1
|
Rafiei M, Shojaei A, Chau Y. Machine learning-assisted design of immunomodulatory lipid nanoparticles for delivery of mRNA to repolarize hyperactivated microglia. Drug Deliv 2025; 32:2465909. [PMID: 40028722 DOI: 10.1080/10717544.2025.2465909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Regulating inflammatory microglia presents a promising strategy for treating neurodegenerative and autoimmune disorders, yet effective therapeutic agents delivery to these cells remains a challenge. This study investigates modified lipid nanoparticles (LNP) for mRNA delivery to hyperactivated microglia, particularly those with pro-inflammatory characteristics, utilizing supervised machine learning (ML) classifiers. We developed and screened a library of 216 LNP formulations with varying lipid compositions, N/P ratios, and hyaluronic acid (HA) modifications. The transfection efficiency of eGFP mRNA was assessed in the BV-2 murine microglia cell line under different immunological states, including resting and activated conditions (LPS-activated and IL4/IL13-activated). ML-guided morphometric analysis tracked the phenotypes of various microglia subtypes before and after transfection. Four supervised ML classifiers were investigated to predict transfection efficiency and phenotypic changes based on LNP design parameters. The Multi-Layer Perceptron (MLP) neural network emerged as the best-performing model, achieving weighted F1-scores ≥0.8. While it accurately predicted responses from LPS-activated and resting cells, it struggled with IL4/IL13-activated cells. The MLP model was validated by predicting the performance of four unseen LNP formulations delivering eGFP mRNA to LPS-activated BV2 cells. HA-LNP2 emerged as optimal formulation for delivering target IL10 mRNA, effectively suppressing inflammatory phenotypes, evidenced by shifts in cell morphology, increased IL10 expression, and reduced TNF-α levels. We also evaluated HA-LNP2 on LPS-activated human iPSC-derived microglia, confirming its efficacy in modulating inflammatory responses. This study highlights the potential of tailored LNP design and ML techniques to enhance mRNA therapy for neuroinflammatory disorders by leveraging carrier's immunogenic properties to modulate microglial responses.
Collapse
Affiliation(s)
- Mehrnoosh Rafiei
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Center for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Akbar Shojaei
- Center for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
2
|
Essawy AE, Bekheet GJ, Abdel Salam S, Alhasani RH, Abd Elkader HTAE. Betaine alleviates deficits in motor behavior, neurotoxic effects, and neuroinflammatory responses in a rat model of demyelination. Toxicol Rep 2025; 14:101974. [PMID: 40129881 PMCID: PMC11930798 DOI: 10.1016/j.toxrep.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Multiple sclerosis (MS) is characterized as a chronic inflammatory demyelinating neurodegenerative disorder that leads to the deterioration of the myelin sheath and the loss of axons. Betaine, a trimethylglycine compound, is recognized for its ability to penetrate the blood-brain barrier (BBB) and exhibits properties that are antioxidant, anti-inflammatory, and neuroprotective. The cuprizone (CPZ) model serves as an effective tool for investigating the processes of demyelination and remyelination associated with MS. In our research, we examined the protective and therapeutic effects of betaine in a rat model of MS induced by CPZ. The experimental protocol involved administering 600 mg/kg of CPZ orally for 7 days, followed by 2 weeks with 200 mg/kg of CPZ. The protective group received a combination of betaine (1 g/kg/day, orally) and CPZ (200 mg/kg/day), while the therapeutic group was treated with CPZ (600 mg/kg) alongside betaine for three weeks. Behavioral assessments were conducted using inverted screen and rotarod tests to measure balance, motor coordination, and grasping ability. Following these evaluations, the rats were euthanized for analysis of oxidative stress and inflammatory biomarkers, toluidine blue staining, transmission electron microscopy (TEM) imaging, and myelin basic protein (MBP) immunostaining of the corpus callosum (CC). The results indicated that betaine significantly enhanced balance, motor coordination, and grasping ability, while decreasing oxidative stress, inhibiting interleukin (IL)-4 and IL-17 levels, and reversing the demyelination caused by CPZ. Notably, betaine also mitigated the increase in homocysteine (Hcy) levels and facilitated remyelination, evidenced by the presence of normal compacted myelin and increased expression of MBP in the CC. This study substantiates the remyelinating effects of betaine in the context of CPZ-induced demyelination. It suggests that it may contribute to the repair of myelin through the modulation of behavioral deficits, oxidative stress, neuroinflammation, ultrastructural changes, and MBP expression levels, indicating its potential as a complementary therapeutic agent in the management of MS.
