1
|
Gondil V, Ashcraft M, Ghalei S, Kumar A, Wilson SN, Devine R, Handa H, Brisbois EJ. Anti-Infective Bacteriophage Immobilized Nitric Oxide-Releasing Surface for Prevention of Thrombosis and Device-Associated Infections. ACS APPLIED BIO MATERIALS 2025; 8:1362-1376. [PMID: 39895136 PMCID: PMC11836933 DOI: 10.1021/acsabm.4c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
The treatment of critically ill patients has made great strides in the past few decades due to the rapid development of indwelling medical devices. Despite immense advancements in the design of these devices, indwelling medical device-associated infections and thrombosis are two major clinical problems that may lead to device failure and compromise clinical outcomes. Antibiotics are the current treatment choice for these infections; however, the global emergence of antibiotic-resistance and their biofilm formation abilities complicate the management of such infections. Moreover, systemic administration of anticoagulants has been used to counter medical device-induced thrombosis, but a range of serious adverse effects associated with all types of available anticoagulants entails exploring alternative options to counter device-associated thrombosis. In this study, bacteriophages (phages) were covalently immobilized on polydimethylsiloxane (PDMS) surface containing the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) via SNAP impregnation method. This dual strategy combines the targeted antibacterial activity of phages against bacterial pathogens with the antibacterial-antithrombotic activity of NO released from the polymeric surface. The PDMS, SNAP-PDMS, phage-immobilized PDMS (PDMS-Phage), and phage-immobilized SNAP-PDMS (SNAP-PDMS-Phage) surfaces were characterized for their surface topology, elemental composition, contact angle, SNAP loading, NO release and phage distribution. SNAP-PDMS and SNAP-PDMS-Phage surfaces showed similar and consistent NO release profiles over 24 h of incubation. Immobilization of whole phages on PDMS and SNAP-PDMS was achieved with densities of 2.4 ± 0.54 and 2.1 ± 0.33 phages μm-2, respectively. Immobilized phages were found to retain their activity, and SNAP-PDMS-Phage surfaces showed a significant reduction in planktonic (99.99 ± 0.08%) as well as adhered (99.80 ± 0.05%) Escherichia coli as compared to controls in log killing assays. The SNAP-PDMS-Phage surfaces also exhibited significantly reduced platelet adhesion by 64.65 ± 2.95% as compared to control PDMS surfaces. All fabricated surfaces were found to be nonhemolytic and do not exhibit any significant cytotoxic effects toward mammalian fibroblast cells. This study is the first of its kind to demonstrate the combinatorial pertinence of phages and NO to prevent antibiotic-resistant/sensitive bacterial infections and thrombosis associated with indwelling medical devices.
Collapse
Affiliation(s)
- Vijay
Singh Gondil
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan Ashcraft
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Sama Ghalei
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Anil Kumar
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sarah N. Wilson
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical
and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Chen H, Zhi W, Bai B, Anjum FR, Jia Z, Kong R, Liu Q, Wang B, Ma C, Ma D. Impact of sodium alginate hydrogel containing bacteriophage peptides that specifically bind to the EtCab protein on the inhibition of Eimeria tenella infection. Vet Res 2025; 56:18. [PMID: 39838456 PMCID: PMC11752993 DOI: 10.1186/s13567-024-01425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 01/23/2025] Open
Abstract
Avian coccidiosis, caused by the protozoan Eimeria, leads to significant economic losses for the poultry industry. In this study, bacteriophages that specifically bind to the calcium-binding protein (EtCab) of Eimeria tenella were selected using a biopanning process with a pIII phage display library. The recombinant EtCab protein served as the ligand in this selection process. The binding ability of target phages to the EtCab protein or E. tenella sporozoites was evaluated. The role of peptides corresponding to target phages in inhibiting the invasion of E. tenella sporozoites into cells was analysed using flow cytometry. Subsequently, the phages were encapsulated in sodium alginate to protect them from degradation in gastric fluid, which has a low pH value. Chickens were orally administered both microencapsulated and non-microencapsulated phages, and the protective effects against E. tenella infection were assessed. The binding mechanism of these peptides to the EtCab protein was investigated through in silico analysis. The results indicated that three specific phages (Y, G, and V) could bind effectively to recombinant EtCab protein as well as to sporozoite proteins. All three peptides, particularly Y and G, demonstrated significant inhibition of sporozoite invasion into cells in vitro. Additionally, oral administration of the encapsulated phages Y and G provided a higher level of protection against Eimeria infection compared to encapsulated phage V and the unencapsulated phages. Molecular docking studies revealed that three peptides, particularly Y and G, efficiently bind to the EtCab protein through hydrogen bonds. This study provides a reference for developing small molecular drugs targeting coccidiosis.
Collapse
Affiliation(s)
- Hang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Zhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingrong Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Faisal R Anjum
- Bristol Veterinary School, University of Bristol, Langford, Bristol, UK
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiuju Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Biao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, China.
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
3
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
4
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
5
|
Aljabali AAA, Aljbaly MBM, Obeid MA, Shahcheraghi SH, Tambuwala MM. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. Methods Mol Biol 2024; 2738:279-315. [PMID: 37966606 DOI: 10.1007/978-1-0716-3549-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | | | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, UK.
| |
Collapse
|
6
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Howell AA, Versoza CJ, Pfeifer SP. Computational host range prediction-The good, the bad, and the ugly. Virus Evol 2023; 10:vead083. [PMID: 38361822 PMCID: PMC10868548 DOI: 10.1093/ve/vead083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
The rapid emergence and spread of antimicrobial resistance across the globe have prompted the usage of bacteriophages (i.e. viruses that infect bacteria) in a variety of applications ranging from agriculture to biotechnology and medicine. In order to effectively guide the application of bacteriophages in these multifaceted areas, information about their host ranges-that is the bacterial strains or species that a bacteriophage can successfully infect and kill-is essential. Utilizing sixteen broad-spectrum (polyvalent) bacteriophages with experimentally validated host ranges, we here benchmark the performance of eleven recently developed computational host range prediction tools that provide a promising and highly scalable supplement to traditional, but laborious, experimental procedures. We show that machine- and deep-learning approaches offer the highest levels of accuracy and precision-however, their predominant predictions at the species- or genus-level render them ill-suited for applications outside of an ecosystems metagenomics framework. In contrast, only moderate sensitivity (<80 per cent) could be reached at the strain-level, albeit at low levels of precision (<40 per cent). Taken together, these limitations demonstrate that there remains room for improvement in the active scientific field of in silico host prediction to combat the challenge of guiding experimental designs to identify the most promising bacteriophage candidates for any given application.
