1
|
Usman HA, Sholihah F, Dewayani BM, Giovani O. The Roles of Vitamin D Receptor (VDR) and CD8+ T-Lymphocytes in Acral and Mucosal Melanoma Invasion Depth. J Cutan Pathol 2025; 52:227-234. [PMID: 39633592 DOI: 10.1111/cup.14771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Acral and mucosal melanomas, the most common sun-shielded site melanoma subtypes in Asia and Indonesia, often yield poor prognoses. The invasion depth reflects their progressivity, and the pathogenesis is influenced by vitamin D receptor (VDR) status and CD8+ T-Lymphocyte amount. This study aims to determine the association between the invasion depth of acral and mucosal melanomas with their VDR and CD8+ immunoexpression. METHODS A cross-sectional observational study was conducted on 60 formalin-fixed paraffin-embedded (FPPE) samples, with equal representation in acral and mucosal melanoma groups from 2017 to 2021. The samples were assessed for the invasion depth and immunoexpression of VDR and CD8+. A chi-square test with an alternative Exact-Fisher analysis was used to determine the association between the variables in both subtype groups. RESULTS An association between VDR and CD8+ immunoexpression and invasion depth in acral melanoma (p value = 0.0001 and 0.009, respectively) was observed, while only VDR immunoexpression was associated with the invasion depth in mucosal melanoma (p-value =0.004). Interestingly, no association was found between CD8+ immunoexpression and the invasion depth in mucosal melanoma (p = 0.640). CONCLUSION The role of VDR and CD8+ T-lymphocytes are inversely associated with melanoma depth in acral melanoma, while only VDR is associated with melanoma depth in mucosal melanoma.
Collapse
Affiliation(s)
- Hermin Aminah Usman
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjajaran, Dr. Hasan Sadikin General Hospital Bandung, Bandung, Indonesia
| | - Fitria Sholihah
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjajaran, Dr. Hasan Sadikin General Hospital Bandung, Bandung, Indonesia
| | - Birgitta M Dewayani
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjajaran, Dr. Hasan Sadikin General Hospital Bandung, Bandung, Indonesia
| | - Octavianus Giovani
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjajaran, Dr. Hasan Sadikin General Hospital Bandung, Bandung, Indonesia
| |
Collapse
|
2
|
Wan H, Gao X, Yang Z, Wei L, Qu Y, Liu Q. Exosomal CircMFN2 Enhances the Progression of Pituitary Adenoma via the MiR-146a-3p/TRAF6/NF-κB Pathway. J Neurol Surg A Cent Eur Neurosurg 2025; 86:135-147. [PMID: 37907264 PMCID: PMC11845271 DOI: 10.1055/a-2201-8370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Pituitary adenoma (PA) is a common intracranial endocrine tumor, but no precise target has been found for effective prediction and treatment of PA. METHODS Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) analysis showed that circMFN2 could affect the expression of miR-146a-3p in PA samples. Moreover, we used Western blotting to evaluate the expression levels of TRAF6 and NF-κB markers. The EdU assay, scratch wound healing assay, and Matrigel invasion assay were performed to assess the potential function of this pathway in PA cells. Based on the bioinformatic analysis including KEGG, gene ontology (GO) analysis, and microarray analysis, we evaluated the efficacy of circMFN2 as a potential biomarker for diagnosing PA, and we aimed to determine the mechanism of action in PA cells. RESULTS Our findings indicate that there is a significant increase in the expression of circMFN2 in tissues, serum, and exosomes in the invasive group compared with the noninvasive and normal groups. Furthermore, this difference was statistically significant both preoperatively and postoperatively. To clarify its function, we downregulated this gene, and the experimental results suggested that the motility and proliferative capacity were reduced in vitro. In addition, rescue assays showed that miR-146a-3p could successfully reverse the inhibitory effect of circMFN2 knockdown on motility and proliferation in PA cells. Moreover, downregulation of circMFN2 and miR-146a-3p significantly changed the expression of TRAF6 and NF-κB. CONCLUSION This study identified that circMFN2 regulates miR-146a-3p to promote adenoma development partially via the TRAF6/NF-κB pathway and may be a potential therapeutic target for PA.
Collapse
Affiliation(s)
- Haitong Wan
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Xiang Gao
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Zexu Yang
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Leiguo Wei
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Yufei Qu
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Qi Liu
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Etzi F, Griñán-Lisón C, Fenu G, González-Titos A, Pisano A, Farace C, Sabalic A, Picon-Ruiz M, Marchal JA, Madeddu R. The Role of miR-486-5p on CSCs Phenotypes in Colorectal Cancer. Cancers (Basel) 2024; 16:4237. [PMID: 39766136 PMCID: PMC11674241 DOI: 10.3390/cancers16244237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third diagnosed cancer worldwide. Forty-four percent of metastatic colorectal cancer patients were diagnosed at an early stage. Despite curative resection, approximately 40% of patients will develop metastases within a few years. Previous studies indicate the presence of cancer stem cells (CSCs) and their contribution to CRC progression and metastasis. miRNAs deregulation plays a role in CSCs formation and in tumor development. In light of previous studies, we investigated the role of miR-486-5p to understand its role in CSC better. METHODS The expression of miR-486-5p was assessed in adherent cells and spheres generated from two CRC cell lines to observe the difference in expression in CSC-enriched spheroids. Afterward, we overexpressed and underexpressed this miRNA in adherent and sphere cultures through the transfection of a miR-486-5p mimic and a mimic inhibitor. RESULTS The results demonstrated that miR-486-5p exhibited a notable downregulation in CSC models, and its overexpression led to a significant decrease in colony size. CONCLUSIONS In this study, we confirmed that miR-486-5p plays an oncosuppressive role in CRC, thereby advancing our understanding of the role of this microRNA in the CSC phenotype.
Collapse
Affiliation(s)
- Federica Etzi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Carmen Griñán-Lisón
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
| | - Grazia Fenu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Aitor González-Titos
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Andrea Pisano
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Cristiano Farace
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Angela Sabalic
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Manuel Picon-Ruiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Roberto Madeddu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| |
Collapse
|
4
|
Hashem O, Shahin AI, Al Hindawi MA, Fageeri MF, Al-Sbbagh SA, Tarazi H, El-Gamal MI. An overview of RAF kinases and their inhibitors (2019-2023). Eur J Med Chem 2024; 275:116631. [PMID: 38954961 DOI: 10.1016/j.ejmech.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Protein kinases (PKs) including RAF, perform a principal role in regulating countless cellular events such as cell growth, differentiation, and angiogenesis. Overexpression and mutation of RAF kinases are significant contributors to the development and spread of cancer. Therefore, RAF kinase inhibitors show promising outcomes as anti-cancer small molecules by suppressing the expression of RAF protein, blocking RAS/RAF interaction, or inhibiting RAF enzymes. Currently, there are insufficient reports about approving drugs with minimal degree of toxicity. Therefore, it is an urgent need to develop new RAF kinase inhibitors correlated with increased anticancer activity and lower cytotoxicity. This review outlines reported RAF kinase inhibitors for cancer treatment in patents and literature from 2019 to 2023. It highlights the available inhibitors by shedding light on their chemical structures, biochemical profiles, and current status. Additionally, we highlighted the hinge region-binding moiety of the reported compounds by showing the hydrogen bond patterns of representative inhibitors with the hinge region for each class. In recent years, RAF kinase inhibitors have gained considerable attention in cancer research and drug development due to their potential to be studied under clinical trials and their demonstration of various degrees of efficacy and safety profiles across different cancer types. However, addressing challenges related to drug resistance and safety represents a major avenue for the optimization and enhancement of RAF kinase inhibitors. Strategies to overcome such obstacles were discussed such as developing novel pan-RAF inhibitors, RAF dimer inhibitors, and combination treatments.
Collapse
Affiliation(s)
- Omar Hashem
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Afnan I Shahin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Manar A Al Hindawi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed F Fageeri
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saif A Al-Sbbagh
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Gupta S, Silveira DA, Lorenzoni PR, Mombach JCM, Hashimoto RF. LncRNA PTENP1/miR-21/PTEN Axis Modulates EMT and Drug Resistance in Cancer: Dynamic Boolean Modeling for Cell Fates in DNA Damage Response. Int J Mol Sci 2024; 25:8264. [PMID: 39125832 PMCID: PMC11311614 DOI: 10.3390/ijms25158264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
It is well established that microRNA-21 (miR-21) targets phosphatase and tensin homolog (PTEN), facilitating epithelial-to-mesenchymal transition (EMT) and drug resistance in cancer. Recent evidence indicates that PTEN activates its pseudogene-derived long non-coding RNA, PTENP1, which in turn inhibits miR-21. However, the dynamics of PTEN, miR-21, and PTENP1 in the DNA damage response (DDR) remain unclear. Thus, we propose a dynamic Boolean network model by integrating the published literature from various cancers. Our model shows good agreement with the experimental findings from breast cancer, hepatocellular carcinoma (HCC), and oral squamous cell carcinoma (OSCC), elucidating how DDR activation transitions from the intra-S phase to the G2 checkpoint, leading to a cascade of cellular responses such as cell cycle arrest, senescence, autophagy, apoptosis, drug resistance, and EMT. Model validation underscores the roles of PTENP1, miR-21, and PTEN in modulating EMT and drug resistance. Furthermore, our analysis reveals nine novel feedback loops, eight positive and one negative, mediated by PTEN and implicated in DDR cell fate determination, including pathways related to drug resistance and EMT. Our work presents a comprehensive framework for investigating cellular responses following DDR, underscoring the therapeutic potential of targeting PTEN, miR-21, and PTENP1 in cancer treatment.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | | | - Pedro R. Lorenzoni
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (P.R.L.); (J.C.M.M.)
