1
|
Gondelaud F, Leval J, Arora L, Walimbe A, Bignon C, Ptchelkine D, Brocca S, Mukhopadyay S, Longhi S. Unraveling the molecular grammar and the structural transitions underlying the fibrillation of a viral fibrillogenic domain. Protein Sci 2025; 34:e70068. [PMID: 39985377 PMCID: PMC11845978 DOI: 10.1002/pro.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Hendra virus (HeV) is a biosafety level 4 human pathogen belonging to the Henipavirus genus within the Paramyxoviridae family. In HeV, the phosphoprotein-encoding gene also drives the synthesis of the V and W proteins that are two major players in the host innate immune response evasion. These three proteins share a common intrinsically disordered N-terminal domain (NTD) and have distinct C-terminal domains. We recently reported the ability of a short region (i.e., PNT3), located within the shared NTD, to form fibrils. We subsequently identified a PNT3 motif (EYYY) critically involved in fibrillation and deciphered the contribution of each tyrosine to the process. Herein, we combined mutational studies with various biochemical and biophysical approaches to further investigate the molecular mechanisms underlying PNT3 fibrillation. The results show that (i) lysine residues play a critical role in driving fibrillation, (ii) hydrophobic residues affect the nucleation step, and (iii) charge distribution strongly affects the fibrillation propensities. Vibrational Raman spectroscopy data further validated the role of lysine residues in promoting fibrillation and enabled documenting the formation of cross-β amyloid structures. Altogether, these results illuminate the molecular mechanisms involved in fibril formation and pave the way towards the rational design of inhibitors.
Collapse
Affiliation(s)
- Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB)UMR 7257, Aix‐Marseille University and Centre National de la Recherche Scientifique (CNRS)MarseilleFrance
| | - Julien Leval
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB)UMR 7257, Aix‐Marseille University and Centre National de la Recherche Scientifique (CNRS)MarseilleFrance
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Department of Chemical Sciences, and Department of Biological SciencesIndian Institute of Science Education and Research (IISER) MohaliMohaliPunjabIndia
| | - Anuja Walimbe
- Centre for Protein Science, Design and Engineering, Department of Chemical Sciences, and Department of Biological SciencesIndian Institute of Science Education and Research (IISER) MohaliMohaliPunjabIndia
| | - Christophe Bignon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB)UMR 7257, Aix‐Marseille University and Centre National de la Recherche Scientifique (CNRS)MarseilleFrance
| | - Denis Ptchelkine
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB)UMR 7257, Aix‐Marseille University and Centre National de la Recherche Scientifique (CNRS)MarseilleFrance
| | - Stefania Brocca
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | - Samrat Mukhopadyay
- Centre for Protein Science, Design and Engineering, Department of Chemical Sciences, and Department of Biological SciencesIndian Institute of Science Education and Research (IISER) MohaliMohaliPunjabIndia
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB)UMR 7257, Aix‐Marseille University and Centre National de la Recherche Scientifique (CNRS)MarseilleFrance
| |
Collapse
|
2
|
Pesce G, Gondelaud F, Ptchelkine D, Bignon C, Fourquet P, Longhi S. Dissecting Henipavirus W proteins conformational and fibrillation properties: contribution of their N- and C-terminal constituent domains. FEBS J 2025; 292:556-581. [PMID: 39180270 PMCID: PMC11796331 DOI: 10.1111/febs.17239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The Nipah and Hendra viruses are severe human pathogens. In addition to the P protein, their P gene also encodes the V and W proteins that share with P their N-terminal intrinsically disordered domain (NTD) and possess distinct C-terminal domains (CTDs). The W protein is a key player in the evasion of the host innate immune response. We previously showed that the W proteins are intrinsically disordered and can form amyloid-like fibrils. However, structural information on W CTD (CTDW) and its potential contribution to the fibrillation process is lacking. In this study, we demonstrate that CTDWS are disordered and able to form dimers mediated by disulfide bridges. We also show that the NTD and the CTDW interact with each other and that this interaction triggers both a gain of secondary structure and a chain compaction within the NTD. Finally, despite the lack of intrinsic fibrillogenic properties, we show that the CTDW favors the formation of fibrils by the NTD both in cis and in trans. Altogether, the results herein presented shed light on the molecular mechanisms underlying Henipavirus pathogenesis and may thus contribute to the development of targeted therapies.
Collapse
Affiliation(s)
- Giulia Pesce
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257Centre National de la Recherche Scientifique (CNRS) and Aix Marseille UniversityFrance
| | - Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257Centre National de la Recherche Scientifique (CNRS) and Aix Marseille UniversityFrance
| | - Denis Ptchelkine
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257Centre National de la Recherche Scientifique (CNRS) and Aix Marseille UniversityFrance
| | - Christophe Bignon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257Centre National de la Recherche Scientifique (CNRS) and Aix Marseille UniversityFrance
| | - Patrick Fourquet
- INSERM, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Marseille Protéomique, Institut Paoli‐CalmettesAix Marseille UniversityFrance
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257Centre National de la Recherche Scientifique (CNRS) and Aix Marseille UniversityFrance
| |
Collapse
|
3
|
Zühlke MK, Ficko-Blean E, Bartosik D, Terrapon N, Jeudy A, Jam M, Wang F, Welsch N, Dürwald A, Martin LT, Larocque R, Jouanneau D, Eisenack T, Thomas F, Trautwein-Schult A, Teeling H, Becher D, Schweder T, Czjzek M. Unveiling the role of novel carbohydrate-binding modules in laminarin interaction of multimodular proteins from marine Bacteroidota during phytoplankton blooms. Environ Microbiol 2024; 26:e16624. [PMID: 38757353 DOI: 10.1111/1462-2920.16624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Laminarin, a β(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.
Collapse
Affiliation(s)
- Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Elizabeth Ficko-Blean
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Daniel Bartosik
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Université (AMU, UMR7257), CNRS, Marseille, France
| | - Alexandra Jeudy
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Murielle Jam
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Fengqing Wang
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Norma Welsch
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Alexandra Dürwald
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Helmholtz Institute for One Health, Helmholtz Centre for Infection Research HZI, Greifswald, Germany
| | - Laura Torres Martin
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
| | - Robert Larocque
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Diane Jouanneau
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Tom Eisenack
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
| | - François Thomas
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Mirjam Czjzek
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Roscoff, France
| |
Collapse
|
4
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
5
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
6
|
Pesce G, Gondelaud F, Ptchelkine D, Nilsson JF, Bignon C, Cartalas J, Fourquet P, Longhi S. Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins. Int J Mol Sci 2022; 23:ijms23020923. [PMID: 35055108 PMCID: PMC8780864 DOI: 10.3390/ijms23020923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Henipaviruses are severe human pathogens within the Paramyxoviridae family. Beyond the P protein, the Henipavirus P gene also encodes the V and W proteins which share with P their N-terminal, intrinsically disordered domain (NTD) and possess a unique C-terminal domain. Henipavirus W proteins antagonize interferon (IFN) signaling through NTD-mediated binding to STAT1 and STAT4, and prevent type I IFN expression and production of chemokines. Structural and molecular information on Henipavirus W proteins is lacking. By combining various bioinformatic approaches, we herein show that the Henipaviruses W proteins are predicted to be prevalently disordered and yet to contain short order-prone segments. Using limited proteolysis, differential scanning fluorimetry, analytical size exclusion chromatography, far-UV circular dichroism and small-angle X-ray scattering, we experimentally confirmed their overall disordered nature. In addition, using Congo red and Thioflavin T binding assays and negative-staining transmission electron microscopy, we show that the W proteins phase separate to form amyloid-like fibrils. The present study provides an additional example, among the few reported so far, of a viral protein forming amyloid-like fibrils, therefore significantly contributing to enlarge our currently limited knowledge of viral amyloids. In light of the critical role of the Henipavirus W proteins in evading the host innate immune response and of the functional role of phase separation in biology, these studies provide a conceptual asset to further investigate the functional impact of the phase separation abilities of the W proteins.