Collapse
Affiliation(s)
| | - Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
8
|
Hussain W, Yang X, Ullah M, Wang H, Aziz A, Xu F, Asif M, Ullah MW, Wang S. Genetic engineering of bacteriophages: Key concepts, strategies, and applications. Biotechnol Adv 2023; 64:108116. [PMID: 36773707 DOI: 10.1016/j.biotechadv.2023.108116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Bacteriophages are the most abundant biological entity in the world and hold a tremendous amount of unexplored genetic information. Since their discovery, phages have drawn a great deal of attention from researchers despite their small size. The development of advanced strategies to modify their genomes and produce engineered phages with desired traits has opened new avenues for their applications. This review presents advanced strategies for developing engineered phages and their potential antibacterial applications in phage therapy, disruption of biofilm, delivery of antimicrobials, use of endolysin as an antibacterial agent, and altering the phage host range. Similarly, engineered phages find applications in eukaryotes as a shuttle for delivering genes and drugs to the targeted cells, and are used in the development of vaccines and facilitating tissue engineering. The use of phage display-based specific peptides for vaccine development, diagnostic tools, and targeted drug delivery is also discussed in this review. The engineered phage-mediated industrial food processing and biocontrol, advanced wastewater treatment, phage-based nano-medicines, and their use as a bio-recognition element for the detection of bacterial pathogens are also part of this review. The genetic engineering approaches hold great potential to accelerate translational phages and research. Overall, this review provides a deep understanding of the ingenious knowledge of phage engineering to move them beyond their innate ability for potential applications.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohan Yang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Xu
- Huazhong University of Science and Technology Hospital, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shenqi Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Bui NL, Nguyen MA, Nguyen ML, Bui QC, Chu DT. Phage for regenerative medicine and cosmetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:241-259. [PMID: 37770175 DOI: 10.1016/bs.pmbts.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Phage or bacteriophage is a specific virus with the ability to defeat bacteria. Because of the rising prevalence of antimicrobial-resistant bacteria, the bacteriophage is now receiving interest again, with it application in skin infection or acne treatment. Moreover, bacteriophages also express their efficacy in wound healing or skin regeneration. Thanks to the development of bioengineering technology, phage display, which is a technique using bacteriophage as a tool, has recently been applied in many biotechnological and medical fields, especially in regenerative medicines. Bacteriophages can be used as nanomaterials, delivery vectors, growth factor alternatives, or in several bacteriophage display-derived therapeutics and stem cell technology. Although bacteriophage is no doubt to be a potential and effective alternative in modern medicine, there are still controversial evidence about the antibacterial efficacy as well as the affinity to expected targets of bacteriophage. Future mission is to optimize the specificity, stability, affinity and biodistribution of phage-derived substances. In this chapter, we focused on introducing several mechanisms and applications of bacteriophage and analyzing its future potential in regenerative medicines as well as cosmetics via previous research's results.
Collapse
Affiliation(s)
- Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Mai Anh Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Manh-Long Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Quoc-Cuong Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
10
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
11
|
Wang R, Li HD, Cao Y, Wang ZY, Yang T, Wang JH. M13 phage: a versatile building block for a highly specific analysis platform. Anal Bioanal Chem 2023:10.1007/s00216-023-04606-w. [PMID: 36867197 PMCID: PMC9982796 DOI: 10.1007/s00216-023-04606-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Viruses are changing the biosensing and biomedicine landscape due to their multivalency, orthogonal reactivities, and responsiveness to genetic modifications. As the most extensively studied phage model for constructing a phage display library, M13 phage has received much research attention as building blocks or viral scaffolds for various applications including isolation/separation, sensing/probing, and in vivo imaging. Through genetic engineering and chemical modification, M13 phages can be functionalized into a multifunctional analysis platform with various functional regions conducting their functionality without mutual disturbance. Its unique filamentous morphology and flexibility also promoted the analytical performance in terms of target affinity and signal amplification. In this review, we mainly focused on the application of M13 phage in the analytical field and the benefit it brings. We also introduced several genetic engineering and chemical modification approaches for endowing M13 with various functionalities, and summarized some representative applications using M13 phages to construct isolation sorbents, biosensors, cell imaging probes, and immunoassays. Finally, current issues and challenges remaining in this field were discussed and future perspectives were also proposed.
Collapse
Affiliation(s)
- Rui Wang
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Hui-Da Li
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Ying Cao
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Zi-Yi Wang
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| |
Collapse
|
12
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
13
|
Perspectives on using bacteriophages in biogerontology research and interventions. Chem Biol Interact 2022; 366:110098. [PMID: 35995258 DOI: 10.1016/j.cbi.2022.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022]
Abstract
With the development of materials engineering, gerontology-related research on new tools for diagnostic and therapeutic applications, including precision and personalised medicine, has expanded significantly. Using nanotechnology, drugs can be precisely delivered to organs, tissues, cells, and cell organelles, thereby enhancing their therapeutic effects. Here, we discuss the possible use of bacteriophages as nanocarriers that can improve the safety, efficiency, and sensitivity of conventional medical therapies. Phages are a new class of targeted-delivery vectors, which can carry high concentrations of cargo and protect other nontargeted cells from the senescent cell killing effects of senolytics. Bacteriophages can also be subjected to chemical and/or genetic modifications that would acquire novel properties and improve their ability to detect senescent cells and deliver senolytics. Phage research in experimental biogerontology will also develop strategies to efficiently deliver senolytics, target senescent cells, activate extrinsic apoptosis pathways in senescent cells, trigger immune cells to recognise senescent cells, induce autophagy, promote cell and tissue regeneration, inhibit senescence-associated secretory phenotype (SASP) by senomorphic activity, stimulate the properties of mild stress-inducing hormetic agents and hormetins, and modulate the gut microbiome.