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| |
Collapse
|
6
|
Xiong J, Liang H, Sun X, Gao K. Histone modification-linked prognostic model for ovarian cancer reveals LBX2 as a novel growth promoter. J Cell Mol Med 2024; 28:e18260. [PMID: 38520216 PMCID: PMC10960176 DOI: 10.1111/jcmm.18260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Ovarian cancer (OC) is a deadly disease with limited treatment options and poor overall survival rates. This study aimed to investigate the role of histone modification-related genes in predicting the prognosis of OC patients. Transcriptome data from multiple cohorts, including bulk RNA-Seq data and single-cell scRNA-Seq data, were collected. Gene set enrichment analysis was used to identify enriched gene sets in the histone modification pathway. Differentially expressed genes (DEGs) between histone modification-high and histone modification-low groups were identified using Lasso regression. A prognostic model was constructed using five selected prognostic genes from the DEGs in the TCGA-OV cohort. The study found enrichment of gene sets in the histone modification pathway and identified five prognostic genes associated with OC prognosis. The constructed risk score model based on histone modification-related genes was correlated with immune infiltration of T cells and M1 macrophages. Mutations are more prevalent in the high-risk group compared to the low-risk group. Several drugs were screened against the model genes. Through in vitro experiments, we confirmed the expression patterns of the model genes. LBX2 facilitates the proliferation of OC. Histone modification-related genes have the potential to serve as biomarkers for predicting OC prognosis. Targeting these genes may lead to the development of more effective therapies for OC. Additionally, LBX2 represents a novel cell proliferation promoter in OC carcinogenesis.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Hongyuan Liang
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiang Sun
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Kefei Gao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Luo T, Xu T, Ou Y, Ci H, Sun J. Prognostic significance of RKIP, TGM2, and CMTM4 expression in oral squamous cell carcinoma. Medicine (Baltimore) 2024; 103:e37278. [PMID: 38363884 PMCID: PMC10869054 DOI: 10.1097/md.0000000000037278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The expression of RKIP, TGM2, and CMTM4 in oral squamous cell carcinoma (OSCC) and normal oral tissues was detected and their correlations were analyzed. The relationships between RKIP, TGM2, and CMTM4 and the clinicopathological parameters and prognosis of patients were analyzed. METHODS Seventy cancerous and adjacent normal tissue samples were selected, recorded in the pathology department, and embedded in paraffin. Protein expression was detected by immunohistochemistry. Statistical software (SPSS 25.0, IBM Corporation) was used for the statistical analysis. The chi-squared (χ2) test was used to analyze the expression of RKIP, TGM2, and CMTM4 proteins and their clinicopathological features. Differences in RKIP, TGM2, and CMTM4 protein levels between OSCC and normal tissues were compared using a χ2 test. Survival analysis was performed using the Kaplan-Meier method, and differences between survival curves were determined using the log-rank test. The effects of RKIP, TGM2, and CMTM4 expression on patient prognosis were analyzed using a multivariate Cox proportional hazards regression model. P < .05 was considered statistically significant. RESULTS The expression level of RKIP correlated with age and clinical stage (P < .05). TGM2 was associated with clinical stage and lymph node metastasis (P < .05). The expression of CMTM4 increased with a decrease in cancer differentiation. Kaplan-Meier survival analysis suggested that the positive expression of TGM2 and CMTM4 may predict poor prognosis in patients with OSCC. The multivariate Cox proportional hazards regression model suggested that TGM2 could be an independent prognostic factor for patients with OSCC. CONCLUSION Combined expression of TGM2 and CMTM4 can be used as an indicator to evaluate the risk of metastasis and prognosis of OSCC.
Collapse
Affiliation(s)
- Tianyu Luo
- Bengbu Medical University, Bengbu, China
| | - Tao Xu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui, China
| | - Yurong Ou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University Bengbu, Anhui China
| | - Junhui Sun
- Bengbu Medical University, Bengbu, China
| |
Collapse
|
8
|
Zheng B, Du P, Zeng Z, Cao P, Ma X, Jiang Y. Propranolol inhibits EMT and metastasis in breast cancer through miR-499-5p-mediated Sox6. J Cancer Res Clin Oncol 2024; 150:59. [PMID: 38294713 PMCID: PMC10830604 DOI: 10.1007/s00432-023-05599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE This study will focus on 4T1 cells, a murine mammary adenocarcinoma cell line, as the primary research subject. We aim to investigate the inhibitory effects and mechanisms of propranolol on epithelial-mesenchymal transition (EMT) in breast cancer cells, aiming to elucidate this phenomenon at the miRNA level. METHODS In this study, the EMT inhibitory effect of propranolol was observed through in vitro and animal experiments. For the screening of potential target miRNAs and downstream target genes, second-generation sequencing (SGS) and bioinformatics analysis were conducted. Following the screening process, the identified target miRNAs and their respective target genes were confirmed using various experimental methods. To confirm the target miRNAs and target genes, Western Blot (WB), reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence experiments were performed. RESULTS In this study, we found that propranolol significantly reduced lung metastasis in 4T1 murine breast cancer cells (p < 0.05). In vitro and in vivo experiments demonstrated that propranolol inhibited the epithelial-mesenchymal transition (EMT) as evidenced by Western Blot analysis (p < 0.05). Through next-generation sequencing (SGS), subsequent bioinformatics analysis, and PCR validation, we identified a marked downregulation of miR-499-5p (p < 0.05), suggesting its potential involvement in mediating the suppressive effects of propranolol on EMT. Overexpression of miR-499-5p promoted EMT, migration, and invasion of 4T1 cells, and these effects were not reversed or attenuated by propranolol (Validated via Western Blot, wound healing assay, transwell migration, and invasion assays, p < 0.05). Sox6 was identified as a functional target of miR-499-5p, with its downregulation correlating with the observed EMT changes (p < 0.05). Silencing Sox6 or overexpressing miR-499-5p inhibited Sox6 expression, further promoting the processes of EMT, invasion, and migration in 4T1 cells. Notably, these effects were not alleviated by propranolol (validated via Western Blot, wound healing assay, transwell migration, and invasion assays, p < 0.05). The direct interaction between miR-499-5p and Sox6 mRNA was confirmed by dual-luciferase reporter gene assay. CONCLUSION These results suggest that propranolol may have potential as a therapeutic agent for breast cancer treatment by targeting EMT and its regulatory mechanisms.
Collapse
Affiliation(s)
- Bo Zheng
- Health Management Center, Department of Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - PeiXin Du
- Institute for Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhi Zeng
- Huaxi Clinical College, Sichuan University, Chengdu, 610041, China
| | - Peng Cao
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, 610041, China.
| |
Collapse
|
9
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Zhou J, Luo J, Gan R, Zhi L, Zhou H, Lv M, Huang Y, Liang G. SSPH I, A Novel Anti-cancer Saponin, Inhibits EMT and Invasion and Migration of NSCLC by Suppressing MAPK/ERK1/2 and PI3K/AKT/ mTOR Signaling Pathways. Recent Pat Anticancer Drug Discov 2024; 19:543-555. [PMID: 38305308 DOI: 10.2174/0115748928283132240103073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Saponin of Schizocapsa plantaginea Hance I (SSPH I).a bioactive saponin found in Schizocapsa plantaginea, exhibits significant anti-proliferation and antimetastasis in lung cancer. OBJECTIVE To explore the anti-metastatic effects of SSPH I on non-small cell lung cancer (NSCLC) with emphasis on epithelial-mesenchymal transition (EMT) both in vitro and in vivo. METHODS The effects of SSPH I at the concentrations of 0, 0.875,1.75, and 3.5 μM on A549 and PC9 lung cancer cells were evaluated using colony formation assay, CCK-8 assay, transwell assay and wound-healing assay. The actin cytoskeleton reorganization of PC9 and A549 cells was detected using the FITC-phalloidin fluorescence staining assay. The proteins related to EMT (N-cadherin, E-cadherin and vimentin), p- PI3K, p- AKT, p- mTOR and p- ERK1/2 were detected by Western blotting. A mouse model of lung cancer metastasis was established by utilizing 95-D cells, and the mice were treated with SSPH I by gavage. RESULTS The results suggested that SSPH I significantly inhibited the migration and invasion of NSCLC cells under a non-cytotoxic concentration. Furthermore, SSPH I at a non-toxic concentration of 0.875 μM inhibited F-actin cytoskeleton organization. Importantly, attenuation of EMT was observed in A549 cells with upregulation in the expression of epithelial cell marker E-cadherin and downregulation of the mesenchymal cell markers vimentin as well as Ncadherin. Mechanistic studies revealed that SSPH I inhibited MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways. CONCLUSION SSPH I inhibited EMT, migration, and invasion of NSCLC cells by suppressing MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways, suggesting that the natural compound SSPH I could be used for inhibiting metastasis of NSCLC.
Collapse
Affiliation(s)
- Jinling Zhou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jian Luo
- Department of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rizhi Gan
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Limin Zhi
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Huan Zhou
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meixian Lv
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yinmei Huang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Gang Liang
- College of Pharmacy, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
11
|
Wang W, Wang M, Liu X, Chen X, Cheng H, Wang G. LncRNA NEAT1 antagonizes the inhibition of melanoma proliferation, migration, invasion and EMT by Polyphyllin B. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2469-2480. [PMID: 37004552 DOI: 10.1007/s00210-023-02474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Polyphyllin B (PPB) is a compound with anti-tumor effects. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long-stranded noncoding RNA that induces epithelial-mesenchymal transition (EMT) of tumor cells and promotes tumor growth and metastasis. However, the role and mechanism of PPB on melanoma and the correlation between them remain unclear. In this study we screened NEAT1 by using LncRNA transcriptomic sequencing, and then transfected B16F10 cells using OVER-NEAT1 lentivirus. Next, we found that PPB had significant proliferation inhibition of melanoma and B16F10 cells through MTT assay and establishment of mouse subcutaneous transplantation tumor model; in addition, through wound healing assay, transwell assay and establishment of mouse melanoma lung metastasis model, we found that PPB significantly inhibited the invasion and migration of B16F10 cells in vitro, and inhibited the metastasis of melanoma to lung, bone and liver in vivo. Finally, changes in the expression levels of EMT-related proteins were assessed by western blot (WB) and immunohistochemistry, and PPB significantly downregulated the expression levels of MMP-9, N-cadherin, etc., and upregulated E-cadherin. While overexpressed NEAT1 showed the ability to promote melanoma proliferation, migration and invasion, in addition to partially reversed the inhibition of proliferation, migration and invasion of melanoma by PPB mentioned above.
Collapse
Affiliation(s)
- Wenjun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Xiaxia Liu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Xin Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China.
