1
|
Soucy A, Potts C, Kaija A, Harrington A, McGilvrey M, Sutphin GL, Korstanje R, Tero B, Seeker J, Pinz I, Vary C, Ryzhova L, Liaw L. Effects of a Global Rab27a Null Mutation on Murine PVAT and Cardiovascular Function. Arterioscler Thromb Vasc Biol 2024; 44:1601-1616. [PMID: 38660803 PMCID: PMC11209784 DOI: 10.1161/atvbaha.124.320969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND RAB27A is a member of the RAS oncogene superfamily of GTPases and regulates cell secretory function. It, is expressed within blood vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.
Collapse
Affiliation(s)
- Ashley Soucy
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Christian Potts
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Abigail Kaija
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Anne Harrington
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Marissa McGilvrey
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - George L. Sutphin
- The Jackson Laboratory, Bar Harbor, ME
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ (current affiliation)
| | - Ron Korstanje
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
- The Jackson Laboratory, Bar Harbor, ME
| | - Benjamin Tero
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Jacob Seeker
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Ilka Pinz
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Calvin Vary
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| | - Larisa Ryzhova
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
| | - Lucy Liaw
- MaineHealth Institute for Research, MaineHealth, Scarborough, ME
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME
| |
Collapse
|
2
|
Volkmer B, Marchetti T, Aichele P, Schmid JP. Murine Models of Familial Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:481-496. [PMID: 39117835 DOI: 10.1007/978-3-031-59815-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (e.g., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.
Collapse
Affiliation(s)
- Benjamin Volkmer
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Tommaso Marchetti
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Peter Aichele
- Department of Immunology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Harper MT. Platelet-Derived Extracellular Vesicles in Arterial Thrombosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:259-275. [PMID: 37603285 DOI: 10.1007/978-981-99-1443-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Blood platelets are necessary for normal haemostasis but also form life-threatening arterial thrombi when atherosclerotic plaques rupture. Activated platelets release many extracellular vesicles during thrombosis. Phosphatidylserine-exposing microparticles promote coagulation. Small exosomes released during granule secretion deliver cargoes including microRNAs to cells throughout the cardiovascular system. Here, we discuss the mechanisms by which platelets release these extracellular vesicles, together with the possibility of inhibiting this release as an antithrombotic strategy.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
5
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
6
|
Karampini E, Bierings R, Voorberg J. Orchestration of Primary Hemostasis by Platelet and Endothelial Lysosome-Related Organelles. Arterioscler Thromb Vasc Biol 2020; 40:1441-1453. [PMID: 32375545 DOI: 10.1161/atvbaha.120.314245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Megakaryocyte-derived platelets and endothelial cells store their hemostatic cargo in α- and δ-granules and Weibel-Palade bodies, respectively. These storage granules belong to the lysosome-related organelles (LROs), a heterogeneous group of organelles that are rapidly released following agonist-induced triggering of intracellular signaling pathways. Following vascular injury, endothelial Weibel-Palade bodies release their content into the vascular lumen and promote the formation of long VWF (von Willebrand factor) strings that form an adhesive platform for platelets. Binding to VWF strings as well as exposed subendothelial collagen activates platelets resulting in the release of α- and δ-granules, which are crucial events in formation of a primary hemostatic plug. Biogenesis and secretion of these LROs are pivotal for the maintenance of proper hemostasis. Several bleeding disorders have been linked to abnormal generation of LROs in megakaryocytes and endothelial cells. Recent reviews have emphasized common pathways in the biogenesis and biological properties of LROs, focusing mainly on melanosomes. Despite many similarities, LROs in platelet and endothelial cells clearly possess distinct properties that allow them to provide a highly coordinated and synergistic contribution to primary hemostasis by sequentially releasing hemostatic cargo. In this brief review, we discuss in depth the known regulators of α- and δ-granules in megakaryocytes/platelets and Weibel-Palade bodies in endothelial cells, starting from transcription factors that have been associated with granule formation to protein complexes that promote granule maturation. In addition, we provide a detailed view on the interplay between platelet and endothelial LROs in controlling hemostasis as well as their dysfunction in LRO related bleeding disorders.
Collapse
Affiliation(s)
- Ellie Karampini
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Ruben Bierings
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands (R.B.)
| | - Jan Voorberg
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Experimental Vascular Medicine (J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
7
|
Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol 2019; 133:149-162. [DOI: 10.1016/j.critrevonc.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
|
8
|
Abstract
Our understanding of fundamental biological processes within platelets is continually evolving. A critical feature of platelet biology relates to the intricate uptake, packaging and release of bioactive cargo from storage vesicles, essential in mediating a range of classical (haemostasis/thrombosis) and non-classical (regeneration/inflammation/metastasis) roles platelets assume. Pivotal to the molecular control of these vesicle trafficking events are the small GTPases of the Ras superfamily, which function as spatially distinct, molecular switches controlling essential cellular processes. Herein, we specifically focus on members of the Rab, Arf and Ras subfamilies, which comprise over 130 members and platelet proteomic datasets suggest that more than half of these are expressed in human platelets. We provide an update of current literature relating to trafficking roles for these GTPases in platelets, particularly regarding endocytic and exocytic events, but also vesicle biogenesis and provide speculative argument for roles that other related GTPases and regulatory proteins may adopt in platelets. Advances in our understanding of small GTPase function in the anucleate platelet has been hampered by the lack of specific molecular tools, but it is anticipated that this will be greatly accelerated in the years ahead and will be crucial to the identification of novel therapeutic targets controlling different platelet processes.
Collapse
Affiliation(s)
- Tony G Walsh
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Yong Li
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Andreas Wersäll
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Alastair W Poole
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| |
Collapse
|
9
|
Gothwal M, Sandrock-Lang K, Zieger B. Genetics of inherited platelet disorders. Hamostaseologie 2017; 34:133-41. [DOI: 10.5482/hamo-13-09-0049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/11/2013] [Indexed: 11/05/2022] Open
Abstract
SummaryThe current review describes inherited platelet disorders, illustrates their clinical phenotype and molecular genetic defects. Platelets are the key molecules mediating haemostasis via adhesion, activation and clot formation at the site of injury. The inherited platelet disorders can be classified according to their platelet defects: receptor/cytoskeleton defects, secretion disorder, and signal transduction defect.Patients with inherited thrombocytopathia present with mucous membrane bleedings (epistaxis, gingival bleeding) and may present with serious life threatening bleedings following surgery or trauma. Therefore, biochemical and molecular genetic characterization of inherited platelet disorders is important to understand these disorders and to support an efficient therapy.
Collapse
|
10
|
Tsukuba T, Sakai E, Nishishita K, Kadowaki T, Okamoto K. New functions of lysosomes in bone cells. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Abstract
Platelet dense granules (DGs) are membrane bound compartments that store polyphosphate and small molecules such as ADP, ATP, Ca2+, and serotonin. The release of DG contents plays a central role in platelet aggregation to form a hemostatic plug. Accordingly, congenital deficiencies in the biogenesis of platelet DGs underlie human genetic disorders that cause storage pool disease and manifest with prolonged bleeding. DGs belong to a family of lysosome-related organelles, which also includes melanosomes, the compartments where the melanin pigments are synthesized. These organelles share several characteristics including an acidic lumen and, at least in part, the molecular machinery involved in their biogenesis. As a result, many genes affect both DG and melanosome biogenesis and the corresponding patients present not only with bleeding but also with oculocutaneous albinism. The identification and characterization of such genes has been instrumental in dissecting the pathways responsible for organelle biogenesis. Because the study of melanosome biogenesis has advanced more rapidly, this knowledge has been extrapolated to explain how DGs are produced. However, some progress has recently been made in studying platelet DG biogenesis directly in megakaryocytes and megakaryocytoid cells. DGs originate from an endosomal intermediate compartment, the multivesicular body. Maturation and differentiation into a DG begins when newly synthesized DG-specific proteins are delivered from early/recycling endosomal compartments. The machinery that orchestrates this vesicular trafficking is composed of a combination of both ubiquitous and cell type-specific proteins. Here, we review the current knowledge on DG biogenesis. In particular, we focus on the individual human and murine genes encoding the molecular machinery involved in this process and how their deficiencies result in disease.