Collapse
|
14
|
Witeof AE, McClary W, Rea LT, Yang Q, Davis MM, Funke H, Catalano C, Randolph T. Atomic-Layer Deposition Processes Applied to Phage λ and a Phage-Like Particle Platform Yield Thermostable, Single-Shot Vaccines. J Pharm Sci 2022; 111:1354-1362. [DOI: 10.1016/j.xphs.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
|
15
|
Wang Y, Sheng J, Chai J, Zhu C, Li X, Yang W, Cui R, Ge T. Filamentous Bacteriophage-A Powerful Carrier for Glioma Therapy. Front Immunol 2021; 12:729336. [PMID: 34566987 PMCID: PMC8462735 DOI: 10.3389/fimmu.2021.729336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioma is a life-threatening malignant tumor. Resistance to traditional treatments and tumor recurrence present major challenges in treating and managing this disease, consequently, new therapeutic strategies must be developed. Crossing the blood-brain barrier (BBB) is another challenge for most drug vectors and therapy medications. Filamentous bacteriophage can enter the brain across the BBB. Compared to traditional drug vectors, phage-based drugs offer thermodynamic stability, biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and low toxicity. Tumor-targeting peptides from phage library and phages displaying targeting peptides are ideal drug delivery agents. This review summarized recent studies on phage-based glioma therapy and shed light on the developing therapeutics phage in the personalized treatment of glioma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Formulation strategies for bacteriophages to target intracellular bacterial pathogens. Adv Drug Deliv Rev 2021; 176:113864. [PMID: 34271022 DOI: 10.1016/j.addr.2021.113864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy. These trials have mainly focused on phage suspensions without enough attention paid to the stability of phage during processing, storage, and administration. This is important because in vivo studies have shown that the effectiveness of phage therapy greatly depends on the ratio of phage to bacterial concentrations (multiplicity of infection) at the infection site. Additionally, bacteria can evade phages through the development of phage-resistance and intracellular residence. This review focuses on the use of phage therapy against bacteria that survive within the intracellular niches. Recent research on phage behavior reveals that some phage can directly interact with, get internalized into, and get transcytosed across mammalian cells, prompting further research on the governing mechanisms of these interactions and the feasibility of harnessing therapeutic phage to target intracellular bacteria. Advances to improve the capability of phage attacking intracellular bacteria using formulation approaches such as encapsulating/conjugating phages into/with vector carriers via liposomes, polymeric particles, inorganic nanoparticles, and cell penetrating peptides, are summarized. While promising progress has been achieved, research in this area is still in its infancy and warrants further attention.
Collapse
|
17
|
Gibb B, Hyman P, Schneider CL. The Many Applications of Engineered Bacteriophages-An Overview. Pharmaceuticals (Basel) 2021; 14:ph14070634. [PMID: 34208847 PMCID: PMC8308837 DOI: 10.3390/ph14070634] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Since their independent discovery by Frederick Twort in 1915 and Felix d’Herelle in 1917, bacteriophages have captured the attention of scientists for more than a century. They are the most abundant organisms on the planet, often outnumbering their bacterial hosts by tenfold in a given environment, and they constitute a vast reservoir of unexplored genetic information. The increased prevalence of antibiotic resistant pathogens has renewed interest in the use of naturally obtained phages to combat bacterial infections, aka phage therapy. The development of tools to modify phages, genetically or chemically, combined with their structural flexibility, cargo capacity, ease of propagation, and overall safety in humans has opened the door to a myriad of applications. This review article will introduce readers to many of the varied and ingenious ways in which researchers are modifying phages to move them well beyond their innate ability to target and kill bacteria.
Collapse
Affiliation(s)
- Bryan Gibb
- Department of Biological and Chemical Sciences, Theobald Science Center, Room 423, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
- Correspondence: (B.G.); (C.L.S.)
| | - Paul Hyman
- Department of Biology and Toxicology, Ashland University, 401 College Ave., Ashland, OH 44805, USA;
| | - Christine L. Schneider
- Department of Life Sciences, Carroll University, 100 North East Ave., Waukesha, WI 53186, USA
- Correspondence: (B.G.); (C.L.S.)
| |
Collapse
|
18
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
19
|
Abstract
Bacteriophages are viruses whose ubiquity in nature and remarkable specificity to their host bacteria enable an impressive and growing field of tunable biotechnologies in agriculture and public health. Bacteriophage capsids, which house and protect their nucleic acids, have been modified with a range of functionalities (e.g., fluorophores, nanoparticles, antigens, drugs) to suit their final application. Functional groups naturally present on bacteriophage capsids can be used for electrostatic adsorption or bioconjugation, but their impermanence and poor specificity can lead to inconsistencies in coverage and function. To overcome these limitations, researchers have explored both genetic and chemical modifications to enable strong, specific bonds between phage capsids and their target conjugates. Genetic modification methods involve introducing genes for alternative amino acids, peptides, or protein sequences into either the bacteriophage genomes or capsid genes on host plasmids to facilitate recombinant phage generation. Chemical modification methods rely on reacting functional groups present on the capsid with activated conjugates under the appropriate solution pH and salt conditions. This review surveys the current state-of-the-art in both genetic and chemical bacteriophage capsid modification methodologies, identifies major strengths and weaknesses of methods, and discusses areas of research needed to propel bacteriophage technology in development of biosensors, vaccines, therapeutics, and nanocarriers.
