1
|
Ji J, Gu Z, Li N, Dong X, Wang X, Yao Q, Zhang Z, Zhang L, Cao L. Gut microbiota alterations in postmenopausal women with osteoporosis and osteopenia from Shanghai, China. PeerJ 2024; 12:e17416. [PMID: 38832037 PMCID: PMC11146318 DOI: 10.7717/peerj.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Background The importance of the gut microbiota in maintaining bone homeostasis has been increasingly emphasized by recent research. This study aimed to identify whether and how the gut microbiome of postmenopausal women with osteoporosis and osteopenia may differ from that of healthy individuals. Methods Fecal samples were collected from 27 individuals with osteoporosis (OP), 44 individuals with osteopenia (ON), and 23 normal controls (NC). The composition of the gut microbial community was analyzed by 16S rRNA gene sequencing. Results No significant difference was found in the microbial composition between the three groups according to alpha and beta diversity. At the phylum level, Proteobacteria and Fusobacteriota were significantly higher and Synergistota was significantly lower in the ON group than in the NC group. At the genus level, Roseburia, Clostridia_UCG.014, Agathobacter, Dialister and Lactobacillus differed between the OP and NC groups as well as between the ON and NC groups (p < 0.05). Linear discriminant effect size (LEfSe) analysis results showed that one phylum community and eighteen genus communities were enriched in the NC, ON and OP groups, respectively. Spearman correlation analysis showed that the abundance of the Dialister genus was positively correlated with BMD and T score at the lumbar spine (p < 0.05). Functional predictions revealed that pathways relevant to amino acid biosynthesis, vitamin biosynthesis, and nucleotide metabolism were enriched in the NC group. On the other hand, pathways relevant to metabolites degradation and carbohydrate metabolism were mainly enriched in the ON and OP groups respectively. Conclusions Our findings provide new epidemiologic evidence regarding the relationship between the gut microbiota and postmenopausal bone loss, laying a foundation for further exploration of therapeutic targets for the prevention and treatment of postmenopausal osteoporosis (PMO).
Collapse
Affiliation(s)
- Jiaqing Ji
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengrong Gu
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiong Wang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Qiang Yao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| |
Collapse
|
2
|
Jiang D, Soo N, Tan CY, Dankwa S, Wang HY, Theriot BS, Ardeshir A, Siddiqui NY, Van Rompay KKA, De Paris K, Permar SR, Goswami R, Surana NK. Commensal bacteria inhibit viral infections via a tryptophan metabolite. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.589969. [PMID: 38659737 PMCID: PMC11042330 DOI: 10.1101/2024.04.21.589969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
There is growing appreciation that commensal bacteria impact the outcome of viral infections, though the specific bacteria and their underlying mechanisms remain poorly understood. Studying a simian-human immunodeficiency virus (SHIV)-challenged cohort of pediatric nonhuman primates, we bioinformatically associated Lactobacillus gasseri and the bacterial family Lachnospiraceae with enhanced resistance to infection. We experimentally validated these findings by demonstrating two different Lachnospiraceae isolates, Clostridium immunis and Ruminococcus gnavus, inhibited HIV replication in vitro and ex vivo. Given the link between tryptophan catabolism and HIV disease severity, we found that an isogenic mutant of C. immunis that lacks the aromatic amino acid aminotransferase (ArAT) gene, which is key to metabolizing tryptophan into 3-indolelactic acid (ILA), no longer inhibits HIV infection. Intriguingly, we confirmed that a second commensal bacterium also inhibited HIV in an ArAT-dependent manner, thus establishing the generalizability of this finding. In addition, we found that purified ILA inhibited HIV infection by agonizing the aryl hydrocarbon receptor (AhR). Given that the AhR has been implicated in the control of multiple viral infections, we demonstrated that C. immunis also inhibited human cytomegalovirus (HCMV) infection in an ArAT-dependent manner. Importantly, metagenomic analysis of individuals at-risk for HIV revealed that those who ultimately acquired HIV had a lower fecal abundance of the bacterial ArAT gene compared to individuals who did not, which indicates our findings translate to humans. Taken together, our results provide mechanistic insights into how commensal bacteria decrease susceptibility to viral infections. Moreover, we have defined a microbiota-driven antiviral pathway that offers the potential for novel therapeutic strategies targeting a broad spectrum of viral pathogens.
Collapse
|
3
|
Jiang D, Goswami R, Dennis M, Heimsath H, Kozlowski PA, Ardeshir A, Van Rompay KKA, De Paris K, Permar SR, Surana NK. Sutterella and its metabolic pathways positively correlate with vaccine-elicited antibody responses in infant rhesus macaques. Front Immunol 2023; 14:1283343. [PMID: 38124733 PMCID: PMC10731017 DOI: 10.3389/fimmu.2023.1283343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction It is becoming clearer that the microbiota helps drive responses to vaccines; however, little is known about the underlying mechanism. In this study, we aimed to identify microbial features that are associated with vaccine immunogenicity in infant rhesus macaques. Methods We analyzed 16S rRNA gene sequencing data of 215 fecal samples collected at multiple timepoints from 64 nursery-reared infant macaques that received various HIV vaccine regimens. PERMANOVA tests were performed to determine factors affecting composition of the gut microbiota throughout the first eight months of life in these monkeys. We used DESeq2 to identify differentially abundant bacterial taxa, PICRUSt2 to impute metagenomic information, and mass spectrophotometry to determine levels of fecal short-chain fatty acids and bile acids. Results Composition of the early-life gut microbial communities in nursery-reared rhesus macaques from the same animal care facility was driven by age, birth year, and vaccination status. We identified a Sutterella and a Rodentibacter species that positively correlated with vaccine-elicited antibody responses, with the Sutterella species exhibiting more robust findings. Analysis of Sutterella-related metagenomic data revealed five metabolic pathways that significantly correlated with improved antibody responses following HIV vaccination. Given these pathways have been associated with short-chain fatty acids and bile acids, we quantified the fecal concentration of these metabolites and found several that correlated with higher levels of HIV immunogen-elicited plasma IgG. Discussion Our findings highlight an intricate bidirectional relationship between the microbiota and vaccines, where multiple aspects of the vaccination regimen modulate the microbiota and specific microbial features facilitate vaccine responses. An improved understanding of this microbiota-vaccine interplay will help develop more effective vaccines, particularly those that are tailored for early life.
Collapse
Affiliation(s)
- Danting Jiang
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Maria Dennis
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Holly Heimsath
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Neeraj K. Surana
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
4
|
Pither MD, Silipo A, Molinaro A, Di Lorenzo F. Extraction, Purification, and Chemical Degradation of LPS from Gut Microbiota Strains. Methods Mol Biol 2023; 2613:153-179. [PMID: 36587078 DOI: 10.1007/978-1-0716-2910-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is estimated that more than 500 different bacterial species colonize the human gut, and they are collectively known as the gut microbiota. Such a massive bacterial presence is now considered an additional organ of the human body, thus becoming the object of an intense and daily growing research activity. Gram-negative bacteria represent a large percentage of the gut microbiota strains. The main constituent of the outer membrane of Gram-negatives is the lipopolysaccharide (LPS). Since its first discovery, LPS has been extensively studied for its structure-dependent capability to elicit a potent immune inflammatory reaction when perceived by specific immune receptors present in our body. Therefore, traditionally, LPS, due to its peculiar chemistry, has been associated with pathogenic bacteria, and it has been extensively studied for its dangerous effects on human health. However, LPS is also expressed on the cell surface of harmless and beneficial bacteria that colonize our intestines. This necessarily implies that the LPS from harmless gut microbes is "chemically different" from that owned by pathogenic ones, hence enabling successful colonization of the intestinal tract without creating a threat to the host immune system. Deciphering the structural features of LPS from these gut bacteria is essential to improve our still scarce knowledge of how the human host lives in a harmonious relationship with its own microbiota. To this end, LPS extraction and purification are essential steps in this field of research. Yet working with gut bacteria is extremely complex for a number of reasons, one being related to the fact that they produce an array of other glycans and glycoconjugates, such as capsular polysaccharides and/or exopolysaccharides, which render the isolation and characterization of the sole LPS not at all trivial. Here, we provide a protocol that might help when dealing with LPS from gut microbial species. We describe the preliminary manipulations and checks, extraction, and purification approaches, as well as the necessary chemical manipulations that should be performed to enable the characterization of the structure of an LPS by means of techniques like nuclear magnetic resonance spectroscopy and mass spectrometry.
Collapse
Affiliation(s)
- Molly Dorothy Pither
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy.
| |
Collapse
|
5
|
Guo M, Liu H, Yu Y, Zhu X, Xie H, Wei C, Mei C, Shi Y, Zhou N, Qin K, Li W. Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg balance and gut microbiota structure. Gut Microbes 2023; 15:2190304. [PMID: 36941563 PMCID: PMC10038048 DOI: 10.1080/19490976.2023.2190304] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND With increasing knowledge about the gut - bone axis, more studies for treatments based on the regulation of postmenopausal osteoporosis by gut microbes are being conducted. Based on our previous work, this study was conducted to further investigate the therapeutic effects of Lactobacillus rhamnosus GG (LGG) on ovariectomized (OVX) model rats and the immunological and microecological mechanisms involved. RESULTS We found a protective effect of LGG treatment in OVX rats through changes in bone microarchitecture, bone biomechanics, and CTX-I, PINP, Ca, and RANKL expression levels. LGG was more advantageous in promoting osteogenesis, which may be responsible for the alleviation of osteoporosis. Th17 cells were imbalanced with Treg cells in mediastinal lymph nodes and bone marrow, with RORγt and FOXP3 expression following a similar trend. TNF-α and IL-17 expression in colon and bone marrow increased, while TGF-β and IL-10 expression decreased; however, LGG treatment modulated these changes and improved the Th17/Treg balance significantly. Regarding the intestinal barrier, we found that LGG treatment ameliorated estrogen deficiency-induced inflammation and mucosal damage and increased the expression of GLP-2 R and tight junction proteins. Importantly, 16S rRNA sequencing showed a significant increase in the Firmicutes/Bacteroidetes ratio during estrogen deficiency. Dominant intestinal flora showed significant differences in composition; LGG treatment regulated the various genera that were imbalanced in OVX, along with modifying those that did not change significantly in other groups with respect to the intestinal barrier, inflammation development, and bile acid metabolism. CONCLUSIONS Overall, LGG ameliorated estrogen deficiency-induced osteoporosis by regulating the gut microbiome and intestinal barrier and stimulating Th17/Treg balance in gut and bone.
Collapse
Affiliation(s)
- Mengyu Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanjin Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinting Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingyu Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenxu Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Mei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nong Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kunming Qin
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Xu L, Ho CT, Liu Y, Wu Z, Zhang X. Potential Application of Tea Polyphenols to the Prevention of COVID-19 Infection: Based on the Gut-Lung Axis. Front Nutr 2022; 9:899842. [PMID: 35495940 PMCID: PMC9046984 DOI: 10.3389/fnut.2022.899842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) disrupts the intestinal micro-ecological balance, and patients often develop the intestinal disease. The gut is the largest immune organ in the human body; intestinal microbes can affect the immune function of the lungs through the gut-lung axis. It has been reported that tea polyphenols (TPs) have antiviral and prebiotic activity. In this review, we discussed TPs reduced lung-related diseases through gut-lung axis by inhibiting dysbiosis. In addition, we also highlighted the preventive and therapeutic effects of TPs on COVID-19 complications, further demonstrating the importance of research on TPs for the prevention and treatment of COVID-19 in humans. Based on this understanding, we recommend using TPs to regulate the gut microbiota to prevent or alleviate COVID-19 through the gut-lung axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Chi-Tang Ho
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- Xin Zhang
| |
Collapse
|
7
|
Li Y, Ye Z, Zhu J, Fang S, Meng L, Zhou C. Effects of Gut Microbiota on Host Adaptive Immunity Under Immune Homeostasis and Tumor Pathology State. Front Immunol 2022; 13:844335. [PMID: 35355998 PMCID: PMC8960063 DOI: 10.3389/fimmu.2022.844335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota stimulate and shape the body’s adaptive immune response through bacterial components and its active metabolites, which orchestrates the formation and maintenance of the body’s immune homeostasis. In addition, the imbalances in microbiota-adaptive immunity contribute to the development of tumor and the antitumor efficiency of a series of antitumor therapies at the preclinical and clinical levels. Regardless of significant results, the regulation of gut microbiota on adaptive immunity in immune homeostasis and tumors needs a more thorough understanding. Herein, we highlighted the comprehensive knowledge, status, and limitations in the mechanism of microbiome interaction with adaptive immunity and put forward the prospect of how to translate these insights in inhibiting tumor progression and enhancing the efficacy of antitumor interventions.
Collapse
Affiliation(s)
- Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zixuan Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jianguo Zhu
- Research and Development Department,Wecare-bio Probiotics Co., Ltd., Suzhou, China
| | - Shuguang Fang
- Research and Development Department,Wecare-bio Probiotics Co., Ltd., Suzhou, China
| | - Lijuan Meng
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Zhou, ; Lijuan Meng,
| | - Chen Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Chen Zhou, ; Lijuan Meng,
| |
Collapse
|
8
|
Merlotti D, Mingiano C, Valenti R, Cavati G, Calabrese M, Pirrotta F, Bianciardi S, Palazzuoli A, Gennari L. Bone Fragility in Gastrointestinal Disorders. Int J Mol Sci 2022; 23:2713. [PMID: 35269854 PMCID: PMC8910640 DOI: 10.3390/ijms23052713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is a common systemic disease of the skeleton, characterized by compromised bone mass and strength, consequently leading to an increased risk of fragility fractures. In women, the disease mainly occurs due to the menopausal fall in estrogen levels, leading to an imbalance between bone resorption and bone formation and, consequently, to bone loss and bone fragility. Moreover, osteoporosis may affect men and may occur as a sequela to different diseases or even to their treatments. Despite their wide prevalence in the general population, the skeletal implications of many gastrointestinal diseases have been poorly investigated and their potential contribution to bone fragility is often underestimated in clinical practice. However, proper functioning of the gastrointestinal system appears essential for the skeleton, allowing correct absorption of calcium, vitamins, or other nutrients relevant to bone, preserving the gastrointestinal barrier function, and maintaining an optimal endocrine-metabolic balance, so that it is very likely that most chronic diseases of the gastrointestinal tract, and even gastrointestinal dysbiosis, may have profound implications for bone health. In this manuscript, we provide an updated and critical revision of the role of major gastrointestinal disorders in the pathogenesis of osteoporosis and fragility fractures.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Medical Sciences, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Christian Mingiano
- Department of Medicine Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (C.M.); (G.C.); (M.C.); (F.P.); (S.B.)
| | - Roberto Valenti
- Deparment of Surgery, Perioperative Medicine Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Guido Cavati
- Department of Medicine Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (C.M.); (G.C.); (M.C.); (F.P.); (S.B.)
| | - Marco Calabrese
- Department of Medicine Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (C.M.); (G.C.); (M.C.); (F.P.); (S.B.)
| | - Filippo Pirrotta
- Department of Medicine Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (C.M.); (G.C.); (M.C.); (F.P.); (S.B.)
| | - Simone Bianciardi
- Department of Medicine Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (C.M.); (G.C.); (M.C.); (F.P.); (S.B.)
| | - Alberto Palazzuoli
- Cardiovascular Disease Unit, Division of Cardiology, Department of Medical Biotechnologies, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Luigi Gennari
- Department of Medicine Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (C.M.); (G.C.); (M.C.); (F.P.); (S.B.)
| |
Collapse
|
9
|
Islam MA, Cook CV, Smith BJ, Ford Versypt AN. Mathematical Modeling of the Gut-Bone Axis and Implications of Butyrate Treatment on Osteoimmunology. Ind Eng Chem Res 2021; 60:17814-17825. [PMID: 34992331 PMCID: PMC8730472 DOI: 10.1021/acs.iecr.1c02949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Butyrate, a short-chain fatty acid produced by the gut microbiota, has pivotal roles in the regulation of the immune system. Recent studies have revealed that butyrate increases the differentiation of peripheral regulatory T cells in the gut-bone axis and promotes osteoblasts' bone forming activity. However, the mechanism of the therapeutic benefit of butyrate in bone remodeling remains incompletely understood. Here, we develop a multicompartment mathematical model to quantitatively predict the contribution of butyrate on the expansion of regulatory T cells in the gut, blood, and bone compartments. We investigate the interplay between regulatory T cell-derived TGF-β and CD8+ T cell-derived Wnt-10b with changes in gut butyrate concentration. In addition, we connect our model to a detailed model of bone metabolism to study the impacts of butyrate and Wnt-10b on trabecular bone volume. Our results indicate both direct and indirect immune-mediated impacts of butyrate on bone metabolism.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States; School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Carley V Cook
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States; School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Ashlee N Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States; School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States; Institute for Computational and Data Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
10
|
Host immunomodulatory lipids created by symbionts from dietary amino acids. Nature 2021; 600:302-307. [PMID: 34759313 PMCID: PMC8999822 DOI: 10.1038/s41586-021-04083-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Small molecules derived from symbiotic microbiota critically contribute to intestinal immune maturation and regulation1. However, little is known about the molecular mechanisms that control immune development in the host-microbiota environment. Here, using a targeted lipidomic analysis and synthetic approach, we carried out a multifaceted investigation of immunomodulatory α-galactosylceramides from the human symbiont Bacteroides fragilis (BfaGCs). The characteristic terminal branching of BfaGCs is the result of incorporation of branched-chain amino acids taken up in the host gut by B. fragilis. A B. fragilis knockout strain that cannot metabolize branched-chain amino acids showed reduced branching in BfaGCs, and mice monocolonized with this mutant strain had impaired colonic natural killer T (NKT) cell regulation, implying structure-specific immunomodulatory activity. The sphinganine chain branching of BfaGCs is a critical determinant of NKT cell activation, which induces specific immunomodulatory gene expression signatures and effector functions. Co-crystal structure and affinity analyses of CD1d-BfaGC-NKT cell receptor complexes confirmed the interaction of BfaGCs as CD1d-restricted ligands. We present a structural and molecular-level paradigm of immunomodulatory control by interactions of endobiotic metabolites with diet, microbiota and the immune system.
Collapse
|
11
|
Duggan BM, Tamrakar AK, Barra NG, Anhê FF, Paniccia G, Wallace JG, Stacey HD, Surette MG, Miller MS, Sloboda DM, Schertzer JD. Gut microbiota-based vaccination engages innate immunity to improve blood glucose control in obese mice. Mol Metab 2021; 55:101404. [PMID: 34839023 PMCID: PMC8693341 DOI: 10.1016/j.molmet.2021.101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Obesity and diabetes increase circulating levels of microbial components derived from the gut microbiota. Individual bacterial factors (i.e., postbiotics) can have opposing effects on blood glucose. Methods We tested the net effect of gut bacterial extracts on blood glucose in mice using a microbiota-based vaccination strategy. Results Male and female mice had improved glucose and insulin tolerance five weeks after a single subcutaneous injection of a specific dose of a bacterial extract obtained from the luminal contents of the upper small intestine (SI), lower SI, or cecum. Injection of mice with intestinal extracts from germ-free mice revealed that bacteria were required for a microbiota-based vaccination to improve blood glucose control. Vaccination of Nod1−/−, Nod2−/−, and Ripk2−/− mice showed that each of these innate immune proteins was required for bacterial extract injection to improve blood glucose control. A microbiota-based vaccination promoted an immunoglobulin-G (IgG) response directed against bacterial extract antigens, where subcutaneous injection of mice with the luminal contents of the lower SI elicited a bacterial extract-specific IgG response that is compartmentalized to the lower SI of vaccinated mice. A microbiota-based vaccination was associated with an altered microbiota composition in the lower SI and colon of mice. Lean mice only required a single injection of small intestinal-derived bacterial extract, but high fat diet (HFD)-fed, obese mice required prime-boost bacterial extract injections for improvements in blood glucose control. Conclusions Subversion of the gut barrier by vaccination with a microbiota-based extract engages innate immunity to promote long-lasting improvements in blood glucose control in a dose-dependent manner. Subcutaneous injection of gut bacterial extracts improved blood glucose control in mice. Microbiota-based vaccination engaged NOD1-NOD2-RIPK2 to alter blood glucose. Microbiota-based vaccination promoted a proximal gut IgG response. Microbiota-based vaccination altered the composition of the gut microbiome. Obese mice required prime-boost injections to improve blood glucose control.
Collapse
Affiliation(s)
- Brittany M Duggan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Akhilesh K Tamrakar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Gabriella Paniccia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Jessica G Wallace
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Hannah D Stacey
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; Department of Medicine, McMaster University, Hamilton, Canada
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada; Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada.
| |
Collapse
|
12
|
McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J 2021; 40:e108174. [PMID: 34636061 PMCID: PMC8561641 DOI: 10.15252/embj.2021108174] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
All bacteria produce secreted vesicles that carry out a variety of important biological functions. These extracellular vesicles can improve adaptation and survival by relieving bacterial stress and eliminating toxic compounds, as well as by facilitating membrane remodeling and ameliorating inhospitable environments. However, vesicle production comes with a price. It is energetically costly and, in the case of colonizing pathogens, it elicits host immune responses, which reduce bacterial viability. This raises an interesting paradox regarding why bacteria produce vesicles and begs the question as to whether the benefits of producing vesicles outweigh their costs. In this review, we discuss the various advantages and disadvantages associated with Gram-negative and Gram-positive bacterial vesicle production and offer perspective on the ultimate score. We also highlight questions needed to advance the field in determining the role for vesicles in bacterial survival, interkingdom communication, and virulence.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and MicrobiologyDuke UniversityDurhamNCUSA
| | - Meta J Kuehn
- Department of BiochemistryDuke UniversityDurhamNCUSA
| |
Collapse
|
13
|
Tan CY, Ramirez ZE, Surana NK. A Modern-World View of Host-Microbiota-Pathogen Interactions. THE JOURNAL OF IMMUNOLOGY 2021; 207:1710-1718. [PMID: 34544813 DOI: 10.4049/jimmunol.2100215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
The microbiota-the diverse set of commensal microbes that normally colonize humans-represents the first line of defense against infectious diseases. In this review, we summarize the direct and indirect mechanisms by which the microbiota modulates susceptibility to, and severity of, infections, with a focus on immunological mechanisms. Moreover, we highlight some of the ways that modern-world lifestyles have influenced the structure-function relationship between the microbiota and infectious diseases. Ultimately, understanding how the microbiota influences infectious risks will facilitate development of microbiota-derived therapeutics that bolster host defenses.
Collapse
Affiliation(s)
- Chin Yee Tan
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC; and
| | - Zeni E Ramirez
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC; and
| | - Neeraj K Surana
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC; .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC; and.,Department of Immunology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
14
|
Varricchi G, Poto R, Ianiro G, Punziano A, Marone G, Gasbarrini A, Spadaro G. Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding Questions. Front Immunol 2021; 12:712915. [PMID: 34408753 PMCID: PMC8366412 DOI: 10.3389/fimmu.2021.712915] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary antibody immunodeficiency, characterized by reduced serum levels of IgG, IgA, and/or IgM. The vast majority of CVID patients have polygenic inheritance. Immune dysfunction in CVID can frequently involve the gastrointestinal tract and lung. Few studies have started to investigate the gut microbiota profile in CVID patients. Overall, the results suggest that in CVID patients there is a reduction of alpha and beta diversity compared to controls. In addition, these patients can exhibit increased plasma levels of lipopolysaccharide (LPS) and markers (sCD14 and sCD25) of systemic immune cell activation. CVID patients with enteropathy exhibit decreased IgA expression in duodenal tissue. Mouse models for CVID unsatisfactorily recapitulate the polygenic causes of human CVID. The molecular pathways by which gut microbiota contribute to systemic inflammation and possibly tumorigenesis in CVID patients remain poorly understood. Several fundamental questions concerning the relationships between gut microbiota and the development of chronic inflammatory conditions, autoimmune disorders or cancer in CVID patients remain unanswered. Moreover, it is unknown whether it is possible to modify the microbiome and the outcome of CVID patients through specific therapeutic interventions.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianluca Ianiro
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore University, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Cattolica del Sacro Cuore University, Rome, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Behera J, Ison J, Voor MJ, Tyagi N. Probiotics Stimulate Bone Formation in Obese Mice via Histone Methylations. Theranostics 2021; 11:8605-8623. [PMID: 34373761 PMCID: PMC8344023 DOI: 10.7150/thno.63749] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Manipulation of the gut microbiome can prevent pathologic bone loss. However, the effects of probiotics on mitochondrial epigenetic remodeling and skeletal homeostasis in the high-fat diet (HFD)-linked obesity remains to be explored. Here, we examined the impact of probiotics supplementation on mitochondrial biogenesis and bone homeostasis through the histone methylation mechanism in HFD fed obese mice. Methods: 16S rRNA gene sequencing was performed to study the microbiota composition in the gut and microbial dysbiosis in obese mouse model. High resolution (microPET/CT) imaging was performed to demonstrate the obese associated colonic inflammation. Obese-associated upregulation of target miRNA in osteoblast was investigated using a microRNA qPCR array. Osteoblastic mitochondrial mass was evaluated using confocal imaging. Overexpression of mitochondrial transcription factor (Tfam) was used to investigate the glycolysis and mitochondrial bioenergetic metabolism using Tfam-transgenic (Tg) mice fed on HFD. The bone formation and mechanical strength was evaluated by microCT analysis and three-point bending analysis. Results: High-resolution imaging (µ-CT) and mechanical testing revealed that probiotics induced a significant increase of trabecular bone volume and bone mechanical strength respectively in obese mice. Probiotics or Indole-3-propionic acid (IPA) treatment directly to obese mice, prevents gut inflammation, and improved osteoblast mineralization. Mechanistically, probiotics treatment increases mitochondrial transcription factor A (Tfam) expression in osteoblasts by promoting Kdm6b/Jmjd3 histone demethylase, which inhibits H3K27me3 epigenetic methylation at the Tfam promoter. Furthermore, Tfam-transgenic (Tg) mice, fed with HFD, did not experience obesity-linked reduction of glucose uptake, mitochondrial biogenesis and mineralization in osteoblasts. Conclusions: These results suggest that the probiotics mediated changes in the gut microbiome and its derived metabolite, IPA are potentially be a novel agent for regulating bone anabolism via the gut-bone axis.
Collapse
|
16
|
Abstract
Laboratory mice have long been an invaluable tool in biomedical science and have made significant contributions in research into life-threatening diseases. However, the translation of research results from mice to humans often proves difficult due to the incomplete nature of laboratory animal-based research. Hence, there is increasing demand for complementary methods or alternatives to laboratory mice that can better mimic human physiological traits and potentially bridge the translational research gap. Under these circumstances, the natural/naturalized mice including “wild”, “dirty”, “wildling”, and “wilded” systems have been found to better reflect some aspects of human pathophysiology. Here, we discuss the pros and cons of the laboratory mouse system and contemplate how wild mice and wild microbiota are able to help in refining such systems to better mimic the real-world situation and contribute to more productive translational research.
Collapse
Affiliation(s)
- Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, 08826, South Korea.
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Burnett LA, Hochstedler BR, Weldon K, Wolfe AJ, Brubaker L. Recurrent urinary tract infection: Association of clinical profiles with urobiome composition in women. Neurourol Urodyn 2021; 40:1479-1489. [PMID: 34036621 DOI: 10.1002/nau.24707] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 05/02/2021] [Indexed: 01/01/2023]
Abstract
AIMS Clinical profiles of women with recurrent urinary tract infection (RUTI) are correlated with their urinary microbes. METHODS This IRB-approved, cross-sectional study enrolled adult women with RUTI. Urine samples (catheterized and voided) underwent culture by expanded quantitative urine culture (EQUC) and standard urine culture (SUC) methods. A validated symptom questionnaire, relevant clinical variables, and EQUC were used to identify symptom clusters and detect associations with specific urinary microbes. RESULTS Most (36/43) participants were postmenopausal; the average age was 67 years. 51% reported vaginal estrogen use; 51% reported sexual activity. Although single symptoms were not associated with specific urinary microbes, EQUC results were correlated with five distinct clinical profile clusters: Group A: odor, cloudiness, and current vaginal estrogen use (no culture result association). Group B: frequency, low back pain, incomplete emptying, and vaginal estrogen (significantly increased proportion of Lactobacillus-positive cultures). Group C: pain/burning, odor, cloudiness, and urgency (high proportions of UTI-associated microbe-positive cultures). Group D: frequency, urgency, pain/burning, and current vaginal estrogen use (increased number of no growth cultures). Group E: frequency, urgency, pain/burning, odor, overactive bladder, and sexually active (significantly increased proportion of Klebsiella-positive cultures). CONCLUSIONS Distinct clinical profiles are associated with specific urinary microbes in women with RUTI. Refined assessments of clinical profiles may provide useful insights that could inform diagnostic and therapeutic considerations.
Collapse
Affiliation(s)
- Lindsey A Burnett
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Baylie R Hochstedler
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Linda Brubaker
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
18
|
Abstract
Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the human microbiome. The gut microbiome is the richest microbiome and is now known to regulate postnatal skeletal development and the activity of the major endocrine regulators of bone. Parathyroid hormone (PTH) is one of the bone-regulating hormone that requires elements of the gut microbiome to exert both its bone catabolic and its bone anabolic effects. How the gut microbiome regulates the skeletal response to PTH is object of intense research. Involved mechanisms include absorption and diffusion of bacterial metabolites, such as short-chain fatty acids, and trafficking of immune cells from the gut to the bone marrow. This review will focus on how the gut microbiome communicates and regulates bone marrow cells in order to modulate the skeletal effects of PTH.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
- Emory Microbiome Research Center, Emory University, Atlanta, GA, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
19
|
Wu G, Zhao N, Zhang C, Lam YY, Zhao L. Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Med 2021; 13:22. [PMID: 33563315 PMCID: PMC7874449 DOI: 10.1186/s13073-021-00840-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
To demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via next-generation sequencing, potentially important functional members associated with specific health outcomes and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other. Instead, they develop local interactions and form inter-member organizations to influence the ecosystem's higher-level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the same "guild" if they exploit the same class of resources in a similar way or work together as a coherent functional group. Translating the concept of "guild" to the study of gut microbiota, we redefine guild as a group of bacteria that show consistent co-abundant behavior and likely to work together to contribute to the same ecological function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively contribute to human health and diseases.
Collapse
Affiliation(s)
- Guojun Wu
- Center for Nutrition, Microbiome and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA
| | - Naisi Zhao
- Center for Nutrition, Microbiome and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Medford, MA, USA
| | - Chenhong Zhang
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA
- State Key Laboratory of Microbial Metabolism, Ministry of Education Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Y Lam
- Center for Nutrition, Microbiome and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA
| | - Liping Zhao
- Center for Nutrition, Microbiome and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA.
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA.
- State Key Laboratory of Microbial Metabolism, Ministry of Education Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Chen Z, Ruan J, Li D, Wang M, Han Z, Qiu W, Wu G. The Role of Intestinal Bacteria and Gut-Brain Axis in Hepatic Encephalopathy. Front Cell Infect Microbiol 2021; 10:595759. [PMID: 33553004 PMCID: PMC7859631 DOI: 10.3389/fcimb.2020.595759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disorder that occurs in patients with liver insufficiency. However, its pathogenesis has not been fully elucidated. Pharmacotherapy is the main therapeutic option for HE. It targets the pathogenesis of HE by reducing ammonia levels, improving neurotransmitter signal transduction, and modulating intestinal microbiota. Compared to healthy individuals, the intestinal microbiota of patients with liver disease is significantly different and is associated with the occurrence of HE. Moreover, intestinal microbiota is closely associated with multiple links in the pathogenesis of HE, including the theory of ammonia intoxication, bile acid circulation, GABA-ergic tone hypothesis, and neuroinflammation, which contribute to cognitive and motor disorders in patients. Restoring the homeostasis of intestinal bacteria or providing specific probiotics has significant effects on neurological disorders in HE. Therefore, this review aims at elucidating the potential microbial mechanisms and metabolic effects in the progression of HE through the gut-brain axis and its potential role as a therapeutic target in HE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guobin Wu
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
21
|
Bellanti JA, Li D. Treg Cells and Epigenetic Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:95-114. [PMID: 33523445 DOI: 10.1007/978-981-15-6407-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the epigenetic regulation of Treg cells, a cell population with fundamental immunoregulatory properties, has shed considerable insights into an understanding of the role of these cells in health and disease. Research over the past several years has shown that the interaction of Treg cells with the gut microbiota are critical not only for the development of Treg function in health but also for abnormalities of Treg function that play a critical role in the pathogenesis of human diseases such as the allergic diseases, the autoimmune disorders, and cancer. The equilibrium between phenotypic plasticity and stability of Treg cells is defined by the fine-tuned transcriptional and epigenetic events required to ensure stable expression of Foxp3 in Treg cells. In this chapter, we discuss the molecular events that control Foxp3 gene expression and address the importance of DNA methylation as an important molecular switch that regulates the genetic expression of Treg induction and the possible implications of these findings for the treatment of human diseases characterized by abnormalities of Treg cell function.
Collapse
Affiliation(s)
- Joseph A Bellanti
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA. .,Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA. .,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA.
| | - Dongmei Li
- Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA.,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
22
|
Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell 2020; 183:1312-1324.e10. [PMID: 33212011 DOI: 10.1016/j.cell.2020.10.047] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Interferon (IFN)-Is are crucial mediators of antiviral immunity and homeostatic immune system regulation. However, the source of IFN-I signaling under homeostatic conditions is unclear. We discovered that commensal microbes regulate the IFN-I response through induction of IFN-β by colonic DCs. Moreover, the mechanism by which a specific commensal microbe induces IFN-β was identified. Outer membrane (OM)-associated glycolipids of gut commensal microbes belonging to the Bacteroidetes phylum induce expression of IFN-β. Using Bacteroides fragilis and its OM-associated polysaccharide A, we determined that IFN-β expression was induced via TLR4-TRIF signaling. Antiviral activity of this purified microbial molecule against infection with either vesicular stomatitis virus (VSV) or influenza was demonstrated to be dependent on the induction of IFN-β. In a murine VSV infection model, commensal-induced IFN-β regulated natural resistance to virus infection. Due to the physiological importance of IFN-Is, discovery of an IFN-β-inducing microbial molecule represents a potential approach for the treatment of some human diseases.
Collapse
|
23
|
Bonadies L, Zaramella P, Porzionato A, Perilongo G, Muraca M, Baraldi E. Present and Future of Bronchopulmonary Dysplasia. J Clin Med 2020; 9:jcm9051539. [PMID: 32443685 PMCID: PMC7290764 DOI: 10.3390/jcm9051539] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common respiratory disorder among infants born extremely preterm. The pathogenesis of BPD involves multiple prenatal and postnatal mechanisms affecting the development of a very immature lung. Their combined effects alter the lung's morphogenesis, disrupt capillary gas exchange in the alveoli, and lead to the pathological and clinical features of BPD. The disorder is ultimately the result of an aberrant repair response to antenatal and postnatal injuries to the developing lungs. Neonatology has made huge advances in dealing with conditions related to prematurity, but efforts to prevent and treat BPD have so far been only partially effective. Seeing that BPD appears to have a role in the early origin of chronic obstructive pulmonary disease, its prevention is pivotal also in long-term respiratory outcome of these patients. There is currently some evidence to support the use of antenatal glucocorticoids, surfactant therapy, protective noninvasive ventilation, targeted saturations, early caffeine treatment, vitamin A, and fluid restriction, but none of the existing strategies have had any significant impact in reducing the burden of BPD. New areas of research are raising novel therapeutic prospects, however. For instance, early topical (intratracheal or nebulized) steroids seem promising: they might help to limit BPD development without the side effects of systemic steroids. Evidence in favor of stem cell therapy has emerged from several preclinical trials, and from a couple of studies in humans. Mesenchymal stromal/stem cells (MSCs) have revealed a reparatory capability, preventing the progression of BPD in animal models. Administering MSC-conditioned media containing extracellular vesicles (EVs) have also demonstrated a preventive action, without the potential risks associated with unwanted engraftment or the adverse effects of administering cells. In this paper, we explore these emerging treatments and take a look at the revolutionary changes in BPD and neonatology on the horizon.
Collapse
Affiliation(s)
- Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
| | - Andrea Porzionato
- Human Anatomy Section, Department of Neurosciences, University of Padova, 35128 Padova, Italy;
| | - Giorgio Perilongo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Maurizio Muraca
- Institute of Pediatric Research “Città della Speranza”, Stem Cell and Regenerative Medicine Laboratory, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.B.); (P.Z.)
- Correspondence: ; Tel.: +39-049-821-3560; Fax: +39-049-821-3502
| |
Collapse
|
24
|
Gao X, Feng Y, Xue H, Meng M, Qin X. Antidepressant-like effect of triterpenoids extracts from Poria cocos on the CUMS rats by 16S rRNA gene sequencing and LC–MS metabolomics. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1737107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yan Feng
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Huanhuan Xue
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Meidai Meng
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
25
|
Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. MICROBIOME 2020; 8:36. [PMID: 32169105 PMCID: PMC7071638 DOI: 10.1186/s40168-020-00821-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/02/2020] [Indexed: 05/03/2023]
Abstract
Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, Kelowna, BC, Canada.
| |
Collapse
|
26
|
The Evolving Microbiome from Pregnancy to Early Infancy: A Comprehensive Review. Nutrients 2020; 12:nu12010133. [PMID: 31906588 PMCID: PMC7019214 DOI: 10.3390/nu12010133] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Pregnancy induces a number of immunological, hormonal, and metabolic changes that are necessary for the mother to adapt her body to this new physiological situation. The microbiome of the mother, the placenta and the fetus influence the fetus growth and undoubtedly plays a major role in the adequate development of the newborn infant. Hence, the microbiome modulates the inflammatory mechanisms related to physiological and pathological processes that are involved in the perinatal progress through different mechanisms. The present review summarizes the actual knowledge related to physiological changes in the microbiota occurring in the mother, the fetus, and the child, both during neonatal period and beyond. In addition, we approach some specific pathological situations during the perinatal periods, as well as the influence of the type of delivery and feeding.
Collapse
|
27
|
Xu R, Tan C, Zhu J, Zeng X, Gao X, Wu Q, Chen Q, Wang H, Zhou H, He Y, Pan S, Yin J. Dysbiosis of the intestinal microbiota in neurocritically ill patients and the risk for death. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:195. [PMID: 31151471 PMCID: PMC6544929 DOI: 10.1186/s13054-019-2488-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Background Despite the essential functions of the intestinal microbiota in human physiology, little has been reported about the microbiome in neurocritically ill patients. This investigation aimed to evaluate the characteristics of the gut microbiome in neurocritically ill patients and its changes after admission. Furthermore, we investigated whether the characteristics of the gut microbiome at admission were a risk factor for death within 180 days. Methods This prospective observational cohort study included neurocritically ill patients admitted to the neurological intensive care unit of a large university-affiliated academic hospital in Guangzhou. Faecal samples were collected within 72 h after admission (before antibiotic treatment) and serially each week. Healthy volunteers were recruited from a community in Guangzhou. The gut microbiome was monitored via 16S rRNA gene sequence analysis, and the associations with the clinical outcome were evaluated by a Cox proportional hazards model. Results In total, 98 patients and 84 age- and sex-matched healthy subjects were included in the analysis. Compared with healthy subjects, the neurocritically ill patients exhibited significantly different compositions of intestinal microbiota. During hospitalization, the α-diversity and abundance of Ruminococcaceae and Lachnospiraceae decreased significantly over time in patients followed longitudinally. The abundance of Enterobacteriaceae was positively associated with the modified Rankin Scale at discharge. In the multivariate Cox regression analysis, Christensenellaceae and Erysipelotrichaceae were associated with an increased risk of death. The increases in intestinal Enterobacteriales and Enterobacteriaceae during the first week in the neurological intensive care unit were associated with increases of 92% in the risk of 180-day mortality after adjustments. Conclusions This analysis of the gut microbiome in 98 neurocritically ill patients indicates that the gut microbiota composition in these patients differs significantly from that in a healthy population and that the magnitude of this dysbiosis increases during hospitalization in a neurological intensive care unit. The gut microbiota characteristics seem to have an impact on patients’ 180-day mortality. Gut microbiota analysis could hopefully predict outcome in the future. Electronic supplementary material The online version of this article (10.1186/s13054-019-2488-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruoting Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuhong Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajia Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuli Zeng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuxuan Gao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiheng Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huidi Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- State Key Laboratory of Organ Failure Research, Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yan He
- State Key Laboratory of Organ Failure Research, Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jia Yin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Abstract
The recognition over the past decade that nearly all diseases are associated with changes in the microbiome has raised hope that microbiome-based therapeutics may cure many human ailments. Billions of dollars are being poured into microbiome-oriented biotech companies, and the coming years will undoubtedly witness the approval of the first generation of these products. However, significant hurdles remain in expanding the pipeline and advancing these first-generation therapies. In this perspective, I will discuss the challenges related to identifying causal microbes, determining their mechanism of action, and characterizing the specific bacterial molecules required for disease protection. We are approaching these issues through a combination of clinical sampling, animal models, classic microbiology methodologies, and systems-based approaches. The field of microbiome research is on the cusp of being able to identify clinically actionable host-microbe relationships; increasing attention on identifying causal microbes and their bioactive factors will usher in the next generation of microbiome-based therapies.
Collapse
|
29
|
Ramakrishna C, Kujawski M, Chu H, Li L, Mazmanian SK, Cantin EM. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun 2019; 10:2153. [PMID: 31089128 PMCID: PMC6517419 DOI: 10.1038/s41467-019-09884-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
The gut commensal Bacteroides fragilis or its capsular polysaccharide A (PSA) can prevent various peripheral and CNS sterile inflammatory disorders. Fatal herpes simplex encephalitis (HSE) results from immune pathology caused by uncontrolled invasion of the brainstem by inflammatory monocytes and neutrophils. Here we assess the immunomodulatory potential of PSA in HSE by infecting PSA or PBS treated 129S6 mice with HSV1, followed by delayed Acyclovir (ACV) treatment as often occurs in the clinical setting. Only PSA-treated mice survived, with dramatically reduced brainstem inflammation and altered cytokine and chemokine profiles. Importantly, PSA binding by B cells is essential for induction of regulatory CD4+ and CD8+ T cells secreting IL-10 to control innate inflammatory responses, consistent with the lack of PSA mediated protection in Rag−/−, B cell- and IL-10-deficient mice. Our data reveal the translational potential of PSA as an immunomodulatory symbiosis factor to orchestrate robust protective anti-inflammatory responses during viral infections. The capsular polysaccharide A (PSA) of Bacteroides fragilis is known to have immunomodulatory capability during sterile inflammatory disorders. Here Ramakrishna and colleagues show that PSA administration in a murine model of herpes simplex encephalitis induces IL-10 producing B and T cell populations that confer protection against lethal challenge and brain pathology.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| | - Maciej Kujawski
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hiutung Chu
- Division of Biology and Biological Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lin Li
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Edouard M Cantin
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
30
|
Consonni A, Cordiglieri C, Rinaldi E, Marolda R, Ravanelli I, Guidesi E, Elli M, Mantegazza R, Baggi F. Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget 2018; 9:22269-22287. [PMID: 29854277 PMCID: PMC5976463 DOI: 10.18632/oncotarget.25170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Probiotics beneficial effects on the host are associated with regulation of the intestinal microbial homeostasis and with modulation of inflammatory immune responses in the gut and in periphery. In this study, we investigated the clinical efficacy of two lactobacillus and two bifidobacterium probiotic strains in experimental autoimmune myasthenia gravis (EAMG) and experimental autoimmune encephalomyelitis (EAE) models, induced in Lewis rats. Treatment with probiotics led to less severe disease manifestation in both models; ex vivo analyses showed preservation of neuromuscular junction in EAMG and myelin content in EAE spinal cord. Immunoregulatory transcripts were found differentially expressed in gut associated lymphoid tissue and in peripheral immunocompetent organs. Feeding EAMG animals with probiotics resulted in increased levels of Transforming Growth Factor-β (TGFβ) in serum, and increased percentages of regulatory T cells (Treg) in peripheral blood leukocyte. Exposure of immature dendritic cells to probiotics induced their maturation toward an immunomodulatory phenotype, and secretion of TGFβ. Our data showed that bifidobacteria and lactobacilli treatment effectively modulates disease symptoms in EAMG and EAE models, and support further investigations to evaluate their use in autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Consonni
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Chiara Cordiglieri
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Rinaldi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Roberta Marolda
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Ilaria Ravanelli
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Guidesi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Marina Elli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Fulvio Baggi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| |
Collapse
|
31
|
Abstract
Exposed surfaces of mammals are colonized with 100 trillion indigenous bacteria, fungi, and viruses, creating a diverse ecosystem known as the microbiome. The gastrointestinal tract harbors the greatest numbers of these microorganisms, which regulate human nutrition, metabolism, and immune system function. Moreover, the intestinal microbiota contains pro- and anti-inflammatory products that modulate immune responses and may play a role in maintaining gut barrier function. Therefore, the community composition of the microbiota has profound effects on the immune status of the host and impacts the development and/or progression of inflammatory diseases. Accordingly, numerous studies have shown differences in the microbiota of patients with and without a given inflammatory condition. There is now strong evidence that the gut microbiome regulates bone homeostasis in health and disease, and that prebiotic and probiotics protect against bone loss. Herein, the evidence supporting the role of the microbiota and the effects of prebiotic and probiotics will be reviewed.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
32
|
Abstract
The gut microbiota is mainly composed of a diverse population of commensal bacterial species and plays a pivotal role in the maintenance of intestinal homeostasis, immune modulation and metabolism. The influence of the gut microbiota on solid organ transplantation has recently been recognized. In fact, several studies indicated that acute and chronic allograft rejection in small bowel transplantation (SBT) is closely associated with the alterations in microbial patterns in the gut. In this review, we focused on the recent findings regarding alterations in the microbiota following SBTand the potential roles of these alterations in the development of acute and chronic allograft rejection. We also reviewed important advances with respect to the interplays between the microbiota and host immune systems in SBT. Furthermore, we explored the potential of the gut microbiota as a microbial marker and/or therapeutic target for the predication and intervention of allograft rejection and chronic dysfunction. Given that current research on the gut microbiota has become increasingly sophisticated and comprehensive, large cohort studies employing metagenomic analysis and multivariate linkage should be designed for the characterization of host-microbe interaction and causality between microbiota alterations and clinical outcomes in SBT. The findings are expected to provide valuable insights into the role of gut microbiota in the development of allograft rejection and other transplant-related complications and introduce novel therapeutic targets and treatment approaches in clinical practice.
Collapse
|
33
|
Moving beyond microbiome-wide associations to causal microbe identification. Nature 2017; 552:244-247. [PMID: 29211710 PMCID: PMC5730484 DOI: 10.1038/nature25019] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
Abstract
Microbiome-wide association studies have established that numerous diseases are associated with changes in the microbiota1,2. These studies typically generate a long list of commensals implicated as biomarkers of disease, with no clear relevance to disease pathogenesis1–5. If the field is to move beyond correlations and begin to address causation, an effective system is needed for refining this catalog of differentially abundant microbes and allow for subsequent mechanistic studies1,4. Herein, we demonstrate that triangulation of microbe–phenotype relationships is an effective method for reducing the noise inherent in microbiota studies and enabling identification of causal microbes. We found that gnotobiotic mice harboring different microbial communities exhibited differential survival in a colitis model. Co-housing of these mice generated animals that had hybrid microbiotas and displayed intermediate susceptibility to colitis. Mapping of microbe–phenotype relationships in parental mouse strains and in mice with hybrid microbiotas identified the bacterial family Lachnospiraceae as a correlate for protection from disease. Using directed microbial culture techniques, we discovered Clostridium immunis, a previously unknown bacterial species from this family, that—when administered to colitis-prone mice—protected them against colitis-associated death. To demonstrate the generalizability of our approach, we used it to identify several commensal organisms that induce intestinal expression of an antimicrobial peptide. Thus, we have used microbe–phenotype triangulation to move beyond the standard correlative microbiome study and identify causal microbes for two completely distinct phenotypes. Identification of disease-modulating commensals by microbe–phenotype triangulation may be more broadly applicable to human microbiome studies.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. RECENT FINDINGS Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.
Collapse
|
35
|
Abstract
Falling between the classical characteristics of innate immune cells and adaptive T and B cells are a group of lymphocytes termed "unconventional." These cells express antigen-specific T or B cell receptors, but behave with innate characteristics. Well-known members of this group include the gamma-delta T cell and the Natural Killer T cell. Recent literature has greatly expanded scientific knowledge of unconventional lymphocytes, but key questions remain unresolved in the field, including why these cells have been maintained concurrently with conventional innate and adaptive immune cells. Here, we summarize current literature that suggests what their unique purposes may be, including specialized functions with the microbiota and in early development. From the consensus literature, we discuss where we see unconventional lymphocytes fit into the logical organization of the complete immune system.
Collapse
Affiliation(s)
- Lesley Pasman
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol Rev 2017; 97:1127-1164. [PMID: 28566539 PMCID: PMC6151499 DOI: 10.1152/physrev.00031.2016] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Hector Pons
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Richard J Johnson
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| |
Collapse
|
37
|
Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Front Med (Lausanne) 2017; 4:61. [PMID: 28589122 PMCID: PMC5439211 DOI: 10.3389/fmed.2017.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Yearly more than 15 million babies are born premature (<37 weeks gestational age), accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation can lead to the development of bronchopulmonary dysplasia (BPD), one of the most common adverse outcomes in these preterm neonates. BPD patients have an arrest in alveolar and microvascular development and more frequently develop asthma and early-onset emphysema as they age. Understanding how the alveoli develop, and repair, and regenerate after injury is critical for the development of therapies, as unfortunately there is still no cure for BPD. In this review, we aim to provide an overview of emerging new concepts in the understanding of perinatal lung development and injury from a molecular and cellular point of view and how this is paving the way for new therapeutic options to prevent or treat BPD, as well as a reflection on current treatment procedures.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Ismé M de Kleer
- Division of Pediatric Pulmonology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
38
|
Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Nat Rev Gastroenterol Hepatol 2017; 14:315-320. [PMID: 28356581 DOI: 10.1038/nrgastro.2017.29] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Spurred on by ever-evolving developments in analytical methodology, the microbiome, and the gut microbiome in particular, has become the hot topic in biomedical research. Ingenious experiments in animal models have revealed the extent to which the gut microbiota sustains health and how its disruption might contribute to disease pathogenesis. Not surprisingly, associations between the microbiota and disease states in humans have been the subject of considerable interest and many links proposed. However, with rare exceptions, the incrimination of an altered microbiota in disease pathogenesis seems premature at this time given our incomplete understanding of the composition of the gut microbiota in health and the effect of many confounding factors in the interpretation of supposedly abnormal microbial signatures. Future studies must account for these variables and the bidirectionality of host-microorganism interactions in health and disease. In this Perspectives, the status of microbiota signatures in the clinical arena (for facilitating diagnosis or refining prognosis) will be critically assessed and guidance toward future progress provided.
Collapse
|
39
|
Chen DC. Gut Microbiota and Intestinal Decolonization of Pathogenic Microorganisms. Chin Med J (Engl) 2017; 129:1639-42. [PMID: 27411449 PMCID: PMC4960951 DOI: 10.4103/0366-6999.185872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- De-Chang Chen
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
40
|
Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, Yanortsang TB, Yang L, Jupp R, Mathis D, Benoist C, Kasper DL. Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell 2017; 168:928-943.e11. [PMID: 28215708 DOI: 10.1016/j.cell.2017.01.022] [Citation(s) in RCA: 530] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/01/2016] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics.
Collapse
Affiliation(s)
- Naama Geva-Zatorsky
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Esen Sefik
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay Kua
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lesley Pasman
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tze Guan Tan
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Adriana Ortiz-Lopez
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tsering Bakto Yanortsang
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Yang
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ray Jupp
- UCB Pharma, Slough, Berkshire SL1 3WE, UK
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Dinan TG, Cryan JF. Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome. Neuropsychopharmacology 2017; 42:178-192. [PMID: 27319972 PMCID: PMC5143479 DOI: 10.1038/npp.2016.103] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
There is now a large volume of evidence to support the view that the immune system is a key communication pathway between the gut and brain, which plays an important role in stress-related psychopathologies and thus provides a potentially fruitful target for psychotropic intervention. The gut microbiota is a complex ecosystem with a diverse range of organisms and a sophisticated genomic structure. Bacteria within the gut are estimated to weigh in excess of 1 kg in the adult human and the microbes within not only produce antimicrobial peptides, short chain fatty acids, and vitamins, but also most of the common neurotransmitters found in the human brain. That the microbial content of the gut plays a key role in immune development is now beyond doubt. Early disruption of the host-microbe interplay can have lifelong consequences, not just in terms of intestinal function but in distal organs including the brain. It is clear that the immune system and nervous system are in continuous communication in order to maintain a state of homeostasis. Significant gaps in knowledge remain about the effect of the gut microbiota in coordinating the immune-nervous systems dialogue. However, studies using germ-free animals, infective models, prebiotics, probiotics, and antibiotics have increased our understanding of the interplay. Early life stress can have a lifelong impact on the microbial content of the intestine and permanently alter immune functioning. That early life stress can also impact adult psychopathology has long been appreciated in psychiatry. The challenge now is to fully decipher the molecular mechanisms that link the gut microbiota, immune, and central nervous systems in a network of communication that impacts behavior patterns and psychopathology, to eventually translate these findings to the human situation both in health and disease. Even at this juncture, there is evidence to pinpoint key sites of communication where gut microbial interventions either with drugs or diet or perhaps fecal microbiota transplantation may positively impact mental health.
Collapse
Affiliation(s)
- Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
42
|
Rogers MB, Firek B, Shi M, Yeh A, Brower-Sinning R, Aveson V, Kohl BL, Fabio A, Carcillo JA, Morowitz MJ. Disruption of the microbiota across multiple body sites in critically ill children. MICROBIOME 2016; 4:66. [PMID: 28034303 PMCID: PMC5200963 DOI: 10.1186/s40168-016-0211-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/24/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Despite intense interest in the links between the microbiome and human health, little has been written about dysbiosis among ICU patients. We characterized microbial diversity in samples from 37 children in a pediatric ICU (PICU). Standard measures of alpha and beta diversity were calculated, and results were compared with data from adult and pediatric reference datasets. RESULTS Bacterial 16S rRNA gene sequences were analyzed from 71 total tongue swabs, 50 skin swabs, and 77 stool samples or rectal swabs. The mean age of the PICU patients was 2.9 years (range 1-9 years), and many were chronically ill children that had previously been hospitalized in the PICU. Relative to healthy adults and children, alpha diversity was decreased in PICU GI and tongue but not skin samples. Measures of beta diversity indicated differences in community membership at each body site between PICU, adult, and pediatric groups. Taxonomic alterations in the PICU included enrichment of gut pathogens such as Enterococcus and Staphylococcus at multiple body sites and depletion of commensals such as Faecalibacterium and Ruminococcus from GI samples. Alpha and beta diversity were unstable over time in patients followed longitudinally. We observed the frequent presence of "dominant" pathogens in PICU samples at relative abundance >50%. PICU samples were characterized by loss of site specificity, with individual taxa commonly present simultaneously at three sample sites on a single individual. Some pathogens identified by culture of tracheal aspirates were commonly observed in skin samples from the same patient. CONCLUSIONS We conclude that the microbiota in critically ill children differs sharply from the microbiota of healthy children and adults. Acknowledgement of dysbiosis associated with critical illness could provide opportunities to modulate the microbiota with precision and thereby improve patient outcomes.
Collapse
Affiliation(s)
- Matthew B. Rogers
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Brian Firek
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Min Shi
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, USA
| | - Andrew Yeh
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Rachel Brower-Sinning
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Victoria Aveson
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Brittany L. Kohl
- Division of Pediatric Critical Care Medicine, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, USA
| | - Anthony Fabio
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Joseph A. Carcillo
- Division of Pediatric Critical Care Medicine, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Michael J. Morowitz
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, 7th Floor Faculty Pavilion, Pittsburgh, PA 15244 USA
| |
Collapse
|
43
|
Abstract
Diverse effects of the microbiome on solid organ transplantation are beginning to be recognized. In allograft recipients, microbial networks are disrupted by immunosuppression, nosocomial and community-based infectious exposures, antimicrobial therapies, surgery, and immune processes. Shifting microbial patterns, including acute infectious exposures, have dynamic and reciprocal interactions with local and systemic immune systems. Both individual microbial species and microbial networks have central roles in the induction and control of innate and adaptive immune responses, in graft rejection, and in ischemia-reperfusion injury. Understanding the diverse interactions between the microbiome and the immune system of allograft recipients may facilitate clinical management in the future.
Collapse
|
44
|
Couter CJ, Surana NK. Isolation and Flow Cytometric Characterization of Murine Small Intestinal Lymphocytes. J Vis Exp 2016. [PMID: 27213538 DOI: 10.3791/54114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intestines - which contain the largest number of immune cells of any organ in the body - are constantly exposed to foreign antigens, both microbial and dietary. Given an increasing understanding that these luminal antigens help shape the immune response and that education of immune cells within the intestine is critical for a number of systemic diseases, there has been increased interest in characterizing the intestinal immune system. However, many published protocols are arduous and time-consuming. We present here a simplified protocol for the isolation of lymphocytes from the small-intestinal lamina propria, intraepithelial layer, and Peyer's patches that is rapid, reproducible, and does not require laborious Percoll gradients. Although the protocol focuses on the small intestine, it is also suitable for analysis of the colon. Moreover, we highlight some aspects that may need additional optimization depending on the specific scientific question. This approach results in the isolation of large numbers of viable lymphocytes that can subsequently be used for flow cytometric analysis or alternate means of characterization.
Collapse
Affiliation(s)
- Cheryn J Couter
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital
| | - Neeraj K Surana
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital;
| |
Collapse
|
45
|
Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 2016; 126:2049-63. [PMID: 27111232 DOI: 10.1172/jci86062] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/01/2016] [Indexed: 12/22/2022] Open
Abstract
A eubiotic microbiota influences many physiological processes in the metazoan host, including development and intestinal homeostasis. Here, we have shown that the intestinal microbiota modulates inflammatory responses caused by sex steroid deficiency, leading to trabecular bone loss. In murine models, sex steroid deficiency increased gut permeability, expanded Th17 cells, and upregulated the osteoclastogenic cytokines TNFα (TNF), RANKL, and IL-17 in the small intestine and the BM. In germ-free (GF) mice, sex steroid deficiency failed to increase osteoclastogenic cytokine production, stimulate bone resorption, and cause trabecular bone loss, demonstrating that the gut microbiota is central in sex steroid deficiency-induced trabecular bone loss. Furthermore, we demonstrated that twice-weekly treatment of sex steroid-deficient mice with the probiotics Lactobacillus rhamnosus GG (LGG) or the commercially available probiotic supplement VSL#3 reduces gut permeability, dampens intestinal and BM inflammation, and completely protects against bone loss. In contrast, supplementation with a nonprobiotic strain of E. coli or a mutant LGG was not protective. Together, these data highlight the role that the gut luminal microbiota and increased gut permeability play in triggering inflammatory pathways that are critical for inducing bone loss in sex steroid-deficient mice. Our data further suggest that probiotics that decrease gut permeability have potential as a therapeutic strategy for postmenopausal osteoporosis.
Collapse
|
46
|
Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis. Blood 2016; 127:2460-71. [PMID: 26989200 DOI: 10.1182/blood-2015-10-675173] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/10/2016] [Indexed: 12/17/2022] Open
Abstract
Maintenance of myeloid cell homeostasis requires continuous turnover of phagocytes from the bloodstream, yet whether environmental signals influence phagocyte longevity in the absence of inflammation remains unknown. Here, we show that the gut microbiota regulates the steady-state cellular lifespan of neutrophils and inflammatory monocytes, the 2 most abundant circulating myeloid cells and key contributors to inflammatory responses. Treatment of mice with broad-spectrum antibiotics, or with the gut-restricted aminoglycoside neomycin alone, accelerated phagocyte turnover and increased the rates of their spontaneous apoptosis. Metagenomic analyses revealed that neomycin altered the abundance of intestinal bacteria bearing γ-d-glutamyl-meso-diaminopimelic acid, a ligand for the intracellular peptidoglycan sensor Nod1. Accordingly, signaling through Nod1 was both necessary and sufficient to mediate the stimulatory influence of the flora on myeloid cell longevity. Stimulation of Nod1 signaling increased the frequency of lymphocytes in the murine intestine producing the proinflammatory cytokine interleukin 17A (IL-17A), and liberation of IL-17A was required for transmission of Nod1-dependent signals to circulating phagocytes. Together, these results define a mechanism through which intestinal microbes govern a central component of myeloid homeostasis and suggest perturbations of commensal communities can influence steady-state regulation of cell fate.
Collapse
|
47
|
Köck R, Werner P, Friedrich AW, Fegeler C, Becker K. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population. New Microbes New Infect 2015; 9:24-34. [PMID: 26862431 PMCID: PMC4706603 DOI: 10.1016/j.nmni.2015.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022] Open
Abstract
The nares represent an important bacterial reservoir for endogenous infections. This study aimed to assess the prevalence of nasal colonization by different important pathogens, the associated antimicrobial susceptibility and risk factors. We performed a prospective cohort study among 1878 nonhospitalized volunteers recruited from the general population in Germany. Participants provided nasal swabs at three time points (each separated by 4–6 months). Staphylococcus aureus, Enterobacteriaceae and important nonfermenters were cultured and subjected to susceptibility testing. Factors potentially influencing bacterial colonization patterns were assessed. The overall prevalence of S. aureus, Enterobacteriaceae and nonfermenters was 41.0, 33.4 and 3.7%, respectively. Thirteen participants (0.7%) were colonized with methicillin-resistant S. aureus. Enterobacteriaceae were mostly (>99%) susceptible against ciprofloxacin and carbapenems (100%). Extended-spectrum β-lactamase–producing isolates were not detected among Klebsiella oxytoca, Klebsiella pneumoniae and Escherichia coli. Several lifestyle- and health-related factors (e.g. household size, travel, livestock density of the residential area or occupational livestock contact, atopic dermatitis, antidepressant or anti-infective drugs) were associated with colonization by different microorganisms. This study unexpectedly demonstrated high nasal colonization rates with Enterobacteriaceae in the German general population, but rates of antibiotic resistance were low. Methicillin-resistant S. aureus carriage was rare but highly associated with occupational livestock contact.
Collapse
Affiliation(s)
- R Köck
- University Hospital Münster, Institute of Medical Microbiology, Münster, Germany
| | - P Werner
- University Heilbronn, GECKO Institute of Medicine, Informatics and Economy, Heilbronn, Germany
| | - A W Friedrich
- University Hospital Groningen, Department for Medical Microbiology and Infection Control, Groningen, The Netherlands
| | - C Fegeler
- University Heilbronn, GECKO Institute of Medicine, Informatics and Economy, Heilbronn, Germany
| | - K Becker
- University Hospital Münster, Institute of Medical Microbiology, Münster, Germany
| | | | | |
Collapse
|
48
|
Tomkovich S, Jobin C. Microbiota and host immune responses: a love-hate relationship. Immunology 2015; 147:1-10. [PMID: 26439191 DOI: 10.1111/imm.12538] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022] Open
Abstract
A complex relationship between the microbiota and the host emerges early at birth and continues throughout life. The microbiota includes the prokaryotes, viruses and eukaryotes living among us, all of which interact to different extents with various organs and tissues in the body, including the immune system. Although the microbiota is most dense in the lower intestine, its influence on host immunity extends beyond the gastrointestinal tract. These interactions with the immune system operate through the actions of various microbial structures and metabolites, with outcomes ranging from beneficial to deleterious for the host. These differential outcomes are dictated by host factors, environment, and the type of microbes or products present in a specific ecosystem. It is also becoming clear that the microbes are in turn affected and respond to the host immune system. Disruption of this complex dialogue between host and microbiota can lead to immune pathologies such as inflammatory bowel diseases, diabetes and obesity. This review will discuss recent advances regarding the ways in which the host immune system and microbiota interact and communicate with one another.
Collapse
Affiliation(s)
- Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, FL, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, USA.,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG, Ehmke H. Immune Mechanisms in Arterial Hypertension. J Am Soc Nephrol 2015; 27:677-86. [PMID: 26319245 DOI: 10.1681/asn.2015050562] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditionally, arterial hypertension and subsequent end-organ damage have been attributed to hemodynamic factors, but increasing evidence indicates that inflammation also contributes to the deleterious consequences of this disease. The immune system has evolved to prevent invasion of foreign organisms and to promote tissue healing after injury. However, this beneficial activity comes at a cost of collateral damage when the immune system overreacts to internal injury, such as prehypertension. Renal inflammation results in injury and impaired urinary sodium excretion, and vascular inflammation leads to endothelial dysfunction, increased vascular resistance, and arterial remodeling and stiffening. Notably, modulation of the immune response can reduce the severity of BP elevation and hypertensive end-organ damage in several animal models. Indeed, recent studies have improved our understanding of how the immune response affects the pathogenesis of arterial hypertension, but the remarkable advances in basic immunology made during the last few years still await translation to the field of hypertension. This review briefly summarizes recent advances in immunity and hypertension as well as hypertensive end-organ damage.
Collapse
Affiliation(s)
| | | | | | - Christian Kurts
- Institutes of Molecular Medicine and Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn, Germany; and
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Nashville, Tennessee
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Sinicrope FA, Mahoney MR, Yoon HH, Smyrk TC, Thibodeau SN, Goldberg RM, Nelson GD, Sargent DJ, Alberts SR. Analysis of Molecular Markers by Anatomic Tumor Site in Stage III Colon Carcinomas from Adjuvant Chemotherapy Trial NCCTG N0147 (Alliance). Clin Cancer Res 2015; 21:5294-304. [PMID: 26187617 DOI: 10.1158/1078-0432.ccr-15-0527] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/30/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine the frequency and prognostic association of molecular markers by anatomic tumor site in patients with stage III colon carcinomas. EXPERIMENTAL DESIGN In a randomized trial of adjuvant FOLFOX ± cetuximab, BRAF(V600E) and KRAS (exon 2) mutations and DNA mismatch repair (MMR) proteins were analyzed in tumors (N = 3,018) in relationship to tumor location, including subsite. Cox models were used to assess clinical outcome, including overall survival (OS). RESULTS KRAS codon 12 mutations were most frequent at the splenic flexure and cecum; codon 13 mutations were evenly distributed. BRAF mutation frequency sharply increased from transverse colon to cecum in parallel with deficient (d) MMR. Nonmutated BRAF and KRAS tumors progressively decreased from sigmoid to transverse (all P < 0.0001). Significantly, poorer OS was found for mutant KRAS in distal [HR, 1.98; 95% confidence interval (CI), 1.49-2.63; P < 0.0001] versus proximal (1.25; 95% CI, 0.97-1.60; P = 0.079) cancers. BRAF status and outcome were not significantly associated with tumor site. Proximal versus distal dMMR tumors had significantly better outcome. An interaction test was significant for tumor site by KRAS (P(adjusted) = 0.043) and MMR (P(adjusted) = 0.010) for OS. Significant prognostic differences for biomarkers by tumor site were maintained in the FOLFOX arm. Tumor site was independently prognostic with a stepwise improvement from cecum to sigmoid (OS: P(adjusted) = 0.001). CONCLUSIONS Mutation in BRAF or KRAS codon 12 was enriched in proximal cancers whereas nonmutated BRAF/KRAS was increased in distal tumors. Significant differences in outcome for KRAS mutations and dMMR were found by tumor site, indicating that their interpretation should occur in the context of tumor location.
Collapse
Affiliation(s)
- Frank A Sinicrope
- Department of Medicine, Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota. Department of Oncology, Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota.
| | - Michelle R Mahoney
- Alliance Statistics and Data Center, Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota
| | - Harry H Yoon
- Department of Oncology, Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota
| | - Thomas C Smyrk
- Laboratory Medicine and Pathology, Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota
| | - Stephen N Thibodeau
- Laboratory Medicine and Pathology, Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota
| | | | - Garth D Nelson
- Alliance Statistics and Data Center, Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota
| | - Daniel J Sargent
- Alliance Statistics and Data Center, Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota
| | - Steven R Alberts
- Department of Oncology, Mayo Clinic and Mayo Cancer Center, Rochester, Minnesota
| | | |
Collapse
|