Collapse
Affiliation(s)
- Andrea L Ambrosio
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , Colorado , USA
| | - Santiago M Di Pietro
- a Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , Colorado , USA
| |
Collapse
|
12
|
Xu X, Sun B. Platelet granule secretion mechanisms: Are they modified in sepsis? Thromb Res 2015; 136:845-50. [DOI: 10.1016/j.thromres.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/19/2015] [Accepted: 09/06/2015] [Indexed: 12/31/2022]
|
13
|
Arreola R, Becerril-Villanueva E, Cruz-Fuentes C, Velasco-Velázquez MA, Garcés-Alvarez ME, Hurtado-Alvarado G, Quintero-Fabian S, Pavón L. Immunomodulatory effects mediated by serotonin. J Immunol Res 2015; 2015:354957. [PMID: 25961058 PMCID: PMC4417587 DOI: 10.1155/2015/354957] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 11/17/2022] Open
Abstract
Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.
Collapse
Affiliation(s)
- Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Enrique Becerril-Villanueva
- Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Carlos Cruz-Fuentes
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Marco Antonio Velasco-Velázquez
- School of Medicine, National Autonomous University of Mexico, Avenida Universidad 3000, Coyoacan, 04510 Mexico City, DF, Mexico
| | - María Eugenia Garcés-Alvarez
- Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Iztapalapa, 09340 Mexico City, DF, Mexico
| | - Saray Quintero-Fabian
- Genetics Unit Nutrition of Biomedical Research Institute of Universidad Nacional Autónoma de México at Instituto Nacional de Pediatría, Avenida del Iman No. 1, cuarto piso, Colonia Insurgentes-Cuicuilco, Coyoacan, 04530 Mexico City, DF, Mexico
| | - Lenin Pavón
- Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| |
Collapse
|
14
|
Shimada-Sugawara M, Sakai E, Okamoto K, Fukuda M, Izumi T, Yoshida N, Tsukuba T. Rab27A regulates transport of cell surface receptors modulating multinucleation and lysosome-related organelles in osteoclasts. Sci Rep 2015; 5:9620. [PMID: 25882854 PMCID: PMC5381753 DOI: 10.1038/srep09620] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 11/21/2022] Open
Abstract
Rab27A regulates transport of lysosome-related organelles (LROs) and release of secretory granules in various types of cells. Here, we identified up-regulation of Rab27A during differentiation of osteoclasts (OCLs) from bone-marrow macrophages (BMMs), by DNA microarray analysis. Rab27A deficiency in OCLs, using small interfering RNA (siRNA) knockdown in RAW-D cell line or BMMs derived from ashen mice, which display genetic defects in Rab27A expression, induced multinucleated and giant cells. Upon stimulation with macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), essential cytokines for OCL differentiation, phosphorylation levels of extracellular signal-regulated kinase (Erk), proto-oncogene tyrosine-protein kinase (Src), and p-38 were slightly enhanced in ashen BMMs than in wild-type BMMs. The cell surface level of c-fms, an M-CSF receptor, was slightly higher in ashen BMMs than in wild-type BMMs, and down-regulation of RANK, a RANKL receptor, was delayed. In addition to receptors, OCLs derived from ashen mice exhibited aberrant actin ring formation, abnormal subcellular localization of lysosome-associated membrane protein (LAMP2) and cathepsin K (CTSK), and marked reduction in resorbing activity. Thus, these findings suggest that Rab27A regulates normal transport of cell surface receptors modulating multinucleation and LROs in OCLs.
Collapse
Affiliation(s)
- Megumi Shimada-Sugawara
- 1] Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan [2] Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Eiko Sakai
- Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Kuniaki Okamoto
- Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tetsuro Izumi
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Noriaki Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Takayuki Tsukuba
- Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
15
|
Hemophagocytic lymphohistiocytosis (HLH): A heterogeneous spectrum of cytokine-driven immune disorders. Cytokine Growth Factor Rev 2014; 26:263-80. [PMID: 25466631 DOI: 10.1016/j.cytogfr.2014.10.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/17/2014] [Indexed: 01/02/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) comprises a group of life-threatening immune disorders classified into primary or secondary HLH. The former is caused by mutations in genes involved in granule-mediated cytotoxicity, the latter occurs in a context of infections, malignancies or autoimmune/autoinflammatory disorders. Both are characterized by systemic inflammation, severe cytokine storms and immune-mediated organ damage. Despite recent advances, the pathogenesis of HLH remains incompletely understood. Animal models resembling different subtypes of HLH are therefore of great value to study this disease and to uncover novel treatment strategies. In this review, all known animal models of HLH will be discussed, highlighting findings on cell types, cytokines and signaling pathways involved in disease pathogenesis and extrapolating therapeutic implications for the human situation.
Collapse
|
16
|
A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. Blood 2014; 124:999-1009. [PMID: 24934256 DOI: 10.1182/blood-2014-02-555268] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Studies have endeavored to reconcile whether dysfunction of neutrophils in people with cystic fibrosis (CF) is a result of the genetic defect or is secondary due to infection and inflammation. In this study, we illustrate that disrupted function of the CF transmembrane conductance regulator (CFTR), such as that which occurs in patients with ∆F508 and/or G551D mutations, correlates with impaired degranulation of antimicrobial proteins. We demonstrate that CF blood neutrophils release less secondary and tertiary granule components compared with control cells and that activation of the low-molecular-mass GTP-binding protein Rab27a, involved in the regulation of granule trafficking, is defective. The mechanism leading to impaired degranulation involves altered ion homeostasis caused by defective CFTR function with increased cytosolic levels of chloride and sodium, yet decreased magnesium measured in CF neutrophils. Decreased magnesium concentration in vivo and in vitro resulted in significantly decreased levels of GTP-bound Rab27a. Treatment of G551D patients with the ion channel potentiator ivacaftor resulted in normalized neutrophil cytosolic ion levels and activation of Rab27a, thereby leading to increased degranulation and bacterial killing. Our results confirm that intrinsic alterations of circulating neutrophils from patients with CF are corrected by ivacaftor, thus illustrating additional clinical benefits for CFTR modulator therapy.