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
12
|
Hossain SM, Eccles MR. Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance. Int J Mol Sci 2023; 24:ijms24021601. [PMID: 36675114 PMCID: PMC9864717 DOI: 10.3390/ijms24021601] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Melanoma, a highly heterogeneous tumor, is comprised of a functionally diverse spectrum of cell phenotypes and subpopulations, including stromal cells in the tumor microenvironment (TME). Melanoma has been shown to dynamically shift between different transcriptional states or phenotypes. This is referred to as phenotype switching in melanoma, and it involves switching between quiescent and proliferative cell cycle states, and dramatic shifts in invasiveness, as well as changes in signaling pathways in the melanoma cells, and immune cell composition in the TME. Melanoma cell plasticity is associated with altered gene expression in immune cells and cancer-associated fibroblasts, as well as changes in extracellular matrix, which drive the metastatic cascade and therapeutic resistance. Therefore, resistance to therapy in melanoma is not only dependent on genetic evolution, but it has also been suggested to be driven by gene expression changes and adaptive phenotypic cell plasticity. This review discusses recent findings in melanoma phenotype switching, immunotherapy resistance, and the balancing of the homeostatic TME between the different melanoma cell subpopulations. We also discuss future perspectives of the biology of neural crest-like state(s) in melanoma.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
13
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Peppicelli S, Ruzzolini J, Lulli M, Biagioni A, Bianchini F, Caldarella A, Nediani C, Andreucci E, Calorini L. Extracellular Acidosis Differentially Regulates Estrogen Receptor β-Dependent EMT Reprogramming in Female and Male Melanoma Cells. Int J Mol Sci 2022; 23:15374. [PMID: 36499700 PMCID: PMC9736857 DOI: 10.3390/ijms232315374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Clinical outcomes of melanoma patients pointed out a gender disparity that supports a correlation between sex hormone activity on estrogen receptors (ER) and melanoma development and progression. Here, we found that the epithelial-to-mesenchymal transition (EMT) of melanoma cells induced by extracellular acidosis, which is a crucial hallmark of solid cancers, correlates with the expression of ERβ, the most representative ER on melanoma cells. Extracellular acidosis induces an enhanced expression of ERβ in female cells and EMT markers remain unchanged, while extracellular acidosis did not induce the expression of ERβ in male cells and EMT was strongly promoted. An inverse relationship between ERβ expression and EMT markers in melanoma cells of different sex exposed to extracellular acidosis was revealed by two different technical approaches: florescence-activated cell sorting of high ERβ expressing cell subpopulations and ERβ receptor silencing. Finally, we found that ERβ regulates EMT through NF-κB activation. These results demonstrate that extracellular acidosis drives a differential ERβ regulation in male and female melanoma cells and that this gender disparity might open new perspectives for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Adele Caldarella
- Tuscany Cancer Registry, Clinical Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO)-Florence, 50139 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
- Center of Excellence for Research, Transfer and High Education DenoTHE, University of Florence, 50134 Florence, Italy
| |
Collapse
|
15
|
Aliyah AN, Lintangsari G, Maran GG, Hermawan A, Meiyanto E. Cinnamon oil as a co-chemotherapy agent through inhibition of cell migration and MMP-9 expression on 4T1 cells. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:921-928. [PMID: 34126659 DOI: 10.1515/jcim-2020-0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The long-term and high-dose use of doxorubicin as chemotherapy for triple-negative breast cancer (TNBC) patients induces epithelial-to-mesenchymal transition (EMT) and stimulates cancer metastasis. Cinnamaldehyde is a major compound of cinnamon oil (CO) suppressing Snail and NFκB activity that are involved in cell migration. This study aims to explore the activity of CO as a co-chemotherapeutic agent on 4T1 breast cancer cells. METHODS The CO was obtained by water and steam distillation and was characterized phytochemically by gas chromatography-mass spectrometry (GC-MS). Cytotoxic activity of single CO or in combination with doxorubicin was observed by MTT assay. Cell migration and MMP-9 expression were measured by scratch wound healing and gelatin zymography assays. The intracellular reactive oxygen species (ROS) levels were observed by 2',7'-dichlorofluorescin diacetate (DCFDA) staining flowcytometry. RESULTS The phytochemical analysis with GC-MS showed that CO contains 14 compounds with cinnamaldehyde as the major compound. CO exhibited cytotoxicity on 4T1 cells with the IC50 value of 25 μg/mL and its combination with doxorubicin decreased cell viability and inhibited cell migration compared to a single use. Furthermore, the combination of CO and doxorubicin inhibited MMP-9 expression and elevated intracellular ROS levels compared to control. CONCLUSIONS CO has the potential to be developed as a co-chemotherapy agent through inhibition of cell migration, and intracellular ROS levels elevation.
Collapse
Affiliation(s)
- Alma Nuril Aliyah
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ghina Lintangsari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Gergorius Gena Maran
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Adam Hermawan
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
16
|
The Protective Effect of Zebularine, an Inhibitor of DNA Methyltransferase, on Renal Tubulointerstitial Inflammation and Fibrosis. Int J Mol Sci 2022; 23:ijms232214045. [PMID: 36430531 PMCID: PMC9697081 DOI: 10.3390/ijms232214045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Renal fibrosis, the final pathway of chronic kidney disease, is caused by genetic and epigenetic mechanisms. Although DNA methylation has drawn attention as a developing mechanism of renal fibrosis, its contribution to renal fibrosis has not been clarified. To address this issue, the effect of zebularine, a DNA methyltransferase inhibitor, on renal inflammation and fibrosis in the murine unilateral ureteral obstruction (UUO) model was analyzed. Zebularine significantly attenuated renal tubulointerstitial fibrosis and inflammation. Zebularine decreased trichrome, α-smooth muscle actin, collagen IV, and transforming growth factor-β1 staining by 56.2%. 21.3%, 30.3%, and 29.9%, respectively, at 3 days, and by 54.6%, 41.9%, 45.9%, and 61.7%, respectively, at 7 days after UUO. Zebularine downregulated mRNA expression levels of matrix metalloproteinase (MMP)-2, MMP-9, fibronectin, and Snail1 by 48.6%. 71.4%, 31.8%, and 42.4%, respectively, at 7 days after UUO. Zebularine also suppressed the activation of nuclear factor-κB (NF-κB) and the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, by 69.8%, 74.9%, and 69.6%, respectively, in obstructed kidneys. Furthermore, inhibiting DNA methyltransferase buttressed the nuclear expression of nuclear factor (erythroid-derived 2)-like factor 2, which upregulated downstream effectors such as catalase (1.838-fold increase at 7 days, p < 0.01), superoxide dismutase 1 (1.494-fold increase at 7 days, p < 0.05), and NAD(P)H: quinone oxidoreduate-1 (1.376-fold increase at 7 days, p < 0.05) in obstructed kidneys. Collectively, these findings suggest that inhibiting DNA methylation restores the disrupted balance between pro-inflammatory and anti-inflammatory pathways to alleviate renal inflammation and fibrosis. Therefore, these results highlight the possibility of DNA methyltransferases as therapeutic targets for treating renal inflammation and fibrosis.
Collapse
|
17
|
De Cicco P, Ercolano G, Tenore GC, Ianaro A. Olive leaf extract inhibits metastatic melanoma spread through suppression of epithelial to mesenchymal transition. Phytother Res 2022; 36:4002-4013. [PMID: 36222190 DOI: 10.1002/ptr.7587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023]
Abstract
Olive tree leaves are an abundant source of bioactive compounds with several beneficial effects for human health, including a protective role against many types of cancer. In this study, we investigated the effect of an extract, obtained from olive tree (Olea europaea L.) leaves (OLE), on proliferation, invasion, and epithelial to mesenchymal transition (EMT) on metastatic melanoma, the highly aggressive form of skin cancer and the deadliest diseases. Our results demonstrated that OLE inhibited melanoma cells proliferation through cell cycle arrest and induction of apoptotic cell death. Moreover, OLE suppressed the migration, invasion, and colonies formation of human melanoma cells. Similar to our in vitro findings, we demonstrated that the oral administration of OLE inhibited cutaneous tumor growth and lung metastasis formation in vivo by modulating the expression of EMT related factors. In addition, the anti-proliferative and anti-invasive effects of OLE against melanoma were also related to a simultaneous targeting of mitogen-activated protein kinase and PI3K pathways, both in vitro and in vivo. In conclusion, our findings suggest that OLE has the potential to inhibit the metastatic spread of melanoma cells thanks to its multifaceted mechanistic effects, and may represent a new add-on therapy for the management of metastatic melanoma.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Fedorova O, Parfenyev S, Daks A, Shuvalov O, Barlev NA. The Role of PTEN in Epithelial–Mesenchymal Transition. Cancers (Basel) 2022; 14:cancers14153786. [PMID: 35954450 PMCID: PMC9367281 DOI: 10.3390/cancers14153786] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The PTEN phosphatase is a ubiquitously expressed tumor suppressor, which inhibits the PI3K/AKT pathway in the cell. The PI3K/AKT pathway is considered to be one of the main signaling pathways that drives the proliferation of cancer cells. Furthermore, the same pathway controls the epithelial–mesenchymal transition (EMT). EMT is an evolutionarily conserved developmental program, which, upon aberrant reactivation, is also involved in the formation of cancer metastases. Importantly, metastasis is the leading cause of cancer-associated deaths. In this review, we discuss the literature data that highlight the role of PTEN in EMT. Based on this knowledge, we speculate about new possible strategies for cancer treatment. Abstract Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is one of the critical tumor suppressor genes and the main negative regulator of the PI3K pathway. PTEN is frequently found to be inactivated, either partially or fully, in various malignancies. The PI3K/AKT pathway is considered to be one of the main signaling cues that drives the proliferation of cells. Perhaps it is not surprising, then, that this pathway is hyperactivated in highly proliferative tumors. Importantly, the PI3K/AKT pathway also coordinates the epithelial–mesenchymal transition (EMT), which is pivotal for the initiation of metastases and hence is regarded as an attractive target for the treatment of metastatic cancer. It was shown that PTEN suppresses EMT, although the exact mechanism of this effect is still not fully understood. This review is an attempt to systematize the published information on the role of PTEN in the development of malignant tumors, with a main focus on the regulation of the PI3K/AKT pathway in EMT.
