gojo
- Department of Medical Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Joshua F Zeidner
- University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Zhou B, Wang T, Lei L, Lu Y, Zhang L, Tang X, Qiu H, Sun A, Zhang X, Xu Y, Wu D. Prognostic values of increased B7 family proteins in haploidentical hematopoietic stem cell transplantation patients with aGVHD. Int J Hematol 2019; 109:451-462. [PMID: 30725359 DOI: 10.1007/s12185-019-02605-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
It has been reported that B7H1 and B7H3 play a role in graft-versus-host disease (GVHD), the major cause of treatment-related mortality (TRM) in haploidentical hematopoietic stem cell transplantation (haplo-HSCT) patients; however, the prognostic value of these factors has not been defined. We retrospectively collected 64 haplo-HSCT patients in our hospital from 2013 to 2014, as well as 38 HLA-matched-HSCT patients during the same period as the control group. We analyzed B7H1, B7H3, PD1, soluble CD25, ST2 and TNFR1 at 0 day, + 7 days, + 14 days and + 28 days after HSCT. The + 7 days/+ 14 days B7H1/B7H3 and + 28 days ST2 serum levels were higher in patients with aGVHD who underwent haplo-HSCT. Moreover, + 7 days B7H1/B7H3 serum levels were predictive of grade III-IV aGVHD (B7H1: AUC = 0.830, P < 0.001; B7H3: AUC = 0.775, P = 0.001). Haplo-HSCT patients with higher + 7 days B7H1/B7H3 or + 28 days ST2 serum levels had poor GVHD-related mortality (GRM) (B7H1: P < 0.001; B7H3: P = 0.002; ST2: P = 0.047). Multivariate analysis revealed that the + 7 days B7H1 serum level (P = 0.041), as well as viral infection (P = 0.015) and donor age (P = 0.012), could independently predict GRM. Collectively, we found that + 7 days B7H1/B7H3 serum levels can predict grade III-IV aGVHD, while only the + 7 days B7H1 serum level, together with viral infection and donor age, could independently predict GRM in patients with haplo-HSCT.
Collapse
Affiliation(s)
- Biqi Zhou
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Tanzhen Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Lei Lei
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Yutong Lu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Li Zhang
- Bright Scistar Biotech Co., Suzhou, People's Republic of China
| | - Xiaowen Tang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Huiying Qiu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Aining Sun
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yang Xu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China. .,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China.
| | - Depei Wu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China. .,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
15
|
Ghorashian S, Amrolia P, Veys P. Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Exp Hematol 2018; 66:5-16. [DOI: 10.1016/j.exphem.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/07/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022]
|
16
|
Wong E, Davis JE, Grigg A, Szer J, Ritchie D. Strategies to enhance the graft versus tumour effect after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant 2018; 54:175-189. [PMID: 29904127 DOI: 10.1038/s41409-018-0244-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/09/2018] [Accepted: 05/15/2018] [Indexed: 11/09/2022]
Abstract
Relapse of haematological malignancies after allogeneic haematopoietic stem cell transplant is a major cause of mortality. The immunological mechanisms that may lead to disease relapse may include immunological immaturity prior to reconstitution of the allogeneic immune system, tumour antigen downregulation or promotion of T-cell exhaustion by interactions with the tumour microenvironment. Current therapeutic strategies for post-transplant relapse are limited in their efficacy and alternative approaches are required. In this review, we discuss the mechanisms of T and NK-cell immune evasion that facilitate relapse of haematological malignancies after allogeneic stem cell transplantation, and explore emerging strategies to augment the allogeneic immune system in order to construct a more potent graft versus tumour response.
Collapse
Affiliation(s)
- Eric Wong
- Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Victoria, Australia. .,Australian Cancer Research Foundation Translational Research Laboratory, Victoria, Australia. .,Department of Medicine, University of Melbourne, Victoria, Australia.
| | - Joanne E Davis
- Australian Cancer Research Foundation Translational Research Laboratory, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - Andrew Grigg
- Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Clinical Haematology and Olivia Newton John Cancer Research Institute, Austin Hospital, Victoria, Australia
| | - Jeff Szer
- Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - David Ritchie
- Clinical Haematology and Bone Marrow Transplantation, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Victoria, Australia.,Australian Cancer Research Foundation Translational Research Laboratory, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Inman CF, Eldershaw SA, Croudace JE, Davies NJ, Sharma-Oates A, Rai T, Pearce H, Sirovica M, Chan YLT, Verma K, Zuo J, Nagra S, Kinsella F, Nunnick J, Amel-Kashipaz R, Craddock C, Malladi R, Moss P. Unique features and clinical importance of acute alloreactive immune responses. JCI Insight 2018; 3:97219. [PMID: 29769441 PMCID: PMC6012511 DOI: 10.1172/jci.insight.97219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/19/2018] [Indexed: 01/22/2023] Open
Abstract
Allogeneic stem cell transplantation (allo-SCT) can cure some patients with hematopoietic malignancy, but this relies on the development of a donor T cell alloreactive immune response. T cell activity in the first 2 weeks after allo-SCT is crucial in determining outcome, despite the clinical effects of the early alloreactive immune response often not appearing until later. However, the effect of the allogeneic environment on T cells is difficult to study at this time point due to the effects of profound lymphopenia. We approached this problem by comparing T cells at week 2 after allograft to T cells from autograft patients. Allograft T cells were present in small numbers but displayed intense proliferation with spontaneous cytokine production. Oligoclonal expansions at week 2 came to represent a substantial fraction of the established T cell pool and were recruited into tissues affected by graft-versus-host disease. Transcriptional analysis uncovered a range of potential targets for immune manipulation, including OX40L, TWEAK, and CD70. These findings reveal that recognition of alloantigen drives naive T cells toward a unique phenotype. Moreover, they demonstrate that early clonal T cell responses are recruited to sites of subsequent tissue damage and provide a range of targets for potential therapeutic immunomodulation. Alloreactive response T cells at 2 weeks after allo-SCT displayed intense proliferation with spontaneous cytokine production, and were recruited into tissues affected by GvHD.