Collapse
Affiliation(s)
- Giulia Pesce
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Frank Gondelaud
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Denis Ptchelkine
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Juliet F. Nilsson
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Christophe Bignon
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Jérémy Cartalas
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
| | - Patrick Fourquet
- INSERM, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille University, 27 Bvd Leï Roure, CS 30059, 13273 Marseille, France;
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille, France; (G.P.); (F.G.); (D.P.); (J.F.N.); (C.B.); (J.C.)
- Correspondence:
| |
Collapse
|
7
|
Tamburrini KC, Pesce G, Nilsson J, Gondelaud F, Kajava AV, Berrin JG, Longhi S. Predicting Protein Conformational Disorder and Disordered Binding Sites. Methods Mol Biol 2022; 2449:95-147. [PMID: 35507260 DOI: 10.1007/978-1-0716-2095-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the last two decades it has become increasingly evident that a large number of proteins adopt either a fully or a partially disordered conformation. Intrinsically disordered proteins are ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. Their conformational heterogeneity is encoded by the amino acid sequence, thereby allowing intrinsically disordered proteins or regions to be recognized based on their sequence properties. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting protein disorder and identifying intrinsically disordered binding sites.
Collapse
Affiliation(s)
- Ketty C Tamburrini
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Giulia Pesce
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Juliet Nilsson
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Frank Gondelaud
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, Montpellier, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Sonia Longhi
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France.
| |
Collapse
|
8
|
Abstract
INTRODUCTION Intrinsic disorder prediction field develops, assesses, and deploys computational predictors of disorder in protein sequences and constructs and disseminates databases of these predictions. Over 40 years of research resulted in the release of numerous resources. AREAS COVERED We identify and briefly summarize the most comprehensive to date collection of over 100 disorder predictors. We focus on their predictive models, availability and predictive performance. We categorize and study them from a historical point of view to highlight informative trends. EXPERT OPINION We find a consistent trend of improvements in predictive quality as newer and more advanced predictors are developed. The original focus on machine learning methods has shifted to meta-predictors in early 2010s, followed by a recent transition to deep learning. The use of deep learners will continue in foreseeable future given recent and convincing success of these methods. Moreover, a broad range of resources that facilitate convenient collection of accurate disorder predictions is available to users. They include web servers and standalone programs for disorder prediction, servers that combine prediction of disorder and disorder functions, and large databases of pre-computed predictions. We also point to the need to address the shortage of accurate methods that predict disordered binding regions.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
9
|
Yacoubi I, Hamdi K, Fourquet P, Bignon C, Longhi S. Structural and Functional Characterization of the ABA-Water Deficit Stress Domain from Wheat and Barley: An Intrinsically Disordered Domain behind the Versatile Functions of the Plant Abscissic Acid, Stress and Ripening Protein Family. Int J Mol Sci 2021; 22:ijms22052314. [PMID: 33652546 PMCID: PMC7956565 DOI: 10.3390/ijms22052314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
The ASR protein family has been discovered thirty years ago in many plant species and is involved in the tolerance of various abiotic stresses such as dehydration, salinity and heat. Despite its importance, nothing is known about the conserved ABA-Water Deficit Stress Domain (ABA-WDS) of the ASR gene family. In this study, we characterized two ABA-WDS domains, isolated from durum wheat (TtABA-WDS) and barley (HvABA-WDS). Bioinformatics analysis shows that they are both consistently predicted to be intrinsically disordered. Hydrodynamic and circular dichroism analysis indicate that both domains are largely disordered but belong to different structural classes, with HvABA-WDS and TtABA-WDS adopting a PreMolten Globule-like (PMG-like) and a Random Coil-like (RC-like) conformation, respectively. In the presence of the secondary structure stabilizer trifluoroethanol (TFE) or of increasing glycerol concentrations, which mimics dehydration, the two domains acquire an α-helical structure. Interestingly, both domains are able to prevent heat- and dehydration-induced inactivation of the enzyme lactate dehydrogenase (LDH). Furthermore, heterologous expression of TtABA-WDS and HvABA-WDS in the yeast Saccharomyces cerevisiae improves its tolerance to salt, heat and cold stresses. Taken together our results converge to show that the ABA-WDS domain is an intrinsically disordered functional domain whose conformational plasticity could be instrumental to support the versatile functions attributed to the ASR family, including its role in abiotic stress tolerance. Finally, and after validation in the plant system, this domain could be used to improve crop tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Ines Yacoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Street Sidi Mansour Km 6, Sfax 3018, Tunisia;
- Correspondence: (I.Y.); (S.L.)
| | - Karama Hamdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Street Sidi Mansour Km 6, Sfax 3018, Tunisia;
| | - Patrick Fourquet
- INSERM, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Marseille Protéomique, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bvd Leï Roure, CS 30059, 13273 Marseille CEDEX 09, France;
| | - Christophe Bignon
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille CEDEX 09, France;
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and Centre National de la Recherche Scientifique (CNRS), 163 Avenue de Luminy, Case 932, 13288 Marseille CEDEX 09, France;
- Correspondence: (I.Y.); (S.L.)
| |
Collapse
|
10
|
Bakli M, Karim L, Mokhtari-Soulimane N, Merzouk H, Vincent F. Biochemical characterization of a glycosyltransferase Gtf3 from Mycobacterium smegmatis: a case study of improved protein solubilization. 3 Biotech 2020; 10:436. [PMID: 32999813 DOI: 10.1007/s13205-020-02431-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosyltransferases (GTs) are widely present in several organisms. These enzymes specifically transfer sugar moieties to a range of substrates. The processes of bacterial glycosylation of the cell wall and their relations with host-pathogen interactions have been studied extensively, yet the majority of mycobacterial GTs involved in the cell wall synthesis remain poorly characterized. Glycopeptidolipids (GPLs) are major class of glycolipids present on the cell wall of various mycobacterial species. They play an important role in drug resistance and host-pathogen interaction virulence. Gtf3 enzyme performs a key step in the biosynthesis of triglycosylated GPLs. Here, we describe a general procedure to achieve expression, purification, and crystallization of recombinant protein Gtf3 from Mycobacterium smegmatis using an E. coli expression system. We reported also a combined bioinformatics and biochemical methods to predict aggregation propensity and improve protein solubilization of recombinant Gtf3. NVoy, a carbohydrate-based polymer reagent, was added to prevent protein aggregation by binding to hydrophobic protein surfaces of Gtf3. Using intrinsic tryptophan fluorescence quenching experiments, we also demonstrated that Gtf3-NVoy enzyme interacted with TDP and UDP nucleotide ligands. This case report proposes useful tools for the study of other glycosyltransferases which are rather difficult to characterize and crystallize.
Collapse
Affiliation(s)
- Mahfoud Bakli
- Department of Science of Nature and Life, Institute of Science, University Center Belhadj Bouchaib of Ain Temouchent, Po Box 284, 46000 Ain Temouchent, Algeria
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, University Abou-Bekr Belkaid of Tlemcen, Tlemcen, Algeria
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Loukmane Karim
- University of Strasbourg, CNRS, Architecture and Reactivity of RNA, UPR9002 Strasbourg, France
| | - Nassima Mokhtari-Soulimane
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, University Abou-Bekr Belkaid of Tlemcen, Tlemcen, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, University Abou-Bekr Belkaid of Tlemcen, Tlemcen, Algeria
| | - Florence Vincent
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
11
|
Bhopatkar AA, Uversky VN, Rangachari V. Granulins modulate liquid-liquid phase separation and aggregation of the prion-like C-terminal domain of the neurodegeneration-associated protein TDP-43. J Biol Chem 2020; 295:2506-2519. [PMID: 31911437 DOI: 10.1074/jbc.ra119.011501] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) has emerged as a key player in many neurodegenerative pathologies, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Hallmarks of both FTLD and ALS are the toxic cytoplasmic inclusions of the prion-like C-terminal fragments of TDP-43 CTD (TDP-43 C-terminal domain), formed upon proteolytic cleavage of full-length TDP-43 in the nucleus and subsequent transport to the cytoplasm. Both full-length TDP-43 and its CTD are also known to form stress granules by coacervating with RNA in the cytoplasm during stress and may be involved in these pathologies. Furthermore, mutations in the PGRN gene, leading to haploinsufficiency and diminished function of progranulin (PGRN) protein, are strongly linked to FTLD and ALS. Recent reports have indicated that proteolytic processing of PGRN to smaller protein modules called granulins (GRNs) contributes to FTLD and ALS progression, with specific GRNs exacerbating TDP-43-induced cytotoxicity. Here we investigated the interactions between the proteolytic products of both TDP-43 and PGRN. Based on structural disorder and charge distributions, we hypothesized that GRN-3 and GRN-5 could interact with the TDP-43 CTD. We show that, under both reducing and oxidizing conditions, GRN-3 and GRN-5 interact with and differentially modulate TDP-43 CTD aggregation and/or liquid-liquid phase separation in vitro GRN-3 promoted insoluble aggregates of the TDP-43 CTD while GRN-5 mediated liquid-liquid phase separation. These results constitute the first observation of an interaction between GRNs and TDP-43, suggesting a mechanism by which attenuated PGRN function could lead to familial FTLD or ALS.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406.