Collapse
Affiliation(s)
- Amina E. Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Gihad Jamal Bekheet
- Euro-Mediterranean Master in Neuroscience and Biotechnology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sherine Abdel Salam
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | | | | |
Collapse
|
3
|
Sharma P, Daksh R, Khanna S, Mudgal J, Lewis SA, Arora D, Nampoothiri M. Microglial cannabinoid receptor 2 and epigenetic regulation: Implications for the treatment of depression. Eur J Pharmacol 2025; 995:177422. [PMID: 39988094 DOI: 10.1016/j.ejphar.2025.177422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Depression, often stress-induced, is closely related to neuroinflammation, in which microglia, the brain's immune cells, are the leading players. Microglia shift between a quiescent and an active state, promoting both pro- and anti-inflammatory responses. Cannabinoid type 2 (CB2) receptor encoded by the CNR2 gene is a key player to modulate inflammatory activity. CB2 receptor is highly controlled at the epigenetic level, especially in response to stressful stimuli, positioning it between stress, neuroinflammation, and depression. The following review addresses how epigenetic regulation of CNR2 expression affects depression and the dissection, further, of molecular pathways driving neuroinflammation-related depressive states. The present study emphasizes the therapeutic potential of CB2 receptor agonists that selectively interact with activated microglia and opens a new avenue for the treatment of depression associated with neuroinflammation. The review, therefore, provides a framework of underlying mechanisms for developing novel therapeutic strategies that focus on relieving symptoms by modulating the neuroinflammatory response. Finally, this review underlines the possibilities of therapeutic interventions taking into account CB2 receptors in combating depression.
Collapse
Affiliation(s)
- Pratyasha Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Saumya Khanna
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
4
|
Chen T, Chen J, Guo M, Liu Y, Wang J, Fang Y, Chen Y, Zhang A. IL-33 exerts neuroprotective effects through activation of ST2/AKT signaling axis in microglia after subarachnoid hemorrhage in rats. Neuropharmacology 2025; 269:110336. [PMID: 39947392 DOI: 10.1016/j.neuropharm.2025.110336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND AND PURPOSE ST2, a member of the interleukin-1 (IL-1) receptor family, along with its ligand IL-33, plays critical roles in immune regulation and inflammatory responses. This study investigates the roles of endogenous IL-33/ST2 signaling in subarachnoid hemorrhage (SAH) and elucidates the underlying mechanisms. METHODS Dynamic changes in endogenous IL-33 levels were examined following SAH induction in vivo. Rats underwent the endovascular perforation model of SAH and were randomly assigned to receive either recombinant IL-33 (rIL-33) or a vehicle, administered intranasally 1 h post-SAH. ST2 siRNA or an AKT selective inhibitor was administered intraperitoneally (i.p.) 48 h prior to SAH induction to explore the potential mechanisms of IL-33-mediated neuroprotection. RESULTS Endogenous IL-33 and ST2 levels were elevated in in vitro models of SAH. Exogenous IL-33 significantly alleviated neuronal apoptosis, reduced brain edema, and enhanced short-term neurofunction in a dose-dependent manner following SAH in rats. CONCLUSION Exogenous rIL-33 alleviates SAH-induced neurological deficits by promoting M2-like polarization of microglia post-SAH. These findings suggest a potential role of the microglial ST2/AKT axis in IL-33-related neuroprotection, which warrants further investigation.
Collapse
Affiliation(s)
- Ting Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China
| | - Jiarui Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China
| | - Mengchen Guo
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China.
| | - Yan Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China.