Collapse
Affiliation(s)
- Charlotte F Inman
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Suzy A Eldershaw
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Joanne E Croudace
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Nathaniel J Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Archana Sharma-Oates
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tanuja Rai
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Mirjana Sirovica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Y L Tracey Chan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Kriti Verma
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Sandeep Nagra
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Francesca Kinsella
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jane Nunnick
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Rasoul Amel-Kashipaz
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Charles Craddock
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ram Malladi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
18
|
Santos e Sousa P, Ciré S, Conlan T, Jardine L, Tkacz C, Ferrer IR, Lomas C, Ward S, West H, Dertschnig S, Blobner S, Means TK, Henderson S, Kaplan DH, Collin M, Plagnol V, Bennett CL, Chakraverty R. Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease. JCI Insight 2018; 3:97011. [PMID: 29515032 PMCID: PMC5922296 DOI: 10.1172/jci.insight.97011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ-specific approaches to block immunopathology while avoiding global immune suppression.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Bone Marrow Transplantation/adverse effects
- Cells, Cultured
- Cellular Reprogramming/genetics
- Cellular Reprogramming/immunology
- Disease Models, Animal
- Female
- Gene Expression Regulation/immunology
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Langerhans Cells/immunology
- Langerhans Cells/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multigene Family/genetics
- Multigene Family/immunology
- Primary Cell Culture
- Receptors, Notch/metabolism
- Skin/cytology
- Skin/immunology
- Skin/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transplantation Chimera
- Transplantation, Homologous/adverse effects
Collapse
Affiliation(s)
- Pedro Santos e Sousa
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Séverine Ciré
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Thomas Conlan
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Laura Jardine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Ivana R. Ferrer
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Cara Lomas
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Sophie Ward
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Heather West
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Simone Dertschnig
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Sven Blobner
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Terry K. Means
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | - Daniel H. Kaplan
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Clare L. Bennett
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Ronjon Chakraverty
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| |
Collapse
|
19
|
Programmed Death-Ligand 1 on Antigen-presenting Cells Facilitates the Induction of Antigen-specific Cytotoxic T Lymphocytes: Application to Adoptive T-Cell Immunotherapy. J Immunother 2018; 39:306-15. [PMID: 27548033 DOI: 10.1097/cji.0000000000000136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Programmed death-ligand 1 (PD-L1) binds to programmed death-1 (PD-1) on activated T cells and contributes to T-cell exhaustion. PD-L1 expressed on antigen-presenting cells (APCs) could be thought to inhibit the induction of Ag-specific cytotoxic T lymphocytes (CTLs) by transducing negative signal into T cells; however, the roles of PD-L1 on APCs have not yet been well examined. Therefore, we evaluated the roles of PD-L1 on APCs in the induction of Ag-specific CTLs. CD3 T cells isolated from cytomegalovirus (CMV)-seropositive healthy donors were stimulated with mature dendritic cells pulsed with CMV pp65-derived HLA-restricted peptides in the presence of anti-PD-L1 blocking antibody. Unexpectedly, PD-L1 blockade resulted in a less efficient induction of CMV-specific CTLs, suggesting that PD-L1 play a positive role in the induction of Ag-specific CTLs. For further evaluations and application to adoptive immunotherapy, we generated K562-based artificial APCs, which were retrovirally transduced with HLA class I molecules and various combinations of CD80/86 and PD-L1. K562/HLA+CD80/86+PD-L1 cells produced significantly higher induction of CMV-specific CTLs than K562/HLA or K562/HLA+CD80/86 cells without causing excessive differentiation or functional exhaustion of the induced CTLs, whereas PD-L1 itself did not have a stimulatory effect. Furthermore, only K562/HLA+CD80/86+PD-L1 cells pulsed with HLA-A*24:02-restricted Wilms tumor 1 (WT1) peptide clearly expanded WT1-specific CTLs from healthy donors. Our findings presumed that PD-L1 expressed on APCs along with CD80/86 enhanced the induction of Ag-specific CTLs probably depending on fine-tuning excessive stimulation of CD80/86, and that K562/HLA+CD80/86+PD-L1 cells has therapeutic potential as a novel type of artificial APCs for adoptive immunotherapy.
Collapse
|
20
|
Knaus HA, Kanakry CG, Luznik L, Gojo I. Immunomodulatory Drugs: Immune Checkpoint Agents in Acute Leukemia. Curr Drug Targets 2017; 18:315-331. [PMID: 25981611 DOI: 10.2174/1389450116666150518095346] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 01/15/2015] [Accepted: 02/27/2015] [Indexed: 12/20/2022]
Abstract
Intrinsic immune responses to acute leukemia are inhibited by a variety of mechanisms, such as aberrant antigen expression by leukemia cells, secretion of immunosuppressive cytokines and expression of inhibitory enzymes in the tumor microenvironment, expansion of immunoregulatory cells, and activation of immune checkpoint pathways, all leading to T cell dysfunction and/or exhaustion. Leukemic cells, similar to other tumor cells, hijack these inhibitory pathways to evade immune recognition and destruction by cytotoxic T lymphocytes. Thus, blockade of immune checkpoints has emerged as a highly promising approach to augment innate anti-tumor immunity in order to treat malignancies. Most evidence for the clinical efficacy of this immunotherapeutic strategy has been seen in patients with metastatic melanoma, where anti-CTLA-4 and anti-PD-1 antibodies have recently revolutionized treatment of this lethal disease with otherwise limited treatment options. To meet the high demand for new treatment strategies in acute leukemia, clinical testing of these promising therapies is commencing. Herein, we review the biology of multiple inhibitory checkpoints (including CTLA-4, PD-1, TIM-3, LAG-3, BTLA, and CD200R) and their contribution to immune evasion by acute leukemias. In addition, we discuss the current state of preclinical and clinical studies of immune checkpoint inhibition in acute leukemia, which seek to harness the body's own immune system to fight leukemic cells.
Collapse
Affiliation(s)
| | | | | | - Ivana Gojo
- Cancer Research Building I, Room 346, 1650 Orleans Street, Baltimore, MD 21287, United States
| |
Collapse
|
21
|
Memory T cells: A helpful guard for allogeneic hematopoietic stem cell transplantation without causing graft-versus-host disease. Hematol Oncol Stem Cell Ther 2017. [PMID: 28636890 DOI: 10.1016/j.hemonc.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (AHSCT) and the major cause of nonrelapse morbidity and mortality of AHSCT. In AHSCT, donor T cells facilitate hematopoietic stem cell (HSC) engraftment, contribute to anti-infection immunity, and mediate graft-versus-leukemia (GVL) responses. However, activated alloreactive T cells also attack recipient cells in vital organs, leading to GVHD. Different T-cell subsets, including naïve T (TN) cells, memory T (TM) cells, and regulatory T (Treg) cells mediate different forms of GVHD and GVL; TN cells mediate severe GVHD, whereas TM cells do not cause GVHD, but preserve T-cell function including GVL. In addition, metabolic reprogramming controls T-cell differentiation and activation in these disease states. This minireview focuses on the role and the related mechanisms of TM cells in AHSCT, and the potential manipulation of T cells in AHSCT.