Collapse
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
21
|
Kanaani H, Azarmi Y, Dastmalchi S, Zarei O, Hamzeh-Mivehroud M. Investigation of intestinal transportation of peptide-displaying bacteriophage particles using phage display method. J Pept Sci 2020; 27:e3292. [PMID: 33200451 DOI: 10.1002/psc.3292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022]
Abstract
To investigate whether peptide sequences with specific translocation across the gastrointestinal barrier can be identified as drug delivery vehicles, in vivo phage display was conducted. For this purpose, a random library of 12-mer peptides displayed on M13 bacteriophage was orally administered to mice followed by recovery of the phage particles from the blood samples after three consecutive biopanning rounds. The obtained peptide sequences were analyzed using bioinformatics tools and software. The results demonstrated that M13 bacteriophage bearing peptides translocate nonspecifically across the mice intestinal mucosal barrier deduced from random distribution of amino acids in different positions of the identified peptide sequences. The most probable reason for entering the phage particles into systemic circulation after oral administration of the peptide library can be related to the nanoscale nature of their structures which provides a satisfying platform for the purpose of designing nanocarriers in pharmaceutical applications.
Collapse
Affiliation(s)
- Hakimeh Kanaani
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Azarmi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
23
|
Paczesny J, Bielec K. Application of Bacteriophages in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1944. [PMID: 33003494 PMCID: PMC7601235 DOI: 10.3390/nano10101944] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Bacteriophages (phages for short) are viruses, which have bacteria as hosts. The single phage body virion, is a colloidal particle, often possessing a dipole moment. As such, phages were used as perfectly monodisperse systems to study various physicochemical phenomena (e.g., transport or sedimentation in complex fluids), or in the material science (e.g., as scaffolds). Nevertheless, phages also execute the life cycle to multiply and produce progeny virions. Upon completion of the life cycle of phages, the host cells are usually destroyed. Natural abilities to bind to and kill bacteria were a starting point for utilizing phages in phage therapies (i.e., medical treatments that use phages to fight bacterial infections) and for bacteria detection. Numerous applications of phages became possible thanks to phage display-a method connecting the phenotype and genotype, which allows for selecting specific peptides or proteins with affinity to a given target. Here, we review the application of bacteriophages in nanoscience, emphasizing bio-related applications, material science, soft matter research, and physical chemistry.
Collapse
Affiliation(s)
- Jan Paczesny
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | | |
Collapse
|
24
|
Reuter M, Kruger DH. Approaches to optimize therapeutic bacteriophage and bacteriophage-derived products to combat bacterial infections. Virus Genes 2020; 56:136-149. [PMID: 32036540 PMCID: PMC7223754 DOI: 10.1007/s11262-020-01735-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The emerging occurrence of antibiotic-resistant bacterial pathogens leads to a recollection of bacteriophage as antimicrobial therapeutics. This article presents a short overview of the clinical phage application including their use in military medicine and discusses the genotypic and phenotypic properties of a potential "ideal" therapeutic phage. We describe current efforts to engineer phage for their improved usability in pathogen treatment. In addition, phage can be applied for pathogen detection, selective drug delivery, vaccine development, or food and surface decontamination. Instead of viable phage, (engineered) phage-derived enzymes, such as polysaccharide depolymerases or peptidoglycan-degrading enzymes, are considered as promising therapeutic candidates. Finally, we briefly summarize the use of phage for the detection and treatment of "Category A priority pathogens".
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Detlev H. Kruger
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
25
|
Sokullu E, Soleymani Abyaneh H, Gauthier MA. Plant/Bacterial Virus-Based Drug Discovery, Drug Delivery, and Therapeutics. Pharmaceutics 2019; 11:E211. [PMID: 31058814 PMCID: PMC6572107 DOI: 10.3390/pharmaceutics11050211] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Viruses have recently emerged as promising nanomaterials for biotechnological applications. One of the most important applications of viruses is phage display, which has already been employed to identify a broad range of potential therapeutic peptides and antibodies, as well as other biotechnologically relevant polypeptides (including protease inhibitors, minimizing proteins, and cell/organ targeting peptides). Additionally, their high stability, easily modifiable surface, and enormous diversity in shape and size, distinguish viruses from synthetic nanocarriers used for drug delivery. Indeed, several plant and bacterial viruses (e.g., phages) have been investigated and applied as drug carriers. The ability to remove the genetic material within the capsids of some plant viruses and phages produces empty viral-like particles that are replication-deficient and can be loaded with therapeutic agents. This review summarizes the current applications of plant viruses and phages in drug discovery and as drug delivery systems and includes a discussion of the present status of virus-based materials in clinical research, alongside the observed challenges and opportunities.
Collapse
Affiliation(s)
- Esen Sokullu
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| |
Collapse
|
26
|
Zambrano-Mila MS, Sánchez Blacio KE, Santiago Vispo N. Peptide Phage Display: Molecular Principles and Biomedical Applications. Ther Innov Regul Sci 2019. [DOI: 10.1177/2168479019837624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marlon S. Zambrano-Mila
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | | | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
27
|
Samoylova TI, Braden TD, Spencer JA, Bartol FF. Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development. Curr Med Chem 2017; 24:3907-3920. [PMID: 28901276 PMCID: PMC5738698 DOI: 10.2174/0929867324666170911160426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Population control of domestic, wild, invasive, and captive animal species is a global issue of importance to public health, animal welfare and the economy. There is pressing need for effective, safe, and inexpensive contraceptive technologies to address this problem. Contraceptive vaccines, designed to stimulate the immune system in order to block critical reproductive events and suppress fertility, may provide a solution. Filamentous bacteriophages can be used as platforms for development of such vaccines. OBJECTIVE In this review authors highlight structural and immunogenic properties of filamentous phages, and discuss applications of phage-peptide vaccines for advancement of immunocontraception technology in animals. RESULTS Phages can be engineered to display fusion (non-phage) peptides as coat proteins. Such modifications can be accomplished via genetic manipulation of phage DNA, or by chemical conjugation of synthetic peptides to phage surface proteins. Phage fusions with antigenic determinants induce humoral as well as cell-mediated immune responses in animals, making them attractive as vaccines. Additional advantages of the phage platform include environmental stability, low cost, and safety for immunized animals and those administering the vaccines. CONCLUSION Filamentous phages are viable platforms for vaccine development that can be engineered with molecular and organismal specificity. Phage-based vaccines can be produced in abundance at low cost, are environmentally stable, and are immunogenic when administered via multiple routes. These features are essential for a contraceptive vaccine to be operationally practical in animal applications. Adaptability of the phage platform also makes it attractive for design of human immunocontraceptive agents.