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, China.
| |
Collapse
|
5
|
Maheu MG, James N, Clark Z, Yang A, Patel R, Beaudette SM, MacPherson REK, Duarte-Guterman P. Running to remember: The effects of exercise on perineuronal nets, microglia, and hippocampal angiogenesis in female and male mice. Behav Brain Res 2025; 484:115478. [PMID: 39956366 DOI: 10.1016/j.bbr.2025.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Exercise is accepted as a positive health behaviour; however, the mechanisms of exercise on neuroprotection and cognitive health are not completely understood. The purpose of this study was to explore the neurobiological benefits of chronic treadmill exercise in female and male mice through its role in microglial content and morphology, cerebral vascularization, and perineuronal net (PNN) expression. We further examined how these neurobiological changes relate to spatial memory outcomes. Adult mice were assigned to a sedentary or treadmill exercise group for eight weeks. During the final week, all mice were trained on a spatial memory task (Barnes maze) and brains were collected for immunohistochemistry. Exercised mice made fewer errors than sedentary mice during the first two days of training and probe trial. Females, regardless of exercise training, made fewer errors during Barnes maze training and demonstrated a greater frequency of spatial strategy use compared to males. Exercised mice, regardless of sex, had fewer PNNs in the dentate gyrus of the hippocampus compared to sedentary controls. The number of PNNs in the dorsal dentate gyrus was positively correlated with total errors during training. During the probe, greater errors correlated with more PNNs among the exercised group only. Microglia count and cerebral vascularization were not affected by exercise, although proportions of microglia type (ameboid, stout/thick, and thick/thin) were regulated by exercise in the ventral dentate gyrus. We conclude that exercise decreases PNNs in the dentate gyrus in both sexes and this may be related to better spatial learning and memory.
Collapse
Affiliation(s)
- Madeleine G Maheu
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Department of Health Sciences, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| | - Noah James
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Zach Clark
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | - Alex Yang
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Ridhi Patel
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| | - Shawn M Beaudette
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada; Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada.
| | - Paula Duarte-Guterman
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
6
|
Wang M, Zhao R, Su Y, Zhai D, Liang H, Zhang L, Wang W, Wang Z, Qi M, Jiang X, Ling S, Di G. 4,4'-Dimethoxychalcone Mitigates Neuroinflammation Following Traumatic Brain Injury Through Modulation of the TREM2/PI3K/AKT/NF-κB Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02279-4. [PMID: 40261458 DOI: 10.1007/s10753-025-02279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/24/2025]
Abstract
Research on 4,4'-dimethoxychalcone (DMC) in the context of traumatic brain injury (TBI) is extremely limited, and no effective clinical treatments are available to improve outcomes for individuals with TBI. Our study aims to investigate the underlying mechanisms by which DMC may alleviate neuroinflammation and neuronal damage following TBI. This study seeks to provide a theoretical foundation for the development of future pharmacological therapies for TBI. A moderate TBI model was established using the fluid percussion injury (FPI) method. The recovery of neuromotor function following TBI was evaluated using the modified neurological severity score (mNSS), the Morris water maze test, and analysis of cerebral edema. Gene and protein expression levels were quantified using cell viability assays, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and immunofluorescence. Network pharmacology was employed to predict potential targets of DMC, and gene ontology (GO) analysis along with KEGG pathway enrichment was conducted to predict signaling pathways affected by DMC.DMC treatment significantly improved neuromotor deficits in mice after TBI. In both in vivo and in vitro experiments, DMC suppressed microglial activation and decreased the production and release of inflammatory factors. Additionally, DMC reduced neuronal lesions after TBI. DMC notably decreased the elevated expression of triggering receptor expressed on myeloid cells 2 (TREM2) following TBI. Network pharmacological analysis indicated that DMC's therapeutic effects may be mediated through the PI3K/AKT signaling cascade. These findings indicate that DMC has therapeutic potential for TBI, with significant anti-inflammatory and neuroprotective properties likely mediated by the TREM2/PI3K/AKT/NF-κB signaling cascade.
Collapse
Affiliation(s)
- Mengran Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Rui Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Yue Su
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Duhuan Zhai
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Hengyan Liang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Lingkun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Weicheng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Zhichun Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Min Qi
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Xiaochun Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
| | - Shizhang Ling
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
| | - Guangfu Di
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
- The Institutes of Brain Science, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, 241002, Anhui, China.