| |
Collapse
|
12
|
Liu Y, Wang X, Liu B. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief Bioinform 2019; 20:330-346. [PMID: 30657889 DOI: 10.1093/bib/bbx126] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 01/06/2023] Open
Abstract
Intrinsically disordered proteins and regions are widely distributed in proteins, which are associated with many biological processes and diseases. Accurate prediction of intrinsically disordered proteins and regions is critical for both basic research (such as protein structure and function prediction) and practical applications (such as drug development). During the past decades, many computational approaches have been proposed, which have greatly facilitated the development of this important field. Therefore, a comprehensive and updated review is highly required. In this regard, we give a review on the computational methods for intrinsically disordered protein and region prediction, especially focusing on the recent development in this field. These computational approaches are divided into four categories based on their methodologies, including physicochemical-based method, machine-learning-based method, template-based method and meta method. Furthermore, their advantages and disadvantages are also discussed. The performance of 40 state-of-the-art predictors is directly compared on the target proteins in the task of disordered region prediction in the 10th Critical Assessment of protein Structure Prediction. A more comprehensive performance comparison of 45 different predictors is conducted based on seven widely used benchmark data sets. Finally, some open problems and perspectives are discussed.
Collapse
Affiliation(s)
- Yumeng Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, China
| | - Xiaolong Wang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, China
| |
Collapse
|
13
|
Carapito R, Ivanova EL, Morlon A, Meng L, Molitor A, Erdmann E, Kieffer B, Pichot A, Naegely L, Kolmer A, Paul N, Hanauer A, Tran Mau-Them F, Jean-Marçais N, Hiatt SM, Cooper GM, Tvrdik T, Muir AM, Dimartino C, Chopra M, Amiel J, Gordon CT, Dutreux F, Garde A, Thauvin-Robinet C, Wang X, Leduc MS, Phillips M, Crawford HP, Kukolich MK, Hunt D, Harrison V, Kharbanda M, Smigiel R, Gold N, Hung CY, Viskochil DH, Dugan SL, Bayrak-Toydemir P, Joly-Helas G, Guerrot AM, Schluth-Bolard C, Rio M, Wentzensen IM, McWalter K, Schnur RE, Lewis AM, Lalani SR, Mensah-Bonsu N, Céraline J, Sun Z, Ploski R, Bacino CA, Mefford HC, Faivre L, Bodamer O, Chelly J, Isidor B, Bahram S, Isidor B, Bahram S. ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. Am J Hum Genet 2019; 104:319-330. [PMID: 30639322 DOI: 10.1016/j.ajhg.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/10/2018] [Indexed: 12/01/2022] Open
Abstract
ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, CHU de Nantes, 44093 Nantes, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg, France; Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091 Strasbourg, France.
| |
Collapse
|
14
|
Milles S, Salvi N, Blackledge M, Jensen MR. Characterization of intrinsically disordered proteins and their dynamic complexes: From in vitro to cell-like environments. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:79-100. [PMID: 30527137 DOI: 10.1016/j.pnmrs.2018.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 05/08/2023]
Abstract
Over the last two decades, it has become increasingly clear that a large fraction of the human proteome is intrinsically disordered or contains disordered segments of significant length. These intrinsically disordered proteins (IDPs) play important regulatory roles throughout biology, underlining the importance of understanding their conformational behavior and interaction mechanisms at the molecular level. Here we review recent progress in the NMR characterization of the structure and dynamics of IDPs in various functional states and environments. We describe the complementarity of different NMR parameters for quantifying the conformational propensities of IDPs in their isolated and phosphorylated states, and we discuss the challenges associated with obtaining structural models of dynamic protein-protein complexes involving IDPs. In addition, we review recent progress in understanding the conformational behavior of IDPs in cell-like environments such as in the presence of crowding agents, in membrane-less organelles and in the complex environment of the human cell.
Collapse
Affiliation(s)
- Sigrid Milles
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
15
|
Bitard‐Feildel T, Lamiable A, Mornon J, Callebaut I. Order in Disorder as Observed by the "Hydrophobic Cluster Analysis" of Protein Sequences. Proteomics 2018; 18:e1800054. [PMID: 30299594 PMCID: PMC7168002 DOI: 10.1002/pmic.201800054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Hydrophobic cluster analysis (HCA) is an original approach for protein sequence analysis, which provides access to the foldable repertoire of the protein universe, including yet unannotated protein segments ("dark proteome"). Foldable segments correspond to ordered regions, as well as to intrinsically disordered regions (IDRs) undergoing disorder to order transitions. In this review, how HCA can be used to give insight into this last category of foldable segments is illustrated, with examples matching known 3D structures. After reviewing the HCA principles, examples of short foldable segments are given, which often contain short linear motifs, typically matching hydrophobic clusters. These segments become ordered upon contact with partners, with secondary structure preferences generally corresponding to those observed in the 3D structures within the complexes. Such small foldable segments are sometimes larger than the segments of known 3D structures, including flanking hydrophobic clusters that may be critical for interaction specificity or regulation, as well as intervening sequences allowing fuzziness. Cases of larger conditionally disordered domains are also presented, with lower density in hydrophobic clusters than well-folded globular domains or with exposed hydrophobic patches, which are stabilized by interaction with partners.
Collapse
Affiliation(s)
- Tristan Bitard‐Feildel
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
- Laboratoire de Biologie Computationnelle et Quantitative (LCQB)Institute of Biology Paris‐Seine (IBPS)Centre national de la recherche scientifique (CNRS)Sorbonne Université75005ParisFrance
| | - Alexis Lamiable
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| | - Jean‐Paul Mornon
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| | - Isabelle Callebaut
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| |
Collapse
|
16
|
Carugo O. Atomic displacement parameters in structural biology. Amino Acids 2018; 50:775-786. [DOI: 10.1007/s00726-018-2574-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/19/2018] [Indexed: 01/14/2023]
|
17
|
Dosztányi Z. Prediction of protein disorder based on IUPred. Protein Sci 2017; 27:331-340. [PMID: 29076577 DOI: 10.1002/pro.3334] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
Many proteins contain intrinsically disordered regions (IDRs), functional polypeptide segments that in isolation adopt a highly flexible conformational ensemble instead of a single, well-defined structure. Disorder prediction methods, which can discriminate ordered and disordered regions from the amino acid sequence, have contributed significantly to our current understanding of the distinct properties of intrinsically disordered proteins by enabling the characterization of individual examples as well as large-scale analyses of these protein regions. One popular method, IUPred provides a robust prediction of protein disorder based on an energy estimation approach that captures the fundamental difference between the biophysical properties of ordered and disordered regions. This paper reviews the energy estimation method underlying IUPred and the basic properties of the web server. Through an example, it also illustrates how the prediction output can be interpreted in a more complex case by taking into account the heterogeneous nature of IDRs. Various applications that benefited from IUPred to provide improved disorder predictions, complementing domain annotations and aiding the identification of functional short linear motifs are also described here. IUPred is freely available for noncommercial users through the web server (http://iupred.enzim.hu and http://iupred.elte.hu) . The program can also be downloaded and installed locally for large-scale analyses.