Collapse
|
22
|
Ni X, Song Q, Cassady K, Deng R, Jin H, Zhang M, Dong H, Forman S, Martin PJ, Chen YZ, Wang J, Zeng D. PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells. J Clin Invest 2017; 127:1960-1977. [PMID: 28414296 PMCID: PMC5409099 DOI: 10.1172/jci91138] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
Programmed death ligand-1 (PD-L1) interacts with programmed death-1 (PD-1) and the immunostimulatory molecule CD80 and functions as a checkpoint to regulate immune responses. The interaction of PD-L1 with CD80 alone has been shown to exacerbate the severity of graft-versus-host disease (GVHD), whereas costimulation of CD80 and PD-1 ameliorates GVHD. Here we have demonstrated that temporary depletion of donor CD4+ T cells early after hematopoietic cell transplantation effectively prevents GVHD while preserving strong graft-versus-leukemia (GVL) effects in allogeneic and xenogeneic murine GVHD models. Depletion of donor CD4+ T cells increased serum IFN-γ but reduced IL-2 concentrations, leading to upregulation of PD-L1 expression by recipient tissues and donor CD8+ T cells. In GVHD target tissues, the interactions of PD-L1 with PD-1 on donor CD8+ T cells cause anergy, exhaustion, and apoptosis, thereby preventing GVHD. In lymphoid tissues, the interactions of PD-L1 with CD80 augment CD8+ T cell expansion without increasing anergy, exhaustion, or apoptosis, resulting in strong GVL effects. These results indicate that the outcome of PD-L1-mediated signaling in CD8+ T cells depends on the presence or absence of CD4+ T cells, the nature of the interacting receptor expressed by CD8+ T cells, and the tissue environment in which the signaling occurs.
Collapse
|
23
|
Manzo T, Sturmheit T, Basso V, Petrozziello E, Hess Michelini R, Riba M, Freschi M, Elia AR, Grioni M, Curnis F, Protti MP, Schumacher TN, Debets R, Swartz MA, Corti A, Bellone M, Mondino A. T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. Cancer Res 2016; 77:658-671. [PMID: 27872095 DOI: 10.1158/0008-5472.can-16-0725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
Abstract
Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR.
Collapse
Affiliation(s)
- Teresa Manzo
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Tabea Sturmheit
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Petrozziello
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Rodrigo Hess Michelini
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Michela Riba
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Freschi
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Angela R Elia
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Grioni
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Flavio Curnis
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Protti
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Melody A Swartz
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Angelo Corti
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
24
|
Robinson TM, Luznik L. For Whom the Bell Tolls: Programmed Death 1 as a Marker of Post-Transplantation Mortality. Biol Blood Marrow Transplant 2016; 22:2115-2116. [PMID: 27638363 DOI: 10.1016/j.bbmt.2016.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Tara M Robinson
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University, Baltimore, Maryland.
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
25
|
Schade H, Sen S, Neff CP, Freed BM, Gao D, Gutman JA, Palmer BE. Programmed Death 1 Expression on CD4 + T Cells Predicts Mortality after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:2172-2179. [PMID: 27519280 DOI: 10.1016/j.bbmt.2016.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Excessive or persistent programmed death 1 (PD-1) expression on virus- or tumor-specific T cells during chronic viral infection or malignancy has been associated with impaired immune control. To assess the role of the PD-1 pathway in allogeneic stem cell transplantation (SCT), we examined PD-1 expression and maturation phenotype on T cells from 42 patients early (day 55 to 85) after cord blood (CB), matched unrelated donor, and matched related donor transplantation. Expression of PD-1 on CD4+ T cells was significantly elevated in all transplantation types, with the highest level observed in CB subjects. Elevated PD-1 expression on CD4+ T cells early after transplantation was observed in nonsurvivors (median, 40.2%; range, 15.1 to 86.1) compared with survivors (median, 23.6%; range, 8.4 to 55.2; P = .001), indicating its association with increased risk for mortality, especially with CB transplantations, where PD-1 was increased in nonsurvivors (median, 64.6%; range, 36.5 to 86.1) compared with survivors (median, 34.1%; range, 15.9 to 55.2; P = .01). Furthermore, T cell subset analysis revealed that PD-1 expression was further elevated on CD4+ T central memory in nonsurvivors (median, 49.8%; range, 15.1 to 83.4) compared with survivors (median, 24.8%; range, 8.9 to 71.3; P = .002) and on T effector memory cells in nonsurvivors (median, 69.1%; range, 24.7 to 92.6) compared with survivors (median, 43.7%; range, 13.9 to 96.5; P = .0003). Our findings suggest that elevation of PD-1 expression on CD4+ T cells is associated with mortality in CB and possibly all SCT recipients.