Collapse
Affiliation(s)
- Tatiana I Samoylova
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Timothy D Braden
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Jennifer A Spencer
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Frank F Bartol
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
28
|
Ghanbar S, Fumakia M, Ho EA, Liu S. A new strategy for battling bacterial resistance: Turning potent, non-selective and potentially non-resistance-inducing biocides into selective ones. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:471-481. [PMID: 29183863 DOI: 10.1016/j.nano.2017.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/06/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Antibiotic alternatives are in great need for combating antibiotic resistance. Selective delivery of a potent non-selective non-resistance-inducing biocide (C17) to MRSA was achieved by encapsulating it in solid lipid nanoparticles (SLNs) conjugated with a MRSA-specific antibody (termed as "Ab"). The C17-loaded Ab-conjugated SLNs (C17-SLN-Ab) demonstrated significantly better antimicrobial activity than its antibody free counterpart (C17-loaded SLN) and C17-loaded SLN with a non-specific IgG antibody. In a new MRSA/fibroblast co-culture assay, C17-SLN-Ab showed selective toxicity toward MRSA than fibroblast cells. C17-SLN-Ab possesses double selectivity, exhibiting higher toxicity to MRSA than to Pseudomonas aeruginosa. This same strategy was used to successfully increase C17's selectivity against E. coli K12 by switching the conjugated anti-MRSA antibody to an anti-E. coli antibody, demonstrating versatility of this new strategy. This proof-of-concept research can be extended to other non-selective antimicrobials, against which bacterial resistance is unlikely to develop, to generate a new group of promising antibiotic alternatives.
Collapse
Affiliation(s)
- Sadegh Ghanbar
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Canada
| | - Miral Fumakia
- Laboratory for Drug Delivery and Biomaterials, College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, Canada
| | - Song Liu
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Canada; Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
29
|
Macromolecular Conjugate and Biological Carrier Approaches for the Targeted Delivery of Antibiotics. Antibiotics (Basel) 2017; 6:antibiotics6030014. [PMID: 28677631 PMCID: PMC5617978 DOI: 10.3390/antibiotics6030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 01/21/2023] Open
Abstract
For the past few decades, the rapid rise of antibiotic multidrug-resistance has presented a palpable threat to human health worldwide. Meanwhile, the number of novel antibiotics released to the market has been steadily declining. Therefore, it is imperative that we utilize innovative approaches for the development of antimicrobial therapies. This article will explore alternative strategies, namely drug conjugates and biological carriers for the targeted delivery of antibiotics, which are often eclipsed by their nanomedicine-based counterparts. A variety of macromolecules have been investigated as conjugate carriers, but only those most widely studied in the field of infectious diseases (e.g., proteins, peptides, antibodies) will be discussed in detail. For the latter group, blood cells, especially erythrocytes, have been successfully tested as homing carriers of antimicrobial agents. Bacteriophages have also been studied as a candidate for similar functions. Once these alternative strategies receive the amount of research interest and resources that would more accurately reflect their latent applicability, they will inevitably prove valuable in the perennial fight against antibiotic resistance.
Collapse
|
30
|
O'Sullivan L, Buttimer C, McAuliffe O, Bolton D, Coffey A. Bacteriophage-based tools: recent advances and novel applications. F1000Res 2016; 5:2782. [PMID: 27990274 PMCID: PMC5133683 DOI: 10.12688/f1000research.9705.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacterial hosts, and since their discovery over a century ago they have been primarily exploited to control bacterial populations and to serve as tools in molecular biology. In this commentary, we highlight recent diverse advances in the field of phage research, going beyond bacterial control using whole phage, to areas including biocontrol using phage-derived enzybiotics, diagnostics, drug discovery, novel drug delivery systems and bionanotechnology.
Collapse
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences, Cork Institute of Technology, County Cork, Ireland
| | - Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, County Cork, Ireland
| | - Olivia McAuliffe
- Biotechnology Department, Teagasc, Moorepark Food Research Centre, Fermoy, County Cork, Ireland
| | - Declan Bolton
- Division of Food Safety, Teagasc, Food Research Centre, Ashtown, County Dublin, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, County Cork, Ireland
| |
Collapse
|
31
|
Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev 2016; 106:45-62. [PMID: 26994592 PMCID: PMC5026880 DOI: 10.1016/j.addr.2016.03.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/08/2023]
Abstract
The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology & Nanomedicine Research Group [ANNRG], Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Mohsen Moghoofei
- Student Research Committee, Iran University of Medical Sciences, Tehran, IR, Iran; Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Luzar J, Štrukelj B, Lunder M. Phage display peptide libraries in molecular allergology: from epitope mapping to mimotope-based immunotherapy. Allergy 2016; 71:1526-1532. [PMID: 27341497 DOI: 10.1111/all.12965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 01/07/2023]
Abstract
Identification of allergen epitopes is a key component in proper understanding of the pathogenesis of type I allergies, for understanding cross-reactivity and for the development of mimotope immunotherapeutics. Phage particles have garnered recognition in the field of molecular allergology due to their value not only in competitive immunoscreening of peptide libraries but also as immunogenic carriers of allergen mimotopes. They integrate epitope discovery technology and immunization functions into a single platform. This article provides an overview of allergen mimotopes identified through the phage display technique. We discuss the contribution of phage display peptide libraries in determining dominant B-cell epitopes of allergens, in developing mimotope immunotherapy, in understanding cross-reactivity, and in determining IgE epitope profiles of individual patients to improve diagnostics and individualize immunotherapy. We also discuss the advantages and pitfalls of the methodology used to identify and validate the mimotopes.