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 West Zheshan Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|
7
|
Bu F, Yuan X, Cui X, Guo R. Bibliometric Analysis and Visualized Study of Research on Mesenchymal Stem Cells in Ischemic Stroke. Stem Cell Rev Rep 2025:10.1007/s12015-025-10878-9. [PMID: 40257541 DOI: 10.1007/s12015-025-10878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND One of the major global causes of death and disability is ischemic stroke (IS). Mesenchymal stem cells (MSCs) emerge as a cell-based therapy for numerous diseases. Recently, research on the role of MSCs in ischemic stroke has developed rapidly worldwide. Bibliometric analysis of MSCs for IS has not yet been published, though. AIM Through bibliometric analysis, the aim of this study was to assess the current state of research on MSCs in the field of ischemic stroke research worldwide and to identify important results, major research areas, and emerging trends. METHODS Publications related to MSCs in ischemic stroke from January 1, 2002, to December 31, 2022, were obtained from the Web of Science Core Collection (WoSCC). We used HistCite, VOSViewer, CiteSpace, and Bibliometrix for bibliometric analysis and visualization. We employed the Total Global Citation Score (TGCS) to assess the impact of publications. RESULTS The bibliometric analysis included a total of 2,048 publications. The 1,386 papers used in this study were authored by 200 individuals across 200 organizations in 72 countries, published in 202 journals. Cesar V Borlongan published the most documents among high-productivity authors. Michael Chopp was the author with the highest average number of citations per paper, with an average paper citation time of 118.54. We found that research of MSCs in ischemic stroke developed rapidly starting in 2008. Neurosciences were the most productive journals, and Chinese researchers have produced the most research papers in this subject. The most cited article is "Systemic administration of exosomes released from mesenchymal stromal cells promotes functional recovery and neurovascular plasticity after stroke in rats". CONCLUSION This study uses both numbers and descriptions to thoroughly review the research on MSCs related to IS. This information provides valuable experience for researchers to carry out MSCs' work on IS.
Collapse
Affiliation(s)
- Fanwei Bu
- Xinxiang First People's Hospital, Xinxiang, China
| | | | - Xiaocan Cui
- Xinxiang First People's Hospital, Xinxiang, China
| | - Ruyue Guo
- Henan University of Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
8
|
Meseguer-Beltrán M, Sánchez-Sarasúa S, Kerekes N, Landry M, Real-López M, Sánchez-Pérez AM. Abscisic Acid Rescues Behavior in Adult Female Mice in Attention Deficit Disorder with Hyperactivity Model of Dopamine Depletion by Regulating Microglia and Increasing Vesicular GABA Transporter Expression. J Neuroimmune Pharmacol 2025; 20:39. [PMID: 40234284 PMCID: PMC12000189 DOI: 10.1007/s11481-025-10186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental syndrome typically diagnosed in childhood that may persist into adulthood. Its etiology encompasses both genetic and environmental factors, with genetic studies indicating catecholamine dysfunction and epidemiological evidence emphasizing neuroinflammation as a potential trigger. To investigate the roles of inflammation and development processes in ADHD, we conducted a longitudinal behavioral study using female Swiss mice with a dopamine deficit model. We explored the impact of neonatal dopaminergic lesions, treatment with abscisic acid (ABA)-an anti-inflammatory hormone-and developmental changes by comparing behavioral patterns in juvenile and adult mice. Postmortem analyses assessed neuroinflammation through microglial morphology, NLRP3, cytokine expression, and the excitatory/inhibitory (E/I) ratio in specific brain regions. Neonatal dopaminergic lesions induced hyperactivity and hypersensitivity in juvenile mice that persisted into adulthood. In adults, increased social interaction and memory impairment were observed in lesioned mice. Brain development mitigated impulsivity, while ABA treatment reduced locomotor activity, downregulated pain sensitivity, and influenced social interaction, although it did not completely resolve cognitive deficits in lesioned adult mice. In brain regions such as the anterior cingulate cortex (ACC), posterior insular cortex (pIC), and hippocampus, lesions significantly altered microglial morphology. In the ACC, lesions increased IL-1β and TNFα levels, decreased Arg1 mRNA levels, and disrupted the E/I balance. Importantly, ABA treatment restored microglial morphology, normalized IL-1β and Arg1 expression and upregulated vGAT levels. This study demonstrates that dopamine deficits lead to microglia alterations and E/I imbalance, contributing to ADHD symptoms. While some symptoms improve with brain development, targeting microglial health in specific brain regions emerges as a promising therapeutic approach for managing ADHD.