Collapse
Affiliation(s)
- Henning Schade
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Hematology and Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sharon Sen
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Allergy and Clinical Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - C Preston Neff
- Division of Allergy and Clinical Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brian M Freed
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Allergy and Clinical Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dexiang Gao
- Department of Pediatrics and Department of Biostatistics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jonathan A Gutman
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Hematology and Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brent E Palmer
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Allergy and Clinical Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
26
|
Saha A, O'Connor RS, Thangavelu G, Lovitch SB, Dandamudi DB, Wilson CB, Vincent BG, Tkachev V, Pawlicki JM, Furlan SN, Kean LS, Aoyama K, Taylor PA, Panoskaltsis-Mortari A, Foncea R, Ranganathan P, Devine SM, Burrill JS, Guo L, Sacristan C, Snyder NW, Blair IA, Milone MC, Dustin ML, Riley JL, Bernlohr DA, Murphy WJ, Fife BT, Munn DH, Miller JS, Serody JS, Freeman GJ, Sharpe AH, Turka LA, Blazar BR. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest 2016; 126:2642-60. [PMID: 27294527 DOI: 10.1172/jci85796] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Programmed death ligand-1 (PD-L1) interaction with PD-1 induces T cell exhaustion and is a therapeutic target to enhance immune responses against cancer and chronic infections. In murine bone marrow transplant models, PD-L1 expression on host target tissues reduces the incidence of graft-versus-host disease (GVHD). PD-L1 is also expressed on T cells; however, it is unclear whether PD-L1 on this population influences immune function. Here, we examined the effects of PD-L1 modulation of T cell function in GVHD. In patients with severe GVHD, PD-L1 expression was increased on donor T cells. Compared with mice that received WT T cells, GVHD was reduced in animals that received T cells from Pdl1-/- donors. PD-L1-deficient T cells had reduced expression of gut homing receptors, diminished production of inflammatory cytokines, and enhanced rates of apoptosis. Moreover, multiple bioenergetic pathways, including aerobic glycolysis, oxidative phosphorylation, and fatty acid metabolism, were also reduced in T cells lacking PD-L1. Finally, the reduction of acute GVHD lethality in mice that received Pdl1-/- donor cells did not affect graft-versus-leukemia responses. These data demonstrate that PD-L1 selectively enhances T cell-mediated immune responses, suggesting a context-dependent function of the PD-1/PD-L1 axis, and suggest selective inhibition of PD-L1 on donor T cells as a potential strategy to prevent or ameliorate GVHD.
Collapse
|
27
|
Proteogenomic-based discovery of minor histocompatibility antigens with suitable features for immunotherapy of hematologic cancers. Leukemia 2016; 30:1344-54. [PMID: 26857467 DOI: 10.1038/leu.2016.22] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/02/2016] [Accepted: 01/10/2016] [Indexed: 12/19/2022]
Abstract
Pre-clinical studies have shown that injection of allogeneic T cells primed against a single minor histocompatibility antigen (MiHA) could cure hematologic cancers (HC) without causing any toxicity to the host. However, translation of this approach in humans has been hampered by the paucity of molecularly defined human MiHAs. Using a novel proteogenomic approach, we have analyzed cells from 13 volunteers and discovered a vast repertoire of MiHAs presented by the most common HLA haplotype in European Americans: HLA-A*02:01;B*44:03. Notably, out of >6000 MiHAs, we have identified a set of 39 MiHAs that share optimal features for immunotherapy of HCs. These 'optimal MiHAs' are coded by common alleles of genes that are preferentially expressed in hematopoietic cells. Bioinformatic modeling based on MiHA allelic frequencies showed that the 39 optimal MiHAs would enable MiHA-targeted immunotherapy of practically all HLA-A*02:01;B*44:03 patients. Further extension of this strategy to a few additional HLA haplotypes would allow treatment of almost all patients.
Collapse
|
28
|
Ishii K, Barrett AJ. Novel immunotherapeutic approaches for the treatment of acute leukemia (myeloid and lymphoblastic). Ther Adv Hematol 2016; 7:17-39. [PMID: 26834952 PMCID: PMC4713888 DOI: 10.1177/2040620715616544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There have been major advances in our understanding of the multiple interactions between malignant cells and the innate and adaptive immune system. While the attention of immunologists has hitherto focused on solid tumors, the specific immunobiology of acute leukemias is now becoming defined. These discoveries have pointed the way to immune interventions building on the established graft-versus-leukemia (GVL) effect from hematopoietic stem-cell transplant (HSCT) and extending immunotherapy beyond HSCT to individuals with acute leukemia with a diversity of immune manipulations early in the course of the leukemia. At present, clinical results are in their infancy. In the coming years larger studies will better define the place of immunotherapy in the management of acute leukemias and lead to treatment approaches that combine conventional chemotherapy, immunotherapy and HSCT to achieve durable cures.
Collapse
Affiliation(s)
- Kazusa Ishii
- Hematology Branch, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Austin J. Barrett
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Michonneau D, Sagoo P, Breart B, Garcia Z, Celli S, Bousso P. The PD-1 Axis Enforces an Anatomical Segregation of CTL Activity that Creates Tumor Niches after Allogeneic Hematopoietic Stem Cell Transplantation. Immunity 2016; 44:143-154. [DOI: 10.1016/j.immuni.2015.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/18/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
|
30
|
Li HW, Andreola G, Carlson AL, Shao S, Lin CP, Zhao G, Sykes M. Rapid Functional Decline of Activated and Memory Graft-versus-Host-Reactive T Cells Encountering Host Antigens in the Absence of Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1282-92. [PMID: 26085679 DOI: 10.4049/jimmunol.1401511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 05/22/2015] [Indexed: 01/04/2023]
Abstract
Inflammation in the priming host environment has critical effects on the graft-versus-host (GVH) responses mediated by naive donor T cells. However, it is unclear how a quiescent or inflammatory environment impacts the activity of GVH-reactive primed T and memory cells. We show in this article that GVH-reactive primed donor T cells generated in irradiated recipients had diminished ability compared with naive T cells to increase donor chimerism when transferred to quiescent mixed allogeneic chimeras. GVH-reactive primed T cells showed marked loss of cytotoxic function and activation, and delayed but not decreased proliferation or accumulation in lymphoid tissues when transferred to quiescent mixed chimeras compared with freshly irradiated secondary recipients. Primed CD4 and CD8 T cells provided mutual help to sustain these functions in both subsets. CD8 help for CD4 cells was largely IFN-γ dependent. TLR stimulation after transfer of GVH-reactive primed T cells to mixed chimeras restored their cytotoxic effector function and permitted the generation of more effective T cell memory in association with reduced PD-1 expression on CD4 memory cells. Our data indicate that an inflammatory host environment is required for the maintenance of GVH-reactive primed T cell functions and the generation of memory T cells that can rapidly acquire effector functions. These findings have important implications for graft-versus-host disease and T cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129
| | - Giovanna Andreola
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129
| | - Alicia L Carlson
- Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114; and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Steven Shao
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| | - Charles P Lin
- Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114; and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Guiling Zhao
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129;
| |
Collapse
|
31
|
Loewendorf AI, Csete M, Flake A. Immunological considerations in in utero hematopoetic stem cell transplantation (IUHCT). Front Pharmacol 2015; 5:282. [PMID: 25610396 PMCID: PMC4285014 DOI: 10.3389/fphar.2014.00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023] Open
Abstract
In utero hematopoietic stem cell transplantation (IUHCT) is an attractive approach and a potentially curative surgery for several congenital hematopoietic diseases. In practice, this application has succeeded only in the context of Severe Combined Immunodeficiency Disorders. Here, we review potential immunological hurdles for the long-term establishment of chimerism and discuss relevant models and findings from both postnatal hematopoietic stem cell transplantation and IUHCT.