Collapse
Affiliation(s)
- Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| |
Collapse
|
18
|
Structural disorder and induced folding within two cereal, ABA stress and ripening (ASR) proteins. Sci Rep 2017; 7:15544. [PMID: 29138428 PMCID: PMC5686140 DOI: 10.1038/s41598-017-15299-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA), stress and ripening (ASR) proteins are plant-specific proteins involved in plant response to multiple abiotic stresses. We previously isolated the ASR genes and cDNAs from durum wheat (TtASR1) and barley (HvASR1). Here, we show that HvASR1 and TtASR1 are consistently predicted to be disordered and further confirm this experimentally. Addition of glycerol, which mimics dehydration, triggers a gain of structure in both proteins. Limited proteolysis showed that they are highly sensitive to protease degradation. Addition of 2,2,2-trifluoroethanol (TFE) however, results in a decreased susceptibility to proteolysis that is paralleled by a gain of structure. Mass spectrometry analyses (MS) led to the identification of a protein fragment resistant to proteolysis. Addition of zinc also induces a gain of structure and Hydrogen/Deuterium eXchange-Mass Spectrometry (HDX-MS) allowed identification of the region involved in the disorder-to-order transition. This study is the first reported experimental characterization of HvASR1 and TtASR1 proteins, and paves the way for future studies aimed at unveiling the functional impact of the structural transitions that these proteins undergo in the presence of zinc and at achieving atomic-resolution conformational ensemble description of these two plant intrinsically disordered proteins (IDPs).
Collapse
|
19
|
Janis B, Uversky VN, Menze MA. Potential functions of LEA proteins from the brine shrimp Artemia franciscana - anhydrobiosis meets bioinformatics. J Biomol Struct Dyn 2017; 36:3291-3309. [PMID: 28971739 DOI: 10.1080/07391102.2017.1387177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a large group of anhydrobiosis-associated intrinsically disordered proteins, which are commonly found in plants and some animals. The brine shrimp Artemia franciscana is the only known animal that expresses LEA proteins from three, and not only one, different groups in its anhydrobiotic life stage. The reason for the higher complexity in the A. franciscana LEA proteome (LEAome), compared with other anhydrobiotic animals, remains mostly unknown. To address this issue, we have employed a suite of bioinformatics tools to evaluate the disorder status of the Artemia LEAome and to analyze the roles of intrinsic disorder in functioning of brine shrimp LEA proteins. We show here that A. franciscana LEA proteins from different groups are more similar to each other than one originally expected, while functional differences among members of group three are possibly larger than commonly anticipated. Our data show that although these proteins are characterized by a large variety of forms and possible functions, as a general strategy, A. franciscana utilizes glassy matrix forming LEAs concurrently with proteins that more readily interact with binding partners. It is likely that the function(s) of both types, the matrix-forming and partner-binding LEA proteins, are regulated by changing water availability during desiccation.
Collapse
Affiliation(s)
- Brett Janis
- a Department of Biology , University of Louisville , Louisville 40292 , KY , USA
| | - Vladimir N Uversky
- b Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa 33612 , FL , USA.,c Institute for Biological Instrumentation , Russian Academy of Sciences , Moscow Region, Pushchino 142290 , Russia
| | - Michael A Menze
- a Department of Biology , University of Louisville , Louisville 40292 , KY , USA
| |
Collapse
|
20
|
Longhi S, Bloyet LM, Gianni S, Gerlier D. How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cell Mol Life Sci 2017; 74:3091-3118. [PMID: 28600653 PMCID: PMC11107670 DOI: 10.1007/s00018-017-2556-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023]
Abstract
In this review, we summarize computational and experimental data gathered so far showing that structural disorder is abundant within paramyxoviral nucleoproteins (N) and phosphoproteins (P). In particular, we focus on measles, Nipah, and Hendra viruses and highlight both commonalities and differences with respect to the closely related Sendai virus. The molecular mechanisms that control the disorder-to-order transition undergone by the intrinsically disordered C-terminal domain (NTAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins are described in detail. By having a significant residual disorder, NTAIL-XD complexes are illustrative examples of "fuzziness", whose possible functional significance is discussed. Finally, the relevance of N-P interactions as promising targets for innovative antiviral approaches is underscored, and the functional advantages of structural disorder for paramyxoviruses are pinpointed.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Univ, AFMB UMR 7257, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- CNRS, AFMB UMR 7257, 13288, Marseille, France.
| | - Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, 00185, Rome, Italy
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| |
Collapse
|
21
|
Cox RM, Krumm SA, Thakkar VD, Sohn M, Plemper RK. The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient. SCIENCE ADVANCES 2017; 3:e1602350. [PMID: 28168220 PMCID: PMC5291697 DOI: 10.1126/sciadv.1602350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
The paramyxovirus RNA-dependent RNA-polymerase (RdRp) complex loads onto the nucleocapsid protein (N)-encapsidated viral N:RNA genome for RNA synthesis. Binding of the RdRp of measles virus (MeV), a paramyxovirus archetype, is mediated through interaction with a molecular recognition element (MoRE) located near the end of the carboxyl-terminal Ntail domain. The structurally disordered central Ntail section is thought to add positional flexibility to MoRE, but the functional importance of this Ntail region for RNA polymerization is unclear. To address this question, we dissected functional elements of Ntail by relocating MoRE into the RNA-encapsidating Ncore domain. Linker-scanning mutagenesis identified a microdomain in Ncore that tolerates insertions. MoRE relocated to Ncore supported efficient interaction with N, MoRE-deficient Ntails had a dominant-negative effect on bioactivity that was alleviated by insertion of MoRE into Ncore, and recombinant MeV encoding N with relocated MoRE grew efficiently and remained capable of mRNA editing. MoRE in Ncore also restored viability of a recombinant lacking the disordered central Ntail section, but this recombinant was temperature-sensitive, with reduced RdRp loading efficiency and a flattened transcription gradient. These results demonstrate that virus replication requires high-affinity RdRp binding sites in N:RNA, but productive RdRp binding is independent of positional flexibility of MoRE and cis-acting elements in Ntail. Rather, the disordered central Ntail section independent of the presence of MoRE in Ntail steepens the paramyxovirus transcription gradient by promoting RdRp loading and preventing the formation of nonproductive polycistronic viral mRNAs. Disordered Ntails may have evolved as a regulatory element to adjust paramyxovirus gene expression.
Collapse
Affiliation(s)
- Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Stefanie A. Krumm
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Vidhi D. Thakkar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Maximilian Sohn
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Corresponding author.
| |
Collapse
|
22
|
Lieutaud P, Ferron F, Uversky AV, Kurgan L, Uversky VN, Longhi S. How disordered is my protein and what is its disorder for? A guide through the "dark side" of the protein universe. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1259708. [PMID: 28232901 DOI: 10.1080/21690707.2016.1259708] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022]
Abstract
In the last 2 decades it has become increasingly evident that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins lack a stable 3D structure, are ubiquitous and fulfill essential biological functions. Their conformational heterogeneity is encoded in their amino acid sequences, thereby allowing intrinsically disordered proteins or regions to be recognized based on properties of these sequences. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to structural determination with X-ray crystallization. This article discusses a comprehensive selection of databases and methods currently employed to disseminate experimental and putative annotations of disorder, predict disorder and identify regions involved in induced folding. It also provides a set of detailed instructions that should be followed to perform computational analysis of disorder.