Collapse
Affiliation(s)
- J. Luzar
- Chair of Pharmaceutical Biology; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - B. Štrukelj
- Chair of Pharmaceutical Biology; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - M. Lunder
- Chair of Pharmaceutical Biology; Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
33
|
Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. Genetically Engineered Phages: a Review of Advances over the Last Decade. Microbiol Mol Biol Rev 2016; 80:523-43. [PMID: 27250768 PMCID: PMC4981678 DOI: 10.1128/mmbr.00069-15] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Soon after their discovery in the early 20th century, bacteriophages were recognized to have great potential as antimicrobial agents, a potential that has yet to be fully realized. The nascent field of phage therapy was adversely affected by inadequately controlled trials and the discovery of antibiotics. Although the study of phages as anti-infective agents slowed, phages played an important role in the development of molecular biology. In recent years, the increase in multidrug-resistant bacteria has renewed interest in the use of phages as antimicrobial agents. With the wide array of possibilities offered by genetic engineering, these bacterial viruses are being modified to precisely control and detect bacteria and to serve as new sources of antibacterials. In applications that go beyond their antimicrobial activity, phages are also being developed as vehicles for drug delivery and vaccines, as well as for the assembly of new materials. This review highlights advances in techniques used to engineer phages for all of these purposes and discusses existing challenges and opportunities for future work.
Collapse
Affiliation(s)
- Diana P Pires
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sara Cleto
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sanna Sillankorva
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Timothy K Lu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Abstract
Long fascinating to biologists, viruses offer nanometer-scale benchtops for building molecular-scale devices and materials. Viruses tolerate a wide range of chemical modifications including reaction conditions, pH values, and temperatures. Recent examples of nongenetic manipulation of viral surfaces have extended viruses into applications ranging from biomedical imaging, drug delivery, tissue regeneration, and biosensors to materials for catalysis and energy generation. Chemical reactions on the phage surface include both covalent and noncovalent modifications, including some applied in conjunction with genetic modifications. Here, we survey viruses chemically augmented with capabilities limited only by imagination.
Collapse
Affiliation(s)
- Kritika Mohan
- Department of Chemistry and ‡Department of
Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Gregory A. Weiss
- Department of Chemistry and ‡Department of
Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
35
|
Górski A, Dąbrowska K, Hodyra-Stefaniak K, Borysowski J, Międzybrodzki R, Weber-Dąbrowska B. Phages targeting infected tissues: novel approach to phage therapy. Future Microbiol 2015; 10:199-204. [PMID: 25689532 DOI: 10.2217/fmb.14.126] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While the true efficacy of phage therapy still requires formal confirmation in clinical trials, it continues to offer realistic potential treatment in patients in whom antibiotics have failed. Novel developments and approaches are therefore needed to ascertain that future clinical trials would evaluate the therapy in its optimal form thus allowing for reliable conclusions regarding the true value of phage therapy. In this article, we present our vision to develop and establish a bank of phages specific to most threatening pathogens and armed with homing peptides enabling their localization in infected tissues in densities assuring efficient and stable eradication of infection.
Collapse
Affiliation(s)
- Andrzej Górski
- L Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Science, Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
36
|
Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015; 6:755. [PMID: 26300850 PMCID: PMC4523942 DOI: 10.3389/fmicb.2015.00755] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.
Collapse
Affiliation(s)
- Kevin A. Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
- School of Environmental Sciences, University of Guelph, GuelphON, Canada
- Department of Biology, Carleton University, OttawaON, Canada
| | - Jamie K. Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCCanada
- Faculty of Health Sciences, Simon Fraser University, BurnabyBC, Canada
| |
Collapse
|
37
|
Bernard JML, Francis MB. Chemical strategies for the covalent modification of filamentous phage. Front Microbiol 2014; 5:734. [PMID: 25566240 PMCID: PMC4274979 DOI: 10.3389/fmicb.2014.00734] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 01/16/2023] Open
Abstract
Historically filamentous bacteriophage have been known to be the workhorse of phage display due to their ability to link genotype to phenotype. More recently, the filamentous phage scaffold has proven to be powerful outside the realm of phage display technology in fields such as molecular imaging, cancer research and materials, and vaccine development. The ability of the virion to serve as a platform for a variety of applications heavily relies on the functionalization of the phage coat proteins with a wide variety of functionalities. Genetic modification of the coat proteins has been the most widely used strategy for functionalizing the virion; however, complementary chemical modification strategies can help to diversify the range of materials that can be developed. This review emphasizes the recent advances that have been made in the chemical modification of filamentous phage as well as some of the challenges that are involved in functionalizing the virion.
Collapse
Affiliation(s)
- Jenna M L Bernard
- Department of Chemistry, University of California at Berkeley Berkeley, CA, USA ; Materials Sciences Division - Lawrence Berkeley National Laboratories Berkeley, CA, USA
| | - Matthew B Francis
- Department of Chemistry, University of California at Berkeley Berkeley, CA, USA ; Materials Sciences Division - Lawrence Berkeley National Laboratories Berkeley, CA, USA
| |
Collapse
|
38
|
Serwer P, Wright ET, Chang JT, Liu X. Enhancing and initiating phage-based therapies. BACTERIOPHAGE 2014; 4:e961869. [PMID: 26713220 PMCID: PMC4588221 DOI: 10.4161/21597073.2014.961869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023]
Abstract
Drug development has typically been a primary foundation of strategy for systematic, long-range management of pathogenic cells. However, drug development is limited in speed and flexibility when response is needed to changes in pathogenic cells, especially changes that produce drug-resistance. The high replication speed and high diversity of phages are potentially useful for increasing both response speed and response flexibility when changes occur in either drug resistance or other aspects of pathogenic cells. We present strategy, with some empirical details, for (1) using modern molecular biology and biophysics to access these advantages during the phage therapy of bacterial infections, and (2) initiating use of phage capsid-based drug delivery vehicles (DDVs) with procedures that potentially overcome both drug resistance and other present limitations in the use of DDVs for the therapy of neoplasms. The discussion of phage therapy includes (a) historical considerations, (b) changes that appear to be needed in clinical tests if use of phage therapy is to be expanded, (c) recent work on novel phages and its potential use for expanding the capabilities of phage therapy and (d) an outline for a strategy that encompasses both theory and practice for expanding the applications of phage therapy. The discussion of DDVs starts by reviewing current work on DDVs, including work on both liposomal and viral DDVs. The discussion concludes with some details of the potential use of permeability constrained phage capsids as DDVs.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | - Elena T Wright
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | - Juan T Chang
- Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA
| | - Xiangan Liu
- Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA
| |
Collapse
|
39
|
DePorter SM, McNaughton BR. Engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells. Bioconjug Chem 2014; 25:1620-5. [PMID: 25134017 DOI: 10.1021/bc500339k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The size, well-defined structure, and relatively high folding energies of most proteins allow them to recognize disease-relevant receptors that present a challenge to small molecule reagents. While multiple challenges must be overcome in order to fully exploit the use of protein reagents in basic research and medicine, perhaps the greatest challenge is their intracellular delivery to a particular diseased cell. Here, we describe the genetic and enzymatic manipulation of prostate cancer cell-penetrating M13 bacteriophage to generate nanocarriers for the intracellular delivery of functional exogenous proteins to a human prostate cancer cell line.