Collapse
Affiliation(s)
- Andrea I Loewendorf
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Marie Csete
- Chief Scientific Officer, The Huntington Medical Research Institutes Pasadena, CA, USA
| | - Alan Flake
- The Children's Hospital of Philadelphia, Children's Institute of Surgical Science Philadelphia, PA, USA
| |
Collapse
|
32
|
Buchan S, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, Sivakumaran S, Ghorashian S, Carpenter B, Bennett C, Freeman GJ, Sykes M, Croft M, Al-Shamkhani A, Chakraverty R. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:125-133. [PMID: 25404365 PMCID: PMC4272895 DOI: 10.4049/jimmunol.1401644] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exhaustion of chronically stimulated CD8(+) T cells is a significant obstacle to immune control of chronic infections or tumors. Although coinhibitory checkpoint blockade with anti-programmed death ligand 1 (PD-L1) Ab can restore functions to exhausted T cell populations, recovery is often incomplete and dependent upon the pool size of a quiescent T-bet(high) subset that expresses lower levels of PD-1. In a model in which unhelped, HY-specific CD8(+) T cells gradually lose function following transfer to male bone marrow transplantation recipients, we have explored the effect of shifting the balance away from coinhibition and toward costimulation by combining anti-PD-L1 with agonistic Abs to the TNFR superfamily members, OX40 and CD27. Several weeks following T cell transfer, both agonistic Abs, but especially anti-CD27, demonstrated synergy with anti-PD-L1 by enhancing CD8(+) T cell proliferation and effector cytokine generation. Anti-CD27 and anti-PD-L1 synergized by downregulating the expression of multiple quiescence-related genes concomitant with a reduced frequency of T-bet(high) cells within the exhausted population. However, in the presence of persistent Ag, the CD8(+) T cell response was not sustained and the overall size of the effector cytokine-producing pool eventually contracted to levels below that of controls. Thus, CD27-mediated costimulation can synergize with coinhibitory checkpoint blockade to switch off molecular programs for quiescence in exhausted T cell populations, but at the expense of losing precursor cells required to maintain a response.
Collapse
Affiliation(s)
- Sarah Buchan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton
| | - Teresa Manzo
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Barry Flutter
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Anne Rogel
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton
| | - Noha Edwards
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Lei Zhang
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Shivajanani Sivakumaran
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Sara Ghorashian
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Ben Carpenter
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Clare Bennett
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York
| | | | | | - Ronjon Chakraverty
- Transplantation Immunology Group, Cancer Institute and Institute for Immunity and Transplantation, University College London
| |
Collapse
|
33
|
Impaired CD8(+) T cell immunity after allogeneic bone marrow transplantation leads to persistent and severe respiratory viral infection. Transpl Immunol 2014; 32:51-60. [PMID: 25446809 DOI: 10.1016/j.trim.2014.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
Abstract
RATIONALE Bone marrow transplant (BMT) recipients experience frequent and severe respiratory viral infections (RVIs). However, the immunological mechanisms predisposing to RVIs are uncertain. Therefore, we hypothesized that antiviral T cell immunity is impaired as a consequence of allogeneic BMT, independent of pharmacologic immunosuppression, and is responsible for increased susceptibility to RVI. METHODS Bone marrow and splenocytes from C57BL/6(H2(b)) mice were transplanted into B10.BR(H2(k)) (Allo) or C57BL/6(H2(b)) (Syn) recipients. Five weeks after transplantation, recipient mice were inoculated intranasally with mouse parainfluenza virus type 1 (mPIV-1), commonly known as Sendai virus (SeV), and monitored for relevant immunological and disease endpoints. MAIN RESULTS Severe and persistent airway inflammation, epithelial injury, and enhanced mortality are found after viral infection in Allo mice but not in control Syn and non-transplanted mice. In addition, viral clearance is delayed in Allo mice as evidenced by prolonged detection of viral transcripts at Day 15 post-inoculation (p.i.) but not in control mice. In concert with these events, we also detected decreased levels of total and virus-specific CD8(+) T cells, as well as increased T cellexpression of inhibitory receptor programmed death-1 (PD-1), in the lungs of Allo mice at Day 8 p.i. Adoptive transfer of CD8(+) T cells from non-transplanted mice recovered from SeV infection into Allo mice at Day 8 p.i. restored normal levels of viral clearance, epithelial repair, and lung inflammation. CONCLUSIONS Taken together these results indicate that allogeneic BMT results in more severe RVI based on the failure to develop an appropriate pulmonary CD8(+) T cell response, providing an important potential mechanism to target in improving outcomes of RVI after BMT.
Collapse
|
34
|
Sun Y, Tawara I, Zhao M, Qin ZS, Toubai T, Mathewson N, Tamaki H, Nieves E, Chinnaiyan AM, Reddy P. Allogeneic T cell responses are regulated by a specific miRNA-mRNA network. J Clin Invest 2014; 123:4739-54. [PMID: 24216511 DOI: 10.1172/jci70013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022] Open
Abstract
Donor T cells that respond to host alloantigens following allogeneic bone marrow transplantation (BMT) induce graft-versus-host (GVH) responses, but their molecular landscape is not well understood. MicroRNAs (miRNAs) regulate gene (mRNA) expression and fine-tune the molecular responses of T cells. We stimulated naive T cells with either allogeneic or nonspecific stimuli and used argonaute cross-linked immunoprecipitation (CLIP) with subsequent ChIP microarray analyses to profile miR responses and their direct mRNA targets. We identified a unique expression pattern of miRs and mRNAs following the allostimulation of T cells and a high correlation between the expression of the identified miRs and a reduction of their mRNA targets. miRs and mRNAs that were predicted to be differentially regulated in allogeneic T cells compared with nonspecifically stimulated T cells were validated in vitro. These analyses identified wings apart-like homolog (Wapal) and synaptojanin 1 (Synj1) as potential regulators of allogeneic T cell responses. The expression of these molecular targets in vivo was confirmed in MHC-mismatched experimental BMT. Targeted silencing of either Wapal or Synj1 prevented the development of GVH response, confirming a role for these regulators in allogeneic T cell responses. Thus, this genome-wide analysis of miRNA-mRNA interactions identifies previously unrecognized molecular regulators of T cell responses.