Collapse
Affiliation(s)
- Philippe Lieutaud
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| | - François Ferron
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| | - Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University , Philadelphia, PA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University , Richmond, VA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sonia Longhi
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| |
Collapse
|
23
|
Verdon J, Coutos-Thevenot P, Rodier MH, Landon C, Depayras S, Noel C, La Camera S, Moumen B, Greve P, Bouchon D, Berjeaud JM, Braquart-Varnier C. Armadillidin H, a Glycine-Rich Peptide from the Terrestrial Crustacean Armadillidium vulgare, Displays an Unexpected Wide Antimicrobial Spectrum with Membranolytic Activity. Front Microbiol 2016; 7:1484. [PMID: 27713732 PMCID: PMC5031766 DOI: 10.3389/fmicb.2016.01484] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides (AMPs) are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, there are currently 15 distinct AMP families published so far in the literature, mainly isolated from members of the Decapoda order. Up to now, armadillidin is the sole non-decapod AMP isolated from the haemocytes of Armadillidium vulgare, a crustacean isopod. Its first description demonstrated that armadillidin is a linear glycine-rich (47%) cationic peptide with an antimicrobial activity directed toward Bacillus megaterium. In the present work, we report identification of armadillidin Q, a variant of armadillidin H (earlier known as armadillidin), from crude haemocyte extracts of A. vulgare using LC-MS approach. We demonstrated that both armadillidins displayed broad spectrum antimicrobial activity against several Gram-positive and Gram-negative bacteria, fungi, but were totally inactive against yeasts. Membrane permeabilization assays, only performed with armadillidin H, showed that the peptide is membrane active against bacterial and fungal strains leading to deep changes in cell morphology. This damaging activity visualized by electronic microscopy correlates with a rapid decrease of cell viability leading to highly blebbed cells. In contrast, armadillidin H does not reveal cytotoxicity toward human erythrocytes. Furthermore, no secondary structure could be defined in this study [by circular dichroism (CD) and nuclear magnetic resonance (NMR)] even in a membrane mimicking environment. Therefore, armadillidins represent interesting candidates to gain insight into the biology of glycine-rich AMPs.
Collapse
Affiliation(s)
- Julien Verdon
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Pierre Coutos-Thevenot
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Marie-Helene Rodier
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Celine Landon
- Centre de Biophysique Moléculaire, CNRS UPR4301 Orléans, France
| | - Segolene Depayras
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Cyril Noel
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Sylvain La Camera
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Pierre Greve
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Christine Braquart-Varnier
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| |
Collapse
|
24
|
Launay H, Barré P, Puppo C, Manneville S, Gontero B, Receveur-Bréchot V. Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state. Biochem Biophys Res Commun 2016; 477:20-26. [PMID: 27268235 DOI: 10.1016/j.bbrc.2016.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
The redox switch protein CP12 is a key player of the regulation of the Benson-Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in the oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold.
Collapse
Affiliation(s)
- Hélène Launay
- Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009, France
| | - Patrick Barré
- Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009, France
| | - Carine Puppo
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Stéphanie Manneville
- Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009, France
| | - Brigitte Gontero
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Véronique Receveur-Bréchot
- Laboratory of integrative Structural and Chemical Biology (iSCB), Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes, Aix-Marseille Universités, Marseille 13009, France.
| |
Collapse
|
25
|
Fröhlich A, Rojas-Araya B, Pereira-Montecinos C, Dellarossa A, Toro-Ascuy D, Prades-Pérez Y, García-de-Gracia F, Garcés-Alday A, Rubilar PS, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R. DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:719-30. [PMID: 27012366 DOI: 10.1016/j.bbagrm.2016.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
DEAD-box RNA helicase DDX3 is a host factor essential for HIV-1 replication and thus, a potential target for novel therapies aimed to overcome viral resistance. Previous studies have shown that DDX3 promotes nuclear export and translation of the HIV-1 unspliced mRNA. Although the function of DDX3 during both processes requires its catalytic activity, it is unknown whether other domains surrounding the helicase core are involved. Here, we show the involvement of the N- and C-terminal domains of DDX3 in the regulation of HIV-1 unspliced mRNA translation. Our results suggest that the intrinsically disordered N-terminal domain of DDX3 regulates its functions in translation by acting prior to the recruitment of the 43S pre-initiation complex onto the viral 5'-UTR. Interestingly, this regulation was conserved in HIV-2 and was dependent on the CRM1-dependent nuclear export pathway suggesting a role of the RNA helicase in interconnecting nuclear export with ribosome recruitment of the viral unspliced mRNA. This specific function of DDX3 during HIV gene expression could be exploited as an alternative target for pharmaceutical intervention.
Collapse
Affiliation(s)
- Alvaro Fröhlich
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Bárbara Rojas-Araya
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Camila Pereira-Montecinos
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Alessandra Dellarossa
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Daniela Toro-Ascuy
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Francisco García-de-Gracia
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Andrea Garcés-Alday
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Paulina S Rubilar
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111 Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111 Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile.
| |
Collapse
|
26
|
Jandrlić DR, Lazić GM, Mitić NS, Pavlović MD. Software tools for simultaneous data visualization and T cell epitopes and disorder prediction in proteins. J Biomed Inform 2016; 60:120-31. [PMID: 26851400 DOI: 10.1016/j.jbi.2016.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
We have developed EpDis and MassPred, extendable open source software tools that support bioinformatic research and enable parallel use of different methods for the prediction of T cell epitopes, disorder and disordered binding regions and hydropathy calculation. These tools offer a semi-automated installation of chosen sets of external predictors and an interface allowing for easy application of the prediction methods, which can be applied either to individual proteins or to datasets of a large number of proteins. In addition to access to prediction methods, the tools also provide visualization of the obtained results, calculation of consensus from results of different methods, as well as import of experimental data and their comparison with results obtained with different predictors. The tools also offer a graphical user interface and the possibility to store data and the results obtained using all of the integrated methods in the relational database or flat file for further analysis. The MassPred part enables a massive parallel application of all integrated predictors to the set of proteins. Both tools can be downloaded from http://bioinfo.matf.bg.ac.rs/home/downloads.wafl?cat=Software. Appendix A includes the technical description of the created tools and a list of supported predictors.
Collapse
Affiliation(s)
- Davorka R Jandrlić
- University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia.
| | - Goran M Lazić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16/IV, Belgrade, Serbia.
| | - Nenad S Mitić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16/IV, Belgrade, Serbia.
| | - Mirjana D Pavlović
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade, Serbia.
| |
Collapse
|
27
|
Abstract
In the last two decades, it has become increasingly evident that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins are ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. Their conformational heterogeneity is encoded at the amino acid sequence level, thereby allowing intrinsically disordered proteins or regions to be recognized based on their sequence properties. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting disorder and identifying regions involved in induced folding.
Collapse
Affiliation(s)
- Philippe Lieutaud
- AFMB UMR 7257, Aix-Marseille Université, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
- AFMB UMR 7257, CNRS, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - François Ferron
- AFMB UMR 7257, Aix-Marseille Université, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
- AFMB UMR 7257, CNRS, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Sonia Longhi
- AFMB UMR 7257, Aix-Marseille Université, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- AFMB UMR 7257, CNRS, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
| |
Collapse
|
28
|
Abstract
The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes. A series of complementary biochemical and biophysical analyses revealed that the human activity-regulated cytoskeleton-associated protein (hArc) protein has a modular structure with two domains, is monomeric but also forms oligomers, which posits Arc to be a flexible hub protein.