Collapse
Affiliation(s)
| | - Sandra Sánchez-Sarasúa
- Department of Medicine, Universitat Jaume I, Castellón, Spain
- Institute of Neurodegenerative Diseases, CNRS, University of Bordeaux. UMR 5293, Bordeaux, France
| | - Nóra Kerekes
- Department of Health Sciences, University West, 46186, Trollhättan, Sweden
| | - Marc Landry
- Institute of Neurodegenerative Diseases, CNRS, University of Bordeaux. UMR 5293, Bordeaux, France
| | - Matías Real-López
- Department of Medicine, Universitat Jaume I, Castellón, Spain
- Serious Mental Disorder Program in Childhood and Adolescence, Provincial Hospital Consortium of Castellón, Castellón, Spain
| | | |
Collapse
|
9
|
Jing B, Zhao JJ, Chen ZN, Si WM, Chang SQ, Zheng YC, Zhuang ZF, Zhao GP, Zhang D. ( +)-Catechin Alleviates CCI-Induced Neuropathic Pain by Modulating Microglia M1 and M2 Polarization via the TLR4/MyD88/NF-κB Signaling Pathway. J Neuroimmune Pharmacol 2025; 20:33. [PMID: 40195186 DOI: 10.1007/s11481-025-10202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/22/2025] [Indexed: 04/09/2025]
Abstract
The aim of this research endeavor was to explore the therapeutic potential of ( +)-catechin in mitigating neuropathic pain. A total of thirty-two Sprague‒Dawley rats were randomly allocated into four groups: the sham group, the chronic constriction injury (CCI) group, the CCI + ibuprofen group, and the CCI + ( +)-catechin group. The results of the in vivo experiment show that ( +)-catechin has the potential to improve mechanical hyperalgesia induced by CCI and reduce the infiltration of inflammatory cells in the injured sciatic nerve. CCI induces the upregulation of nNOS, iNOS, IL-1β, and COX-2 within the rat sciatic nerve and leads to an elevation in the levels of IL-1β, PGE2, and TNF-α in the serum of rats, while simultaneously diminishing the secretion of IL-10. Moreover, immunofluorescence analysis reveals that CCI enhances the expression of CD32 (an M1 polarization marker) in the rat spinal cord, while diminishing the expression of CD206 (an M2 polarization marker). However, the administration of ( +)-catechin effectively counteracts these effects. Western blot analysis further demonstrates that ( +)-catechin significantly reduces the protein expression of IBA-1, IL-1β, MyD88, p-NF-κB, p-JNK, p-ERK, p-p38MAPK, COX-2, and TLR4 within the spinal cord. The findings of the BV2 cell experiment revealed the attenuating effects of ( +)-catechin on M1 polarization markers (such as IL-1β, TNF-α, iNOS, and CD32), while concurrently boosting the levels of M2 polarization markers (including CD206, IL-10, and Arg-1). Notably, administration of LPS significantly heightened the accumulation of IBA-1, IL-1β, MyD88, p-NF-κB, p-JNK, p-ERK, p-p38MAPK, TLR4, COX-2, and iNOS, while concurrently suppressing Arg-1 expression. However, the administration of ( +)-catechin effectively reversed these alterations. Overall, these findings suggest that ( +)-catechin alleviates neuropathic pain by modulating the M1 and M2 phenotypes of microglia through the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Ji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhen-Ni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wai-Mei Si
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shi-Quan Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ya-Chun Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zi-Feng Zhuang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Choi B, Lee S, Chung S, Barcelona EE, Hong J, Lee SJ. PLGA nanoparticle-mediated anti-inflammatory gene delivery for the treatment of neuropathic pain. Nanomedicine (Lond) 2025:1-12. [PMID: 40186589 DOI: 10.1080/17435889.2025.2487410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
AIM This study aimed to mitigate neuropathic pain behavior in a sciatic nerve transection (SNT)-induced mouse model by delivering anti-inflammatory cytokines - interleukin-4 (IL-4), interleukin-10 (IL-10), and transforming growth factor-beta 1 (TGF-β1) - via poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). MATERIALS & METHODS Upon gene delivery of IL-4, IL-10, and TGF- β1, the anti-inflammatory effects and induction of microglia M2 polarization were evaluated. Plasmid (IL-4, IL-10, and TGF-β1)-encapsulated PLGA NPs (PLGA@IL-4, PLGA@IL-10, and PLGA@TGF-β1) were synthesized and characterized for size, zeta potential, cellular toxicity, and cellular uptake. The analgesic effect of anti-inflammatory gene delivery using PLGA NPs was then assessed in a mouse model of neuropathic pain. RESULTS Gene delivery of IL-4, IL-10, and TGF-β1 showed a significant anti-inflammatory effect in LPS-treated cells and IL-4 strongly promoted microglia M2 polarization in vitro. PLGA NPs successfully delivered the anti-inflammatory cytokine-coding genes into mouse spinal cord cells, specifically targeting microglia. PLGA@IL-4, PLGA@IL-10, and PLGA@TGF-β1 NPs produced analgesic effects in a SNT-induced mouse neuropathic pain model. Notably, PLGA@IL-4 demonstrated the most effective and remarkably long-lasting analgesic effect, strongly enhancing microglia M2 polarization in spinal cord microglia. CONCLUSION Gene therapy using PLGA NPs for overexpression of anti-inflammatory cytokines could be a promising strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Boomin Choi
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Subeen Lee