Collapse
|
35
|
Saha A, Aoyama K, Taylor PA, Koehn BH, Veenstra RG, Panoskaltsis-Mortari A, Munn DH, Murphy WJ, Azuma M, Yagita H, Fife BT, Sayegh MH, Najafian N, Socie G, Ahmed R, Freeman GJ, Sharpe AH, Blazar BR. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood 2013; 122:3062-73. [PMID: 24030385 PMCID: PMC3811178 DOI: 10.1182/blood-2013-05-500801] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022] Open
Abstract
Programmed death 1 (PD-1) and its ligands, PD-L1 and PD-L2, play an important role in the maintenance of peripheral tolerance. We explored the role of PD-1 ligands in regulating graft-versus-host disease (GVHD). Both PD-L1 and PD-L2 expression were upregulated in the spleen, liver, colon, and ileum of GVHD mice. Whereas PD-L2 expression was limited to hematopoietic cells, hematopoietic and endothelial cells expressed PD-L1. PD-1/PD-L1, but not PD-1/PD-L2, blockade markedly accelerated GVHD-induced lethality. Chimera studies suggest that PD-L1 expression on host parenchymal cells is more critical than hematopoietic cells in regulating acute GVHD. Rapid mortality onset in PD-L1-deficient hosts was associated with increased gut T-cell homing and loss of intestinal epithelial integrity, along with increased donor T-cell proliferation, activation, Th1 cytokine production, and reduced apoptosis. Bioenergetics profile analysis of proliferating alloreactive donor T-cells demonstrated increased aerobic glycolysis and oxidative phosphorylation in PD-L1-deficient hosts. Donor T-cells exhibited a hyperpolarized mitochondrial membrane potential, increased superoxide production, and increased expression of a glucose transporter in PD-L1-deficient hosts. Taken together, these data provide new insight into the differential roles of host PD-L1 and PD-L2 and their associated cellular and metabolic mechanisms controlling acute GVHD.
Collapse
Affiliation(s)
- Asim Saha
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shand JC, Qin H, Nasholm N, Capitini CM, Fry TJ. Minor antigen distribution predicts site-specific graft-versus-tumor activity of adoptively transferred, minor antigen-specific CD8 T Cells. Biol Blood Marrow Transplant 2013; 20:26-36. [PMID: 24141010 DOI: 10.1016/j.bbmt.2013.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
The clinical success of allogeneic T cell therapy for cancer relies on the selection of antigens that can effectively elicit antitumor responses with minimal toxicity toward nonmalignant tissues. Although minor histocompatibility antigens (MiHA) represent promising targets, broad expression of these antigens has been associated with poor responses and T cell dysfunction that may not be prevented by targeting MiHA with limited expression. In this study, we hypothesized that antitumor activity of MiHA-specific CD8 T cells after allogeneic bone marrow transplantation (BMT) is determined by the distribution of antigen relative to the site of tumor growth. To test this hypothesis, we utilized the clinically relevant male-specific antigen HY and studied the fate of adoptively transferred, HY-CD8(+) T cells (HY-CD8) against a HY-expressing epithelial tumor (MB49) and pre-B cell leukemia (HY-E2APBX ALL) in BMT recipients. Transplants were designed to produce broad HY expression in nonhematopoietic tissues (female → male BMT, [F → M]), restricted HY expression in hematopoietic tissues (male → female BMT, [M → F]) tissues, and no HY tissue expression (female → female BMT, [F → F]). Broad HY expression induced poor responses to MB49 despite sublethal graft-versus-host disease and accumulation of HY-CD8 in secondary lymphoid tissues. Antileukemia responses, however, were preserved. In contrast, restriction of HY expression to hematopoietic tissues restored MB49 responses but resulted in a loss of antileukemia responses. We concluded that target alloantigen expression in the same compartment of tumor growth impairs CD8 responses to both solid and hematologic tumors.
Collapse
Affiliation(s)
- Jessica C Shand
- Blood and Marrow Transplant Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Haiying Qin
- Blood and Marrow Transplant Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nicole Nasholm
- Blood and Marrow Transplant Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christian M Capitini
- Department of Pediatrics and UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Terry J Fry
- Blood and Marrow Transplant Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
37
|
Memory T cells and their exhaustive differentiation in allograft tolerance and rejection. Curr Opin Organ Transplant 2013; 17:15-9. [PMID: 22186090 DOI: 10.1097/mot.0b013e32834ee443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Memory T cells have emerged as a major threat to transplant survival; they are well equipped and well positioned to respond to antigens in an accelerated fashion. They participate in transplant rejection and resist interventions that usually contain naïve T cells. Thus, the means to prevent memory T cells from attacking allotransplants are an important issue in transplantation. RECENT FINDINGS Recent studies in other models suggest that effector T cells, which include both freshly activated T cells and memory T cells, can acquire 'an exhausted phenotype' in that they progressively lose their effector activities. This response is highly regulated, antigen specific, and driven primarily by antigen persistence. This exhausted phenotype has not been carefully explored in transplant models, and its role in transplant survival remains largely unknown. SUMMARY Studies of T-cell exhaustion may reveal additional facets of the fundamental mechanisms of transplant survival. T-cell exhaustion may be an alternative way of preventing memory development. Future studies are needed to further improve our understanding of T-cell exhaustion in transplantation.