Collapse
|
19
|
Huang Y, Huang Y, Wang H, Zhang H, Shi L, Li C, Li X, Zeng Y, Liu Y, Wu M, Wang J, Wang J. The effect of low molecular weight-polycyclic aromatic hydrocarbons responsive hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 circuit on inflammatory response of A549 cells via the PI3K/AKT pathway and epithelial-mesenchymal transition process. ENVIRONMENTAL TOXICOLOGY 2022; 37:2005-2018. [PMID: 35475590 DOI: 10.1002/tox.23546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Inflammation is widely recognized as an essential inducer of epithelial-mesenchymal transition (EMT). Meanwhile, competitive endogenous RNA (ceRNA) has been involved in a variety of disease processes. Therefore, the aim of the current study is to explore the regulation of ceRNA in the PI3K/AKT pathway and EMT mechanism in inflammatory response caused by low molecular weight-polycyclic aromatic hydrocarbons (LMW-PAHs). The A549 cells were treated with an equal mixture of phenanthrene (Phe) and fluorene (Flu), and total RNA was extracted for transcriptome sequencing. The target regulation of ceRNA hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 was further determined for mechanism study. The mixture of Phe and Flu significantly upregulated the expressions of hsa_circ_0039929 and FGF2, down-regulated hsa-miR-15b-3p_R-1, activated the PI3K/AKT pathway and promoted EMT. Mechanically, the overexpression of hsa-miR-15b-3p_R-1 inhibited the expressions of hsa_circ_0039929 and FGF2, reversed the activation of PI3K/AKT signaling pathway by LMW-PAHs, and blocked the occurrence of EMT progression. Furthermore, knockdown of hsa_circ_0039929 could promote the levels of hsa-miR-15b-3p_R-1, while inhibit the expression of FGF2. The effects of hsa_circ_0039929 knockdowns on PI3K/AKT pathways and EMT progress resembled the hsa-miR-15b-3p_R-1 overexpression. All above suggested that ceRNA hsa_circ_0039929/hsa-miR-15b-3p_R-1/FGF2 played an important role in the inflammation and EMT caused by LMW-PAHs.
Collapse
Affiliation(s)
- Yushan Huang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yamin Huang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Haojun Zhang
- Department of Hospital Infection Control, Gansu Province Hospital, Lanzhou, China
| | - Lei Shi
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiangli Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yong Zeng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minghua Wu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jingyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Yuan R, Fan Q, Liang X, Han S, He J, Wang QQ, Gao H, Feng Y, Yang S. Cucurbitacin B inhibits TGF-β1-induced epithelial-mesenchymal transition (EMT) in NSCLC through regulating ROS and PI3K/Akt/mTOR pathways. Chin Med 2022; 17:24. [PMID: 35183200 PMCID: PMC8858510 DOI: 10.1186/s13020-022-00581-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality worldwide, and most of the patients after treatment with EGF-TKIs develop drug resistance, which is closely correlated with EMT. Cucurbitacin B (CuB) is a natural product of the Chinese herb Cucurbitaceae plant, which has a favorable role in anti-inflammation and anti-cancer activities. However, the effect of CuB on EMT is still far from fully explored. In this study, the inhibition effect of CuB on EMT was investigated. METHODS In this study, TGF-β1 was used to induce EMT in A549 cells. MTS assay was used to detect the cell viability of CuB co-treated with TGF-β1. Wound healing assay and transwell assay were used to determine the migration and invasion capacity of cells. Flow cytometry and fluorescence microscope were used to detect the ROS level in cells. Western blotting assay and immunofluorescence assay were used to detect the proteins expression. Gefitinib was used to establish EGF-TKI resistant NSCLC cells. B16-F10 intravenous injection mice model was used to evaluate the effect of CuB on lung cancer metastasis in vivo. Caliper IVIS Lumina and HE staining were used to detect the lung cancer metastasis of mice. RESULTS In this study, the results indicated that CuB inhibited TGF-β1-induced EMT in A549 cells through reversing the cell morphology changes of EMT, increasing the protein expression of E-cadherin, decreasing the proteins expression of N-cadherin and Vimentin, suppressing the migration and invasion ability. CuB also decreased the ROS production and p-PI3K, p-Akt and p-mTOR expression in TGF-β1-induced EMT in A549 cells. Furthermore, Gefitinib resistant A549 cells (A549-GR) were well established, which has the EMT characteristics, and CuB could inhibit the EMT in A549-GR cells through ROS and PI3K/Akt/mTOR pathways. In vivo study showed that CuB inhibited the lung cancer metastasis effectively through intratracheal administration. CONCLUSION CuB inhibits EMT in TGF-β1-induced A549 cells and Gefitinib resistant A549 cells through decreasing ROS production and PI3K/Akt/mTOR signaling pathway. In vivo study validated that CuB inhibits lung cancer metastasis in mice. The study may be supporting CuB as a promising therapeutic agent for NSCLC and Gefitinib resistant NSCLC.
Collapse
Affiliation(s)
- Renyikun Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Qiumei Fan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xiaowei Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shan Han
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jia He
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
- South China Branch of National Engineering Research Center for Manufacturing Technology of Solid Preparation of Traditional Chinese Medicine, Nanning, 530020, China.
| | - Yulin Feng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Shilin Yang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| |
Collapse
|
21
|
Chen S, Huang F, He C, Li J, Chen S, Li Y, Chen Y, Lian G, Huang K. Peripheral blood monocytes predict clinical prognosis and support tumor invasiveness through NF-κB-dependent upregulation of Snail in pancreatic cancer. Transl Cancer Res 2022; 10:4773-4785. [PMID: 35116330 PMCID: PMC8797572 DOI: 10.21037/tcr-21-980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022]
Abstract
Background The tumor inflammatory microenvironment plays a vital role in the initiation and progression of pancreatic cancer (PC). Both the lymphocyte-to-monocyte ratio (LMR) and preoperative peripheral blood monocytes are related to the prognosis of PC patients. However, the direct effect of monocytes on PC cells is not fully understood. The current study aimed to assess the effect of monocytes on PC and explore its potential mechanism. Methods The cutoff value of peripheral blood monocytes was evaluated by the receiver operating characteristic (ROC) curve. Transwell migration and invasion assays were used to detect the mobility of PC cells. The cytokines derived from monocytes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Western blotting was utilized to assess the expression of epithelial-mesenchymal transition (EMT) related markers. The expression level of Snail in PC tissue was determined by immunohistochemical (IHC) staining. Results A high monocyte count was inversely correlated with lymph node status and 5-year overall survival in PC. The PC cells underwent a cellular morphology change and increased cell motility after coculture with THP-1 monocytes. The THP-1 monocytes secreted various proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1α (IL-1α), which activated the nuclear factor-κB (NF-κB) signaling pathway leading to the upregulation of Snail and thereby promoting the EMT of PC cells. The expression level of Snail correlated significantly with the density of peripheral blood monocytes, and their level status was significantly associated with 5-year overall survival. Conclusions These findings indicated that elevated monocytes counts were a poor prognostic marker in PC, and monocytes could directly induce the EMT process of PC cells by upregulating Snail expression through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feifei Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chong He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangxiang Chen
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Mortoglou M, Buha Djordjevic A, Djordjevic V, Collins H, York L, Mani K, Valle E, Wallace D, Uysal-Onganer P. Role of microRNAs in response to cadmium chloride in pancreatic ductal adenocarcinoma. Arch Toxicol 2022; 96:467-485. [PMID: 34905088 PMCID: PMC8837568 DOI: 10.1007/s00204-021-03196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal and aggressive malignancies with a 5-year survival rate less than 9%. Early detection is particularly difficult due to the lack of symptoms even in advanced stages. microRNAs (miRs/miRNAs) are small (~ 18-24 nucleotides), endogenous, non-coding RNAs, which are involved in the pathogenesis of several malignancies including PDAC. Alterations of miR expressions can lead to apoptosis, angiogenesis, and metastasis. The role of environmental pollutants such as cadmium (Cd) in PDAC has been suggested but not fully understood. This study underlines the role of miRs (miR-221, miR-155, miR-126) in response to cadmium chloride (CdCl2) in vitro. Lethal concentration (LC50) values for CdCl2 resulted in a toxicity series of AsPC-1 > HPNE > BxPC-3 > Panc-1 = Panc-10.5. Following the treatment with CdCl2, miR-221 and miR-155 were significantly overexpressed, whereas miR-126 was downregulated. An increase in epithelial-mesenchymal transition (EMT) via the dysregulation of mesenchymal markers such as Wnt-11, E-cadherin, Snail, and Zeb1 was also observed. Hence, this study has provided evidence to suggest that the environmental pollutant Cd can have a significant role in the development of PDAC, suggesting a significant correlation between miRs and Cd exposure during PDAC progression. Further studies are needed to investigate the precise role of miRs in PDAC progression as well as the role of Cd and other environmental pollutants.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| | | | | | - Hunter Collins
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Lauren York
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Katherine Mani
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Elizabeth Valle
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - David Wallace
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| |
Collapse
|
23
|
Giovanini G, Barros LRC, Gama LR, Tortelli TC, Ramos AF. A Stochastic Binary Model for the Regulation of Gene Expression to Investigate Responses to Gene Therapy. Cancers (Basel) 2022; 14:633. [PMID: 35158901 PMCID: PMC8833822 DOI: 10.3390/cancers14030633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.
Collapse
Affiliation(s)
- Guilherme Giovanini
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
| | - Luciana R. C. Barros
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | - Leonardo R. Gama
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| | | | - Alexandre F. Ramos
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, SP, Brazil;
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, Av. Dr. Arnaldo, 251, São Paulo 01246-000, SP, Brazil; (L.R.C.B.); (L.R.G.); (T.C.T.J.)
| |
Collapse
|
24
|
Huang F, Santinon F, Flores González RE, del Rincón SV. Melanoma Plasticity: Promoter of Metastasis and Resistance to Therapy. Front Oncol 2021; 11:756001. [PMID: 34604096 PMCID: PMC8481945 DOI: 10.3389/fonc.2021.756001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Although targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma, most patients are not cured. Therapy resistance remains a significant clinical challenge. Melanoma comprises phenotypically distinct subpopulations of cells, exhibiting distinct gene signatures leading to tumor heterogeneity and favoring therapeutic resistance. Cellular plasticity in melanoma is referred to as phenotype switching. Regardless of their genomic classification, melanomas switch from a proliferative and differentiated phenotype to an invasive, dedifferentiated and often therapy-resistant state. In this review we discuss potential mechanisms underpinning melanoma phenotype switching, how this cellular plasticity contributes to resistance to both targeted therapies and immunotherapies. Finally, we highlight novel strategies to target plasticity and their potential clinical impact in melanoma.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - François Santinon
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Raúl Ernesto Flores González
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
25
|
Li B, Kong X, Post H, Raaijmakers L, Peeper DS, Altelaar M. Proteomics and Phosphoproteomics Profiling of Drug-Addicted BRAFi-Resistant Melanoma Cells. J Proteome Res 2021; 20:4381-4392. [PMID: 34343000 PMCID: PMC8419860 DOI: 10.1021/acs.jproteome.1c00331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Acquired resistance to MAPK inhibitors limits the clinical efficacy in melanoma treatment. We and others have recently shown that BRAF inhibitor (BRAFi)-resistant melanoma cells can develop a dependency on the therapeutic drugs to which they have acquired resistance, creating a vulnerability for these cells that can potentially be exploited in cancer treatment. In drug-addicted melanoma cells, it was shown that this induction of cell death was preceded by a specific ERK2-dependent phenotype switch; however, the underlying molecular mechanisms are largely lacking. To increase the molecular understanding of this drug dependency, we applied a mass spectrometry-based proteomic approach on BRAFi-resistant BRAFMUT 451Lu cells, in which ERK1, ERK2, and JUNB were silenced separately using CRISPR-Cas9. Inactivation of ERK2 and, to a lesser extent, JUNB prevents drug addiction in these melanoma cells, while, conversely, knockout of ERK1 fails to reverse this phenotype, showing a response similar to that of control cells. Our analysis reveals that ERK2 and JUNB share comparable proteome responses dominated by reactivation of cell division. Importantly, we find that EMT activation in drug-addicted melanoma cells upon drug withdrawal is affected by silencing ERK2 but not ERK1. Moreover, transcription factor (regulator) enrichment shows that PIR acts as an effector of ERK2 and phosphoproteome analysis reveals that silencing of ERK2 but not ERK1 leads to amplification of GSK3 kinase activity. Our results depict possible mechanisms of drug addiction in melanoma, which may provide a guide for therapeutic strategies in drug-resistant melanoma.