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, Republic of Korea
| | - Seohyun Chung
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ellane Eda Barcelona
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinpyo Hong
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Varanasi SM, Gulani Y, Rachamala HK, Mukhopadhyay D, Angom RS. Neuropilin-1: A Multifaceted Target for Cancer Therapy. Curr Oncol 2025; 32:203. [PMID: 40277760 DOI: 10.3390/curroncol32040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/26/2025] Open
Abstract
Neuropilin-1 (NRP1), initially identified as a neuronal guidance protein, has emerged as a multifaceted regulator in cancer biology. Beyond its role in axonal guidance and angiogenesis, NRP1 is increasingly recognized for its significant impact on tumor progression and therapeutic outcomes. This review explores the diverse functions of NRP1 in cancer, encompassing its influence on tumor cell proliferation, migration, invasion, and metastasis. NRP1 interacts with several key signaling pathways, including vascular endothelial growth factor (VEGF), semaphorins, and transforming growth factor-beta (TGF-β), modulating the tumor microenvironment and promoting angiogenesis. Moreover, NRP1 expression correlates with poor prognosis in various malignancies, underscoring its potential as a prognostic biomarker. Therapeutically, targeting NRP1 holds promise as a novel strategy to inhibit tumor growth and enhance the efficacy of regular treatments such as chemotherapy and radiotherapy. Strategies involving NRP1-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and gene silencing techniques, are being actively investigated in preclinical and clinical settings. Despite challenges in specificity and delivery, advances in understanding NRP1 biology offer new avenues for personalized cancer therapy. Although several types of cancer cells can express NRPs, the role of NRPs in tumor pathogenesis is largely unknown. Future investigations are needed to enhance our understanding of the effects and mechanisms of NRPs on the proliferation, apoptosis, and migration of neuronal, endothelial, and cancer cells. The novel frameworks or multi-omics approaches integrate data from multiple databases to better understand cancer's molecular and clinical features, develop personalized therapies, and help identify biomarkers. This review highlights the pivotal role of NRP1 in cancer pathogenesis and discusses its implications for developing targeted therapeutic approaches to improve patient outcomes, highlighting the role of OMICS in targeting cancer patients for personalized therapy.
Collapse
Affiliation(s)
- Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yash Gulani
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
12
|
Jung ES, Choi H, Mook-Jung I. Decoding microglial immunometabolism: a new frontier in Alzheimer's disease research. Mol Neurodegener 2025; 20:37. [PMID: 40149001 PMCID: PMC11948825 DOI: 10.1186/s13024-025-00825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's disease (AD) involves a dynamic interaction between neuroinflammation and metabolic dysregulation, where microglia play a central role. These immune cells undergo metabolic reprogramming in response to AD-related pathology, with key genes such as TREM2, APOE, and HIF-1α orchestrating these processes. Microglial metabolism adapts to environmental stimuli, shifting between oxidative phosphorylation and glycolysis. Hexokinase-2 facilitates glycolytic flux, while AMPK acts as an energy sensor, coordinating lipid and glucose metabolism. TREM2 and APOE regulate microglial lipid homeostasis, influencing Aβ clearance and immune responses. LPL and ABCA7, both associated with AD risk, modulate lipid processing and cholesterol transport, linking lipid metabolism to neurodegeneration. PPARG further supports lipid metabolism by regulating microglial inflammatory responses. Amino acid metabolism also contributes to microglial function. Indoleamine 2,3-dioxygenase controls the kynurenine pathway, producing neurotoxic metabolites linked to AD pathology. Additionally, glucose-6-phosphate dehydrogenase regulates the pentose phosphate pathway, maintaining redox balance and immune activation. Dysregulated glucose and lipid metabolism, influenced by genetic variants such as APOE4, impair microglial responses and exacerbate AD progression. Recent findings highlight the interplay between metabolic regulators like REV-ERBα, which modulates lipid metabolism and inflammation, and Syk, which influences immune responses and Aβ clearance. These insights offer promising therapeutic targets, including strategies aimed at HIF-1α modulation, which could restore microglial function depending on disease stage. By integrating metabolic, immune, and genetic factors, this review underscores the importance of microglial immunometabolism in AD. Targeting key metabolic pathways could provide novel therapeutic strategies for mitigating neuroinflammation and restoring microglial function, ultimately paving the way for innovative treatments in neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun Sun Jung
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Hayoung Choi
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Inhee Mook-Jung
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
- Korea Dementia Research Center, Seoul, South Korea.