Collapse
|
38
|
Ding X, Bian G, Leigh ND, Qiu J, McCarthy PL, Liu H, Aygun-Sunar S, Burdelya LG, Gudkov AV, Cao X. A TLR5 agonist enhances CD8(+) T cell-mediated graft-versus-tumor effect without exacerbating graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2012; 189:4719-27. [PMID: 23045613 DOI: 10.4049/jimmunol.1201206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allogeneic hematopoietic cell transplantation is an established treatment for hematologic and nonhematologic malignancies. Donor-derived immune cells can identify and attack host tumor cells, producing a graft-versus-tumor (GVT) effect that is crucial to the effectiveness of the transplantation therapy. CBLB502 is a novel agonist for TLR5 derived from Salmonella flagellin. On the basis of TLR5-mediated immunomodulatory function, we examined the effect of CBLB502 on GVT activity. Using two tumor models that do not express TLR5, and thereby do not directly respond to CBLB502, we found that CBLB502 treatment significantly enhanced allogeneic CD8(+) T cell-mediated GVT activity, which was evidenced by decreased tumor burden and improved host survival. Importantly, histopathologic analyses showed that CBLB502 treatment did not exacerbate the moderate graft-versus-host disease condition caused by the allogeneic CD8(+) T cells. Moreover, mechanistic analyses showed that CBLB502 stimulates CD8(+) T cell proliferation and enhances their tumor killing activity mainly indirectly through a mechanism that involves the IL-12 signaling pathway and the CD11c(+) and CD11b(+) populations in the bone marrow cells. This study demonstrates a new beneficial effect of CBLB502, and suggests that TLR5-mediated immune modulation may be a promising approach to improve GVT immunity without exacerbating graft-versus-host disease.
Collapse
Affiliation(s)
- Xilai Ding
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Abstract
The adaptive immune system can be a potent defense mechanism against cancer; however, it is often hampered by immune suppressive mechanisms in the tumor microenvironment. Coinhibitory molecules expressed by tumor cells, immune cells, and stromal cells in the tumor milieu can dominantly attenuate T-cell responses against cancer cells. Today, a variety of coinhibitory molecules, including cytotoxic T lymphocyte–associated antigen-4, programmed death-1, B and T lymphocyte attenuator, LAG3, T-cell immunoglobulin and mucin domain 3, and CD200 receptor, have been implicated in immune escape of cancer cells. Sustained signaling via these coinhibitory molecules results in functional exhaustion of T cells, during which the ability to proliferate, secrete cytokines, and mediate lysis of tumor cells is sequentially lost. In this review, we discuss the influence of coinhibitory pathways in suppressing autologous and allogeneic T cell–mediated immunity against hematologic malignancies. In addition, promising preclinical and clinical data of immunotherapeutic approaches interfering with negative cosignaling, either as monotherapy or in conjunction with vaccination strategies, are reviewed. Numerous studies indicate that coinhibitory signaling hampers the clinical benefit of current immunotherapies. Therefore, manipulation of coinhibitory networks is an attractive adjuvant immunotherapeutic intervention for hematologic cancers after standard treatment with chemotherapy and hematopoietic stem cell transplantation.
Collapse
|
40
|
Zhang P, Wu J, Deoliveira D, Chao NJ, Chen BJ. Allospecific CD4(+) effector memory T cells do not induce graft-versus-host disease in mice. Biol Blood Marrow Transplant 2012; 18:1488-99. [PMID: 22809867 DOI: 10.1016/j.bbmt.2012.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/09/2012] [Indexed: 11/29/2022]
Abstract
We studied whether allospecific CD4(+) effector memory T cells (T(EM)) could induce graft-versus-host disease (GVHD) using a novel GVHD model induced solely by CD4(+) T cell receptor transgenic TEa cells. Allospecific T(EM) generated in a lymphopenic host bore a typical memory phenotype. Moreover, these cells were able to elicit a faster and more effective proliferative response on challenge with alloantigen in vitro and to mediate "second-set" skin graft rejection in vivo. However, these allospecific T(EM) were unable to induce GVHD. Allospecific T(EM) recipients became tolerant to alloantigen as a result of clonal deletion. Even though allospecific T(EM) were able to respond to alloantigen initially, the expansion of these cells and inflammatory cytokine production during GVHD were dramatically decreased. The inability of allospecific T(EM) to sustain the alloresponse may be a result of enhanced activation-induced cell death. These observations provide insight into how allospecific CD4(+) T(EM) respond to alloantigen during GVHD and underscore the fundamental differences in alloresponses mediated by allospecific T(EM) in graft rejection and GVHD settings.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Haematopoietic cell transplantation (HCT) is the most widely used form of cellular therapy. It is the only known cure for some haematological malignancies and has recently been used in additional clinical settings, such as allograft tolerance induction and treatment of autoimmune diseases. Recent advances have enabled HCT in a wider range of patients with improved outcomes. This Review summarizes the latest developments in this therapy, focusing on issues that will affect future advancement.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Columbia University Medical Center, 650 West 168th Street, BB 15-02, New York, New York 10032, USA
| | | |
Collapse
|
42
|
Abstract
Allogeneic haematopoietic stem cell transplantation is used to treat a variety of disorders, but its efficacy is limited by the occurrence of graft-versus-host disease (GVHD). The past decade has brought impressive advances in our understanding of the role of stimulatory and suppressive elements of the adaptive and innate immune systems from both the donor and the host in GVHD pathogenesis. New insights from basic immunology, preclinical models and clinical studies have led to novel approaches for prevention and treatment. This Review highlights the recent advances in understanding the pathophysiology of GVHD and its treatment, with a focus on manipulations of the immune system that are amenable to clinical application.
Collapse
|
43
|
Li Z, Peng H, Xu Q, Ye Z. Sensitization of human osteosarcoma cells to Vγ9Vδ2 T-cell-mediated cytotoxicity by zoledronate. J Orthop Res 2012; 30:824-30. [PMID: 22025284 DOI: 10.1002/jor.21579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/06/2011] [Indexed: 02/04/2023]
Abstract
Despite improvements in the treatment of osteosarcoma, there is a need for new therapeutic strategies, in particular for the treatment of recurrent tumors and metastases. Adoptive immunotherapy with Vγ9Vδ2 T lymphocytes represents an attractive strategy. We have investigated combining adoptive immunotherapy with Vγ9Vδ2 T cells and zoledronate to optimize osteosarcoma therapy. Vγ9Vδ2 T cells, from healthy volunteers and patients with osteosarcoma, cultures alone demonstrated moderate or poor cytotoxic activity against osteosarcoma cell lines, respectively. The addition of zoledronate further increased cytotoxicity in vitro. This enhancement was largely dependent on the granule exocytose and partly on TRAIL pathways, was TCR-mediated and partly NKG2D-mediated. These data suggest that combined treatment of human osteosarcoma with zoledronate and Vγ9Vδ2 T cells may be an effective complement to current chemotherapies.
Collapse
Affiliation(s)
- Zhaoxu Li
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | | | | | | |
Collapse
|
44
|
Li X, Deng R, He W, Liu C, Wang M, Young J, Meng Z, Du C, Huang W, Chen L, Chen Y, Martin P, Forman S, Zeng D. Loss of B7-H1 expression by recipient parenchymal cells leads to expansion of infiltrating donor CD8+ T cells and persistence of graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2011; 188:724-34. [PMID: 22156590 DOI: 10.4049/jimmunol.1102630] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous experimental studies have shown that acute graft-versus-host disease (GVHD) is associated with two waves of donor CD8(+) T cell expansion. In the current studies, we used in vivo bioluminescent imaging, in vivo BrdU labeling, and three different experimental GVHD systems to show that B7-H1 expression by recipient parenchymal cells controls the second wave of alloreactive donor CD8(+) T cell expansion and the associated second phase of GVHD. Loss of B7-H1 expression by parenchymal cells during the course of GVHD was associated with persistent proliferation of donor CD8(+) T cells in GVHD target tissues and continued tissue injury, whereas persistent expression of B7-H1 expression by parenchymal cells led to reduced proliferation of donor CD8(+) T cells in GVHD target tissues and resolution of GVHD. These studies demonstrate that parenchymal cell expression of B7-H1 is required for tolerizing infiltrating T cells and preventing the persistence of GVHD. Our results suggest that therapies designed to preserve or restore expression of B7-H1 expression by parenchymal tissues in the recipient could prevent or ameliorate GVHD in humans.
Collapse
Affiliation(s)
- Xiaofan Li
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mechanisms of antigen presentation to T cells in murine graft-versus-host disease: cross-presentation and the appearance of cross-presentation. Blood 2011; 118:6426-37. [PMID: 21963602 DOI: 10.1182/blood-2011-06-358747] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recipient antigen-presenting cells (APCs) initiate GVHD by directly presenting host minor histocompatibility antigens (miHAs) to donor CD8 cells. However, later after transplantation, host APCs are replaced by donor APCs, and if pathogenic CD8 cells continue to require APC stimulation, then donor APCs must cross-present host miHAs. Consistent with this, CD8-mediated GVHD is reduced when donor APCs are MHC class I(-). To study cross-presentation, we used hosts that express defined MHC class I K(b)-restricted miHAs, crossed to K(b)-deficient backgrounds, such that these antigens cannot be directly presented. Cross-priming was surprisingly efficient, whether antigen was restricted to the hematopoietic or nonhematopoietic compartments. Cross-primed CD8 cells were cytolytic and produced IFN-γ. CD8 cells were exclusively primed by donor CD11c(+) cells, and optimal cross-priming required that they are stimulated by both type I IFNs and CD40L. In studying which donor APCs acquire host miHAs, we made the surprising discovery that there was a large-scale transfer of transmembrane proteins from irradiated hosts, including MHC class I-peptide complexes, to donor cells, including dendritic cells. Donor dendritic cells that acquired host MHC class I-peptide complexes were potent stimulators of peptide-specific T cells. These studies identify new therapeutic targets for GVHD treatment and a novel mechanism whereby donor APCs prime host-reactive T cells.
Collapse
|
46
|
Memory T cells from minor histocompatibility antigen-vaccinated and virus-immune donors improve GVL and immune reconstitution. Blood 2011; 118:5965-76. [PMID: 21917752 DOI: 10.1182/blood-2011-07-367011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Donor T cells contribute to the success of allogeneic hematopoietic stem cell transplantation (alloSCT). Alloreactive donor T cells attack leukemia cells, mediating the GVL effect. Donor T cells, including the memory T cells (T(M)) that are generated after infection, also promote immune reconstitution. Nonetheless, leukemia relapse and infection are major sources of treatment failure. Efforts to augment GVL and immune reconstitution have been limited by GVHD, the attack by donor T cells on host tissues. One approach to augmenting GVL has been to infuse ex vivo-generated T cells with defined specificities; however, this requires expertise that is not widely available. In the present study, we tested an alternative approach, adoptive immunotherapy with CD8+ T(M) from donors vaccinated against a single minor histocompatibility antigen (miHA) expressed by leukemia cells. Vaccination against the miHA H60 greatly augmented T(M)-mediated GVL against mouse chronic-phase (CP-CML) and blast crisis chronic myeloid leukemia (BC-CML). T(M)-mediated GVL was antigen specific and was optimal when H60 expression was hematopoietically restricted. Even when H60 was ubiquitous, donor H60 vaccination had a minimal impact on GVHD. T(M) from lymphocytic choriomeningitis virus (LCMV)-immune and H60-vaccinated donors augmented GVL and protected recipients from LCMV. These data establish a strategy for augmenting GVL and immune reconstitution without elaborate T-cell manipulation.
Collapse
|
47
|
Bennett CL, Fallah-Arani F, Conlan T, Trouillet C, Goold H, Chorro L, Flutter B, Means TK, Geissmann F, Chakraverty R. Langerhans cells regulate cutaneous injury by licensing CD8 effector cells recruited to the skin. Blood 2011; 117:7063-9. [PMID: 21566096 PMCID: PMC3336775 DOI: 10.1182/blood-2011-01-329185] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/27/2011] [Indexed: 12/16/2022] Open
Abstract
Langerhans cells (LCs) are a distinct population of dendritic cells that form a contiguous network in the epidermis of the skin. Although LCs possess many of the properties of highly proficient dendritic cells, recent studies have indicated that they are not necessary to initiate cutaneous immunity. In this study, we used a tractable model of cutaneous GVHD, induced by topical application of a Toll-like receptor agonist, to explore the role of LCs in the development of tissue injury. By adapting this model to permit inducible and selective depletion of host LCs, we found that GVHD was significantly reduced when LCs were absent. However, LCs were not required either for CD8 T-cell activation within the draining lymph node or subsequent homing of effector cells to the epidermis. Instead, we found that LCs were necessary for inducing transcription of IFN-γ and other key effector molecules by donor CD8 cells in the epidermis, indicating that they license CD8 cells to induce epithelial injury. These data demonstrate a novel regulatory role for epidermal LCs during the effector phase of an inflammatory immune response in the skin.
Collapse
Affiliation(s)
- Clare L Bennett
- Transplantation Immunology Group, Department of Haematology, Division of Cancer Studies, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|