Collapse
|
29
|
Longhi S. Structural disorder within paramyxoviral nucleoproteins. FEBS Lett 2015; 589:2649-59. [PMID: 26071376 DOI: 10.1016/j.febslet.2015.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Abstract
In this review I summarize available data pointing to the abundance of structural disorder within the nucleoprotein (N) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. I provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous phosphoproteins. I also show that a significant flexibility persists within NTAIL-XD complexes, which makes them illustrative examples of "fuzziness". Finally, I discuss the functional implications of structural disorder for viral transcription and replication in light of the promiscuity of disordered regions and of the considerable reach they confer to the components of the replicative machinery.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
30
|
Thieulin-Pardo G, Avilan L, Kojadinovic M, Gontero B. Fairy "tails": flexibility and function of intrinsically disordered extensions in the photosynthetic world. Front Mol Biosci 2015; 2:23. [PMID: 26042223 PMCID: PMC4436894 DOI: 10.3389/fmolb.2015.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022] Open
Abstract
Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically Disordered Regions (IDRs), display high flexibility as the result of their amino acid composition. They can adopt multiple roles. In globular proteins, IDRs are usually found as loops and linkers between secondary structure elements. However, not all disordered fragments are loops: some proteins bear an intrinsically disordered extension at their C- or N-terminus, and this flexibility can affect the protein as a whole. In this review, we focus on the disordered N- and C-terminal extensions of globular proteins from photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco activase isoform, we show that intrinsically disordered extensions can help regulate their “host” protein in response to changes in light, thereby participating in photosynthesis regulation. As IDPs are famous for their large number of protein partners, we used the examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the fact that intrinsically disordered extremities can allow a protein to have an increased number of partners, which directly affects its regulation. Finally, for proteins from the cryptochrome light receptor family, we describe how a new role for the photolyase proteins may emerge by the addition of an intrinsically disordered extension, while still allowing the protein to absorb blue light. This review has highlighted the diverse repercussions of the disordered extension on the regulation and function of their host protein and outlined possible future research avenues.
Collapse
Affiliation(s)
- Gabriel Thieulin-Pardo
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Luisana Avilan
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Mila Kojadinovic
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Brigitte Gontero
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|
31
|
Fu Y, Guo Y, Wang Y, Luo J, Pu X, Li M, Zhang Z. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder. Comput Biol Chem 2015; 56:41-8. [PMID: 25854804 DOI: 10.1016/j.compbiolchem.2015.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/13/2015] [Accepted: 03/21/2015] [Indexed: 11/25/2022]
Abstract
Protein-protein interactions (PPIs) play essential roles in many biological processes. In protein-protein interaction networks, hubs involve in numbers of PPIs and may constitute an important source of drug targets. The intrinsic disorder proteins (IDPs) with unstable structures can promote the promiscuity of hubs and also involve in many disease pathways, so they also could serve as potential drug targets. Moreover, proteins with similar functions measured by semantic similarity of gene ontology (GO) terms tend to interact with each other. Here, the relationship between hub proteins and drug targets based on GO terms and intrinsic disorder was explored. The semantic similarities of GO terms and genes between two proteins, and the rate of intrinsic disorder residues of each protein were extracted as features to characterize the functional similarity between two interacting proteins. Only using 8 feature variables, prediction models by support vector machine (SVM) were constructed to predict PPIs. The accuracy of the model on the PPI data from human hub proteins is as high as 83.72%, which is very promising compared with other PPI prediction models with hundreds or even thousands of features. Then, 118 of 142 PPIs between hubs are correctly predicted that the two interacting proteins are targets of the same drugs. The results indicate that only 8 functional features are fully efficient for representing PPIs. In order to identify new targets from IDP dataset, the PPIs between hubs and IDPs are predicted by the SVM model and the model yields a prediction accuracy of 75.84%. Further research proves that 3 of 5 PPIs between hubs and IDPs are correctly predicted that the two interacting proteins are targets of the same drugs. All results demonstrate that the model with only 8-dimensional features from GO terms and intrinsic disorder still gives a good performance in predicting PPIs and further identifying drug targets.
Collapse
Affiliation(s)
- Yuanyuan Fu
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Yuelong Wang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Jiesi Luo
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Zhihang Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
32
|
Order and Disorder in the Replicative Complex of Paramyxoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:351-81. [PMID: 26387109 DOI: 10.1007/978-3-319-20164-1_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.
Collapse
|
33
|
Sormanni P, Camilloni C, Fariselli P, Vendruscolo M. The s2D method: simultaneous sequence-based prediction of the statistical populations of ordered and disordered regions in proteins. J Mol Biol 2014; 427:982-996. [PMID: 25534081 DOI: 10.1016/j.jmb.2014.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/18/2022]
Abstract
Extensive amounts of information about protein sequences are becoming available, as demonstrated by the over 79 million entries in the UniProt database. Yet, it is still challenging to obtain proteome-wide experimental information on the structural properties associated with these sequences. Fast computational predictors of secondary structure and of intrinsic disorder of proteins have been developed in order to bridge this gap. These two types of predictions, however, have remained largely separated, often preventing a clear characterization of the structure and dynamics of proteins. Here, we introduce a computational method to predict secondary-structure populations from amino acid sequences, which simultaneously characterizes structure and disorder in a unified statistical mechanics framework. To develop this method, called s2D, we exploited recent advances made in the analysis of NMR chemical shifts that provide quantitative information about the probability distributions of secondary-structure elements in disordered states. The results that we discuss show that the s2D method predicts secondary-structure populations with an average error of about 14%. A validation on three datasets of mostly disordered, mostly structured and partly structured proteins, respectively, shows that its performance is comparable to or better than that of existing predictors of intrinsic disorder and of secondary structure. These results indicate that it is possible to perform rapid and quantitative sequence-based characterizations of the structure and dynamics of proteins through the predictions of the statistical distributions of their ordered and disordered regions.
Collapse
Affiliation(s)
- Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Piero Fariselli
- Department of Computer Science, University of Bologna, 40127 Bologna, Italy
| | | |
Collapse
|
34
|
Karst JC, Ntsogo Enguéné VY, Cannella SE, Subrini O, Hessel A, Debard S, Ladant D, Chenal A. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J Biol Chem 2014; 289:30702-30716. [PMID: 25231985 DOI: 10.1074/jbc.m114.580852] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.
Collapse
Affiliation(s)
- Johanna C Karst
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - V Yvette Ntsogo Enguéné
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Sara E Cannella
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Orso Subrini
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Audrey Hessel
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Sylvain Debard
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Daniel Ladant
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Alexandre Chenal
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
35
|
Mercurio FA, Scognamiglio PL, Di Natale C, Marasco D, Pellecchia M, Leone M. CD and NMR conformational studies of a peptide encompassing the Mid Loop interface of Ship2-Sam. Biopolymers 2014; 101:1088-98. [DOI: 10.1002/bip.22512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/07/2022]
Affiliation(s)
| | - Pasqualina L. Scognamiglio
- Department of Pharmacy; University "Federico II"; Naples Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB); Naples Italy
- IIT Italian Institute of Technology; Naples Italy
| | - Concetta Di Natale
- Department of Pharmacy; University "Federico II"; Naples Italy
- IIT Italian Institute of Technology; Naples Italy
| | - Daniela Marasco
- Institute of Biostructures and Bioimaging (CNR); Naples Italy
- Department of Pharmacy; University "Federico II"; Naples Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB); Naples Italy
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR); Naples Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPEB); Naples Italy
| |
Collapse
|
36
|
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université , Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 13288, Marseille, France
| | | | | | | |
Collapse
|
37
|
Ali H, Urolagin S, Gurarslan Ö, Vihinen M. Performance of Protein Disorder Prediction Programs on Amino Acid Substitutions. Hum Mutat 2014; 35:794-804. [DOI: 10.1002/humu.22564] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/04/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Heidi Ali
- Institute of Biomedical Technology; FI-33014 University of Tampere; Tampere Finland
- BioMediTech; Tampere Finland
| | - Siddhaling Urolagin
- Department of Experimental Medical Science; Lund University; SE-22184 Lund Sweden
| | - Ömer Gurarslan
- Institute of Biomedical Technology; FI-33014 University of Tampere; Tampere Finland
- BioMediTech; Tampere Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology; FI-33014 University of Tampere; Tampere Finland
- BioMediTech; Tampere Finland
- Department of Experimental Medical Science; Lund University; SE-22184 Lund Sweden
- Tampere University Hospital; Tampere Finland
| |
Collapse
|
38
|
Communie G, Ruigrok RWH, Jensen MR, Blackledge M. Intrinsically disordered proteins implicated in paramyxoviral replication machinery. Curr Opin Virol 2014; 5:72-81. [DOI: 10.1016/j.coviro.2014.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
|
39
|
The transcriptional repressor domain of Gli3 is intrinsically disordered. PLoS One 2013; 8:e76972. [PMID: 24146948 PMCID: PMC3798401 DOI: 10.1371/journal.pone.0076972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/26/2013] [Indexed: 01/03/2023] Open
Abstract
The transcription factor Gli3 is acting mainly as a transcriptional repressor in the Sonic hedgehog signal transduction pathway. Gli3 contains a repressor domain in its N-terminus from residue G106 to E236. In this study we have characterized the intracellular structure of the Gli3 repressor domain using a combined bioinformatics and experimental approach. According to our findings the Gli3 repressor domain while being intrinsically disordered contains predicted anchor sites for partner interactions. The obvious interaction partners to test were Ski and DNA; however, with both of these the structure of Gli3 repressor domain remained disordered. To locate residues important for the repressor function we mutated several residues within the Gli3 repressor domain. Two of these, H141A and H157N, targeting predicted helical regions, significantly decreased transcriptional repression and thus identify important functional parts of the domain.