| |
Collapse
|
13
|
Kansakar SB, Sterben SP, Anamala CC, Thielen MD, Liaudanskaya V. The Silent Saboteur: How Mitochondria Shape the Long-Term Fate of the Injured Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644244. [PMID: 40166284 PMCID: PMC11957143 DOI: 10.1101/2025.03.19.644244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Traumatic brain injury (TBI) is a major risk factor for neurodegenerative diseases, including Alzheimer's disease (AD), yet the mechanistic link remains unclear. Here, we integrated human patient-derived transcriptomics with a 3D in vitro brain injury model to dissect cell-specific mitochondrial dysfunction as a driver of injury-induced neurodegeneration. Comparative transcriptomic analysis at 6 and 48 hours post-injury revealed conserved mitochondrial impairments across excitatory neurons, interneurons, astrocytes, and microglia. Using a novel cell-specific mitochondria tracking system, we demonstrate prolonged neuronal mitochondrial fragmentation, bioenergetic failure, and metabolic instability, coinciding with the emergence of AD markers, including pTau, APP, and Aβ42/40 dysregulation. Glial mitochondria exhibited delayed but distinct metabolic dysfunctions, with astrocytes impaired metabolic support and microglia sustained chronic inflammation. These findings establish neuronal mitochondrial failure as an early trigger of injury-induced neurodegeneration, reinforcing mitochondrial dysfunction as a therapeutic target for preventing TBI-driven AD pathology.
Collapse
|
14
|
Gong J, Li J, Li J, He A, Ren B, Zhao M, Li K, Zhang Y, He M, Liu Y, Wang Z. Impact of Microglia-Derived Extracellular Vesicles on Resident Central Nervous System Cell Populations After Acute Brain Injury Under Various External Stimuli Conditions. Mol Neurobiol 2025:10.1007/s12035-025-04858-w. [PMID: 40126599 DOI: 10.1007/s12035-025-04858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Acute brain injuries (ABI) caused by various emergencies can lead to structural and functional damage to brain tissue. Common causes include traumatic brain injury, cerebral hemorrhage, ischemic stroke, and heat stroke. Globally, ABI represent a significant portion of neurosurgical cases. Previous studies have emphasized the significant therapeutic potential of stem cell-derived extracellular vesicles (EVs). Recent research indicates that EVs extracted from resident cells in the central nervous system (CNS) also show therapeutic potential following brain injury. Microglia, as innate immune cells of the CNS, respond to changes in the internal environment by altering their phenotype and secreting EVs that impact various CNS cells, including neurons, astrocytes, oligodendrocytes, endothelial cells, neural stem cells (NSCs), and microglia themselves. Notably, under different external stimuli, microglia can either promote neuronal survival, angiogenesis, and myelin regeneration while reducing glial scarring and inflammation, or they can exert opposite effects. This review summarizes and evaluates the current research findings on how microglia-derived EVs influence various CNS cells after ABI under different external stimuli. It analyzes the interaction mechanisms between EVs and resident CNS cells and discusses potential future research directions and clinical applications.
Collapse
Affiliation(s)
- Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Anqi He
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Kexin Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuchi Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mengyao He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| |
Collapse
|
15
|
Vieira WF, Real CC, Martins DO, Chacur M. The Role of Exercise on Glial Cell Activity in Neuropathic Pain Management. