1
|
Wang T, Xu Y, Zhou S, Zhang X, Fang Q, Yuan H, Wu X, Li Y, Chen T, Zhang T. Associations between salivary microbiota and Kaposi's sarcoma-associated herpesvirus infection in people with HIV. AIDS 2025; 39:569-578. [PMID: 39668678 DOI: 10.1097/qad.0000000000004087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE Kaposi's sarcoma-associated herpesvirus (KSHV) infection, essential for Kaposi sarcoma development especially in people with HIV (PWH), has been proposed to be transmitted through saliva. The potential role of salivary microbiota played in the infection of KSHV is largely obscure. This study aimed to explore the association between salivary microbiota and KSHV infection among PWH. DESIGN Cross-sectional study. METHODS During May to December 2022, we conducted a cross-sectional study among PWH in Ili prefecture Xinjiang, China. Participants completed face-to-face questionnaires, plasma and saliva samples were collected to assay KSHV infection status and 16S rRNA sequencing. We distinguished demographic characteristics between groups with and without KSHV, and compared the α and β diversity of the salivary microbiota. LEfSe identified key bacterial genera for Random Forest and XGBoost models to recognize the important discriminatory features. RESULTS Among 876 PWH in Xinjiang, 38.7% were KSHV seropositive. Regression models indicated that moderate drinking, absence of dental treatment history, higher CD4 counts, and higher CD4/CD8 ratios were negatively associated with KSHV seropositivity. Linear discriminant analysis effect size (LEfSe) analysis demonstrated that 14 bacterial genera were significantly enriched at the genus level in the group with or without KSHV. Machine learning analyses gave an AUC of 0.66 for Random Forest and 0.85 for XGBoost in predicting KSHV infection status. The bacterial genera, including Alloprevotella , Fusobacterium , Prevotella_7 , Porphyromonas , Rothia , and Leptotrichia , were identified as important discriminatory features. CONCLUSION This study suggests the potential role of salivary microbiota in KSHV transmission among PWH. Identified microbial genera offer promising biomarkers for monitoring and managing KSHV in PWH.
Collapse
Affiliation(s)
- Tianye Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education
| | - Yiyun Xu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education
| | - Sujuan Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education
| | - Qiwen Fang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education
| | - Huangbo Yuan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education
| | - Xuefu Wu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education
| | - Yi Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education
| | - Tao Chen
- Xinjiang Ili center for diseases control and prevention, Xinjiang
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Alfaez A, Christopher MW, Garrett TJ, Papp B. Analysis of Metabolomic Reprogramming Induced by Infection with Kaposi's Sarcoma-Associated Herpesvirus Using Untargeted Metabolomic Profiling. Int J Mol Sci 2025; 26:3109. [PMID: 40243754 PMCID: PMC11988554 DOI: 10.3390/ijms26073109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus. There are no vaccines or antiviral therapies for KSHV. Identifying the cellular metabolic pathways that KSHV manipulates can broaden the knowledge of how these pathways contribute to sustaining lytic infection, which can be targeted in future therapies to prevent viral spread. In this study, we performed an untargeted metabolomic analysis of KSHV infected telomerase-immortalized gingival keratinocytes (TIGK) cells at 4 h post-infection compared to mock-infected cells. We found that the metabolomic landscape of KSHV-infected TIGK differed from that of the mock. Specifically, a total of 804 differential metabolic features were detected in the two groups, with 741 metabolites that were significantly upregulated, and 63 that were significantly downregulated in KSHV-infected TIGK cells. The differential metabolites included ornithine, arginine, putrescine, dimethylarginine, orotate, glutamate, and glutamine, and were associated with pathways, such as the urea cycle, polyamine synthesis, dimethylarginine synthesis, and de novo pyrimidine synthesis. Overall, our untargeted metabolomics analysis revealed that KSHV infection results in marked rapid alterations in the metabolic profile of the oral epithelial cells. We envision that a subset of these rapid metabolic changes might result in altered cellular functions that can promote viral lytic replication and transmission in the oral cavity.
Collapse
Affiliation(s)
- Abdulkarim Alfaez
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA;
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | | | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA;
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA;
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Informatics Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Orphaned Autoimmune Disorders, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Longworth S, Damania B. Modulation of Cell Cycle Kinases by Kaposi's Sarcoma-Associated Herpesvirus. J Med Virol 2025; 97:e70157. [PMID: 39804127 PMCID: PMC12009514 DOI: 10.1002/jmv.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 04/22/2025]
Abstract
The cell cycle is governed by kinase activity that coordinates progression through a series of regulatory checkpoints, preventing the division of damaged cells. The Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple genes that modulate or co-opt the activity of these kinases, shaping the cellular environment to promote viral persistence. By advancing the cell cycle, KSHV facilitates latent replication and subsequent transmission of viral genomes to daughter cells, while also contributing to the establishment of multiple cancer types. Conversely, during viral lytic replication, KSHV extends the resting phase of the cell cycle to prevent cellular DNA synthesis that would otherwise compete for essential replication precursors. This review will examine the mechanisms KSHV has evolved to control the kinase activity regulating host cell cycle progression.
Collapse
Affiliation(s)
- Steven Longworth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Hogan CH, Owens SM, Reynoso GV, Liao Y, Meyer TJ, Zelazowska MA, Liu B, Li X, Grosskopf AK, Khairallah C, Kirillov V, Reich NC, Sheridan BS, McBride KM, Gewurz BE, Hickman HD, Forrest JC, Krug LT. Multifaceted roles for STAT3 in gammaherpesvirus latency revealed through in vivo B cell knockout models. mBio 2024; 15:e0299823. [PMID: 38170993 PMCID: PMC10870824 DOI: 10.1128/mbio.02998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anna K. Grosskopf
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
5
|
Szymula A, Samayoa-Reyes G, Ogolla S, Liu B, Li S, George A, Van Sciver N, Rochford R, Simas JP, Kaye KM. Macrophages drive KSHV B cell latency. Cell Rep 2023; 42:112767. [PMID: 37440412 PMCID: PMC10528218 DOI: 10.1016/j.celrep.2023.112767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) establishes lifelong infection and persists in latently infected B cells. Paradoxically, in vitro B cell infection is inefficient, and cells rapidly die, suggesting the absence of necessary factor(s). KSHV epidemiology unexpectedly mirrors that of malaria and certain helminthic infections, while other herpesviruses are ubiquitous. Elevated circulating monocytes are common in these parasitic infections. Here, we show that KSHV infection of monocytes or M-CSF-differentiated (M2) macrophages is highly efficient. Proteomic analyses demonstrate that infection induces macrophage production of B cell chemoattractants and activating factor. We find that KSHV acts with monocytes or M2 macrophages to stimulate B cell survival, proliferation, and plasmablast differentiation. Further, macrophages drive infected plasma cell differentiation and long-term viral latency. In Kenya, where KSHV is endemic, we find elevated monocyte levels in children with malaria. These findings demonstrate a role for mononuclear phagocytes in KSHV B cell latency and suggest that mononuclear phagocyte abundance may underlie KSHV's geographic disparity.
Collapse
Affiliation(s)
- Agnieszka Szymula
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Sidney Ogolla
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Bing Liu
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Shijun Li
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Athira George
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Van Sciver
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Rosemary Rochford
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - J Pedro Simas
- Instituto de Medicina Molecular, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Católica Biomedical Research, Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023 Lisboa, Portugal.
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Zhang X, Lan Q, Zhang M, Wang F, Shi K, Li X, Kuang E. Inhibition of AIM2 inflammasome activation by SOX/ORF37 promotes lytic replication of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 2023; 120:e2300204120. [PMID: 37364111 PMCID: PMC10318979 DOI: 10.1073/pnas.2300204120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Inflammasomes are one kind of important innate immune defense against viral and bacterial infections. Several inflammasome-forming sensors detect molecular patterns of invading pathogens and then trigger inflammasome activation and/or pyroptosis in infected cells, and viruses employ unique strategies to hijack or subvert inflammasome activation. Infection with herpesviruses induces the activation of diverse inflammasomes, including AIM2 and IFI16 inflammasomes; however, how Kaposi's sarcoma-associated herpesvirus (KSHV) counteracts inflammasome activation largely remains unclear. Here, we reveal that the KSHV ORF37-encoded SOX protein suppresses AIM2 inflammasome activation independent of its viral DNA exonuclease activity and host mRNA turnover. SOX interacts with the AIM2 HIN domain through the C-terminal Motif VII region and disrupts AIM2:dsDNA polymerization and ASC recruitment and oligomerization. The Y443A or F444A mutation of SOX abolishes the inhibition of AIM2 inflammasome without disrupting SOX nuclease activity, and a short SOX peptide is capable of inhibiting AIM2 inflammasome activation; consequently, infection with SOX-null, Y443A, or F444A Bac16 recombinant viruses results in robust inflammasome activation, suppressed lytic replication, and increased pyroptosis in human lymphatic endothelial cells in an AIM2-dependent manner. These results reveal that KSHV SOX suppresses AIM2 inflammasome activation to promote KSHV lytic replication and inhibit pyroptosis, representing a unique mechanism for evasion of inflammasome activation during KSHV lytic cycle.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Qingping Lan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Mingyu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Fan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Keyi Shi
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei430061, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong510080, China
| |
Collapse
|
7
|
Patel R, Lurain K, Yarchoan R, Ramaswami R. Clinical management of Kaposi sarcoma herpesvirus-associated diseases: an update on disease manifestations and treatment strategies. Expert Rev Anti Infect Ther 2023; 21:929-941. [PMID: 37578202 PMCID: PMC10529793 DOI: 10.1080/14787210.2023.2247161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Kaposi sarcoma herpes virus (KSHV) is associated with several diseases including Kaposi sarcoma, a form of multicentric Castleman's disease, primary effusion lymphoma, and an inflammatory cytokine syndrome. These KSHV-associated diseases (KAD) can present with heterogenous signs and symptoms that are often associated with cytokine dysregulation that may result in multiorgan dysfunction. The inability to promptly diagnose and treat these conditions can result in long-term complications and mortality. AREAS COVERED Existing epidemiological subtypes of existing KSHV-associated diseases, specifically Kaposi sarcoma as well as the incidence of several KSHV-associated disorders are described. We review the KSHV latent and lytic phases as they correlate with KSHV-associated diseases. Given the complicated presentations, we discuss the clinical manifestations, current diagnostic criteria, existing treatment algorithms for individual KAD, and when they occur concurrently. With emerging evidence on the virus and host interactions, we evaluate novel approaches for the treatment of KAD. An extensive literature search was conducted to support these findings. EXPERT OPINION KSHV leads to complex and concurrent disease processes that are often underdiagnosed both in the United States and worldwide. New therapies that exist for many of these conditions focus on chemotherapy-sparing options that seek to target the underlying viral pathogenesis or immunotherapy strategies.
Collapse
Affiliation(s)
- Roshani Patel
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Atyeo N, Chae MY, Toth Z, Sharma A, Papp B. Kaposi's Sarcoma-Associated Herpesvirus Immediate Early Proteins Trigger FOXQ1 Expression in Oral Epithelial Cells, Engaging in a Novel Lytic Cycle-Sustaining Positive Feedback Loop. J Virol 2023; 97:e0169622. [PMID: 36815831 PMCID: PMC10062149 DOI: 10.1128/jvi.01696-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that can replicate in oral epithelial cells to promote viral transmission via saliva. To identify novel regulators of KSHV oral infection, we performed a transcriptome analysis of KSHV-infected primary human gingival epithelial (HGEP) cells, which identified the gene coding for the host transcription factor FOXQ1 as the top induced host gene. FOXQ1 is nearly undetectable in uninfected HGEP and telomerase-immortalized gingival keratinocytes (TIGK) cells but is highly expressed within hours of KSHV infection. We found that while the FOXQ1 promoter lacks activating histone acetylation marks in uninfected oral epithelial cells, these marks accumulate in the FOXQ1 promoter in infected cells, revealing a rapid epigenetic reprogramming event. To evaluate FOXQ1 function, we depleted FOXQ1 in KSHV-infected TIGK cells, which resulted in reduced accumulation of KSHV lytic proteins and viral DNA over the course of 4 days of infection, uncovering a novel lytic cycle-sustaining role of FOXQ1. A screen of KSHV lytic proteins demonstrated that the immediate early proteins ORF45 and replication and transcription activator (RTA) were both sufficient for FOXQ1 induction in oral epithelial cells, indicating active involvement of incoming and rapidly expressed factors in altering host gene expression. ORF45 is known to sustain extracellular signal-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) pathway activity to promote lytic infection. We found that an ORF45 mutant lacking RSK activation function failed to induce FOXQ1 in TIGK cells, revealing that ORF45 uses a shared mechanism to rapidly induce both host and viral genes to sustain lytic infection in oral epithelial cells. IMPORTANCE The oral cavity is a primary site of initial contact and entry for many viruses. Viral replication in the oral epithelium promotes viral shedding in saliva, allowing interpersonal transmission, as well as spread to other cell types, where chronic infection can be established. Understanding the regulation of KSHV infection in the oral epithelium would allow for the design of universal strategies to target the first stage of viral infection, thereby halting systemic viral pathogenesis. Overall, we uncover a novel positive feedback loop in which immediate early KSHV factors drive rapid host reprogramming of oral epithelial cells to sustain the lytic cycle in the oral cavity.
Collapse
Affiliation(s)
- Natalie Atyeo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Min Young Chae
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Aria Sharma
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Informatics Institute, University of Florida, Gainesville, Florida, USA
- Center for Orphaned Autoimmune Disorders, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Hogan CH, Owens SM, Reynoso GV, Kirillov V, Meyer TJ, Zelazowska MA, Liu B, Li X, Chikhalya A, Dong Q, Khairallah C, Reich NC, Sheridan B, McBride KM, Hearing P, Hickman HD, Forrest JC, Krug LT. B cell-intrinsic STAT3-mediated support of latency and interferon suppression during murine gammaherpesvirus 68 infection revealed through an in vivo competition model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533727. [PMID: 36993230 PMCID: PMC10055336 DOI: 10.1101/2023.03.22.533727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor STAT3. To better understand the role of STAT3 during gammaherpesvirus latency and immune control, we utilized murine gammaherpesvirus 68 (MHV68) infection. Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak latency approximately 7-fold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to WT littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeras consisting of WT and STAT3-knockout B cells. Using a competitive model of infection, we discovered a dramatic reduction in latency in STAT3-knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that STAT3 promotes proliferation and B cell processes of the germinal center but does not directly regulate viral gene expression. Last, this analysis uncovered a STAT3-dependent role for dampening type I IFN responses in newly infected B cells. Together, our data provide mechanistic insight into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aniska Chikhalya
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Qiwen Dong
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
10
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-associated primary effusion lymphomas (PEL) are traditionally viewed as homogenous regarding viral transcription and lineage of origin, but so far this contention has not been explored at the single-cell level. Single-cell RNA sequencing of latently infected PEL supports the existence of multiple subpopulations even within a single cell line. At most 1% of the cells showed evidence of near-complete lytic transcription. The majority of cells only expressed the canonical viral latent transcripts: those originating from the latency locus, the viral interferon regulatory factor locus, and the viral lncRNA nut-1/Pan/T1.1; however, a significant fraction of cells showed various degrees of more permissive transcription, and some showed no evidence of KSHV transcripts whatsoever. Levels of viral interleukin-6 (IL-6)/K2 mRNA emerged as the most distinguishing feature to subset KSHV-infected PEL. One newly uncovered phenotype is the existence of BCBL-1 cells that readily adhered to fibronectin and that displayed mesenchymal lineage-like characteristics. IMPORTANCE Latency is the defining characteristic of the Herpesviridae and central to the tumorigenesis phenotype of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-driven primary effusion lymphomas (PEL) rapidly develop resistance to therapy, suggesting tumor instability and plasticity. At any given time, a fraction of PEL cells spontaneously reactivate KSHV, suggesting transcriptional heterogeneity even within a clonal cell line under optimal growth conditions. This study employed single-cell mRNA sequencing to explore the within-population variability of KSHV transcription and how it relates to host cell transcription. Individual clonal PEL cells exhibited differing patterns of viral transcription. Most cells showed the canonical pattern of KSHV latency (LANA, vCyc, vFLIP, Kaposin, and vIRFs), but a significant fraction evidenced extended viral gene transcription, including of the viral IL-6 homolog, open reading frame K2. This study suggests new targets of intervention for PEL. It establishes a conceptual framework to design KSHV cure studies analogous to those for HIV.
Collapse
|
11
|
Sharma NR, Zheng ZM. RNA Granules in Antiviral Innate Immunity: A Kaposi's Sarcoma-Associated Herpesvirus Journey. Front Microbiol 2022; 12:794431. [PMID: 35069491 PMCID: PMC8767106 DOI: 10.3389/fmicb.2021.794431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
RNA granules are cytoplasmic, non-membranous ribonucleoprotein compartments that form ubiquitously and are often referred to as foci for post-transcriptional gene regulation. Recent research on RNA processing bodies (PB) and stress granules (SG) has shown wide implications of these cytoplasmic RNA granules and their components in suppression of RNA translation as host intracellular innate immunity against infecting viruses. Many RNA viruses either counteract or co-opt these RNA granules; however, many fundamental questions about DNA viruses with respect to their interaction with these two RNA granules remain elusive. Kaposi’s sarcoma-associated herpesvirus (KSHV), a tumor-causing DNA virus, exhibits two distinct phases of infection and encodes ∼90 viral gene products during the lytic phase of infection compared to only a few (∼5) during the latent phase. Thus, productive KSHV infection relies heavily on the host cell translational machinery, which often links to the formation of PB and SG. One major question is how KSHV counteracts the hostile environment of RNA granules for its productive infection. Recent studies demonstrated that KSHV copes with the translational suppression by cellular RNA granules, PB and SG, by expressing ORF57, a viral RNA-binding protein, during KSHV lytic infection. ORF57 interacts with Ago2 and GW182, two major components of PB, and prevents the scaffolding activity of GW182 at the initial stage of PB formation in the infected cells. ORF57 also interacts with protein kinase R (PKR) and PKR-activating protein (PACT) to block PKR dimerization and kinase activation, and thus inhibits eIF2α phosphorylation and SG formation. The homologous immediate-early regulatory protein ICP27 of herpes simplex virus type 1 (HSV-1), but not the EB2 protein of Epstein-Barr virus (EBV), shares this conserved inhibitory function with KSHV ORF57 on PB and SG. Through KSHV ORF57 studies, we have learned much about how a DNA virus in the infected cells is equipped to evade host antiviral immunity for its replication and productive infection. KSHV ORF57 would be an excellent viral target for development of anti-KSHV-specific therapy.
Collapse
Affiliation(s)
- Nishi R Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, New Delhi, India
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
12
|
Blaison F, Galtier J, Parrens M, Viallard JF, Boutboul D. [HHV-8 Related immunological and hematological diseases]. Rev Med Interne 2021; 43:301-311. [PMID: 34895767 DOI: 10.1016/j.revmed.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 10/09/2021] [Indexed: 10/19/2022]
Abstract
HHV-8 is an oncogenic Gammaherpesvirinae discovered in 1994 during the HIV pandemic. It is the causative agent of Kaposi's sarcoma, and is also associated with the occurrence of several aggressive B lymphoproliferative disorders. Most of them occur in an immunosuppression setting, usually due to HIV infection. Multicentric HHV8-associated Castleman's disease and KSHV Inflammatory Cytokine Syndrome (KICS) are primarily reactive entities with prominent systemic features. They illustrate the cytokinic storm induced by HHV-8 in its cell host. On the other hand, HHV-8 can drive proliferation and lymphomagenesis of its plasmablastic cell host, and is associated with a risk to develop aggressive lymphomas with plasmacytic differenciation. Primary effusion lymphoma usually localizes in body cavities and may affect other extra-nodal sites ; its prognostic is poor. Diffuse large B-cell lymphoma HHV-8, NOS affect more commonly nodes and blood and evolve from infected cell of HHV-8 associated Castleman disease. On the contrary, germinotropic lymphoproliferative disorders presents mainly as localized adenopathy with indolent course, and show polyclonality. Histology plays a key role in distinguishing these different entities and need expert reviewing, especially since they may be associated with each other. Besides lymphoproliferative disorders, HHV8 is associated with various hematological manifestations. The aim of this review is to provide an update on the presentation, diagnosis, and management of immunologic and hematologic complications associated with HHV-8.
Collapse
Affiliation(s)
- F Blaison
- Service de médecine interne et maladies infectieuses, centre de compétence de la maladie de Castleman, hôpital Haut Lévêque CHU de Bordeaux, 33600 Pessac, France
| | - J Galtier
- Service d'hématologie et de thérapie cellulaire, hôpital Haut Lévêque CHU de Bordeaux, 33600 Pessac, France.
| | - M Parrens
- Service d'anatomie et cytologie pathologique, hôpital Haut Lévêque, CHU de Bordeaux, 33600 Pessac, France; Inserm U1053, université de Bordeaux, 146, rue Léo Saignat, 33076 Bordeaux, France
| | - J-F Viallard
- Service de médecine interne et maladies infectieuses, centre de compétence de la maladie de Castleman, hôpital Haut Lévêque CHU de Bordeaux, 33600 Pessac, France
| | - D Boutboul
- Service d'immunopathologie, centre de référence national de la maladie de Castleman, hôpital Saint-Louis, université de Paris, Paris, France
| |
Collapse
|
13
|
Autoimmune hypoglycemia expands the biological spectrum of HHV8+ multicentric Castleman disease. Blood Adv 2021; 5:1848-1852. [PMID: 33787862 DOI: 10.1182/bloodadvances.2020002801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
Key Points
Autoimmune hypoglycemia belongs to the clinical spectrum of HHV8+ MCD and rituximab is an effective treatment of this condition. This rare complication is related to autoantibodies directed toward the insulin receptor and activating the insulin signaling pathway.
Collapse
|
14
|
Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses 2021; 13:v13040681. [PMID: 33920978 PMCID: PMC8071331 DOI: 10.3390/v13040681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
The oral cavity is often the first site where viruses interact with the human body. The oral epithelium is a major site of viral entry, replication and spread to other cell types, where chronic infection can be established. In addition, saliva has been shown as a primary route of person-to-person transmission for many viruses. From a clinical perspective, viral infection can lead to several oral manifestations, ranging from common intraoral lesions to tumors. Despite the clinical and biological relevance of initial oral infection, little is known about the mechanism of regulation of the viral life cycle in the oral cavity. Several viruses utilize host epigenetic machinery to promote their own life cycle. Importantly, viral hijacking of host chromatin-modifying enzymes can also lead to the dysregulation of host factors and in the case of oncogenic viruses may ultimately play a role in promoting tumorigenesis. Given the known roles of epigenetic regulation of viral infection, epigenetic-targeted antiviral therapy has been recently explored as a therapeutic option for chronic viral infection. In this review, we highlight three herpesviruses with known roles in oral infection, including herpes simplex virus type 1, Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus. We focus on the respective oral clinical manifestations of these viruses and their epigenetic regulation, with a specific emphasis on the viral life cycle in the oral epithelium.
Collapse
|
15
|
Aalam F, Totonchy J. Molecular Virology of KSHV in the Lymphocyte Compartment-Insights From Patient Samples and De Novo Infection Models. Front Cell Infect Microbiol 2020; 10:607663. [PMID: 33344267 PMCID: PMC7746649 DOI: 10.3389/fcimb.2020.607663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
The incidence of Kaposi’s sarcoma-associated herpesvirus (KSHV)-associated Kaposi Sarcoma has declined precipitously in the present era of effective HIV treatment. However, KSHV-associated lymphoproliferative disorders although rare, have not seen a similar decline. Lymphoma is now a leading cause of death in people living with HIV (PLWH), indicating that the immune reconstitution provided by antiretroviral therapy is not sufficient to fully correct the lymphomagenic immune dysregulation perpetrated by HIV infection. As such, novel insights into the mechanisms of KSHV-mediated pathogenesis in the immune compartment are urgently needed in order to develop novel therapeutics aimed at prevention and treatment of KSHV-associated lymphoproliferations. In this review, we will discuss our current understanding of KSHV molecular virology in the lymphocyte compartment, concentrating on studies which explore mechanisms unique to infection in B lymphocytes.
Collapse
Affiliation(s)
- Farizeh Aalam
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Jennifer Totonchy
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
16
|
Aalam F, Nabiee R, Castano JR, Totonchy J. Analysis of KSHV B lymphocyte lineage tropism in human tonsil reveals efficient infection of CD138+ plasma cells. PLoS Pathog 2020; 16:e1008968. [PMID: 33075105 PMCID: PMC7595638 DOI: 10.1371/journal.ppat.1008968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/29/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Despite 25 years of research, the basic virology of Kaposi Sarcoma Herpesviruses (KSHV) in B lymphocytes remains poorly understood. This study seeks to fill critical gaps in our understanding by characterizing the B lymphocyte lineage-specific tropism of KSHV. Here, we use lymphocytes derived from 40 human tonsil specimens to determine the B lymphocyte lineages targeted by KSHV early during de novo infection in our ex vivo model system. We characterize the immunological diversity of our tonsil specimens and determine that overall susceptibility of tonsil lymphocytes to KSHV infection varies substantially between donors. We demonstrate that a variety of B lymphocyte subtypes are susceptible to KSHV infection and identify CD138+ plasma cells as a highly targeted cell type for de novo KSHV infection. We determine that infection of tonsil B cell lineages is primarily latent with few lineages contributing to lytic replication. We explore the use of CD138 and heparin sulfate proteoglycans as attachment factors for the infection of B lymphocytes and conclude that they do not play a substantial role. Finally, we determine that the host T cell microenvironment influences the course of de novo infection in B lymphocytes. These results improve our understanding of KSHV transmission and the biology of early KSHV infection in a naïve human host, and lay a foundation for further characterization of KSHV molecular virology in B lymphocyte lineages. KSHV infection is associated with cancer in B cells and endothelial cells, particularly in the context of immune suppression. Very little is known about how KSHV is transmitted and how it initially establishes infection in a new host. Saliva is thought to be the primary route of person-to-person transmission for KSHV, making the tonsil a likely first site for KSHV replication in a new human host. Our study examines KSHV infection in B cells extracted from the tonsils of 40 human donors in order to determine what types of B cells are initially targeted for infection and examine how the presence (or absence) of other immune cells influence the initial stages of KSHV infection. We found that a variety of B cell subtypes derived from tonsils can be infected with KSHV. Interestingly, plasma cells (mature antibody-secreting B cells) were a highly targeted cell type. These results lay the foundation for further studies into the specific biology of KSHV in different types of B cells, an effort that may help us ultimately discover how to prevent the establishment of infection in these cells or reveal new ways to halt the progression of B cell cancers associated with KSHV infection.
Collapse
Affiliation(s)
- Farizeh Aalam
- School of Pharmacy, Chapman University, Irvine, California, United States of America
| | - Romina Nabiee
- School of Pharmacy, Chapman University, Irvine, California, United States of America
| | - Jesus Ramirez Castano
- School of Pharmacy, Chapman University, Irvine, California, United States of America
| | - Jennifer Totonchy
- School of Pharmacy, Chapman University, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
18
|
Collins CM, Scharer CD, Murphy TJ, Boss JM, Speck SH. Murine gammaherpesvirus infection is skewed toward Igλ+ B cells expressing a specific heavy chain V-segment. PLoS Pathog 2020; 16:e1008438. [PMID: 32353066 PMCID: PMC7217478 DOI: 10.1371/journal.ppat.1008438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/12/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022] Open
Abstract
One of the defining characteristics of the B cell receptor (BCR) is the extensive diversity in the repertoire of immunoglobulin genes that make up the BCR, resulting in broad range of specificity. Gammaherpesviruses are B lymphotropic viruses that establish life-long infection in B cells, and although the B cell receptor plays a central role in B cell biology, very little is known about the immunoglobulin repertoire of gammaherpesvirus infected cells. To begin to characterize the Ig genes expressed by murine gammaherpesvirus 68 (MHV68) infected cells, we utilized single cell sorting to sequence and clone the Ig variable regions of infected germinal center (GC) B cells and plasma cells. We show that MHV68 infection is biased towards cells that express the Igλ light chain along with a single heavy chain variable gene, IGHV10-1*01. This population arises through clonal expansion but is not viral antigen specific. Furthermore, we show that class-switching in MHV68 infected cells differs from that of uninfected cells. Fewer infected GC B cells are class-switched compared to uninfected GC B cells, while more infected plasma cells are class-switched compared to uninfected plasma cells. Additionally, although they are germinal center derived, the majority of class switched plasma cells display no somatic hypermutation regardless of infection status. Taken together, these data indicate that selection of infected B cells with a specific BCR, as well as virus mediated manipulation of class switching and somatic hypermutation, are critical aspects in establishing life-long gammaherpesvirus infection.
Collapse
Affiliation(s)
- Christopher M. Collins
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Christopher D. Scharer
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thomas J. Murphy
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeremy M. Boss
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Zelazowska MA, Dong Q, Plummer JB, Zhong Y, Liu B, Krug LT, McBride KM. Gammaherpesvirus-infected germinal center cells express a distinct immunoglobulin repertoire. Life Sci Alliance 2020; 3:3/3/e201900526. [PMID: 32029571 PMCID: PMC7012147 DOI: 10.26508/lsa.201900526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Germinal center B cells infected with gammaherpesvirus display altered repertoire with biased usage of lambda light chain and skewed utilization of IGHV genes. The gammaherpesviruses (γHVs), human Kaposi sarcoma-associated herpesvirus (KSHV), EBV, and murine γHV68 are prevalent infections associated with lymphocyte pathologies. After primary infection, EBV and γHV68 undergo latent expansion in germinal center (GC) B cells and persists in memory cells. The GC reaction evolves and selects antigen-specific B cells for memory development but whether γHV passively transients or manipulates this process in vivo is unknown. Using the γHV68 infection model, we analyzed the Ig repertoire of infected and uninfected GC cells from individual mice. We found that infected cells displayed the hallmarks of affinity maturation, hypermutation, and isotype switching but underwent clonal expansion. Strikingly, infected cells displayed distinct repertoire, not found in uninfected cells, with recurrent utilization of certain Ig heavy V segments including Ighv10-1. In a manner observed with KSHV, γHV68 infected cells also displayed lambda light chain bias. Thus, γHV68 subverts GC selection to expand in a specific B cell subset during the process that develops long-lived immunologic memory.
Collapse
Affiliation(s)
- Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Qiwen Dong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
20
|
KSHV/HHV8-positive large B-cell lymphomas and associated diseases: a heterogeneous group of lymphoproliferative processes with significant clinicopathological overlap. Mod Pathol 2020; 33:18-28. [PMID: 31527708 DOI: 10.1038/s41379-019-0365-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
In this review, we focus on the current understanding of the diagnosis of human herpesvirus 8 (HHV8)-associated lymphoproliferative disorders-a group of entities that range from hyperplastic proliferations to frank lymphomas. These diseases tend to occur in immunodeficient patients, but may occur in immunocompetent individuals as well. In recent years, we have learned of occasional cases with overlapping features among HHV8 entities, such as lesions intermediate between primary effusion lymphoma and HHV8-positive diffuse large B-cell lymphoma, not otherwise specified or cases sharing features of multicentric Castleman disease and germinotropic lymphoproliferative disorder. There is also a significant clinical overlap between these entities. It is important to have a better understanding of the biology of these lesions and to refine diagnostic criteria of these lesions, as the use of immunosuppressive agents to treat a variety of diseases, the expanded use of transplant as a therapeutic modality for a variety of cancers and organ failure patients, and the extended longevity of HIV-positive patients will likely result in an increased incidence of these lymphoproliferative processes in the future.
Collapse
|
21
|
Johnston BP, McCormick C. Herpesviruses and the Unfolded Protein Response. Viruses 2019; 12:E17. [PMID: 31877732 PMCID: PMC7019427 DOI: 10.3390/v12010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses usurp cellular stress responses to promote viral replication and avoid immune surveillance. The unfolded protein response (UPR) is a conserved stress response that is activated when the protein load in the ER exceeds folding capacity and misfolded proteins accumulate. The UPR aims to restore protein homeostasis through translational and transcriptional reprogramming; if homeostasis cannot be restored, the UPR switches from "helper" to "executioner", triggering apoptosis. It is thought that the burst of herpesvirus glycoprotein synthesis during lytic replication causes ER stress, and that these viruses may have evolved mechanisms to manage UPR signaling to create an optimal niche for replication. The past decade has seen considerable progress in understanding how herpesviruses reprogram the UPR. Here we provide an overview of the molecular events of UPR activation, signaling and transcriptional outputs, and highlight key evidence that herpesviruses hijack the UPR to aid infection.
Collapse
Affiliation(s)
- Benjamin P. Johnston
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
22
|
Pringle ES, Wertman J, Melong N, Coombs AJ, Young AL, O’Leary D, Veinotte C, Robinson CA, Ha MN, Dellaire G, Druley TE, McCormick C, Berman JN. The Zebrafish Xenograft Platform-A Novel Tool for Modeling KSHV-Associated Diseases. Viruses 2019; 12:v12010012. [PMID: 31861850 PMCID: PMC7019925 DOI: 10.3390/v12010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Kaposi’s sarcoma associated-herpesvirus (KSHV, also known as human herpesvirus-8) is a gammaherpesvirus that establishes life-long infection in human B lymphocytes. KSHV infection is typically asymptomatic, but immunosuppression can predispose KSHV-infected individuals to primary effusion lymphoma (PEL); a malignancy driven by aberrant proliferation of latently infected B lymphocytes, and supported by pro-inflammatory cytokines and angiogenic factors produced by cells that succumb to lytic viral replication. Here, we report the development of the first in vivo model for a virally induced lymphoma in zebrafish, whereby KSHV-infected PEL tumor cells engraft and proliferate in the yolk sac of zebrafish larvae. Using a PEL cell line engineered to produce the viral lytic switch protein RTA in the presence of doxycycline, we demonstrate drug-inducible reactivation from KSHV latency in vivo, which enabled real-time observation and evaluation of latent and lytic phases of KSHV infection. In addition, we developed a sensitive droplet digital PCR method to monitor latent and lytic viral gene expression and host cell gene expression in xenografts. The zebrafish yolk sac is not well vascularized, and by using fluorogenic assays, we confirmed that this site provides a hypoxic environment that may mimic the microenvironment of some human tumors. We found that PEL cell proliferation in xenografts was dependent on the host hypoxia-dependent translation initiation factor, eukaryotic initiation factor 4E2 (eIF4E2). This demonstrates that the zebrafish yolk sac is a functionally hypoxic environment, and xenografted cells must switch to dedicated hypoxic gene expression machinery to survive and proliferate. The establishment of the PEL xenograft model enables future studies that exploit the innate advantages of the zebrafish as a model for genetic and pharmacologic screens.
Collapse
Affiliation(s)
- Eric S. Pringle
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada;
| | - Jaime Wertman
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
| | - Nicole Melong
- CHEO Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Andrew J. Coombs
- Department of Pediatrics, Dalhousie University, 5980 University Ave, Halifax, NS B3K 6R8, Canada;
| | - Andrew L. Young
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA (D.O.)
| | - David O’Leary
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA (D.O.)
| | - Chansey Veinotte
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
| | - Carolyn-Ann Robinson
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
| | - Michael N. Ha
- Department of Radiation Oncology, 5820 University Ave, Halifax, NS B3H 1V7, Canada;
| | - Graham Dellaire
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Department of Pathology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Todd E. Druley
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA (D.O.)
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Correspondence: (C.M.); (J.N.B.)
| | - Jason N. Berman
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; (E.S.P.); (C.V.); (C.-A.R.)
- CHEO Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Pediatrics, Dalhousie University, 5980 University Ave, Halifax, NS B3K 6R8, Canada;
- Correspondence: (C.M.); (J.N.B.)
| |
Collapse
|
23
|
Dollery SJ. Towards Understanding KSHV Fusion and Entry. Viruses 2019; 11:E1073. [PMID: 31752107 PMCID: PMC6893419 DOI: 10.3390/v11111073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
How viruses enter cells is of critical importance to pathogenesis in the host and for treatment strategies. Over the last several years, the herpesvirus field has made numerous and thoroughly fascinating discoveries about the entry of alpha-, beta-, and gamma-herpesviruses, giving rise to knowledge of entry at the amino acid level and the realization that, in some cases, researchers had overlooked whole sets of molecules essential for entry into critical cell types. Herpesviruses come equipped with multiple envelope glycoproteins which have several roles in many aspects of infection. For herpesvirus entry, it is usual that a collective of glycoproteins is involved in attachment to the cell surface, specific interactions then take place between viral glycoproteins and host cell receptors, and then molecular interactions and triggers occur, ultimately leading to viral envelope fusion with the host cell membrane. The fact that there are multiple cell and virus molecules involved with the build-up to fusion enhances the diversity and specificity of target cell types, the cellular entry pathways the virus commandeers, and the final triggers of fusion. This review will examine discoveries relating to how Kaposi's sarcoma-associated herpesvirus (KSHV) encounters and binds to critical cell types, how cells internalize the virus, and how the fusion may occur between the viral membrane and the host cell membrane. Particular focus is given to viral glycoproteins and what is known about their mechanisms of action.
Collapse
|
24
|
How Kaposi's sarcoma-associated herpesvirus stably transforms peripheral B cells towards lymphomagenesis. Proc Natl Acad Sci U S A 2019; 116:16519-16528. [PMID: 31363046 PMCID: PMC6697783 DOI: 10.1073/pnas.1905025116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a highly aggressive B cell lymphoma. PELs are associated with Kaposi’s sarcoma-associated herpesvirus (KSHV), and most of them are coinfected with Epstein–Barr virus (EBV). Human B cells have not previously been stably infected with KSHV in vitro. In this study, we have defined conditions to infect human B cells stably with KSHV and show that optimal infection requires coinfection by EBV. We show that a subset of these dually infected cells acquires multiple properties of PEL cells. This dual infection in vitro allows a mechanistic analysis of the contributions of EBV and KSHV to early steps in the development of PEL and underscores the desirability of targeting both viruses in developing new therapies for PEL. Primary effusion lymphomas (PELs) are causally associated with Kaposi’s sarcoma-associated herpesvirus (KSHV) and 86% of PELs are coinfected with Epstein–Barr virus (EBV). Understanding how PELs develop has been impaired by the difficulty of infecting B cells with KSHV in vitro, and the inability of KSHV to transform them. We show that EBV supports an optimal coinfection of 2.5% of peripheral B cells by KSHV. This coinfection requires 1 or more transforming genes of EBV but not entry into KSHV’s lytic cycle. We demonstrate that dually infected B cells are stably transformed in vitro and show that while both viruses can be maintained, different cells exhibit distinct, transformed properties. Transformed cells that grow to predominate in a culture express increased levels of most KSHV genes and differentially express a subset of cellular genes, as do bona fide PEL cells. These dually infected peripheral B cells are thus both stably transformed and allow in vitro molecular dissection of early steps in the progression to lymphomagenesis.
Collapse
|
25
|
Gammaherpesvirus entry and fusion: A tale how two human pathogenic viruses enter their host cells. Adv Virus Res 2019; 104:313-343. [PMID: 31439152 DOI: 10.1016/bs.aivir.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prototypical human γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi Sarcoma-associated herpesvirus (KSHV) are involved in the development of malignancies. Like all herpesviruses, they share the establishment of latency, the typical architecture, and the conserved fusion machinery to initiate infection. The fusion machinery reflects virus-specific adaptations due to the requirements of the respective herpesvirus. For example, EBV evolved a tropism switch involving either the B- or epithelial cell-tropism complexes to activate fusion driven by gB. Most of the EBV entry proteins and their cellular receptors have been crystallized providing molecular details of the initial steps of infection. For KSHV, a variety of entry and binding receptors has also been reported but the mechanism how receptor binding activates gB-driven fusion is not as well understood as that for EBV. However, the downstream signaling pathways that promote the early steps of KSHV entry are well described. This review summarizes the current knowledge of the key players involved in EBV and KSHV entry and the cell-type specific mechanisms that allow infection of a wide variety of cell types.
Collapse
|
26
|
Damania B, Münz C. Immunodeficiencies that predispose to pathologies by human oncogenic γ-herpesviruses. FEMS Microbiol Rev 2019; 43:181-192. [PMID: 30649299 PMCID: PMC6435449 DOI: 10.1093/femsre/fuy044] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Human γ-herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses. Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Cancer Research Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
27
|
Glycoprotein K8.1A of Kaposi's Sarcoma-Associated Herpesvirus Is a Critical B Cell Tropism Determinant Independent of Its Heparan Sulfate Binding Activity. J Virol 2019; 93:JVI.01876-18. [PMID: 30567992 DOI: 10.1128/jvi.01876-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes are the major cellular reservoir in individuals infected with Kaposi's sarcoma-associated herpesvirus (KSHV), and the virus is etiologically linked to two B cell lymphoproliferative disorders. We previously described the MC116 human B cell line as a KSHV-susceptible model to overcome the paradoxical refractoriness of B cell lines to experimental KSHV infection. Here, using monoclonal antibody inhibition and a deletion mutant virus, we demonstrate that the KSHV virion glycoprotein K8.1A is critical for infection of MC116, as well as tonsillar B cells; in contrast, we confirm previous reports on the dispensability of the glycoprotein for infection of primary endothelial cells and other commonly studied non-B cell targets. Surprisingly, we found that the role of K8.1A in B cell infection is independent of its only known biochemical activity of binding to surface heparan sulfate, suggesting the possible involvement of an additional molecular interaction(s). Our finding that K8.1A is a critical determinant for KSHV B cell tropism parallels the importance of proteins encoded by positionally homologous genes for the cell tropism of other gammaherpesviruses.IMPORTANCE Elucidating the molecular mechanisms by which KSHV infects B lymphocytes is critical for understanding how the virus establishes lifelong persistence in infected people, in whom it can cause life-threatening B cell lymphoproliferative disease. Here, we show that K8.1A, a KSHV-encoded glycoprotein on the surfaces of the virus particles, is critical for infection of B cells. This finding stands in marked contrast to previous studies with non-B lymphoid cell types, for which K8.1A is known to be dispensable. We also show that the required function of K8.1A in B cell infection does not involve its binding to cell surface heparan sulfate, the only known biochemical activity of the glycoprotein. The discovery of this critical role of K8.1A in KSHV B cell tropism opens promising new avenues to unravel the complex mechanisms underlying infection and disease caused by this viral human pathogen.
Collapse
|
28
|
Kaposi sarcoma-associated herpesvirus/human herpesvirus 8-associated lymphoproliferative disorders. Blood 2019; 133:1186-1190. [PMID: 30610029 DOI: 10.1182/blood-2018-11-852442] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 11/20/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus/human herpesvirus 8 is associated with multicentric Castleman disease (MCD) and primary effusion lymphoma (PEL). In MCD, infected B cells, although polyclonal, express a monotypic immunoglobulin Mλ phenotype, probably through editing toward λ light chain in mature B cells. They are considered to originate from pre-germinal center (GC) naive B cells. Both viral and human interleukin-6 contribute to the plasmacytic differentiation of these cells, and viral replication can be observed in some infected cells. PEL cells are clonal B cells considered as GC/post-GC B cells. One can also hypothesize that they originate from the same infected naive B cells and that additional factors could be responsible for their peculiar phenotype.
Collapse
|
29
|
Epstein-Barr virus enhances genome maintenance of Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 2018; 115:E11379-E11387. [PMID: 30429324 DOI: 10.1073/pnas.1810128115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a B cell lymphoma that is always associated with Kaposi's sarcoma-associated herpesvirus (KSHV) and in many cases also with Epstein-Barr virus (EBV); however, the requirement for EBV coinfection is not clear. Here, we demonstrate that adding exogenous EBV to KSHV+ single-positive PEL leads to increased KSHV genome maintenance and KSHV latency-associated nuclear antigen (LANA) expression. To show that EBV was necessary for naturally coinfected PEL, we nucleofected KSHV+/EBV+ PEL cell lines with an EBV-specific CRISPR/Cas9 plasmid to delete EBV and observed a dramatic decrease in cell viability, KSHV genome copy number, and LANA expression. This phenotype was reversed by expressing Epstein-Barr nuclear antigen 1 (EBNA-1) in trans, even though EBNA-1 and LANA do not colocalize in infected cells. This work reveals that EBV EBNA-1 plays an essential role in the pathogenesis of PEL by increasing KSHV viral load and LANA expression.
Collapse
|
30
|
In Vivo Persistence of Chimeric Virus after Substitution of the Kaposi's Sarcoma-Associated Herpesvirus LANA DNA Binding Domain with That of Murid Herpesvirus 4. J Virol 2018; 92:JVI.01251-18. [PMID: 30111565 PMCID: PMC6189500 DOI: 10.1128/jvi.01251-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
The latency-associated nuclear antigen from Kaposi's sarcoma-associated herpesvirus (KSHV), kLANA, and its homolog from the murid herpesvirus 4 (MuHV-4), mLANA, are essential for viral latency. kLANA is nearly four times the size of mLANA, mainly due to an extensive central repeat region that is absent in mLANA. Both proteins harbor a C-terminal DNA binding domain (DBD). The DBD binds the terminal repeat (TR) DNA sequences of the viral genome to mediate persistence. Despite structural conservation, the kLANA and mLANA DBDs differ in sequence and mode of oligomerization. kLANA DBD oligomers are flexible and bent, while mLANA DBD oligomers bind DNA in a rigid, linear conformation. We previously reported that kLANA and mLANA acted reciprocally on TR sequences. Furthermore, a MuHV-4 expressing kLANA instead of mLANA (v-kLANA) established latency in mice, albeit at a lower magnitude than the wild-type (WT) virus. Here, we asked if kLANA can accommodate the mLANA DBD and generated a fusion protein which contains kLANA but with the mLANA C-terminal region in place of that of kLANA. We report a recombinant MuHV-4 (v-KM) encoding this LANA fusion protein instead of mLANA. The fusion protein was expressed in lytic infection in vitro and assembled nuclear LANA dots in infected splenocytes. Results demonstrated that kLANA functionally accommodated mLANA's mode of DNA binding, allowing MuHV-4 chimeric virus to establish latency in vivo Notably, v-KM established latency in germinal center B cells more efficiently than did v-kLANA, although levels were reduced compared to WT MuHV-4.IMPORTANCE KSHV is a human oncogenic virus for which there is no tractable, immunocompetent animal model of infection. MuHV-4, a related rodent gammaherpesvirus, enables pathogenesis studies in mice. In latency, both viruses persist as extrachromosomal, circular genomes (episomes). LANA proteins encoded by KSHV (kLANA) and MuHV-4 (mLANA) contain a C-terminal DNA binding domain (DBD) that acts on the virus terminal repeats to enable episome persistence. mLANA is a smaller protein than kLANA. Their DBDs are structurally conserved but differ strikingly in the conformation of DNA binding. We report a recombinant, chimeric MuHV-4 which contains kLANA in place of mLANA, but in which the DBD is replaced with that of mLANA. Results showed that kLANA functionally accommodated mLANA's mode of DNA binding. In fact, the new chimeric virus established latency in vivo more efficiently than MuHV-4 expressing full-length kLANA.
Collapse
|
31
|
LL-37 disrupts the Kaposi's sarcoma-associated herpesvirus envelope and inhibits infection in oral epithelial cells. Antiviral Res 2018; 158:25-33. [PMID: 30076864 DOI: 10.1016/j.antiviral.2018.07.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
Oral epithelial cells (OECs) represent the first line of defense against viruses that are spread via saliva, including Kaposi's sarcoma-associated herpesvirus (KSHV). Infection of humans by KSHV and viral pathogenesis begins by infecting OECs. One method OECs use to limit viral infections in the oral cavity is the production of antimicrobial peptides (AMPs), or host defense peptides (HDPs). However, no studies have investigated the antiviral activities of any HDP against KSHV. The goal of this study was to determine the antiviral activity of one HDP, LL-37, against KSHV in the context of infecting OECs. Our results show that LL-37 significantly decreased KSHV's ability to infect OECs in both a structure- and dose-dependent manner. However, this activity does not stem from affecting OECs, but instead the virions themselves. We found that LL-37 exerts its antiviral activity against KSHV by disrupting the viral envelope, which can inhibit viral entry into OECs. Our data suggest that LL-37 exhibits a marked antiviral activity against KSHV during infection of oral epithelial cells, which can play an important role in host defense against oral KSHV infection. Thus, we propose that inducing LL-37 expression endogenously in oral epithelial cells, or potentially introducing as a therapy, may help restrict oral KSHV infection and ultimately KSHV-associated diseases.
Collapse
|
32
|
Hu XF, Wang L, Xiang G, Lei W, Feng YF. Angiogenesis impairment by the NADPH oxidase-triggered oxidative stress at the bone-implant interface: Critical mechanisms and therapeutic targets for implant failure under hyperglycemic conditions in diabetes. Acta Biomater 2018; 73:470-487. [PMID: 29649637 DOI: 10.1016/j.actbio.2018.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
Mechanism underlying the diabetes-induced poor osteointegration of implants remains elusive, making it a challenge to develop corresponding solutions. Here, we studied the role of angiogenesis in the diabetes-induced poor bone repair at the bone-implant interface (BII) and the related mechanisms. In vivo, titanium screws were implanted in the femurs of mice, and, in vitro, vascular endothelial cell (VEC) was cultured on titanium surface. Results showed that, compared with normal milieu (NM), diabetic milieu (DM) led to angiogenesis inhibition around implants which resulted in reduced osteoprogenitors and poor bone formation on BII in vivo. In vitro, DM caused significant increase of NADPH oxidases (NOX), dysfunction of mitochondria and overproduction of reactive oxygen species (ROS) in VEC on titanium surface, inducing obvious cell dysfunction. Both Mito-TEMPO (Mito, a mitochondria-targeted ROS antagonist) and apocynin (APO, a NOX inhibitor) effectively attenuated the oxidative stress and dysfunction of VEC, with the beneficial effects of APO significantly better than those of Mito. Further study showed that the diabetes-induced metabolic disturbance of VEC was significantly related to the increase of advanced glycation end products (AGEs) at the BII. Our results suggested that the AGEs-related and NOX-triggered cellular oxidative stress leads to VEC dysfunction and angiogenesis impairment at the BII, which plays a critical role in the compromised implant osteointegration under diabetic conditions. These demonstrated new insights into the BII in pathological states and also provided NOX and AGEs as promising therapeutic targets for developing novel implant materials to accelerate the angiogenesis and osteointegration of implants in diabetic patients with hyperglycemia. STATEMENT OF SIGNIFICANCE The high failure rate of bone implants in diabetic patients causes patients terrible pain and limits the clinical application of implant materials. The mechanism underlying this phenomenon needs elucidation so that it would be possible to develop corresponding solutions. Our study demonstrated that the AGEs-related and NOX-triggered oxidative stress of VEC leads to angiogenesis impairment at the bone-implant interface (BII) in diabetes. These are critical mechanisms underlying the compromised implant osteointegration in diabetic hyperglycemia. These provide new insights into the BII in diseased states and also suggest NOX and AGEs as crucial therapeutic targets for developing novel implant materials which could modulate the oxidative stress on BII to get improved osteointegration and reduced implant failure, especially in diabetic patients.
Collapse
|
33
|
Totonchy J, Osborn JM, Chadburn A, Nabiee R, Argueta L, Mikita G, Cesarman E. KSHV induces immunoglobulin rearrangements in mature B lymphocytes. PLoS Pathog 2018; 14:e1006967. [PMID: 29659614 PMCID: PMC5919685 DOI: 10.1371/journal.ppat.1006967] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/26/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV/HHV-8) is a B cell tropic human pathogen, which is present in vivo in monotypic immunoglobulin λ (Igλ) light chain but polyclonal B cells. In the current study, we use cell sorting to infect specific B cell lineages from human tonsil specimens in order to examine the immunophenotypic alterations associated with KSHV infection. We describe IL-6 dependent maturation of naïve B lymphocytes in response to KSHV infection and determine that the Igλ monotypic bias of KSHV infection in vivo is due to viral induction of BCR revision. Infection of immunoglobulin κ (Igκ) naïve B cells induces expression of Igλ and isotypic inclusion, with eventual loss of Igκ. We show that this phenotypic shift occurs via re-induction of Rag-mediated V(D)J recombination. These data explain the selective presence of KSHV in Igλ B cells in vivo and provide the first evidence that a human pathogen can manipulate the molecular mechanisms responsible for immunoglobulin diversity. Kaposi sarcoma herpesvirus (KSHV) infection of human B cells is poorly understood. KSHV infection in humans is heavily biased towards B cells with a specific subtype of antibody molecule (lambda light chain rather than kappa light chain). This has been a conundrum in the field for years because there is no known physiological distinction between B cells with different light chains that might provide a mechanism for this bias. Here, we develop a novel system for infecting B cells from human tonsil with KSHV and tracking how the virus alters the cells over time. Using this system, we demonstrate a number of KSHV-driven alterations in B cells, including the fact that KSHV infection of kappa light chain positive B cells drives them to become lambda light chain positive by re-inducing recombination events that are normally restricted to B cell development in the bone marrow. We believe that this study is the first demonstration that a virus can alter immunoglobulin specificity via direct infection of B cells.
Collapse
Affiliation(s)
- Jennifer Totonchy
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States of Amercia
| | - Jessica M. Osborn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Ramina Nabiee
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States of Amercia
| | - Lissenya Argueta
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Geoffrey Mikita
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Ethel Cesarman
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
- * E-mail:
| |
Collapse
|
34
|
Hu XF, Feng YF, Xiang G, Lei W, Wang L. Lactic acid of PLGA coating promotes angiogenesis on the interface between porous titanium and diabetic bone. J Mater Chem B 2018; 6:2274-2288. [PMID: 32254567 DOI: 10.1039/c7tb03247a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The diabetes-related high failure risk for endosseous implants needs efficacious methods to improve osteointegration on the bone-implant interface (BII). Poly(lactic-co-glycolic) acid (PLGA) is widely used in tissue engineering but its effects on the BII in diabetes remain unclear. To clarify this issue, 3D-printed porous titanium implants (TI) with and without PLGA coating were fixed in the bone defects of sheep in vivo, and vascular endothelial cells (VEC) and osteoblasts were incubated on the implant surface under normal conditions (NC) and diabetic conditions (DC) in vitro. The results showed that the PLGA coating promoted angiogenesis on the BII and the osteointegration of TI in diabetic sheep. The PLGA coating attenuated the DC-induced dysfunctions of VEC but not of osteoblasts. When VEC and osteoblasts were co-cultured in DC, the PLGA coating showed protective effects on the osteoblasts. Lactic acid (LA) but not glycolic acid (GA), both of which are degradation products of PLGA, induced similar effects to those of PLGA. These results suggest that PLGA coating on TI could promote angiogenesis in diabetes by its degradation production of LA, thus indirectly improving the bone formation on BII. Furthermore, PLGA exerted its effects, at least partially, through inhibiting the pathological effects of advanced glycation end products (AGEs) on the BII. This is the first study of the effects of PLGA on angiogenesis on the BII and the first findings on the inhibitory effects of PLGA on AGEs. Our findings demonstrate that PLGA is a promising interface-modification component for fabricating implants with better angiogenesis and osteointegration on the BII under diabetic conditions. This strategy might be applicable for reducing implant failure in diabetic patients.
Collapse
Affiliation(s)
- Xiao-Fan Hu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China.
| | | | | | | | | |
Collapse
|
35
|
Lurain K, Yarchoan R, Uldrick TS. Treatment of Kaposi Sarcoma Herpesvirus-Associated Multicentric Castleman Disease. Hematol Oncol Clin North Am 2018; 32:75-88. [PMID: 29157621 DOI: 10.1016/j.hoc.2017.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kaposi sarcoma herpesvirus (KSHV)-associated multicentric Castleman disease (MCD) is a rare, polyclonal lymphoproliferative disorder characterized by flares of inflammatory symptoms, edema, cytopenias, lymphadenopathy, and splenomegaly. Diagnosis requires a lymph node biopsy. Pathogenesis is related to dysregulated inflammatory cytokines, including human and viral interleukin-6. Rituximab alone or in combination with chemotherapy, such as liposomal doxorubicin, has led to an overall survival of over 90% at 5 years. Experimental approaches to treatment include virus activated cytotoxic therapy with high-dose zidovudine and valganciclovir and targeting human interleukin-6 activity. Despite successful treatment of KSHV-MCD, patients remain at high risk for developing non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892-1868, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892-1868, USA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892-1868, USA.
| |
Collapse
|
36
|
Li Y, Zhong C, Liu D, Yu W, Chen W, Wang Y, Shi S, Yuan Y. Evidence for Kaposi Sarcoma Originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition. Cancer Res 2017; 78:230-245. [PMID: 29066510 DOI: 10.1158/0008-5472.can-17-1961] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022]
Abstract
The major transmission route for Kaposi sarcoma-associated herpesvirus (KSHV) infection is the oral cavity through saliva. Kaposi sarcoma (KS) frequently occurs in the oral cavity in HIV-positive individuals and is often the first presenting sign of AIDS. However, the oral target cells for KSHV infection and the cellular origin of Kaposi sarcoma remain unknown. Here we present clinical and experimental evidences that Kaposi sarcoma spindle cells may originate from virally modified oral mesenchymal stem cells (MSC). AIDS-KS spindle cells expressed neuroectodermal stem cell marker (Nestin) and oral MSC marker CD29, suggesting an oral/craniofacial MSC lineage of AIDS-associated Kaposi sarcoma. Furthermore, oral MSCs were highly susceptible to KSHV infection, and infection promoted multilineage differentiation and mesenchymal-to-endothelial transition (MEndT). KSHV infection of oral MSCs resulted in expression of a large number of cytokines, a characteristic of Kaposi sarcoma, and upregulation of Kaposi sarcoma signature and MEndT-associated genes. These results suggest that Kaposi sarcoma may originate from pluripotent MSC and KSHV infection transforms MSC to Kaposi sarcoma-like cells through MEndT.Significance: These findings indicate that Kaposi sarcomas, which arise frequently in AIDS patients, originate from neural crest-derived mesenchymal stem cells, with possible implications for improving the clnical treatment of this malignancy. Cancer Res; 78(1); 230-45. ©2017 AACR.
Collapse
Affiliation(s)
- Yuqing Li
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Canrong Zhong
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dawei Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania
| | - Weikang Chen
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania
| | - Yan Yuan
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Murine gammaherpesvirus M2 antigen modulates splenic B cell activation and terminal differentiation in vivo. PLoS Pathog 2017; 13:e1006543. [PMID: 28767707 PMCID: PMC5555712 DOI: 10.1371/journal.ppat.1006543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/14/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV68) infection of laboratory strains of mice has provided a tractable small animal model for dissecting gammaherpesvirus pathogenesis. The MHV68 latency associated antigen M2 promotes viral latency establishment in germinal center (GC) B cells and plays an important role in virus infection of plasma cells (PCs), which is linked to virus reactivation. More recently, M2 has been highlighted as a potent immunomodulatory molecule capable of hindering both cell-mediated and humoral immunity to MHV68 infection and subsequent challenges. M2 expression in B cells results in activation of B cell receptor signaling pathways that promote proliferation, differentiation, and cytokine production—a hallmark of gammaherpesviruses. In this study, we utilized an adoptive transfer model to explore the biological consequence of M2 expression in activated B cells in vivo. Secondly, we engineered and validated two independent MHV68 M2 reporter viruses that track M2 protein expression in latently infected B cells during infection. Here we demonstrate that upon adoptive transfer into naive mice, M2 expression promotes activated primary B cells to competitively establish residency in the spleen as either a GC B cell or a PC, most notably in the absence of an ongoing GC reaction. Moreover, M2 antigen drives robust PC differentiation and IL10 production in vivo in the absence of other viral factors. Lastly, we confirm that M2 expression during MHV68 infection is localized to the GC compartment, which is a long term latency reservoir for gammaherpesviruses. Overall, these observations are consistent with, and extend upon previous reports of M2 function in B cells and within the context of MHV68 infection. Moreover, this work provides support for a model by which M2-driven dysregulation of B cell function compromises multiple aspects of antiviral immunity to achieve persistence within the infected host. Gammaherpesvirus (GHVs), which primarily infect B cells, are capable of exploiting B cell biology to achieve a stable and persistent infection for the lifetime of the host. GHV infections traffick to germinal center (GC) B cells and plasma cells (PCs), which are important immune effectors that promote the generation of protective antibodies in response to pathogens. The mechanism by which murine gammaherpesvirus 68 (MHV68) M2 latency protein activates B cell receptor signaling pathways to modulate the immune response to infection and further promote viral pathogenesis within the GC B cell and PC compartments is not completely understood. Here we demonstrate that M2 expression alone, in the absence of other viral factors, drives robust PC differentiation and IL10 production in vivo. Moreover, M2 promotes the accumulation of splenic GC B cells, which was subsequently verified as the site for potent M2 expression during latent MHV68 infection. Our work further substantiates a model in which a viral protein dysregulates B cell activation, differentiation, and cytokine production to create a permissive environment for viral persistence in the infected host. This work justifies further investigations addressing the impact of GHV latency antigen function within the GC reaction and overall host response to infection.
Collapse
|
38
|
Koga T, Fujimoto S, Kawakami A, Kawabata H, Masaki Y, Kishimoto T, Yoshizaki K. Therapeutic outlook for Castleman’s disease: prospects for the next decade. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1348295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tomohiro Koga
- Unit of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shino Fujimoto
- Division of Hematology and Immunology, Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Atsushi Kawakami
- Unit of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Kawabata
- Division of Hematology and Immunology, Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Yasufumi Masaki
- Division of Hematology and Immunology, Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kazuyuki Yoshizaki
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
39
|
Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J Microbiol 2017; 55:319-329. [PMID: 28455586 DOI: 10.1007/s12275-017-7075-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the latest addition to the human herpesvirus family. Unlike alpha- and beta-herpesvirus subfamily members, gamma-herpesviruses, including Epstein-Barr virus (EBV) and KSHV, cause various tumors in humans. KSHV primarily infects endothelial and B cells in vivo, and is associated with at least three malignancies: Kaposi's sarcoma and two B cell lymphomas, respectively. Although KSHV readily infects endothelial cells in vitro and thus its pathogenic mechanisms have been extensively studied, B cells had been refractory to KSHV infection. As such, functions of KSHV genes have mostly been elucidated in endothelial cells in the context of viral infection but not in B cells. Whether KSHV oncogenes, defined in endothelial cells, play the same roles in the tumorigenesis of B cells remains an open question. Only recently, through a few ground-breaking studies, B cell infection models have been established. In this review, those models will be compared and contrasted and putative mechanisms of KSHV-induced B cell transformation will be discussed.
Collapse
|
40
|
Santonja C, Medina-Puente C, Serrano Del Castillo C, Cabello Úbeda A, Rodríguez-Pinilla SM. Primary effusion lymphoma involving cerebrospinal fluid, deep cervical lymph nodes and adenoids. Report of a case supporting the lymphatic connection between brain and lymph nodes. Neuropathology 2016; 37:249-258. [PMID: 27862361 DOI: 10.1111/neup.12353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023]
Abstract
We describe an unusual presentation of primary effusion lymphoma in CSF of a 45-year-old HIV-positive man, with no evidence of involvement of pleural, peritoneal or pericardial cavities. Cytologic examination and flow cytometric analysis suggested the diagnosis, eventually made in an excised deep cervical lymph node, in which the neoplastic cells involved selectively the sinuses. This case represents the fifth reported example of CSF involvement by this type of lymphoma, and supports the alleged connection between CSF and cervical lymph nodes via lymphatic vessels. Interestingly, review of an adenoidectomy specimen obtained 9 months before presentation for nonspecific complaints showed rare clusters of neoplastic cells involving surface epithelium and chorium, a finding that might represent a homing mechanism and implies an asymptomatic, occult phase of lymphoma development.
Collapse
|
41
|
Abstract
Multicentric Castleman disease (MCD) encompasses a spectrum of conditions that give rise to overlapping clinicopathological manifestations. The fundamental pathogenetic mechanism involves dysregulated cytokine activity that causes systemic inflammatory symptoms as well as lymphadenopathy. The histological changes in lymph nodes resemble in part the findings originally described in the unicentric forms Castleman disease, both hyaline vascular and plasma cell variants. In MCD caused by Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 (KSHV/HHV8), the cytokine over activity is caused by viral products, which can also lead to atypical lymphoproliferations and potential progression to lymphoma. In cases negative for KSHV/HHV8, so-called idiopathic MCD, the hypercytokinemia can result from various mechanisms, which ultimately lead to different constellations of clinical presentations and varied pathology in lymphoid tissues. In this article, we review the evolving concepts and definitions of the various conditions under the eponym of Castleman disease, and summarize current knowledge regarding the histopathology and pathogenesis of lesions within the MCD spectrum.
Collapse
Affiliation(s)
- Hao-Wei Wang
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
42
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
43
|
Chan KL, Lade S, Prince HM, Harrison SJ. Update and new approaches in the treatment of Castleman disease. J Blood Med 2016; 7:145-58. [PMID: 27536166 PMCID: PMC4976903 DOI: 10.2147/jbm.s60514] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
First described 60 years ago, Castleman disease comprises a rare and heterogeneous cluster of disorders, characterized by lymphadenopathy with unique histological features and associated with cytokine-driven constitutional symptoms and biochemical disturbances. Although unicentric Castleman disease is curable with complete surgical excision, its multicentric counterpart is a considerable therapeutic challenge. The recent development of biological agents, particularly monoclonal antibodies to interleukin-6 and its receptor, allow for more targeted disease-specific intervention that promises improved response rates and more durable disease control; however, further work is required to fill knowledge gaps in terms of underlying pathophysiology and to facilitate alternative treatment options for refractory cases.
Collapse
Affiliation(s)
| | - Stephen Lade
- Department of Anatomical Pathology, Peter MacCallum Cancer Centre
| | - H Miles Prince
- Department of Haematology; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon J Harrison
- Department of Haematology; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Mahanonda R, Champaiboon C, Subbalekha K, Sa-Ard-Iam N, Rattanathammatada W, Thawanaphong S, Rerkyen P, Yoshimura F, Nagano K, Lang NP, Pichyangkul S. Human Memory B Cells in Healthy Gingiva, Gingivitis, and Periodontitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:715-25. [PMID: 27335500 DOI: 10.4049/jimmunol.1600540] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/23/2016] [Indexed: 01/12/2023]
Abstract
The presence of inflammatory infiltrates with B cells, specifically plasma cells, is the hallmark of periodontitis lesions. The composition of these infiltrates in various stages of homeostasis and disease development is not well documented. Human tissue biopsies from sites with gingival health (n = 29), gingivitis (n = 8), and periodontitis (n = 21) as well as gingival tissue after treated periodontitis (n = 6) were obtained and analyzed for their composition of B cell subsets. Ag specificity, Ig secretion, and expression of receptor activator of NF-κB ligand and granzyme B were performed. Although most of the B cell subsets in healthy gingiva and gingivitis tissues were CD19(+)CD27(+)CD38(-) memory B cells, the major B cell component in periodontitis was CD19(+)CD27(+)CD38(+)CD138(+)HLA-DR(low) plasma cells, not plasmablasts. Plasma cell aggregates were observed at the base of the periodontal pocket and scattered throughout the gingiva, especially apically toward the advancing front of the lesion. High expression of CXCL12, a proliferation-inducing ligand, B cell-activating factor, IL-10, IL-6, and IL-21 molecules involved in local B cell responses was detected in both gingivitis and periodontitis tissues. Periodontitis tissue plasma cells mainly secreted IgG specific to periodontal pathogens and also expressed receptor activator of NF-κB ligand, a bone resorption cytokine. Memory B cells resided in the connective tissue subjacent to the junctional epithelium in healthy gingiva. This suggested a role of memory B cells in maintaining periodontal homeostasis.
Collapse
Affiliation(s)
- Rangsini Mahanonda
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chantrakorn Champaiboon
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Keskanya Subbalekha
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Saranya Thawanaphong
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pimprapa Rerkyen
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan; and
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan; and
| | - Niklaus P Lang
- Department of Periodontology, University of Berne, Berne 3012, Switzerland
| | - Sathit Pichyangkul
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
45
|
Nicol SM, Sabbah S, Brulois KF, Jung JU, Bell AI, Hislop AD. Primary B Lymphocytes Infected with Kaposi's Sarcoma-Associated Herpesvirus Can Be Expanded In Vitro and Are Recognized by LANA-Specific CD4+ T Cells. J Virol 2016; 90:3849-3859. [PMID: 26819313 PMCID: PMC4810529 DOI: 10.1128/jvi.02377-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) has tropism for B lymphocytes, in which it establishes latency, and can also cause lymphoproliferative disorders of these cells manifesting as primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). T cell immunity is vital for the control of KSHV infection and disease; however, few models of B lymphocyte infection exist to study immune recognition of such cells. Here, we developed a model of B lymphocyte infection with KSHV in which infected tonsillar B lymphocytes were expanded by providing mitogenic stimuli and then challenged with KSHV-specific CD4(+)T cells. The infected cells expressed viral proteins found in PELs, namely, LANA and viral IRF3 (vIRF3), albeit at lower levels, with similar patterns of gene expression for the major latency, viral interleukin 6 (vIL-6), and vIRF3 transcripts. Despite low-level expression of open reading frame 50 (ORF50), transcripts for the immune evasion genes K3 and K5 were detected, with some downregulation of cell surface-expressed CD86 and ICAM. The vast majority of infected lymphocytes expressed IgM heavy chains with Igλ light chains, recapitulating the features seen in infected cells in MCD. We assessed the ability of the infected lymphocytes to be targeted by a panel of major histocompatibility complex (MHC) class II-matched CD4(+)T cells and found that LANA-specific T cells restricted to different epitopes recognized these infected cells. Given that at least some KSHV latent antigens are thought to be poor targets for CD8(+)T cells, we suggest that CD4(+)T cells are potentially important effectors for thein vivocontrol of KSHV-infected B lymphocytes. IMPORTANCE KSHV establishes a latent reservoir within B lymphocytes, but few models exist to study KSHV-infected B cells other than the transformed PEL cell lines, which have likely accrued mutations during the transformation process. We developed a model of KSHV-infected primary B lymphocytes that recapitulates features seen in PEL and MCD by gene expression and cell phenotype analysis, allowing the study of T cell recognition of these cells. Challenge of KSHV-infected B cells with CD4(+)T cells specific for LANA, a protein expressed in all KSHV-infected cells and malignanciesin vivo, showed that these effectors could efficiently recognize such targets. Given that the virus expresses immune evasion genes or uses proteins with intrinsic properties, such as LANA, that minimize epitope recognition by CD8(+)T cells, CD4(+)T cell immunity to KSHV may be important for maintaining the virus-host balance.
Collapse
Affiliation(s)
- Samantha M Nicol
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shereen Sabbah
- Department of Immunobiology, King's College London, London, United Kingdom
| | - Kevin F Brulois
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D Hislop
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
46
|
K1 and K15 of Kaposi's Sarcoma-Associated Herpesvirus Are Partial Functional Homologues of Latent Membrane Protein 2A of Epstein-Barr Virus. J Virol 2015; 89:7248-61. [PMID: 25948739 DOI: 10.1128/jvi.00839-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The human herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are associated with Hodgkin's lymphoma (HL) and Primary effusion lymphomas (PEL), respectively, which are B cell malignancies that originate from germinal center B cells. PEL cells but also a quarter of EBV-positive HL tumor cells do not express the genuine B cell receptor (BCR), a situation incompatible with survival of normal B cells. EBV encodes LMP2A, one of EBV's viral latent membrane proteins, which likely replaces the BCR's survival signaling in HL. Whether KSHV encodes a viral BCR mimic that contributes to oncogenesis is not known because an experimental model of KSHV-mediated B cell transformation is lacking. We addressed this uncertainty with mutant EBVs encoding the KSHV genes K1 or K15 in lieu of LMP2A and infected primary BCR-negative (BCR(-)) human B cells with them. We confirmed that the survival of BCR(-) B cells and their proliferation depended on an active LMP2A signal. Like LMP2A, the expression of K1 and K15 led to the survival of BCR(-) B cells prone to apoptosis, supported their proliferation, and regulated a similar set of cellular target genes. K1 and K15 encoded proteins appear to have noncomplementing, redundant functions in this model, but our findings suggest that both KSHV proteins can replace LMP2A's key activities contributing to the survival, activation and proliferation of BCR(-) PEL cells in vivo. IMPORTANCE Several herpesviruses encode oncogenes that are receptor-like proteins. Often, they are constitutively active providing important functions to the latently infected cells. LMP2A of Epstein-Barr virus (EBV) is such a receptor that mimics an activated B cell receptor, BCR. K1 and K15, related receptors of Kaposi's sarcoma-associated herpesvirus (KSHV) expressed in virus-associated tumors, have less obvious functions. We found in infection experiments that both viral receptors of KSHV can replace LMP2A and deliver functions similar to the endogenous BCR. K1, K15, and LMP2A also control the expression of a related set of cellular genes in primary human B cells, the target cells of EBV and KSHV. The observed phenotypes, as well as the known characteristics of these genes, argue for their contributions to cellular survival, B cell activation, and proliferation. Our findings provide one possible explanation for the tumorigenicity of KSHV, which poses a severe problem in immunocompromised patients.
Collapse
|
47
|
Avey D, Brewers B, Zhu F. Recent advances in the study of Kaposi's sarcoma-associated herpesvirus replication and pathogenesis. Virol Sin 2015; 30:130-45. [PMID: 25924994 PMCID: PMC8200917 DOI: 10.1007/s12250-015-3595-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023] Open
Abstract
It has now been over twenty years since a novel herpesviral genome was identified in Kaposi's sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis.
Collapse
Affiliation(s)
- Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Brittany Brewers
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| |
Collapse
|
48
|
de Munnik SM, Smit MJ, Leurs R, Vischer HF. Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Front Pharmacol 2015; 6:40. [PMID: 25805993 PMCID: PMC4353375 DOI: 10.3389/fphar.2015.00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/12/2015] [Indexed: 12/22/2022] Open
Abstract
Human herpesviruses (HHVs) are widespread infectious pathogens that have been associated with proliferative and inflammatory diseases. During viral evolution, HHVs have pirated genes encoding viral G protein-coupled receptors (vGPCRs), which are expressed on infected host cells. These vGPCRs show highest homology to human chemokine receptors, which play a key role in the immune system. Importantly, vGPCRs have acquired unique properties such as constitutive activity and the ability to bind a broad range of human chemokines. This allows vGPCRs to hijack human proteins and modulate cellular signaling for the benefit of the virus, ultimately resulting in immune evasion and viral dissemination to establish a widespread and lifelong infection. Knowledge on the mechanisms by which herpesviruses reprogram cellular signaling might provide insight in the contribution of vGPCRs to viral survival and herpesvirus-associated pathologies.
Collapse
Affiliation(s)
- Sabrina M de Munnik
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules Medicines and Systems - Division of Medicinal Chemistry, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam Netherlands
| |
Collapse
|
49
|
Dai L, Noverr MC, Parsons C, Kaleeba JAR, Qin Z. xCT, not just an amino-acid transporter: a multi-functional regulator of microbial infection and associated diseases. Front Microbiol 2015; 6:120. [PMID: 25745420 PMCID: PMC4333839 DOI: 10.3389/fmicb.2015.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/30/2015] [Indexed: 12/23/2022] Open
Abstract
Expression of xCT, a component of the xc– amino-acid transporter, is essential for the uptake of cystine required for intracellular glutathione (GSH) synthesis and maintenance of the intracellular redox balance. Therefore, xCT plays an important role not only in the survival of somatic and immune cells, but also in other aspects of tumorigenesis, including the growth and malignant progression of cancer cells, resistance to anticancer drugs, and protection of normal cells against oxidative damage induced by carcinogens. xCT also functions as a factor required for infection by Kaposi’s sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi’s sarcoma (KS) and other lymphoproliferative diseases associated with HIV/AIDS. In spite of these advances, our understanding of the role of xCT in the pathogenesis of infectious diseases is still limited. Therefore, this review will summarize recent findings about the functions of xCT in diseases associated with microbial (bacterial or viral) infections, in particular KSHV-associated malignancies. We will also discuss the remaining questions, future directions, as well as evidence that supports the potential benefits of exploring system xc– as a target for prevention and clinical management of microbial diseases and cancer.
Collapse
Affiliation(s)
- Lu Dai
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine , Shanghai, China ; Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center , New Orleans, LA, USA
| | - Mairi C Noverr
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center , New Orleans, LA, USA
| | - Chris Parsons
- Department of Medicine, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center , New Orleans, LA, USA
| | - Johnan A R Kaleeba
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Zhiqiang Qin
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine , Shanghai, China ; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center , New Orleans, LA, USA
| |
Collapse
|
50
|
Balada E, Ramentol M, Felip L, Ordi-Ros J, Selva-O’Callaghan A, Simeón-Aznar C, Solans-Laqué R, Vilardell-Tarrés M. Prevalence of HHV-8 in systemic autoimmune diseases. J Clin Virol 2015; 62:84-8. [DOI: 10.1016/j.jcv.2014.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/04/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
|