Collapse
Affiliation(s)
- Bohui Li
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Xiangjun Kong
- Division
of Molecular Oncology and Immunology, The
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Harm Post
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Linsey Raaijmakers
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Daniel S. Peeper
- Division
of Molecular Oncology and Immunology, The
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
26
|
The role of Hypoxia-Inducible Factor-1alpha and its signaling in melanoma. Biomed Pharmacother 2021; 141:111873. [PMID: 34225012 DOI: 10.1016/j.biopha.2021.111873] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation to the loss of O2 is regulated via the activity of hypoxia-inducible factors such as Hypoxia-Inducible Factor-1 (HIF-1). HIF-1 acts as a main transcriptional mediator in the tissue hypoxia response that regulates over 1000 genes related to low oxygen tension. The role of HIF-1α in oncogenic processes includes angiogenesis, tumor metabolism, cell proliferation, and metastasis, which has been examined in various malignancies, such as melanoma. Melanoma is accompanied by a high death rate and a cancer type whose incidence has risen over the last decades. The linkage between O2 loss and melanogenesis had extensively studied over decades. Recent studies revealed that HIF-1α contributes to melanoma progression via different signaling pathways such as PI3K/Akt/mTOR, RAS/RAF/MEK/ERK, JAK/STAT, Wnt/β-catenin, Notch, and NF-κB. Also, various microRNAs (miRs) are known to mediate the HIF-1α role in melanoma. Therefore, HIF-1α offers a diagnostic/prognostic biomarker and a candidate for targeted therapy in melanoma.
Collapse
|
27
|
Chuang YC, Hsieh MC, Lin CC, Lo YS, Ho HY, Hsieh MJ, Lin JT. Pinosylvin inhibits migration and invasion of nasopharyngeal carcinoma cancer cells via regulation of epithelial‑mesenchymal transition and inhibition of MMP‑2. Oncol Rep 2021; 46:143. [PMID: 34080661 PMCID: PMC8165580 DOI: 10.3892/or.2021.8094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor located in the nasopharynx with highly invasive and metastatic properties. Metastasis is a primary cause of mortality in patients with NPC. The terpenoid polyphenol pinosylvin is a known functional compound of the Pinus species that exhibits anti‑inflammatory effects; however, the effect of pinosylvin on human NPC cell migration and invasion is unclear. The present study aimed to investigate the functional role of pinosylvin in NPC cells (NPC‑039, NPC‑BM and RPMI 2650). Gap closure and Transwell assay indicated that pinosylvin at increasing concentrations inhibited migration and invasion of NPC‑039 and NPC‑BM cells. In addition to inhibiting the enzyme activity of MMP‑2, pinosylvin also decreased the protein expression levels of MMP‑2 and MMP‑9. Pinosylvin decreased the expression of vimentin and N‑cadherin and significantly increased the expression of zonula occludens‑1 and E‑cadherin in NPC cells. Additionally, pinosylvin suppressed the invasion and migration ability of NPC‑039 and NPC‑BM cells by mediating the p38, ERK1/2 and JNK1/2 pathways. The present results revealed that pinosylvin inhibited migration and invasion in NPC cells.
Collapse
Affiliation(s)
- Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Jen-Tsun Lin
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
28
|
Bonavida B. RKIP: A Pivotal Gene Product in the Pathogenesis of Cancer. Cancers (Basel) 2021; 13:2488. [PMID: 34065283 PMCID: PMC8160767 DOI: 10.3390/cancers13102488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Since its original cloning by Yeung et al [...].
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, College of Life Sciences, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Wang S, Ma H, Yan Y, Chen Y, Fu S, Wang J, Wang Y, Chen H, Liu J. cMET promotes metastasis and epithelial-mesenchymal transition in colorectal carcinoma by repressing RKIP. J Cell Physiol 2021; 236:3963-3978. [PMID: 33151569 DOI: 10.1002/jcp.30142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicates that c-mesenchymal-epithelial transition factor (cMET) plays an important role in the malignant progression of colorectal cancer (CRC). However, the underlying mechanism is not fully understood. As a metastasis suppressor, raf kinase inhibitory protein (RKIP) loss has been reported in many cancer types. In this study, the expression levels of cMET and RKIP in CRC tissues and cell lines were determined, and their crosstalk and potential biological effects were explored in vitro and in vivo. Our results showed that cMET was inversely correlated with RKIP. Both cMET upregulation and RKIP downregulation indicated poor clinical outcomes. Moreover, the MAPK/ERK signaling pathway was implicated in the regulation of cMET and RKIP. Overexpression of cMET promoted tumor cell epithelial-mesenchymal transition, invasion, migration, and chemoresistance, whereas the effects could be efficiently inhibited by increased RKIP. Notably, small hairpin RNA-mediated cMET knockdown dramatically suppressed cell proliferation, although no RKIP-induced influence on cell growth was observed in CRC. Altogether, cMET overexpression may contribute to tumor progression by inhibiting the antioncogene RKIP, providing preclinical justification for targeting RKIP to treat cMET-induced metastasis of CRC.
Collapse
Affiliation(s)
- Siyun Wang
- Department of PET Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haiqing Ma
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yan Yan
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yu Chen
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Sirui Fu
- Department of Interventional Therapy, Zhuhai Interventional Medical Center, Zhuhai City People's Hospital/Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Osipyan A, Chen D, Dekker FJ. Epigenetic regulation in macrophage migration inhibitory factor (MIF)-mediated signaling in cancer and inflammation. Drug Discov Today 2021; 26:1728-1734. [PMID: 33746067 DOI: 10.1016/j.drudis.2021.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Epigenetic mechanisms are important for the regular development and maintenance of the tissue-specific expression of cytokine genes. One of the crucial cytokines involved in cancer and inflammation is macrophage migration inhibitory factor (MIF), which triggers the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways by binding to CD74 and other receptors. Altered expression of this cytokine and altered activity states of the connected pathways are linked to inflammatory disease and cancer. Therapeutic strategies based on epigenetic mechanisms have the potential to regulate MIF-mediated signaling in cancer and inflammation.
Collapse
Affiliation(s)
- Angelina Osipyan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
31
|
Ge X, Niture S, Lin M, Cagle P, Li PA, Kumar D. MicroRNA-205-5p inhibits skin cancer cell proliferation and increase drug sensitivity by targeting TNFAIP8. Sci Rep 2021; 11:5660. [PMID: 33707587 PMCID: PMC7952414 DOI: 10.1038/s41598-021-85097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which regulates tumor growth and survival. Our goal is to delineate the detailed oncogenic role of TNFAIP8 in skin cancer development and progression. Here we demonstrated that higher expression of TNFAIP8 is associated with basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma development in patient tissues. Induction of TNFAIP8 expression by TNFα or by ectopic expression of TNFAIP8 in SCC or melanoma cell lines resulted in increased cell growth/proliferation. Conversely, silencing of TNFAIP8 decreased cell survival/cell migration in skin cancer cells. We also showed that miR-205-5p targets the 3'UTR of TNFAIP8 and inhibits TNFAIP8 expression. Moreover, miR-205-5p downregulates TNFAIP8 mediated cellular autophagy, increased sensitivity towards the B-RAFV600E mutant kinase inhibitor vemurafenib, and induced cell apoptosis in melanoma cells. Collectively our data indicate that miR-205-5p acts as a tumor suppressor in skin cancer by targeting TNFAIP8.
Collapse
Affiliation(s)
- Xinhong Ge
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.,Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.
| | - Minghui Lin
- Department of Respiratory Diseases, The Forth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750021, Ningxia Hui Autonomous Region, China
| | - Patrice Cagle
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Bio-Manufacturing Research Institute and Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University, 1801 Fayetteville St., Durham, NC, 27707, USA.
| |
Collapse
|
32
|
Jakubik D, Fitas A, Eyileten C, Jarosz-Popek J, Nowak A, Czajka P, Wicik Z, Sourij H, Siller-Matula JM, De Rosa S, Postula M. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol 2021; 20:55. [PMID: 33639953 PMCID: PMC7916283 DOI: 10.1186/s12933-021-01245-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
The epidemic of diabetes mellitus (DM) necessitates the development of novel therapeutic and preventative strategies to attenuate complications of this debilitating disease. Diabetic cardiomyopathy (DCM) is a frequent disorder affecting individuals diagnosed with DM characterized by left ventricular hypertrophy, diastolic and systolic dysfunction and myocardial fibrosis in the absence of other heart diseases. Progression of DCM is associated with impaired cardiac insulin metabolic signaling, increased oxidative stress, impaired mitochondrial and cardiomyocyte calcium metabolism, and inflammation. Various non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as well as their target genes are implicated in the complex pathophysiology of DCM. It has been demonstrated that miRNAs and lncRNAs play an important role in maintaining homeostasis through regulation of multiple genes, thus they attract substantial scientific interest as biomarkers for diagnosis, prognosis and as a potential therapeutic strategy in DM complications. This article will review the different miRNAs and lncRNA studied in the context of DM, including type 1 and type 2 diabetes and the contribution of pathophysiological mechanisms including inflammatory response, oxidative stress, apoptosis, hypertrophy and fibrosis to the development of DCM .
Collapse
Affiliation(s)
- Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal Do ABC, São Paulo, Brazil
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Cardiovascular Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.
| |
Collapse
|
33
|
Tong Y, Li Z, Wu Y, Zhu S, Lu K, He Z. Lotus leaf extract inhibits ER - breast cancer cell migration and metastasis. Nutr Metab (Lond) 2021; 18:20. [PMID: 33602253 PMCID: PMC7891157 DOI: 10.1186/s12986-021-00549-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with estrogen receptor negative (ER-) breast cancer have poor prognosis due to high rates of metastasis. However, there is no effective treatment and drugs for ER- breast cancer metastasis. Our purpose of this study was to evaluate the effect of lotus leaf alcohol extract (LAE) on the cell migration and metastasis of ER- breast cancer. METHODS The anti-migratory effect of LAE were analyzed in ER- breast cancer cells including SK-BR-3, MDA-MB-231 and HCC1806 cell lines. Cell viability assay, wound-healing assay, RNA-sequence analysis and immunoblotting assay were used to evaluate the cytotoxicity and anti-migratory effect of LAE. To further investigate the inhibitory effect of LAE on metastasis in vivo, subcutaneous xenograft and intravenous injection nude mice models were established. Lung and liver tissues were analyzed by the hematoxylin and eosin staining and immunoblotting assay. RESULTS We found that lotus LAE, not nuciferine, inhibited cell migration significantly in SK-BR-3, MDA-MB-231 and HCC1806 breast cancer cells, and did not affect viability of breast cancer cells. The anti-migratory effect of LAE was dependent on TGF-β1 signaling, while independent of Wnt signaling and autophagy influx. Intracellular H2O2 was involved in the TGF-β1-related inhibition of cell migration. LAE inhibited significantly the breast cancer cells metastasis in mice models. RNA-sequence analysis showed that extracellular matrix signaling pathways are associated with LAE-suppressed cell migration. CONCLUSIONS Our findings demonstrated that lotus leaf alcohol extract inhibits the cell migration and metastasis of ER- breast cancer, at least in part, via TGF-β1/Erk1/2 and TGF-β1/SMAD3 signaling pathways, which provides a potential therapeutic strategy for ER- breast cancer.
Collapse
Affiliation(s)
- Yuelin Tong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhongwei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yikuan Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shenglong Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Keke Lu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China. .,Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
34
|
Bhatt AB, Patel S, Matossian MD, Ucar DA, Miele L, Burow ME, Flaherty PT, Cavanaugh JE. Molecular Mechanisms of Epithelial to Mesenchymal Transition Regulated by ERK5 Signaling. Biomolecules 2021; 11:biom11020183. [PMID: 33572742 PMCID: PMC7911413 DOI: 10.3390/biom11020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.
Collapse
Affiliation(s)
- Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| | - Saloni Patel
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Margarite D. Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Deniz A. Ucar
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
- Correspondence: ; Tel.: +1-412-760-3503
| |
Collapse
|
35
|
Cheng R, Gao S, Hu W, Liu Y, Cao Y. Nuclear factor I/B mediates epithelial-mesenchymal transition in human melanoma cells through ZEB1. Oncol Lett 2020; 21:81. [PMID: 33363618 PMCID: PMC7723069 DOI: 10.3892/ol.2020.12342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
The relationship between nuclear factor I/B (NFIB) and cancer attracts growing research interest. NFIB has diverse and specific roles in tumor progression and invasion. However, the potential effects and functions of this transcription factor in melanoma remain unclear. The present study sought to determine the distinguishing properties of NFIB in melanoma cells. Immunohistochemical examination of the tissues of 15 patients with melanoma indicated that the expression of NFIB was high in melanoma specimens, compared with the benign nevus and normal skin specimens. In addition, the relationship between high NFIB expression and low overall survival rate was assessed. Functional studies demonstrated that NFIB enhanced the malignancy of melanoma, including proliferation, migration and invasion. In addition, NFIB silencing in A375 and A875 cell lines inhibited the process of epithelial-mesenchymal transition (EMT), upregulated E-cadherin and zona occludens-1, but suppressed N-cadherin and vimentin expression. These findings may suggest a new function of NFIB in promoting the migration and invasion of melanoma cells. Therefore, the present study further evaluated the association between NFIB and zinc finger protein E-box binding homeobox-1 (ZEB1) in melanoma. Mechanistic experiments revealed that NFIB exerted its roles during EMT by regulating ZEB1. Overall, the present data indicates that NFIB promotes the malignancy of melanoma, particularly EMT, by modulating the ZEB1 axis, such as ZEB2, ATM and CHK1, which may represent a potential molecular therapeutic target in melanoma.
Collapse
Affiliation(s)
- Ruimin Cheng
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sheng Gao
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei Hu
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yamei Liu
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, The Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
36
|
Okabe T, Togo S, Fujimoto Y, Watanabe J, Sumiyoshi I, Orimo A, Takahashi K. Mesenchymal Characteristics and Predictive Biomarkers on Circulating Tumor Cells for Therapeutic Strategy. Cancers (Basel) 2020; 12:E3588. [PMID: 33266262 PMCID: PMC7761066 DOI: 10.3390/cancers12123588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
Metastasis-related events are the primary cause of cancer-related deaths, and circulating tumor cells (CTCs) have a pivotal role in metastatic relapse. CTCs include a variety of subtypes with different functional characteristics. Interestingly, the epithelial-mesenchymal transition (EMT) markers expressed in CTCs are strongly associated with poor clinical outcome and related to the acquisition of circulating tumor stem cell (CTSC) features. Recent studies have revealed the existence of CTC clusters, also called circulating tumor microemboli (CTM), which have a high metastatic potential. In this review, we present current opinions regarding the clinical significance of CTCs and CTM with a mesenchymal phenotype as clinical surrogate markers, and we summarize the therapeutic strategy according to phenotype characterization of CTCs in various types of cancers for future precision medicine.
Collapse
Affiliation(s)
- Takahiro Okabe
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuichi Fujimoto
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junko Watanabe
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Issei Sumiyoshi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Orimo
- Departments of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
37
|
Human Endogenous Retrovirus K Rec forms a Regulatory Loop with MITF that Opposes the Progression of Melanoma to an Invasive Stage. Viruses 2020; 12:v12111303. [PMID: 33202765 PMCID: PMC7696977 DOI: 10.3390/v12111303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
The HML2 subfamily of HERV-K (henceforth HERV-K) represents the most recently endogenized retrovirus in the human genome. While the products of certain HERV-K genomic copies are expressed in normal tissues, they are upregulated in several pathological conditions, including various tumors. It remains unclear whether HERV-K(HML2)-encoded products overexpressed in cancer contribute to disease progression or are merely by-products of tumorigenesis. Here, we focus on the regulatory activities of the Long Terminal Repeats (LTR5_Hs) of HERV-K and the potential role of the HERV-K-encoded Rec in melanoma. Our regulatory genomics analysis of LTR5_Hs loci indicates that Melanocyte Inducing Transcription Factor (MITF) (also known as binds to a canonical E-box motif (CA(C/T)GTG) within these elements in proliferative type of melanoma, and that depletion of MITF results in reduced HERV-K expression. In turn, experimentally depleting Rec in a proliferative melanoma cell line leads to lower mRNA levels of MITF and its predicted target genes. Furthermore, Rec knockdown leads to an upregulation of epithelial-to-mesenchymal associated genes and an enhanced invasion phenotype of proliferative melanoma cells. Together these results suggest the existence of a regulatory loop between MITF and Rec that may modulate the transition from proliferative to invasive stages of melanoma. Because HERV-K(HML2) elements are restricted to hominoid primates, these findings might explain certain species-specific features of melanoma progression and point to some limitations of animal models in melanoma studies.
Collapse
|
38
|
Yang X, Wang Y, Lu P, Shen Y, Zhao X, Zhu Y, Jiang Z, Yang H, Pan H, Zhao L, Zhong Y, Wang J, Liang Z, Shen X, Lu D, Jiang S, Xu J, Wu H, Lu H, Jiang G, Zhu H. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep 2020; 21:e49305. [PMID: 32924251 PMCID: PMC7645261 DOI: 10.15252/embr.201949305] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/28/2020] [Accepted: 08/12/2020] [Indexed: 11/09/2022] Open
Abstract
The latent HIV‐1 reservoir is a major barrier to viral eradication. However, our understanding of how HIV‐1 establishes latency is incomplete. Here, by performing a genome‐wide CRISPR‐Cas9 knockout library screen, we identify phosphatidylethanolamine‐binding protein 1 (PEBP1), also known as Raf kinase inhibitor protein (RKIP), as a novel gene inducing HIV latency. Depletion of PEBP1 leads to the reactivation of HIV‐1 in multiple models of latency. Mechanistically, PEBP1 de‐phosphorylates Raf1/ERK/IκB and IKK/IκB signaling pathways to sequestrate NF‐κB in the cytoplasm, which transcriptionally inactivates HIV‐1 to induce latency. Importantly, the induction of PEBP1 expression by the green tea compound epigallocatechin‐3‐gallate (EGCG) prevents latency reversal by inhibiting nuclear translocation of NF‐κB, thereby suppressing HIV‐1 transcription in primary CD4+ T cells isolated from patients receiving antiretroviral therapy (ART). These results suggest a critical role for PEBP1 in the regulation of upstream NF‐κB signaling pathways governing HIV transcription. Targeting of this pathway could be an option to control HIV reservoirs in patients in the future.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - He Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yangcheng Zhong
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hongzhou Lu
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases & Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Ribatti D, Tamma R, Annese T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl Oncol 2020; 13:100773. [PMID: 32334405 PMCID: PMC7182759 DOI: 10.1016/j.tranon.2020.100773] [Citation(s) in RCA: 579] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs), the acquisition of mesenchymal features from epithelial cells, occur during some biological processes and are classified into three types: the first type occurs during embryonic development, the second type is associated with adult tissue regeneration, and the third type occurs in cancer progression. EMT occurring during embryonic development in gastrulation, renal development, and the origin and fate of the neural crest is a highly regulated process, while EMT occurring during tumor progression is highly deregulated. EMT allows the solid tumors to become more malignant, increasing their invasiveness and metastatic activity. Secondary tumors frequently maintain the typical histologic characteristics of the primary tumor. These histologic features connecting the secondary metastatic tumors to the primary is due to a process called mesenchymal-epithelial transition (MET). MET has been demonstrated in different mesenchymal tumors and is the expression of the reversibility of EMT. EMT modulation could constitute an approach to avoid metastasis. Some of the targeted small molecules utilized as antiproliferative agents have revealed to inhibit EMT initiation or maintenance because EMT is regulated through signaling pathways for which these molecules have been designed.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
40
|
Alem FZ, Bejaoui M, Villareal MO, Rhourri-Frih B, Isoda H. Elucidation of the effect of plumbagin on the metastatic potential of B16F10 murine melanoma cells via MAPK signalling pathway. Exp Dermatol 2020; 29:427-435. [PMID: 32012353 DOI: 10.1111/exd.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
Melanoma is the most dangerous form of skin cancer with a very poor prognosis. Melanoma develops when unrepaired DNA damage causes to skin cells to multiply and form malignant tumors. The current therapy is limited by the highly ability of this disease to metastasize rapidly. Plumbagin is a naphthoquinone (5-hydroxy-2-methyl-1, 4-naphthoquinone), isolated from the roots of medicinal plant Plumbago zeylanica, and it is widely present in Lawsonia inermis L. It has been shown that plumbagin has an anti-proliferative and anti-invasive activities in various cancer cell lines; however, the anti-cancer and anti-metastatic effects of plumbagin are largely unknown against melanoma cells. In this study, we evaluated the effect of plumbagin on B16F10 murine melanoma cells . Plumbagin decreased B16F10 cell viability as well as the cell migration, adhesion, and invasion. The molecular mechanism was studied, and plumbagin downregulated genes relevant in MAPK pathway, matrix metalloproteinases (MMP's), and cell adhesion. Furthermore, plumbagin elevated the expression of apoptosis and tumors suppressor genes, and genes significant in reactive oxygen species (ROS) response. Taken together, our findings suggest that plumbagin has an anti-invasion and anti-metastasis effect on melanoma cancer cells by acting on MAPK pathway and its related genes.
Collapse
Affiliation(s)
- Fatima-Zahra Alem
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco.,Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, Bordeaux, France
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan
| | - Myra O Villareal
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Boutayna Rhourri-Frih
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, Bordeaux, France
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
41
|
Gowda R, Robertson BM, Iyer S, Barry J, Dinavahi SS, Robertson GP. The role of exosomes in metastasis and progression of melanoma. Cancer Treat Rev 2020; 85:101975. [PMID: 32050108 DOI: 10.1016/j.ctrv.2020.101975] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
The mechanisms of melanoma metastasis have been the subject of extensive research for decades. Improved diagnostic and therapeutic strategies are of increasing importance for the treatment of melanoma due to its high burden of mortality in the advanced stages of the disease. Intercellular communication is a critical event for the progression of cancer. Collective evidence suggests that exosomes, small extracellular membrane vesicles released by the cells, are important facilitators of intercellular communication between the cells and the surrounding environment. Although the emerging field of exosomes is rapidly gaining traction in the scientific community, there is limited knowledge regarding the role of exosomes in melanoma. This review discusses the multifaceted role of melanoma-derived exosomes in promoting the process of metastasis by modulating the invasive and angiogenic capacity of malignant cells. The future implications of exosome research and the therapeutic potential of exosomes are also discussed.
Collapse
Affiliation(s)
- Raghavendra Gowda
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Bailey M Robertson
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Soumya Iyer
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - John Barry
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Saketh S Dinavahi
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Gavin P Robertson
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Departments of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Departments of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Departments of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
42
|
Barceló C, Sisó P, Maiques O, García-Mulero S, Sanz-Pamplona R, Navaridas R, Megino C, Felip I, Urdanibia I, Eritja N, Soria X, Piulats JM, Penin RM, Dolcet X, Matías-Guiu X, Martí RM, Macià A. T-Type Calcium Channels as Potential Therapeutic Targets in Vemurafenib-Resistant BRAF V600E Melanoma. J Invest Dermatol 2019; 140:1253-1265. [PMID: 31877318 DOI: 10.1016/j.jid.2019.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Melanoma is a malignant neoplasia that is highly resistant to chemotherapy and radiotherapy and is associated with poor prognosis in advanced stage. Targeting melanoma that harbors the common BRAFV600E mutation with kinase inhibitors, such as vemurafenib, reduces tumor burden, but these tumors frequently acquire resistance to these drugs. We previously proposed that T-type calcium channel (TTCC) expression may serve as a biomarker for melanoma progression and prognosis, and we showed that TTCC blockers reduce migration and invasion rates because of autophagy blockade only in BRAFV600E-mutant melanoma cells. Here, we demonstrated that high expression of the TTCC Cav3.1 isoform is related to autophagic status in vemurafenib-resistant BRAFV600E-mutant melanoma cells and human biopsies, and in silico analysis revealed an enrichment of Cav3.1 expression in post-treatment melanomas. We also demonstrated that the TTCC blocker mibefradil induces apoptosis and impairs migration and invasion via inhibition of autophagy in resistant melanoma cells and mouse xenograft models. Moreover, we identified an association between PTEN status and Cav3.1 expression in these cells as a marker of sensitivity to combination therapy in resistant cells. Together, our results suggest that TTCC blockers offer a potential targeted therapy in resistant BRAFV600E-mutant melanoma and a therapeutic strategy to reduce progression toward BRAF inhibitor resistance.
Collapse
Affiliation(s)
- Carla Barceló
- Oncologic Pathology Group, University of Lleida, IRBLleida, Lleida, Spain
| | - Pol Sisó
- Oncologic Pathology Group, University of Lleida, IRBLleida, Lleida, Spain
| | - Oscar Maiques
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Sandra García-Mulero
- Department of Medical Oncology, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Department of Medical Oncology, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, University of Lleida, IRBLleida, Lleida, Spain
| | - Cristina Megino
- Oncologic Pathology Group, University of Lleida, IRBLleida, Lleida, Spain
| | - Isidre Felip
- Oncologic Pathology Group, University of Lleida, IRBLleida, Lleida, Spain
| | - Izaskun Urdanibia
- Oncologic Pathology Group, University of Lleida, IRBLleida, Lleida, Spain
| | - Núria Eritja
- Oncologic Pathology Group, University of Lleida, IRBLleida, Lleida, Spain
| | - Xavier Soria
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain
| | - Josep M Piulats
- Department of Medical Oncology, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain; Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa M Penin
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, University of Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matías-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain; Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa M Martí
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain; Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Anna Macià
- Oncologic Pathology Group, University of Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
43
|
Qu Z, Feng J, Pan H, Jiang Y, Duan Y, Fa Z. Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-β/Smad signaling pathway. Onco Targets Ther 2019; 12:6897-6905. [PMID: 31692540 PMCID: PMC6711569 DOI: 10.2147/ott.s209413] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/27/2019] [Indexed: 12/22/2022] Open
Abstract
Background Exosomes are nano-sized biological vesicles released by many kinds of cells, which play an important role in tumor metastasis through transporting cytokines, RNAs and proteins. However, the molecular mechanisms of exosomes in hepatocellular carcinoma (HCC) metastasis are not completely understood. Materials and methods Exosomes derived from hepatoma cell lines with different invasion characteristics. Exosome characteristics, cell migration and invasion, and effects on major signal transduction pathways deregulated in cancer cells were analyzed by transmission electron microscopy (TEM), wound-healing assay, Trans-well invasion assay and Western blot-based assays, respectively. Moreover, exosomes effects on tumor metastasis in vivo were investigated by subcutaneous transplantation tumor model of athymic nude mice. Results Exosomes derived from hepatoma cells can promote the migration and invasion of recipient cells, induce the decrease of E-cadherin expression, increase the expression of Vimentin and promote epithelial-mesenchymal transition (EMT) in cells. Moreover, highly invasive hepatoma-cells-derived exosomes effects are stronger than low-invasive hepatoma cells and normal liver cells exosomes. Mechanistic studies showed that the biological alterations in recipient HCC cells treated with MHCC97H and MHCC97L-derived exosomes were caused by inducing EMT via TGF-β/Smad signaling pathway. In vivo experiments also suggest that highly invasive hepatoma cells derived exosomes are more likely to promote lung metastasis of HCC in nude mice. Conclusion Our results reveal the important role of tumor-derived exosomes in the migration and invasion of recipient cells and exosomes may be the novel therapeutic and prognostic targets for HCC patients.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Hepatopancreatobiliary Surgery, The First People's Hospital of Changzhou, the Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Jiawei Feng
- Department of Hepatopancreatobiliary Surgery, The First People's Hospital of Changzhou, the Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Hua Pan
- Department of Hepatobiliary Surgery, The People's Hospital of Liyang, Liyang, Jiangsu, People's Republic of China
| | - Yong Jiang
- Department of Hepatopancreatobiliary Surgery, The First People's Hospital of Changzhou, the Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Yunfei Duan
- Department of Hepatopancreatobiliary Surgery, The First People's Hospital of Changzhou, the Third Hospital Affiliated to Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Zhenzhong Fa
- Department of Hepatobiliary Surgery, Changzhou Wujin People's Hospital, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu, People's Republic of China
| |
Collapse
|
44
|
Joshi P, Seki T, Kitamura S, Bergano A, Lee B, Perera RJ. Transcriptome stability profiling using 5'-bromouridine IP chase (BRIC-seq) identifies novel and functional microRNA targets in human melanoma cells. RNA Biol 2019; 16:1355-1363. [PMID: 31179855 DOI: 10.1080/15476286.2019.1629769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA half-life is closely related to its cellular physiological function, so stability determinants may have regulatory functions. Micro(mi)RNAs have primarily been studied with respect to post-transcriptional mRNA regulation and target degradation. Here we study the impact of the tumour suppressive melanoma miRNA miR-211 on transcriptome stability and phenotype in the non-pigmented melanoma cell line, A375. Using 5'-bromouridine IP chase (BRIC)-seq, transcriptome-wide RNA stability profiles revealed highly regulated genes and pathways important in this melanoma cell line. By combining BRIC-seq, RNA-seq and in silico predictions, we identified both existing and novel direct miR-211 targets. We validated DUSP3 as one such novel miR-211 target, which itself sustains colony formation and invasion in A375 cells via MAPK/PI3K signalling. miRNAs have the capacity to control RNA turnover as a gene expression mechanism, and RNA stability profiling is an excellent tool for interrogating functionally relevant gene regulatory pathways and miRNA targets when combined with other high-throughput and in silico approaches.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Oncology, Johns Hopkins University School of Medicine , Baltimore , MD , USA.,Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Tatsuya Seki
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Medical and Biological Laboratories , Nagoya , Japan
| | | | - Andrea Bergano
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA
| | - Bongyong Lee
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA
| | - Ranjan J Perera
- Sanford Burnham Prebys Medical Discovery Institute , Orlando , FL , USA.,Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital , St. Petersburg , FL , USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
45
|
Mikheil DM, Prabhakar K, Arshad A, Rodriguez CI, Newton MA, Setaluri V. Notch signaling activation induces cell death in MAPKi-resistant melanoma cells. Pigment Cell Melanoma Res 2019; 32:528-539. [PMID: 30614626 DOI: 10.1111/pcmr.12764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Abstract
The role of Notch signaling in melanoma drug resistance is not well understood. In this study, we show that although NOTCH proteins are upregulated in metastatic melanoma cell lines, Notch signaling inhibition had no effect on cell survival, growth, migration or the sensitivity of BRAFV600E-melanoma cells to MAPK inhibition (MAPKi). We found that NOTCH1 is downregulated in melanoma cell lines with intrinsic and acquired resistance to MAPKi. Forced expression of NICD1, the active form of Notch1, caused apoptosis of the NOTCHlo , MAPKi-resistant cells, but not the NOTCHhi , MAPKi-sensitive melanoma cell lines. Whole transcriptome-sequencing analyses of NICD1-transduced MAPKi-sensitive and MAPKi-resistant cells revealed differential regulation of endothelin 1 (EDN1) by NICD1, that is, downregulation in MAPKi-resistant cells and upregulation in MAPKi-sensitive cells. Knockdown of EDN1 partially mimicked the effect of NICD1 on the survival of MAPKi-resistant cells. We show that the opposite regulation of EDN1 by Notch signaling is mediated by the differential regulation of c-JUN by NICD1. Our data show that MAPKi-resistant melanoma cells acquire vulnerability to Notch signaling activation and suggest that Notch-c-JUN-EDN1 axis is a potential therapeutic target in MAPKi-resistant melanoma.