Collapse
|
40
|
Kragelj J, Ozenne V, Blackledge M, Jensen MR. Conformational Propensities of Intrinsically Disordered Proteins from NMR Chemical Shifts. Chemphyschem 2013; 14:3034-45. [DOI: 10.1002/cphc.201300387] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 12/22/2022]
|
41
|
Bebeacua C, Lorenzo Fajardo JC, Blangy S, Spinelli S, Bollmann S, Neve H, Cambillau C, Heller KJ. X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target. Mol Microbiol 2013; 89:152-65. [PMID: 23692331 DOI: 10.1111/mmi.12267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 11/29/2022]
Abstract
Lipoproteins of temperate phage are a broad family of membrane proteins encoded in the lysogeny module of temperate phages. Expression of the ltp(TP-J34) gene of temperate Streptococcus thermophilus phage TP-J34 interferes with phage infection at the stage of triggering DNA release and injection into the cell. Here, we report the first structure of a superinfection exclusion protein. We have expressed and determined the X-ray structure of Ltp(TP-J34). The soluble domain of Ltp(TP-J34) is composed of a tandem of three-helix helix-turn-helix (HTH) domains exhibiting a highly negatively charged surface. By isolating mutants of lactococcal phage P008wt with reduced sensitivities to Ltp(TP-J34) and by genome sequencing of such mutants we obtained evidence supporting the notion that Ltp(TP-J34) targets the phage's tape measure protein (TMP) and blocks its insertion into the cytoplasmic membrane.
Collapse
Affiliation(s)
- Cecilia Bebeacua
- Architecture et Fonction des Macromolecules Biologiques, UMR 7257, CNRS and Aix-Marseille University, Case 932, 163 Avenue de Luminy, 13288, Marseille, Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Detection and characterization of megasatellites in orthologous and nonorthologous genes of 21 fungal genomes. EUKARYOTIC CELL 2013; 12:794-803. [PMID: 23543670 DOI: 10.1128/ec.00001-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Megasatellites are large DNA tandem repeats, originally described in Candida glabrata, in protein-coding genes. Most of the genes in which megasatellites are found are of unknown function. In this work, we extended the search for megasatellites to 20 additional completely sequenced fungal genomes and extracted 216 megasatellites in 203 out of 142,121 genes, corresponding to the most exhaustive description of such genetic elements available today. We show that half of the megasatellites detected encode threonine-rich peptides predicted to be intrinsically disordered, suggesting that they may interact with several partners or serve as flexible linkers. Megasatellite motifs were clustered into several families. Their distribution in fungal genes shows that different motifs are found in orthologous genes and similar motifs are found in unrelated genes, suggesting that megasatellite formation or spreading does not necessarily track the evolution of their host genes. Altogether, these results suggest that megasatellites are created and lost during evolution of fungal genomes, probably sharing similar functions, although their primary sequences are not necessarily conserved.
Collapse
|
43
|
Structural and functional characterization of the Staphylococcus aureus virulence factor and vaccine candidate FhuD2. Biochem J 2013; 449:683-93. [PMID: 23113737 DOI: 10.1042/bj20121426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus is a human pathogen causing globally significant morbidity and mortality. The development of antibiotic resistance in S. aureus highlights the need for a preventive vaccine. In the present paper we explore the structure and function of FhuD2 (ferric-hydroxamate uptake D2), a staphylococcal surface lipoprotein mediating iron uptake during invasive infection, recently described as a promising vaccine candidate. Differential scanning fluorimetry and calorimetry studies revealed that FhuD2 is stabilized by hydroxamate siderophores. The FhuD2-ferrichrome interaction was of nanomolar affinity in surface plasmon resonance experiments and fully iron(III)-dependent. We determined the X-ray crystallographic structure of ligand-bound FhuD2 at 1.9 Å (1 Å=0.1 nm) resolution, revealing the bilobate fold of class III SBPs (solute-binding proteins). The ligand, ferrichrome, occupies a cleft between the FhuD2 N- and C-terminal lobes. Many FhuD2-siderophore interactions enable the specific recognition of ferrichrome. Biochemical data suggest that FhuD2 does not undergo significant conformational changes upon siderophore binding, supporting the hypothesis that the ligand-bound complex is essential for receptor engagement and uptake. Finally, immunizations with FhuD2 alone or FhuD2 formulated with hydroxamate siderophores were equally protective in a murine staphylococcal infection model, confirming the suitability and efficacy of apo-FhuD2 as a protective antigen, and suggesting that other class III SBPs might also be exploited as vaccine candidates.
Collapse
|
44
|
Accardo A, Leone M, Tesauro D, Aufiero R, Bénarouche A, Cavalier JF, Longhi S, Carriere F, Rossi F. Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to alkyl chains: a new class of peptide amphiphiles. MOLECULAR BIOSYSTEMS 2013; 9:1401-10. [DOI: 10.1039/c3mb25507g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Alves C, Cunha C. Order and disorder in viral proteins: new insights into an old paradigm. Future Virol 2012. [DOI: 10.2217/fvl.12.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The conventional dogma stating that proteins must fold into a well-defined structure in order to display biological function is being challenged everyday as new data emerge on the relevance of disordered regions and intrinsically disordered proteins. Viral proteins in particular can benefit greatly from the conformational flexibility granted by partially folded or unfolded protein segments. It enables them to adapt to hostile and changing environmental conditions, interact with the required host machinery while evading host defence mechanisms and tolerate the high mutation rates viral genomes are prone to. In this review, we will summarize and discuss the importance of the recent research field of protein disorder that is proving vital to gain better understanding of the roles and functions of viral proteins.