Collapse
|
17
|
Harper MT, van den Bosch MTJ, Hers I, Poole AW. Absence of platelet phenotype in mice lacking the motor protein myosin Va. PLoS One 2013; 8:e53239. [PMID: 23349704 PMCID: PMC3548825 DOI: 10.1371/journal.pone.0053239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/27/2012] [Indexed: 12/22/2022] Open
Abstract
Background The motor protein myosin Va plays an important role in the trafficking of intracellular vesicles. Mutation of the Myo5a gene causes Griscelli syndrome type 1 in humans and the dilute phenotype in mice, which are both characterised by pigment dilution and neurological defects as a result of impaired vesicle transport in melanocytes and neuroendocrine cells. The role of myosin Va in platelets is currently unknown. Rab27 has been shown to be associated with myosin Va cargo vesicles and is known to be important in platelet dense granule biogenesis and secretion, a crucial event in thrombus formation. Therefore, we hypothesised that myosin Va may regulate granule secretion or formation in platelets. Methodology/Principal Findings Platelet function was studied in vitro using a novel Myo5a gene deletion mouse model. Myo5a−/− platelets were devoid of myosin Va, as determined by immunoblotting, and exhibited normal expression of surface markers. We assessed dense granule, α-granule and lysosomal secretion, integrin αIIbβ3 activation, Ca2+ signalling, and spreading on fibrinogen in response to collagen-related peptide or the PAR4 agonist, AYPGKF in washed mouse platelets lacking myosin Va or wild-type platelets. Surprisingly, Myo5a−/− platelets showed no significant functional defects in these responses, or in the numbers of dense and α-granules expressed. Conclusion Despite the importance of myosin Va in vesicle transport in other cells, our data demonstrate this motor protein has no non-redundant role in the secretion of dense and α-granules or other functional responses in platelets.
Collapse
Affiliation(s)
- Matthew T. Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | | | - Ingeborg Hers
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Alastair W. Poole
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Zografou S, Basagiannis D, Papafotika A, Shirakawa R, Horiuchi H, Auerbach D, Fukuda M, Christoforidis S. A complete Rab screening reveals novel insights in Weibel-Palade body exocytosis. J Cell Sci 2012; 125:4780-90. [PMID: 22899725 DOI: 10.1242/jcs.104174] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Weibel-Palade bodies (WPBs) are endothelial-cell-specific organelles that, upon fusion with the plasma membrane, release cargo molecules that are essential in blood vessel abnormalities, such as thrombosis and inflammation, as well as in angiogenesis. Despite the importance of WPBs, the basic mechanisms that mediate their secretion are only poorly understood. Rab GTPases play fundamental role in the trafficking of intracellular organelles. Yet, the only known WPB-associated Rabs are Rab27a and Rab3d. To determine the full spectrum of WPB-associated Rabs we performed a complete Rab screening by analysing the localisation of all Rabs in WPBs and their involvement in the secretory process in endothelial cells. Apart from Rab3 and Rab27, we identified three additional Rabs, Rab15 (a previously reported endocytic Rab), Rab33 and Rab37, on the WPB limiting membrane. A knockdown approach using siRNAs showed that among these five WPB Rabs only Rab3, Rab27 and Rab15 are required for exocytosis. Intriguingly, we found that Rab15 cooperates with Rab27a in WPB secretion. Furthermore, a specific effector of Rab27, Munc13-4, appears to be also an effector of Rab15 and is required for WPB exocytosis. These data indicate that WPB secretion requires the coordinated function of a specific group of Rabs and that, among them, Rab27a and Rab15, as well as their effector Munc13-4, cooperate to drive exocytosis.
Collapse
Affiliation(s)
- Sofia Zografou
- Institute of Molecular Biology and Biotechnology, Department of Ioannina/Foundation for Research and Technology Hellas, Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The process of melanosome transfer has fascinated pigment cell biologists for decades. Whole-organelle transfer is a unique property of melanocytes, suggesting that the biologic underpinnings of the process reflect melanocyte- and keratinocyte-specific proteins and pathways. Although several mechanisms of melanosome transfer are likely to occur in the skin, Ando et al. focused on a new mechanism of melanosome transfer that involves release of melanosome-containing globules, similar to shedding vesicles into the extracellular space, followed by uptake by keratinocytes. This model adds further complexity to the process of melanosome transfer in the skin.
Collapse
|
20
|
SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models. Blood 2012; 120:404-14. [PMID: 22611153 DOI: 10.1182/blood-2011-11-389551] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelet dense granules are members of a family of tissue-specific, lysosome-related organelles that also includes melanosomes in melanocytes. Contents released from dense granules after platelet activation promote coagulation and hemostasis, and dense granule defects such as those seen in Hermansky-Pudlak syndrome (HPS) cause excessive bleeding, but little is known about how dense granules form in megakaryocytes (MKs). In the present study, we used SLC35D3, mutation of which causes a dense granule defect in mice, to show that early endosomes play a direct role in dense granule biogenesis. We show that SLC35D3 expression is up-regulated during mouse MK differentiation and is enriched in platelets. Using immunofluorescence and immunoelectron microscopy and subcellular fractionation in megakaryocytoid cells, we show that epitope-tagged and endogenous SLC35D3 localize predominantly to early endosomes but not to dense granule precursors. Nevertheless, SLC35D3 is depleted in mouse platelets from 2 of 3 HPS models and, when expressed ectopically in melanocytes, SLC35D3 localizes to melanosomes in a manner requiring a HPS-associated protein complex that functions from early endosomal transport intermediates. We conclude that SLC35D3 is either delivered to nascent dense granules from contiguous early endosomes as MKs mature or functions in dense granule biogenesis directly from early endosomes, suggesting that dense granules originate from early endosomes in MKs.
Collapse
|
21
|
Laulagnier K, Schieber NL, Maritzen T, Haucke V, Parton RG, Gruenberg J. Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes. Mol Biol Cell 2011; 22:2068-82. [PMID: 21525240 PMCID: PMC3113771 DOI: 10.1091/mbc.e11-03-0193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 11/11/2022] Open
Abstract
Whereas lysosome-related organelles (LRO) of specialized cells display both exocytic and endocytic features, lysosomes in nonspecialized cells can also acquire the property to fuse with the plasma membrane upon an acute rise in cytosolic calcium. Here, we characterize this unconventional secretory pathway in fibroblast-like cells, by monitoring the appearance of Lamp1 on the plasma membrane and the release of lysosomal enzymes into the medium. After sequential ablation of endocytic compartments in living cells, we find that donor membranes primarily derive from a late compartment, but that an early compartment is also involved. Strikingly, this endo-secretory process is not affected by treatments that inhibit endosome dynamics (microtubule depolymerization, cholesterol accumulation, overexpression of Rab7 or its effector Rab-interacting lysosomal protein [RILP], overexpression of Rab5 mutants), but depends on Rab27a, a GTPase involved in LRO secretion, and is controlled by F-actin. Moreover, we find that this unconventional endo-secretory pathway requires the adaptor protein complexes AP1, Gadkin (which recruits AP1 by binding to the γ1 subunit), and AP2, but not AP3. We conclude that a specific fraction of the AP2-derived endocytic pathway is dedicated to secretory purposes under the control of AP1 and Gadkin.