Collapse
Affiliation(s)
- Dareen M Mikheil
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| | | | - Ayyan Arshad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | | | - Michael A Newton
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
46
|
Chen Y, Zou D, Wang N, Tan T, Liu Y, Zhao Q, Pu Y, Thapa RJ, Chen J. SFRP5 inhibits the migration and invasion of melanoma cells through Wnt signaling pathway. Onco Targets Ther 2018; 11:8761-8772. [PMID: 30584334 PMCID: PMC6287589 DOI: 10.2147/ott.s181146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Secreted frizzled-related protein 5 (SFRP5) plays a key role in the development and progression of multiple tumors. However, the role and underlying mechanisms of SFRP5 in melanoma cells remain unknown. Materials and methods We used immunohistochemistry and Western blot analysis to detect the expression of SFRP5 in melanoma tissues and melanoma cells, respectively. Furthermore, both in vitro and in vivo assays were used to determine the effect of SFRP5 on malignant behavior in melanoma cells. Results We found that SFRP5 was markedly downregulated in melanoma tissues and cell lines. The SFRP5 overexpression exhibited no effect on the proliferation and apoptosis of melanoma cells but markedly suppressed the migration and invasion of melanoma cells in vitro. Regarding mechanisms, the SFRP5 overexpression inhibited the migration and invasion of melanoma cells by suppressing the epithelial–mesenchymal transition process and decreasing the matrix metalloproteinase-2/9 expression through the Wnt signaling pathway. Finally, in a xenograft animal model, we illustrated that the SFRP5 overexpression suppressed the tumor growth by decreasing angiogenesis and declined lung metastasis. Conclusion This study suggests that SFRP5 expression could be potentially useful in the invasion and metastasis of melanoma and serve as a putative promising target for human melanoma therapy.
Collapse
Affiliation(s)
- Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Daopei Zou
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Nan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Tao Tan
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yu Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Qing Zhao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Rabin Jung Thapa
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China,
| |
Collapse
|
47
|
Zaravinos A, Bonavida B, Chatzaki E, Baritaki S. RKIP: A Key Regulator in Tumor Metastasis Initiation and Resistance to Apoptosis: Therapeutic Targeting and Impact. Cancers (Basel) 2018; 10:287. [PMID: 30149591 PMCID: PMC6162400 DOI: 10.3390/cancers10090287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
RAF-kinase inhibitor protein (RKIP) is a well-established tumor suppressor that is frequently downregulated in a plethora of solid and hematological malignancies. RKIP exerts antimetastatic and pro-apoptotic properties in cancer cells, via modulation of signaling pathways and gene products involved in tumor survival and spread. Here we review the contribution of RKIP in the regulation of early metastatic steps such as epithelial⁻mesenchymal transition (EMT), migration, and invasion, as well as in tumor sensitivity to conventional therapeutics and immuno-mediated cytotoxicity. We further provide updated justification for targeting RKIP as a strategy to overcome tumor chemo/immuno-resistance and suppress metastasis, through the use of agents able to modulate RKIP expression in cancer cells.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus.
- Centre for Risk and Decision Sciences (CERIDES), Nicosia 2404, Cyprus.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Stavroula Baritaki
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete 71500, Greece.
| |
Collapse
|
48
|
Han Y, Li X, Ma C, Ji X, Li T, Zheng X, Zhang J, Yan J, Zhang D, Bai J. Seed targeting with tiny anti-miR-1297 inhibits EMT in melanoma cells. J Drug Target 2018; 27:75-81. [PMID: 29873263 DOI: 10.1080/1061186x.2018.1481412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that have tissue- and cell-specific expression. They have the ability to regulate the malignant proliferation and transformation of tumour cells. The research focussed on the expression and role of miR-1297 in melanoma. We firstly found that miR-1297 is up-regulated in melanoma tissues and cell lines. Functionally, phosphatase and tension homology deleted on chromsome ten gene (PTEN) was used as a potential target for miR-1297 and detected using Western blotting and immunohistochemistry (IHC). We then used chemical synthesis of anti-miR1297 to explore the influence on melanoma cells and examined the effects on A375 cell proliferation using MTT and western blotting methods. The results showed that anti-miR-1297 transfected A375 cells could inhibit the growth. Furthermore, transfection with anti-miR-1297 reduced PTEN protein expression and partially restrained A375 cells proliferation, migration and reversed Epithelial-Mesenchymal Transition (EMT) progression. In conclusion, we tentatively put forward that miR-1297 might be the key oncomiR in melanoma, and seed-targeted anti-miR-1297 might serve as a new tactic for miR-1297-based therapies.
Collapse
Affiliation(s)
- Y Han
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - X Li
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - C Ma
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - X Ji
- b Department of Basic Medicine , Henan University , Kaifeng , China
| | - T Li
- b Department of Basic Medicine , Henan University , Kaifeng , China
| | - X Zheng
- c Hospital Infection Control Office , First Affiliated Hospital of Henan University , Kaifeng , China
| | - J Zhang
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - J Yan
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - D Zhang
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| | - J Bai
- a Clinical Laboratory and Functional Laboratory , Kaifeng Central Hospital , Kaifeng , China
| |
Collapse
|
49
|
Usman HA, Hernowo BS, Tobing MDL, Hindritiani R. The Major Role of NF-κB in the Depth of Invasion on Acral Melanoma by Decreasing CD8 + T Cells. J Pathol Transl Med 2018; 52:164-170. [PMID: 29673240 PMCID: PMC5964292 DOI: 10.4132/jptm.2018.04.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The tumor microenvironment including immune surveillance affects malignant melanoma (MM) behavior. Nuclear factor κB (NF-κB) stimulates the transcription of various genes in the nucleus and plays a role in the inflammatory process and in tumorigenesis. CD8+ T cells have cytotoxic properties important in the elimination of tumors. However, inhibitory receptors on the cell surface will bind to programmed death-ligand 1 (PD-L1), causing CD8+ T cells to lose their ability to initiate an immune response. This study analyzed the association of NF-κB and PD-L1 expression levels and CD8+ T-cell counts with depth of invasion of acral MM, which may be a predictor of aggressiveness related to an increased risk of metastasis. METHODS A retrospective cross-sectional study was conducted in the Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin Hospital using 96 cases of acral melanoma. Immunohistochemical staining was performed on paraffin blocks using anti-NF-κB, -PD-L1, and -CD8 antibodies and invasion depth was measured using dotSlide-imaging software. RESULTS The study showed significant associations between the individual expression of NF-κB and PD-L1 and CD8+ T-cell number, with MM invasion depth. NF-κB was found to be a confounding variable of CD8+ T-cell number (p < .05), but not for PD-L1 expression (p = .154). Through multivariate analysis it was found that NF-κB had the greatest association with the depth of invasion (p < .001), whereas PD-L1 was unrelated to the depth of invasion because it depends on the number of CD8+ T cells (p = .870). CONCLUSIONS NF-κB plays a major role in acral MM invasion, by decreasing the number of CD8+ T cells in acral MM.
Collapse
Affiliation(s)
- Hermin Aminah Usman
- Department of Anatomical Pathology, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Bethy S Hernowo
- Department of Anatomical Pathology, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | | | - Reti Hindritiani
- Department of Dermatovenerology, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
50
|
Pieniazek M, Matkowski R, Donizy P. Macrophages in skin melanoma-the key element in melanomagenesis. Oncol Lett 2018; 15:5399-5404. [PMID: 29552183 PMCID: PMC5840697 DOI: 10.3892/ol.2018.8021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
Cutaneous melanoma is an aggressive cancer and its onset and growth are associated, through direct and indirect interactions, with the cancer microenvironment. The microenvironment comprises a dynamic complex of numerous types of cells (due to histogenesis) that constantly interact with each other through multiple cytokines and signaling proteins. Macrophages are one of the most thoroughly studied pleiotropic cells of the immune system. One of their major cytophysiological functions is their involvement in phagocytosis. Previous studies examining the microenvironment of melanomas and tumor-associated macrophages have revealed that they are involved in all stages of melanomagenesis. In the case of cancer initiation, they form an inflammatory microenvironment and then suppress the anticancer activity of the immune system, stimulate angiogenesis, enhance migration and invasion of the cancer cells, and ultimately contribute to the metastatic process. The present review provides a detailed overview on the function of macrophages in the melanoma microenvironment.
Collapse
Affiliation(s)
- Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology Centre, Opole 45-061, Poland
| | - Rafal Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw 50-367, Poland
- Department of Surgical Oncology, Lower Silesian Oncology Centre, Wroclaw 53-413, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| |
Collapse
|