Collapse
Affiliation(s)
- Carolina Alves
- Medical Microbiology Unit, Center for Malaria & Tropical Diseases, Institute of Hygiene & Tropical Medicine, Nova University, Lisbon, Portugal
| | - Celso Cunha
- Medical Microbiology Unit, Center for Malaria & Tropical Diseases, Institute of Hygiene & Tropical Medicine, Nova University, Lisbon, Portugal
| |
Collapse
|
46
|
Rockman S, Camuglia S, Vandenberg K, Ong C, Baker MA, Nation RL, Li J, Velkov T. Reverse engineering the antigenic architecture of the haemagglutinin from influenza H5N1 clade 1 and 2.2 viruses with fine epitope mapping using monoclonal antibodies. Mol Immunol 2012; 53:435-42. [PMID: 23127859 DOI: 10.1016/j.molimm.2012.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/02/2012] [Accepted: 10/06/2012] [Indexed: 12/13/2022]
Abstract
The induction of neutralising antibodies to the viral surface glycoprotein, haemagglutinin (HA) is considered the cornerstone of current seasonal and pandemic influenza vaccines. Mapping of neutralising epitopes using monoclonal antibodies (mAbs) helps define mechanisms of antigenic drift, neutralising escape and facilitates pre-pandemic vaccine design. In the present study we reverse engineered the antigenic structure of the HAs of two highly pathogenic H5N1 vaccine strains representative of currently circulating clade 1 and 2.2 H5N1 viruses. The HA sequence of the A/Vietnam/1194/04 clade 1 virus was progressively mutated into the HA sequence of the clade 2.2 virus, A/Bar-headed Goose/Qinghai/1A/05. Fine mapping of clade-specific neutralising epitopes was performed by examining the cross-reactivity of mAbs raised against the native HA of each parent virus. The reactivity across all clade specific mAbs centred around a constellation of mutations at positions 140, 145, 171 and 172, all of which are proximal to the receptor binding site on the membrane distal globular head of the HA. Overlapping cross-reactivity of these antigenic sites suggests that these amino acid positions relate to the antigenic evolution of the H5 clade 1 and 2.2 viruses. This finding may prove useful for the design of vaccines with broader neutralising cross-reactivity against the different H5 HA sublineages currently in circulation. These findings provide important information about the amino acid changes involved in the cross-clade evolution of H5N1 viruses and their potential for human to human transmission; and facilitates a greater understanding of the pandemic potential of H5N1 isolates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Birds/immunology
- Birds/virology
- Cross Reactions
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Genetic Engineering
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Neuraminidase/immunology
- Neutralization Tests
- Reverse Genetics
Collapse
Affiliation(s)
- Steve Rockman
- CSL Limited Poplar Road, Parkville, 3052 Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nespoulous C, Rofidal V, Sommerer N, Hem S, Rossignol M. Phosphoproteomic analysis reveals major default phosphorylation sites outside long intrinsically disordered regions of Arabidopsis plasma membrane proteins. Proteome Sci 2012; 10:62. [PMID: 23110452 PMCID: PMC3537754 DOI: 10.1186/1477-5956-10-62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/23/2012] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED BACKGROUND Genome-wide statistics established that long intrinsically disordered regions (over 30 residues) are predicted in a large part of proteins in all eukaryotes, with a higher ratio in trans-membrane proteins. At functional level, such unstructured and flexible regions were suggested for years to favour phosphorylation events. In plants, despite increasing evidence of the regulation of transport and signalling processes by phosphorylation events, only few data are available without specific information regarding plasma membrane proteins, especially at proteome scale. RESULTS Using a dedicated phosphoproteomic workflow, 75 novel and unambiguous phosphorylation sites were identified in Arabidopsis plasma membrane. Bioinformatics analysis showed that this new dataset concerned mostly integral proteins involved in key functions of the plasma membrane (such as transport and signal transduction, including protein phosphorylation). It thus expanded by 15% the directory of phosphosites previously characterized in signalling and transport proteins. Unexpectedly, 66% of phosphorylation sites were predicted to be located outside long intrinsically disordered regions. This result was further corroborated by analysis of publicly available data for the plasma membrane. CONCLUSIONS The new phosphoproteomics data presented here, with published datasets and functional annotation, suggest a previously unexpected topology of phosphorylation in the plant plasma membrane proteins. The significance of these new insights into the so far overlooked properties of the plant plasma membrane phosphoproteome and the long disordered regions is discussed.
Collapse
Affiliation(s)
- Claude Nespoulous
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060, Montpellier cedex, France.
| | | | | | | | | |
Collapse
|
48
|
Kalmar L, Homola D, Varga G, Tompa P. Structural disorder in proteins brings order to crystal growth in biomineralization. Bone 2012; 51:528-34. [PMID: 22634174 DOI: 10.1016/j.bone.2012.05.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/17/2012] [Accepted: 05/16/2012] [Indexed: 11/21/2022]
Abstract
Biomineralization, the generation of hard tissues of living organisms, is a process strictly regulated by hormones, enzymes and a range of regulatory proteins of which several resisted structural characterization thus far. Without actual generalizations, there have been scattered observations in the literature for the structural disorder of these proteins. To address this issue in general, we have collected SwissProt proteins involved in the formation of bone and teeth in vertebrates, annotated for biomineralization. All these proteins show an extremely high level of predicted disorder (with a mean of 53%), making them the most disordered functional class of the protein world. Exactly the same feature was established for evolutionarily more distant proteins involved in the formation of the silica wall of marine diatoms and the shell of oysters and other mollusks. Because these proteins also show an extremely biased amino acid composition, such as high negative charge, high frequency of Ser and Asp or Pro residues and repetitiveness, we also carried out a database search with these sequence features for further proteins. This search uncovered several further disordered proteins with clearly related functions, although their annotations made no mention of biomineralization. This general and very strong correlation between biomineralization, structural disorder of proteins and particular sequence features indicates that regulated growth of mineral phase in biology can only be achieved by the assistance of highly disordered proteins.
Collapse
Affiliation(s)
- Lajos Kalmar
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | |
Collapse
|
49
|
Durand E, Derrez E, Audoly G, Spinelli S, Ortiz-Lombardia M, Raoult D, Cascales E, Cambillau C. Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J Biol Chem 2012; 287:38190-9. [PMID: 22898822 DOI: 10.1074/jbc.m112.390153] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vibrio cholerae is the cause of the diarrheal disease cholera. V. cholerae produces RtxA, a large toxin of the MARTX family, which is targeted to the host cell cytosol, where its actin cross-linking domain (ACD) cross-links G-actin, leading to F-actin depolymerization, cytoskeleton rearrangements, and cell rounding. These effects on the cytoskeleton prevent phagocytosis and bacterial engulfment by macrophages, thus preventing V. cholerae clearance from the gut. The V. cholerae Type VI secretion-associated VgrG1 protein also contains a C-terminal ACD, which shares 61% identity with MARTX ACD and has been shown to covalently cross-link G-actin. Here, we purified the VgrG1 C-terminal domain and determined its crystal structure. The VgrG1 ACD exhibits a V-shaped three-dimensional structure, formed of 12 β-strands and nine α-helices. Its active site comprises five residues that are conserved in MARTX ACD toxin, within a conserved area of ∼10 Å radius. We showed that less than 100 ACD molecules are sufficient to depolymerize the actin filaments of a fibroblast cell in vivo. Mutagenesis studies confirmed that Glu-16 is critical for the F-actin depolymerization function. Co-crystals with divalent cations and ATP reveal the molecular mechanism of the MARTX/VgrG toxins and offer perspectives for their possible inhibition.
Collapse
Affiliation(s)
- Eric Durand
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ould-Abeih MB, Petit-Topin I, Zidane N, Baron B, Bedouelle H. Multiple Folding States and Disorder of Ribosomal Protein SA, a Membrane Receptor for Laminin, Anticarcinogens, and Pathogens. Biochemistry 2012; 51:4807-21. [DOI: 10.1021/bi300335r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohamed B. Ould-Abeih
- Institut Pasteur, Unit of Molecular Prevention and
Therapy of Human Diseases, Department
of Infection and Epidemiology, rue du Dr. Roux, F-75015 Paris, France
- CNRS, URA3012, rue du Dr. Roux, F-75015 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur,
rue du Dr. Roux, F-75015 Paris, France
| | - Isabelle Petit-Topin
- Institut Pasteur, Unit of Molecular Prevention and
Therapy of Human Diseases, Department
of Infection and Epidemiology, rue du Dr. Roux, F-75015 Paris, France
- CNRS, URA3012, rue du Dr. Roux, F-75015 Paris, France
| | - Nora Zidane
- Institut Pasteur, Unit of Molecular Prevention and
Therapy of Human Diseases, Department
of Infection and Epidemiology, rue du Dr. Roux, F-75015 Paris, France
- CNRS, URA3012, rue du Dr. Roux, F-75015 Paris, France
| | - Bruno Baron
- Institut Pasteur, Plate-forme
de Biophysique des Macromolécules et de leurs
Interactions, Department of Structural Biology and Chemistry, rue
du Dr. Roux, F-75015 Paris, France
- CNRS, UMR3528, rue du Dr. Roux, 75015
Paris, France
| | - Hugues Bedouelle
- Institut Pasteur, Unit of Molecular Prevention and
Therapy of Human Diseases, Department
of Infection and Epidemiology, rue du Dr. Roux, F-75015 Paris, France
- CNRS, URA3012, rue du Dr. Roux, F-75015 Paris, France
| |
Collapse
|