Collapse
Affiliation(s)
- Karine Laulagnier
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| | - Nicole L. Schieber
- Institute for Molecular Bioscience and Center for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia
| | - Tanja Maritzen
- Laboratory of Membrane Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Volker Haucke
- Laboratory of Membrane Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Robert G. Parton
- Institute for Molecular Bioscience and Center for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| |
Collapse
|
22
|
Aneja K, Jalagadugula G, Mao G, Singh A, Rao AK. Mechanism of platelet factor 4 (PF4) deficiency with RUNX1 haplodeficiency: RUNX1 is a transcriptional regulator of PF4. J Thromb Haemost 2011; 9:383-91. [PMID: 21129147 PMCID: PMC3030649 DOI: 10.1111/j.1538-7836.2010.04154.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Platelet factor 4 (PF4) is an abundant protein stored in platelet α-granules. Several patients have been described with platelet PF4 deficiency, including the gray platelet syndrome, characterized by a deficiency of α-granule proteins. Defective granule formation and protein targeting are considered to be the predominant mechanisms. We have reported on a patient with thrombocytopenia and impaired platelet aggregation, secretion, and protein phosphorylation, associated with a mutation in the transcription factor RUNX1. Platelet expression profiling showed decreased transcript expression of PF4 and its non-allelic variant PF4V1. OBJECTIVES To understand the mechanism leading to PF4 deficiency associated with RUNX1 haplodeficiency, we addressed the hypothesis that PF4 is a transcriptional target of RUNX1. METHODS/RESULTS Chromatin immunoprecipitation and gel-shift assays with phorbol 12-myristate 13-acetate-treated human erythroleukemia (HEL) cells revealed RUNX1 binding to RUNX1 consensus sites at -1774/-1769 and -157/-152 on the PF4 promoter. In luciferase reporter studies in HEL cells, mutation of each site markedly reduced activity. PF4 promoter activity and PF4 protein level were decreased by small interfering RNA RUNX1 knockdown and increased by RUNX1 overexpression. CONCLUSIONS Our results provide the first evidence that PF4 is regulated by RUNX1 and that impaired transcriptional regulation leads to the PF4 deficiency associated with RUNX1 haplodeficiency. Because our patient had decreased platelet albumin and IgG (not synthesized by megakaryocytes) levels, we postulate additional defects in RUNX1-regulated genes involved in vesicular trafficking. These studies advance our understanding of the mechanisms in α-granule deficiency.
Collapse
Affiliation(s)
- Kawalpreet Aneja
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Gauthami Jalagadugula
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Guangfen Mao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Anamika Singh
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
23
|
Abstract
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Collapse
|
24
|
Abstract
Individuals whose platelets lack dense or alpha-granules suffer various degrees of abnormal bleeding, implying that granule cargo contributes to hemostasis. Despite these clinical observations, little is known regarding the effects of impaired platelet granule secretion on thrombus formation in vivo. In platelets, SNARE proteins mediate the membrane fusion events required for granule cargo release. Endobrevin/VAMP-8 is the primary vesicle-SNARE (v-SNARE) responsible for efficient release of dense and alpha-granule contents; thus, VAMP-8(-/-) mice are a useful model to evaluate the importance of platelet granule secretion in thrombus formation. Thrombus formation, after laser-induced vascular injury, in these mice is delayed and decreased, but not absent. In contrast, thrombus formation is almost completely abolished in the mouse model of Hermansky-Pudlak syndrome, ruby-eye, which lacks dense granules. Evaluation of aggregation of VAMP-8(-/-) and ruby-eye platelets indicates that defective ADP release is the primary abnormality leading to impaired aggregation. These results demonstrate the importance of dense granule release even in the earliest phases of thrombus formation and validate the distal platelet secretory machinery as a potential target for antiplatelet therapies.
Collapse
|
25
|
Abstract
BACKGROUND The fawn-hooded hypertensive (FHH) rat has a mutation in the Rab38 gene that is associated with a platelet dense granule storage pool disease. OBJECTIVE To better characterize the expression and function of Rab38 in FHH rat and human megakaryocytes and platelets. PATIENTS AND METHODS Rab38 expression in FHH rat and normal tissues was demonstrated by western blotting. Platelet and megakaryocyte morphology and Rab38 expression were examined by transmission electron microscopy and by immunofluorescence confocal microscopy. Platelet surface glycoprotein and P-selectin expression and total serotonin content were assessed by flow cytometry. RESULTS Rab38 was not expressed in FHH rat tissues, and FHH rat platelets and megakaryocytes lacked dense granules. FHH rat platelets had normal expression of surface glycoproteins and of surface P-selectin in response to thrombin. The total serotonin content in FHH rat platelets was similar to that in Brown Norway rat platelets. In a megakaryocyte cell line, Rab38 was expressed in a granular perinuclear and cytoplasmic pattern. There was partial colocalization with serotonin, and minimal colocalization with von Willebrand factor and lysosomal proteins. CONCLUSIONS The lack of Rab38 expression in the FHH rat results in the absence of normal dense granules in the megakaryocytes and platelets, which have otherwise normal structure and function. Rab38 may play a role in the development of dense granules in the megakaryocytes and platelets.
Collapse
Affiliation(s)
- I Ninkovic
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
26
|
Nichols WL, Hultin MB, James AH, Manco-Johnson MJ, Montgomery RR, Ortel TL, Rick ME, Sadler JE, Weinstein M, Yawn BP. von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia 2008; 14:171-232. [PMID: 18315614 DOI: 10.1111/j.1365-2516.2007.01643.x] [Citation(s) in RCA: 599] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- W L Nichols
- Special Coagulation Laboratory, Division of Hematopathology, Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Platelet-related diseases correspond to functional defects or abnormal production (thrombopoiesis) of hereditary and immunological origins. Recent progress in the manipulation of the mouse genome (transgenesis, gene inactivation or insertion) has resulted in the generation of numerous strains exhibiting defective platelet function or production. Some strains reproduce known hereditary diseases affecting haemostasis (Glanzmann thrombasthenia, Bernard-Soulier syndrome (BSS) or thrombopoiesis (Wiscott-Aldrich or May-Hegglin syndrome). More often the mutated strains have no human equivalent and represent useful models to study: (i) the role of adhesive or signalling receptors or of signalling proteins in platelet-dependent haemostasis and thrombosis or; (ii) to study the poorly characterized mechanisms of thrombopoiesis, which implicate transcription factors (GATA, Fli1), growth factors and receptors (TPO, cMPL), and cytoskeletal or contractile proteins (tubulin, myosin). Additional mouse strains result from the selection of spontaneous mutants many of which affect intracellular platelet granules, representing models of storage pool diseases (SPD) such as the Gray platelet syndrome (alphaSPD) or Hermansky-Pudlack syndrome (deltaSPD). More recently, a systematic chemical mutagenesis approach has also identified genes involved in thrombopoiesis and platelet survival. Finally, mouse models of auto- or allo-immune thrombocytopenia have been developed to study the mechanisms of platelet destruction or removal.
Collapse
Affiliation(s)
- F Lanza
- INSERM U.311, EFS Alsace, 10 rue Spielmann, 67065 Strasbourg, France.
| |
Collapse
|
28
|
Munafó D, Johnson J, Ellis B, Rutschmann S, Beutler B, Catz S. Rab27a is a key component of the secretory machinery of azurophilic granules in granulocytes. Biochem J 2007; 402:229-39. [PMID: 17090228 PMCID: PMC1798439 DOI: 10.1042/bj20060950] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neutrophils kill micro-organisms using microbicidal products that they release into the phagosome or into the extracellular space. The secretory machinery utilized by neutrophils is poorly characterized. We show that the small GTPase Rab27a is an essential component of the secretory machinery of azurophilic granules in granulocytes. Rab27a-deficient mice have impaired secretion of MPO (myeloperoxidase) into the plasma in response to lipopolysaccharide. Cell fractionation analysis revealed that Rab27a and the Rab27a effector protein JFC1/Slp1 (synaptotagmin-like protein 1) are distributed principally in the low-density fraction containing a minor population of MPO-containing granules. By immunofluorescence microscopy, we detected Rab27a and JFC1/Slp1 in a minor subpopulation of MPO-containing granules. Interference with the JFC1/Slp1-Rab27a secretory machinery impaired secretion of MPO in permeabilized neutrophils. The expression of Rab27a was dramatically increased when promyelocytic HL-60 cells were differentiated into granulocytes but not when they were differentiated into monocytes. Down-regulation of Rab27a in HL-60 cells by RNA interference did not affect JFC1/Slp1 expression but significantly decreased the secretion of MPO. Neither Rab27a nor JFC1/Slp1 was integrated into the phagolysosome membrane during phagocytosis. Neutrophils from Rab27a-deficient mice efficiently phagocytose zymosan opsonized particles and deliver MPO to the phagosome. We conclude that Rab27a and JFC1/Slp1 permit MPO release into the surrounding milieu and constitute key components of the secretory machinery of azurophilic granules in granulocytes. Our results suggest that the granules implicated in cargo release towards the surrounding milieu are molecularly and mechanistically different from those involved in their release towards the phagolysosome.
Collapse
Affiliation(s)
- Daniela B. Munafó
- *Department of Molecular and Experimental Medicine, Division of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA, 92037, U.S.A
| | - Jennifer L. Johnson
- *Department of Molecular and Experimental Medicine, Division of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA, 92037, U.S.A
| | - Beverly A. Ellis
- *Department of Molecular and Experimental Medicine, Division of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA, 92037, U.S.A
| | - Sophie Rutschmann
- †Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Bruce Beutler
- †Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Sergio D. Catz
- *Department of Molecular and Experimental Medicine, Division of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA, 92037, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
Abstract
The gray platelet syndrome (GPS) is a rare inherited disorder of the megakaryocyte (MK) lineage. Thrombocytopenia and enlarged platelets are associated with a specific absence of alpha-granules and their contents. GPS patients exhibit much heterogeneity both in bleeding severity and in their response to platelet function testing. A unique feature is that proteins endogenously synthesised by megakaryocytes (MK) or endocytosed by MK or platelets fail to enter into the secretable storage pools that characterise alpha-granules of normal platelets. Although the molecular basis of the disease is unknown, evidence suggests that alpha-granules simply fail to mature during MK differentiation. One result is a continued leakage of growth factors and cytokines into the marrow causing myelofibrosis. While for some patients platelet function may be only moderately affected, for others thrombin and/or collagen-induced platelet aggregation is markedly modified and an acquired lack of the GPVI collagen receptor has been reported. In this review, we document the clinical and molecular heterogeneity in GPS, a unique disease of the biogenesis of platelet alpha-granules and of the storage of growth factors and secretable proteins.
Collapse
Affiliation(s)
- Alan T Nurden
- IFRN 4/CRPP, Laboratoire d'Hématologie, Hôpital Cardiologique, 33604 Pessac, France.
| | | |
Collapse
|
30
|
Chintala S, Tan J, Gautam R, Rusiniak ME, Guo X, Li W, Gahl WA, Huizing M, Spritz RA, Hutton S, Novak EK, Swank RT. The Slc35d3 gene, encoding an orphan nucleotide sugar transporter, regulates platelet-dense granules. Blood 2006; 109:1533-40. [PMID: 17062724 PMCID: PMC1794067 DOI: 10.1182/blood-2006-08-040196] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelet dense granules are lysosome-related organelles which contain high concentrations of several biologically important low-molecular-weight molecules. These include calcium, serotonin, adenine nucleotides, pyrophosphate, and polyphosphate, which are necessary for normal blood hemostasis. The synthesis of dense granules and other lysosome-related organelles is defective in inherited diseases such as Hermansky-Pudlak syndrome (HPS) and Chediak-Higashi syndrome (CHS). HPS and CHS mutations in 8 human and at least 16 murine genes have been identified. Previous studies produced contradictory findings for the function of the murine ashen (Rab27a) gene in platelet-dense granules. We have used a positional cloning approach with one line of ashen mutants to establish that a new mutation in a second gene, Slc35d3, on mouse chromosome 10 is the basis of this discrepancy. The platelet-dense granule defect is rescued in BAC transgenic mice containing the normal Slc35d3 gene. Thus, Slc35d3, an orphan member of a nucleotide sugar transporter family, specifically regulates the contents of platelet-dense granules. Unlike HPS or CHS genes, it has no apparent effect on other lysosome-related organelles such as melanosomes or lysosomes. The ash-Roswell mouse mutant is an appropriate model for human congenital-isolated delta-storage pool deficiency.
Collapse
Affiliation(s)
- Sreenivasulu Chintala
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Imai A, Yoshie S, Nashida T, Shimomura H, Fukuda M. Functional involvement of Noc2, a Rab27 effector, in rat parotid acinar cells. Arch Biochem Biophys 2006; 455:127-35. [PMID: 17067543 DOI: 10.1016/j.abb.2006.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/17/2006] [Accepted: 09/18/2006] [Indexed: 11/23/2022]
Abstract
Noc2 has recently been proposed to regulate exocytosis in both endocrine and exocrine cells; however, protein expression, subcellular localization and function of Noc2 in exocrine cells have never been elucidated. In this study, we investigated whether Noc2, a Rab27 effector, is involved in isoproterenol (IPR)-stimulated amylase release from acinar cells. Rab27 was detected in the apical plasma membrane (APM) and secretory granule membrane (SGM) fractions, and was translocated to the APM after IPR stimulation for 5 min, but was detected at lower levels in the APM after 30 min. In contrast, although Noc2 was expressed in SGM bound to Rab27, Noc2 was not translocated to APM and the Noc2/Rab27 complex was disrupted after stimulation with IPR for short time. In addition, the anti-Noc2-Rab-binding-domain antibody inhibited IPR-stimulated amylase release from streptolysin O-permeabilized parotid acinar cells. Our results suggest that the Noc2/Rab27 complex is an important constituent of the early stages of IPR-stimulated amylase release.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, The Nippon Dental University, School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | | | | | | | |
Collapse
|
32
|
Sadler JE, Budde U, Eikenboom JCJ, Favaloro EJ, Hill FGH, Holmberg L, Ingerslev J, Lee CA, Lillicrap D, Mannucci PM, Mazurier C, Meyer D, Nichols WL, Nishino M, Peake IR, Rodeghiero F, Schneppenheim R, Ruggeri ZM, Srivastava A, Montgomery RR, Federici AB. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 2006; 4:2103-14. [PMID: 16889557 DOI: 10.1111/j.1538-7836.2006.02146.x] [Citation(s) in RCA: 772] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
von Willebrand disease (VWD) is a bleeding disorder caused by inherited defects in the concentration, structure, or function of von Willebrand factor (VWF). VWD is classified into three primary categories. Type 1 includes partial quantitative deficiency, type 2 includes qualitative defects, and type 3 includes virtually complete deficiency of VWF. VWD type 2 is divided into four secondary categories. Type 2A includes variants with decreased platelet adhesion caused by selective deficiency of high-molecular-weight VWF multimers. Type 2B includes variants with increased affinity for platelet glycoprotein Ib. Type 2M includes variants with markedly defective platelet adhesion despite a relatively normal size distribution of VWF multimers. Type 2N includes variants with markedly decreased affinity for factor VIII. These six categories of VWD correlate with important clinical features and therapeutic requirements. Some VWF gene mutations, alone or in combination, have complex effects and give rise to mixed VWD phenotypes. Certain VWD types, especially type 1 and type 2A, encompass several pathophysiologic mechanisms that sometimes can be distinguished by appropriate laboratory studies. The clinical significance of this heterogeneity is under investigation, which may support further subdivision of VWD type 1 or type 2A in the future.
Collapse
Affiliation(s)
- J E Sadler
- Howard Hughes Medical Institute, Washington University, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Everyone experiences minor bleeding and clotting, and many illnesses feature extremes of hemorrhage or thrombosis. Recent advances have illuminated the ways in which von Willebrand factor (VWF) contributes to both kinds of hemostatic emergency, whether mundane or life threatening, often through disturbances in VWF synthesis or catabolism. von Willebrand factor multimer assembly depends on the ability of the propeptide to promote disulfide bond formation in the Golgi, possibly by acting as a pH-sensitive oxidoreductase. Once secreted into the blood, multimers are subject to competing processes of clearance and of proteolysis by ADAMTS-13. Defects in the secretion or intravascular clearance of VWF can cause exceptionally severe forms of von Willebrand disease (VWD) type 1. Defects in the assembly of VWF multimers, or exaggerated proteolytic degradation by ADAMTS-13, can cause VWD type 2A and contribute to VWD type 2B. Conversely, defects in the feedback proteolysis of VWF by ADAMTS-13 can cause thrombotic thrombocytopenic purpura (TTP). The pathophysiologic importance of VWF is not limited to the dramatic phenotypes of VWD and TTP. In fact, VWF level also correlates with thrombosis risk and inversely with bleeding risk within the apparently healthy population. More research is needed to understand how VWF function is regulated, and to enable physicians to use this knowledge for the benefit of their patients.
Collapse
Affiliation(s)
- J E Sadler
- Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
34
|
Abstract
Qualitative disorders of platelet function and production form a large group of rare diseases which cover a multitude of genetic defects that by and large have as a common symptom, excessive mucocutaneous bleeding. Glanzmann thrombasthenia, is enabling us to learn much about the pathophysiology of integrins and of how alphaIIb beta3 functions. Bernard-Soulier syndrome, an example of macrothrombocytopenia, combines the production of large platelets with a deficit or non-functioning of the major adhesion receptor of platelets, the GPIb-IX-V complex. Amino acid substitutions in GPIb alpha, may lead to up-regulation and spontaneous binding of von Willebrand factor as in Platelet-type von Willebrand disease. In disorders with defects in the MYH9 gene, macrothrombocytopenias are linked to modifications in kidney, eye or ear, whereas other inherited thrombocytopenias variously link a low platelet count with a propensity to leukemia, skeletal defects, learning impairment, and abnormal red cells. Defects of secretion from platelets include an abnormal alpha-granule formation as in the gray platelet syndrome (with marrow myelofibrosis), and of organelle biogenesis in the Hermansky-Pudlak and Chediak-Higashi syndromes where platelet dense body defects are linked to abnormalities of other lysosomal-like organelles including melanosomes. Finally, defects involving surface receptors (P2Y(12), TPalpha) for activating stimuli, of proteins essential for signaling pathways (including Wiskott-Aldrich syndrome), and of platelet-derived procoagulant activity (Scott syndrome) show how studies on platelet disorders are helping unravel the pathways of primary hemostasis.
Collapse
Affiliation(s)
- A T Nurden
- Institut Fédératif de Recherche N 4, CHU Bordeaux, Pessac, France.
| |
Collapse
|
35
|
Abstract
Platelet dense granules form using mechanisms shared by melanosomes in melanocytes and by subsets of lysosomes in more generalized cells. Consequently, disorders of platelet dense granules can reveal how organelles form and move within cells. Models for the study of new vesicle formation include isolated delta-storage pool deficiency, combined alphadelta-storage pool deficiency, Hermansky-Pudlak syndrome (HPS), Chediak-Higashi syndrome, Griscelli syndrome, thrombocytopenia absent radii syndrome, and Wiskott-Aldrich syndrome. The molecular bases of dense granule deficiency are known for the seven subtypes of HPS, as well as for Chediak-Higashi syndrome, Griscelli syndrome, and Wiskott-Aldrich syndrome. The gene products involved in these disorders help elucidate the generalized process of the formation of vesicles from extant membranes such as the Golgi.
Collapse
Affiliation(s)
- Meral Gunay-Aygun
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Marjan Huizing
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Clinical Director, National Human Genome Research Institute. Published in 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA
| |
Collapse
|
36
|
Chen X, Li C, Izumi T, Ernst SA, Andrews PC, Williams JA. Rab27b localizes to zymogen granules and regulates pancreatic acinar exocytosis. Biochem Biophys Res Commun 2004; 323:1157-62. [PMID: 15451418 DOI: 10.1016/j.bbrc.2004.08.212] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Indexed: 12/13/2022]
Abstract
To understand the function of pancreatic zymogen granules, we performed a proteomics analysis to identify ZG membrane components. Here we report the identification of Rab27b through this proteomics study and validate its role in granule function. MALDI-MS peptide mass fingerprint was matched to rat Rab27b with 43% sequence coverage, and the identification was also confirmed by tandem mass spectrometry. The localization of Rab27b on ZGs was confirmed by Western blotting and immunocytochemistry. To examine the function of Rab27b in acinar secretion, we overexpressed wild type and mutant Rab27b protein in pancreatic acini using recombinant adenoviruses. Wild type Rab27b had no effect on amylase secretion, while Rab27b Q78L enhanced, and Rab27b N133I inhibited, CCK-induced amylase release by 92+/-13% and 53+/-8%, respectively. This enhancement and inhibition occurred at all points on the CCK dose-response curve and over a 30min time course. These results demonstrate that Rab27b is present on ZGs and plays an important role in regulating acinar exocytosis.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Li W, Rusiniak ME, Chintala S, Gautam R, Novak EK, Swank RT. Murine Hermansky-Pudlak syndrome genes: regulators of lysosome-related organelles. Bioessays 2004; 26:616-28. [PMID: 15170859 DOI: 10.1002/bies.20042] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the mouse, at least 16 genes regulate vesicle trafficking to specialized lysosome-related organelles, including platelet dense granules and melanosomes. Fourteen of these genes have been identified by positional cloning. All 16 mouse mutants are models for the genetically heterogeneous human disease, Hermansky-Pudlak Syndrome (HPS). Five HPS genes encode known vesicle trafficking proteins. Nine genes are novel, are found only in higher eukaryotes and encode members of three protein complexes termed BLOCs (Biogenesis of Lysosome-related Organelles Complexes). Mutations in murine HPS genes, which encode protein co-members of BLOCs, produce essentially identical phenotypes. In addition to their well-known effects on pigmentation, platelet function and lysosome secretion, HPS genes control a wide range of physiological processes including immune recognition, neuronal functions and lung surfactant trafficking. Studies of the molecular functions of HPS proteins will reveal important details of vesicle trafficking and may lead to therapies for HPS.