Collapse
Affiliation(s)
- Sandra M DePorter
- Department of Chemistry, and ‡Department of Biochemistry & Molecular Biology, Colorado State University , Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
40
|
Pillai JJ, Thulasidasan AKT, Anto RJ, Chithralekha DN, Narayanan A, Kumar GSV. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells. J Nanobiotechnology 2014; 12:25. [PMID: 25026938 PMCID: PMC4107481 DOI: 10.1186/1477-3155-12-25] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/04/2014] [Indexed: 12/27/2022] Open
Abstract
Background The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). Results In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Conclusions Results showed that curcumin entrapped folate conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel showed higher cellular uptake than the non folate conjugated form. So this can be suggested as a better delivery system for site specific release of hydrophobic cancer drugs.
Collapse
|
41
|
Viertel TM, Ritter K, Horz HP. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother 2014; 69:2326-36. [PMID: 24872344 DOI: 10.1093/jac/dku173] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteriophage therapy (the application of phages to treat bacterial infections) has a tradition dating back almost a century, but interest in phage therapy slowed down in the West when antibiotics were discovered. With the emerging threat of infections caused by multidrug-resistant bacteria and scarce prospects of newly introduced antibiotics in the future, phages are currently being reconsidered as alternative therapeutics. Conventional phage therapy uses lytic bacteriophages for treatment and recent human clinical trials have revealed encouraging results. In addition, several other modern approaches to phages as therapeutics have been made in vitro and in animal models. Dual therapy with phages and antibiotics has resulted in significant reductions in the number of bacterial pathogens. Bioengineered phages have overcome many of the problems of conventional phage therapy, enabled targeted drug delivery or reversed the resistance of drug-resistant bacteria. The use of enzymes derived from phages, such as endolysin, as therapeutic agents has been efficient in the elimination of Gram-positive pathogens. This review presents novel strategies for phage-related therapies and describes our current knowledge of natural bacteriophages within the human microbiome. Our aim is to provide an overview of the high number of different methodological concepts, thereby encouraging further research on this topic, with the ultimate goal of using phages as therapeutic or preventative medicines in daily clinical practice.
Collapse
Affiliation(s)
- Tania Mareike Viertel
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Klaus Ritter
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Hans-Peter Horz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
42
|
Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today 2013; 18:1144-57. [PMID: 24051398 DOI: 10.1016/j.drudis.2013.09.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 08/29/2013] [Accepted: 09/09/2013] [Indexed: 01/24/2023]
Abstract
Phage display represents an important approach in the development pipeline for producing peptides and peptidomimetics therapeutics. Using randomly generated DNA sequences and molecular biology techniques, large diverse peptide libraries can be displayed on the phage surface. The phage library can be incubated with a target of interest and the phage which bind can be isolated and sequenced to reveal the displayed peptides' primary structure. In this review, we focus on the 'mechanics' of the phage display process, whilst highlighting many diverse and subtle ways it has been used to further the drug-development process, including the potential for the phage particle itself to be used as a drug carrier targeted to a particular pathogen or cell type in the body.
Collapse
Affiliation(s)
- Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
43
|
Tsuboyama M, Maeda I. Combinatorial parallel display of polypeptides using bacteriophage T7 for development of fluorescent nano-bioprobes. J Biosci Bioeng 2013; 116:28-33. [PMID: 23419458 DOI: 10.1016/j.jbiosc.2013.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 11/19/2022]
Abstract
Application of nano-particles to diagnostic fields has attracted much attention. Biotechnology can contribute to produce useful nano-materials by engineering bacteriophage nano-particles, which are easily prepared by infecting phages to bacterial host cells. In this study, establishment of nano-bioprobes was demonstrated, based on the T7 phage display system, by constructing phage particles displaying a ligand polypeptide S-tag and a green fluorescent protein (GFP) at the same time on the surface of phage head. To achieve this purpose, two types of phage particles were tested: One displayed S-tag and GFP as a single polypeptide (tandem display), and another displayed these molecules as two different polypeptides (parallel display). Only the parallelly displayed phage could be detected with ligand blotting using S-protein and with immunoblotting using an anti-GFP antibody. S-protein-coated magnetic beads and nano-particles were successively labeled with fluorescence using the parallelly displayed phage but could not be labeled with the tandemly displayed phage. Thus, the parallel display of a ligand molecule and fluorescent protein on the head surface of bacteriophage T7 could provide a new scheme of producing fluorescent nano-bioprobes for diagnostic applications.
Collapse
Affiliation(s)
- Mie Tsuboyama
- Graduate School of Agricultural Science, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan
| | | |
Collapse
|
44
|
Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One 2012; 7:e51017. [PMID: 23226451 PMCID: PMC3511404 DOI: 10.1371/journal.pone.0051017] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
With the increasing frequency of antibiotic resistance and the decreasing frequency of new antibiotics entering the market, interest has returned to developing bacteriophage as a therapeutic agent. Acceptance of phage therapy, however, is limited by the unknown pharmacodynamics of a replicating agent, as well as the potential for the evolution of resistant bacteria. One way to overcome some of these limitations is to incorporate phage and antibiotics into a dual therapy regimen; however, this increases the complexity of the pharmacodynamics. The aim of this study is to develop an experimental system to evaluate the pharmacodynamics of dual phage-drug therapy. A continuous culture system for Staphylococcus aureus is used to simulate the pharmacokinetics of periodic antibiotic dosing alone and in combination with lytic phage. A computer model representation of the system allows further evaluation of the conditions governing the observed pharmacodynamics. The results of this experimental/modeling approach suggest that dual therapy can be more efficacious than single therapies, particularly if there is an overlap in the physiological pathways targeted by the individual agents. In this case, treatment with gentamicin induces a population of cells with a strong aggregation phenotype. These aggregators also have an increased ability to form biofilm, which is a well-known, non-genetic mechanism of drug resistance. However, the aggregators are also more susceptible than the parental strain to the action of the phage. Thus, dual treatment with gentamicin and phage resulted in lower final cell densities than either treatment alone. Unlike in the phage-only treatment, phage-resistant isolates were not detected in the dual treatment.
Collapse
|
45
|
Improved binding activity of antibodies against major histocompatibility complex class I chain-related gene A by phage display technology for cancer-targeted therapy. J Biomed Biotechnol 2012; 2012:597647. [PMID: 23226940 PMCID: PMC3511854 DOI: 10.1155/2012/597647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/14/2012] [Indexed: 12/21/2022] Open
Abstract
Major histocompatibility complex class I chain-related gene A (MICA) is an NKG2D ligand that is over-expressed under cellular stress including cancer transformation and viral infection. High expression of MICA in cancer tissues or patients' sera is useful for prognostic or follow-up markers in cancer patients. In this study, phage display technology was employed to improve antigen-binding activities of anti-MICA monoclonal antibodies (WW2G8, WW6B7, and WW9B8). The 12 amino acid residues in the complementarity determining regions (CDRs) on the V domain of the heavy chain CDR3 (HCDR3) of these anti-MICA antibodies were modified by PCR-random mutagenesis, and phages displaying mutated anti-MICA Fab were constructed. After seven rounds of panning, five clones of phages displaying mutant anti-MICA Fab which exhibited 3-7-folds higher antigen-binding activities were isolated. Two clones of the mutants (phage-displayed mutant Fab WW9B8.1 and phage-displayed mutant Fab WW9B8.21) were confirmed to have antigen-binding specificity for cell surface MICA proteins by flow cytometry. These phage clones are able to recognize MICA in a native form according to positive results obtained by indirect ELISA and flow cytometry. Thus, these phage particles could be potentially used for further development of nanomedicine specifically targeting cancer cells expressing MICA proteins.
Collapse
|
46
|
Smith MW, Al-Jayyoussi G, Gumbleton M. Peptide sequences mediating tropism to intact blood-brain barrier: an in vivo biodistribution study using phage display. Peptides 2012; 38:172-80. [PMID: 22955033 DOI: 10.1016/j.peptides.2012.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/15/2022]
Abstract
Peptide motifs that demonstrate tropism for the blood brain barrier (BBB) are of real translational value in developing innovative delivery strategies for biological brain targeted therapies. In vivo peptide-phage display affords peptide selection against the full complement of biological markers within the correct cellular macro- and micro-environments. Here a stringent in vivo biopanning protocol was employed in the rat aimed at identifying cyclic 7-mer peptide motifs that mediate tropism to brain microvasculature. Five rounds of biopanning identified 349 unique peptide motifs in the brain tissue gray matter compartment (microvasculature and parenchyma). While in general no consensus was evident linking peptide physico-chemical properties and brain tropism, peptides bearing c-SxTSSTx-c or c-xxxSSTx-c motifs were found to be present in high abundance. Based on amino acid frequency distribution of the 349 unique peptides sequences a theoretical 'idealized' peptide pattern, c-PP(S/P)SSST-c, could be derived. For the most abundant experimental peptide sequence found in brain tissue, c-SYTSSTM-c, an in vivo pharmacokinetic and whole body tissue biodistribution study was performed. Based upon tissue exposure data (i.e. tissue AUC((0-infinity))) the sequence c-SYTSSTM-c efficiently retargeted phage virions to the brain providing an approximate 5-fold greater (P<0.05) accumulation in brain over control phage; in all other organs no significant (P>0.05) difference in tissue tropism between c-SYTSSTM-c and control phages were evident. This peptide and more generally the peptide motifs, -SxTSSTx- or -xxxSSTx-, warrant further investigation as agents mediating sequence-dependent tropism to brain microvasculature potentially able to deliver biologic cargo to the CNS.
Collapse
Affiliation(s)
- Mathew W Smith
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
47
|
Sharma A, Kumar Arya D, Dua M, Chhatwal GS, Johri AK. Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv 2012; 9:1325-32. [PMID: 22924701 DOI: 10.1517/17425247.2012.717927] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several microbes have evolved clinically significant resistance against almost every available antibiotic. Yet the development of new classes of antibiotics has lagged far behind our growing need. Frequent and suboptimal use of antibiotics particularly in developing countries aggravated the problem by increasing the rate of resistance. Therefore, developing new and multidimensional strategies to combat microbial infections is warranted. These include i) modification of existing antibiotics, ii) searching new and novel antibiotics, iii) development and improvement of antibiotics carrier system to reduce amount and frequency of antibiotic doses, iv) development of targeted antibiotic delivery systems. Here, the authors discuss trends and development of nano-materials and alternative antimicrobials to solve the problem of antibiotic resistance.
Collapse
|
48
|
Reynaud CA, Moutel S, Dieu-Nosjean MC, Laskov R, Teillaud JL. 1(st) French-Israeli International Conference on B Cells and therapeutic antibodies: October 23-25, 2011 Jerusalem, Israel. MAbs 2012; 4:426-33. [PMID: 22664457 PMCID: PMC3499337 DOI: 10.4161/mabs.20289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Claude-Agnès Reynaud
- INSERM U. 783, Paris Descartes University, Faculty of Medicine, Necker-Enfants Malades site, Paris, France
| | | | | | | | | |
Collapse
|
49
|
Clark JR. Bacteriophages: a biological library of Babel. Future Virol 2012. [DOI: 10.2217/fvl.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jason R Clark
- BigDNA Ltd, Roslin BioCentre, Edinburgh, EH25 9PP, UK
| |
Collapse
|