Collapse
Affiliation(s)
- Wei Li
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
38
|
Fukuda M, Kanno E, Yamamoto A. Rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A in PC12 cells. J Biol Chem 2004; 279:13065-75. [PMID: 14722103 DOI: 10.1074/jbc.m306812200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rabphilin and Noc2 were originally described as Rab3A effector proteins involved in the regulation of secretory vesicle exocytosis, however, recently both proteins have been shown to bind Rab27A in vitro in preference to Rab3A (Fukuda, M. (2003) J. Biol. Chem. 278, 15373-15380), suggesting that Rab3A is not their major ligand in vivo. In the present study we showed by means of deletion and mutation analyses that rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A, not with Rab3A, in PC12 cells. Rab3A binding-defective mutants of rabphilin(E50A) and Noc2(E51A) were still localized in the distal portion of the neurites (where dense-core vesicles had accumulated) in nerve growth factor-differentiated PC12 cells, the same as the wild-type proteins, whereas Rab27A binding-defective mutants of rabphilin(E50A/I54A) and Noc2(E51A/I55A) were present throughout the cytosol. We further showed that expression of the wild-type or the E50A mutant of rabphilin-RBD, but not the E50A/I54A mutant of rabphilin-RBD, significantly inhibited high KCl-dependent neuropeptide Y secretion by PC12 cells. We also found that rabphilin and its binding partner, Rab27 have been highly conserved during evolution (from nematoda to humans) and that Caenorhabditis elegans and Drosophila rabphilin (ce/dm-rabphilin) specifically interact with ce/dm-Rab27, but not with ce/dm-Rab3 or ce/dm-Rab8, suggesting that rabphilin functions as a Rab27 effector across phylogeny. Based on these findings, we propose that the N-terminal Rab binding domain of rabphilin and Noc2 be referred to as "RBD27 (Rab binding domain for Rab27)", the same as the synaptotagmin-like protein homology domain (SHD) of Slac2-a/melanophilin.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
39
|
Imai A, Yoshie S, Nashida T, Shimomura H, Fukuda M. The small GTPase Rab27B regulates amylase release from rat parotid acinar cells. J Cell Sci 2004; 117:1945-53. [PMID: 15039459 DOI: 10.1242/jcs.01048] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small GTPase Rab is a large family of putative membrane trafficking proteins, and each member is thought to regulate a specific type(s) of membrane trafficking. However, little is known about the involvement of Rab protein(s) in secretory granule exocytosis in exocrine cells or the molecular mechanism underlying this process. We show that Rab27B, a closely related isoform of Rab27A that regulates lysosome-related granule exocytosis in cytotoxic T lymphocytes, is abundantly expressed on amylase-containing secretory granules in rat parotid gland acinar cells. We also identify the putative Rab27B effector protein, Slac2-c (Slp homologue lacking C2 domains-c)/MyRIP, which was originally described as a myosin Va/VIIa and actin binding protein, in rat parotid glands. The results of subcellular fractionation, immunoprecipitation and immunohistochemical studies indicate that the Rab27B-Slac2-c complex is formed on secretory granules in vivo. The introduction of either a specific Rab27 binding domain (i.e. a recombinant Slp homology domain of Slac2-b that specifically binds Rab27A/B but not other Rabs) or functionally blocking antibodies that specifically disrupt Rab27B-Slac2-c complex in vitro strongly inhibited isoproterenol-stimulated amylase release from streptolysin O-permeabilized parotid acinar cells. Our results indicate that the Rab27B-Slac2-c complex is an important constituent of secretory granule exocytosis in parotid acinar cells.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, The Nippon Dental University, School of Dentistry at Niigata, 1-8, Hamaura-cho, Niigata 951-8580, Japan
| | | | | | | | | |
Collapse
|
40
|
Nguyen T, Wei ML. Characterization of Melanosomes in Murine Hermansky–Pudlak Syndrome: Mechanisms of Hypopigmentation. J Invest Dermatol 2004; 122:452-60. [PMID: 15009730 DOI: 10.1046/j.0022-202x.2004.22117.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hermansky-Pudlak syndrome is a genetically heterogeneous autosomal recessive disorder affecting mice and humans, which causes oculocutaneous albinism, prolonged bleeding, and in some cases, pulmonary fibrosis or granulomatous colitis. We previously demonstrated that the gene defects causing murine Hermansky-Pudlak syndrome cause blocks in melanosome biogenesis and/or trafficking in 10 Hermansky-Pudlak syndrome strains. Here, we report an in vivo quantitative analysis on five additional murine models of the Hermansky-Pudlak syndrome. We demonstrate that all strains examined here except for ashen have defects in morphogenesis, the most severely affected is sandy, muted, and buff followed by subtle gray. The ashen strain only has a defect in secretion, as indicated by retention of melanosomes in melanocytes. We document three cellular mechanisms contributing to the hypopigmentation seen in the Hermansky-Pudlak syndrome: (1) exocytosis of immature hypopigmented melanosomes from melanocytes with subsequent keratinocyte uptake; (2) decreased intramelanocyte steady-state numbers of melanosomes available for transfer to keratinocytes; and (3) accumulation of melanosomes within melanocytes due to defective exocytosis, as seen in ashen. We also report that melanosomes in the DBA/2J strain, the parental strain of the Hermansky-Pudlak syndrome strain sandy, are abnormal, indicating that aberrant biogenesis of melanosomes may play a part in the pathogenesis of pigmentary glaucoma observed in these mice.
Collapse
Affiliation(s)
- Thuyen Nguyen
- Department of Dermatology, Veterans Affairs Medical Center, University of California, San Francisco, California 94121, USA
| | | |
Collapse
|
41
|
Shirakawa R, Higashi T, Tabuchi A, Yoshioka A, Nishioka H, Fukuda M, Kita T, Horiuchi H. Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J Biol Chem 2003; 279:10730-7. [PMID: 14699162 DOI: 10.1074/jbc.m309426200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelets store self-agonists such as ADP and serotonin in dense core granules. Although exocytosis of these granules is crucial for hemostasis and thrombosis, the underlying mechanism is not fully understood. Here, we show that incubation of permeabilized platelets with unprenylated active mutant Rab27A-Q78L, wild type Rab27A, and Rab27B inhibited the secretion, whereas inactive mutant Rab27A-T23N and other GTPases had no effects. Furthermore, we affinity-purified a GTP-Rab27A-binding protein in platelets and identified it as Munc13-4, a homologue of Munc13-1 known as a priming factor for neurotransmitter release. Recombinant Munc13-4 directly bound to GTP-Rab27A and -Rab27B in vitro, but not other GTPases, and enhanced secretion in an in vitro assay. The inhibition of secretion by unprenylated Rab27A was rescued by the addition of Munc13-4, suggesting that Munc13-4 mediates the function of GTP-Rab27. Thus, Rab27 regulates the dense core granule secretion in platelets by employing its binding protein, Munc13-4.
Collapse
Affiliation(s)
- Ryutaro Shirakawa
- Department of Geriatric Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
González-Conejero R, Rivera J, Escolar G, Zuazu-Jausoro I, Vicente V, Corral J. Molecular, ultrastructural and functional characterization of a Spanish family with Hermansky-Pudlak syndrome: role of insC974 in platelet function and clinical relevance. Br J Haematol 2003; 123:132-8. [PMID: 14510955 DOI: 10.1046/j.1365-2141.2003.04557.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder, which is genetically heterogeneous. In humans, mutations associated with this syndrome have been identified that affect four genes, most of them located in the HPS-1 gene. We evaluated the clinical, molecular, platelet ultrastructure and platelet function data obtained from one Spanish HPS patient and his relatives. The proband was compound heterozygous for a de novo nonsense mutation (Arg-131Stop), which has not been described previously, and for a common frameshift mutation (insC974). These two mutations were also identified by reverse transcription polymerase chain reaction (RT-PCR) in half the RNA, supporting the premise that they have minor effects on either transcription or RNA stability. The patient had an almost complete absence of platelet-dense granules. Accordingly, his platelets showed a small aggregatory response, reduced CD63 surface expression after platelet activation and minor serotonin uptake. Interestingly, despite the absence of clinical symptoms, two relatives carrying only one HPS-1 mutation (insC974) presented a decreased content of platelet-dense granules and showed significant reductions in platelet aggregation, expression of CD63 after platelet activation and serotonin uptake. Data show that the presence of a single mutation affecting one allele of the HPS-1 gene might have relevance in the organogenesis of platelet-dense granules, affecting platelet function. However, these functional defects were not of a great enough magnitude to have clinical significance and, thus, these subjects were clinically asymptomatic.
Collapse
|
43
|
Lyerla TA, Rusiniak ME, Borchers M, Jahreis G, Tan J, Ohtake P, Novak EK, Swank RT. Aberrant lung structure, composition, and function in a murine model of Hermansky-Pudlak syndrome. Am J Physiol Lung Cell Mol Physiol 2003; 285:L643-53. [PMID: 12777251 DOI: 10.1152/ajplung.00024.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease causing hypopigmentation and prolonged bleeding times. An additional serious clinical problem of HPS is the development of lung pathology, which may lead to severe lung disease and premature death. No cure for the disease exists, and previously, no animal model for the HPS lung abnormalities has been reported. A mouse model of HPS, which is homozygously recessive for both the Hps1 (pale ear) and Hps2 (pearl) genes, exhibits striking abnormalities of lung type II cells. Type II cells and lamellar bodies of this mutant are greatly enlarged, and the lamellar bodies are engorged with surfactant. Mutant lungs accumulate excessive autofluorescent pigment. The air spaces of mutant lungs contain age-related elevations of inflammatory cells and foamy macrophages. In vivo measurement of lung hysteresivity demonstrated aberrant lung function in mutant mice. All these features are similar to the lung pathology described in HPS patients. Morphometry of mutant lungs indicates a significant emphysema. These mutant mice provide a model to further investigate the lung pathology and therapy of HPS. We hypothesize that abnormal type II cell lamellar body structure/function may predict future lung pathology in HPS.
Collapse
Affiliation(s)
- Timothy A Lyerla
- Dept. of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Li W, Zhang Q, Oiso N, Novak EK, Gautam R, O'Brien EP, Tinsley CL, Blake DJ, Spritz RA, Copeland NG, Jenkins NA, Amato D, Roe BA, Starcevic M, Dell'Angelica EC, Elliott RW, Mishra V, Kingsmore SF, Paylor RE, Swank RT. Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet 2003; 35:84-9. [PMID: 12923531 PMCID: PMC2860733 DOI: 10.1038/ng1229] [Citation(s) in RCA: 338] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 07/25/2003] [Indexed: 02/02/2023]
Abstract
Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules. In mice, at least 16 loci are associated with HPS, including sandy (sdy; ref. 7). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to alpha- and beta-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells. We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1; refs. 9-11), which regulates trafficking to lysosome-related organelles and includes the proteins pallidin, muted and cappuccino, which are associated with HPS in mice. These findings show that BLOC-1 is important in producing the HPS phenotype in humans, indicate that dysbindin has a role in the biogenesis of lysosome-related organelles and identify unexpected interactions between components of DPC and BLOC-1.
Collapse
Affiliation(s)
- Wei Li
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kuroda TS, Ariga H, Fukuda M. The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes. Mol Cell Biol 2003; 23:5245-55. [PMID: 12861011 PMCID: PMC165717 DOI: 10.1128/mcb.23.15.5245-5255.2003] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 04/16/2003] [Accepted: 05/05/2003] [Indexed: 11/20/2022] Open
Abstract
Melanosomes containing melanin pigments are transported from the cell body of melanocytes to the tips of their dendrites by a combination of microtubule- and actin-dependent machinery. Three proteins, Rab27A, myosin Va, and Slac2-a/melanophilin (a linker protein between Rab27A and myosin Va), are known to be essential for proper actin-based melanosome transport in melanocytes. Although Slac2-a directly interacts with Rab27A and myosin Va via its N-terminal region (amino acids 1 to 146) and the middle region (amino acids 241 to 405), respectively, the functional importance of the putative actin-binding domain of the Slac2-a C terminus (amino acids 401 to 590) in melanosome transport has never been elucidated. In this study we showed that formation of a tripartite protein complex between Rab27A, Slac2-a, and myosin Va alone is insufficient for peripheral distribution of melanosomes in melanocytes and that the C-terminal actin-binding domain of Slac2-a is also required for proper melanosome transport. When a Slac2-a deletion mutant (DeltaABD) or point mutant (KA) that lacks actin-binding ability was expressed in melanocytes, the Slac2-a mutants induced melanosome accumulation in the perinuclear region, possibly by a dominant negative effect, the same as the Rab27A-binding-defective mutant of Slac2-a or the myosin Va-binding-defective mutant. Our findings indicate that Slac2-a organizes actin-based melanosome transport in cooperation with Rab27A, myosin Va, and actin.
Collapse
Affiliation(s)
- Taruho S Kuroda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
46
|
Zhang Q, Zhao B, Li W, Oiso N, Novak EK, Rusiniak ME, Gautam R, Chintala S, O'Brien EP, Zhang Y, Roe BA, Elliott RW, Eicher EM, Liang P, Kratz C, Legius E, Spritz RA, O'Sullivan TN, Copeland NG, Jenkins NA, Swank RT. Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky-Pudlak syndrome types 5 and 6. Nat Genet 2003; 33:145-53. [PMID: 12548288 DOI: 10.1038/ng1087] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Accepted: 01/03/2003] [Indexed: 11/09/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.
Collapse
MESH Headings
- Adaptor Protein Complex 3
- Adaptor Protein Complex beta Subunits
- Adaptor Proteins, Vesicular Transport
- Adult
- Amino Acid Sequence
- Animals
- COS Cells
- Child, Preschool
- Chlorocebus aethiops
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Artificial, P1 Bacteriophage/genetics
- Disease Models, Animal
- Drosophila Proteins
- Female
- Hermanski-Pudlak Syndrome/genetics
- Hermanski-Pudlak Syndrome/metabolism
- Hermanski-Pudlak Syndrome/pathology
- Humans
- Insect Proteins/genetics
- Male
- Melanosomes/genetics
- Membrane Proteins/genetics
- Membrane Transport Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Molecular Sequence Data
- Mutation/genetics
- Oligopeptides
- Peptides/immunology
- Polymerase Chain Reaction
- Polymorphism, Single-Stranded Conformational
- Proteins/genetics
- Proto-Oncogene Proteins c-myc/immunology
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Amino Acid
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Qing Zhang
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Izumi T, Gomi H, Kasai K, Mizutani S, Torii S. The Roles of Rab27 and Its Effectors in the Regulated Secretory Pathways. Cell Struct Funct 2003; 28:465-74. [PMID: 14745138 DOI: 10.1247/csf.28.465] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulated secretory pathways are highly developed in multicellular organisms as a means of intercellular communication. Each of these pathways harbors unique store organelles, such as granules in endocrine and exocrine tissues and melanosomes in melanocytes. It has recently been shown that the monomeric GTPase Rab27 subfamily regulates the exocytosis of these cell-specific store organelles. Furthermore, genetic alterations of Rab27a cause Griscelli syndrome in humans that manifests as pigmentary dilution of the skin and the hair and variable immunodeficiency due to defects in the transport of melanosomes in melanocytes and lytic granules in cytotoxic T-lymphocytes. Rab27 acts through organelle-specific effector proteins, such as granuphilin in pancreatic beta cells and melanophilin in melanocytes. The Rab27 and effector complex then interacts with proteins that are essential for membrane transport and fusion, such as syntaxin 1a and Munc18-1 for granuphilin and myosin Va for melanophilin. Genome information suggests that other putative Rab27 effector proteins, tentatively termed as exophilins or Slp/Slac2, are predicted to exist because these proteins share the conserved N-terminal Rab27-binding domain and show Rab27-binding activity in vitro or when overexpressed in cell lines. These findings suggest that the Rab27 subfamily regulates various exocytotic pathways using multiple organelle-specific effector proteins.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| | | | | | | | | |
Collapse
|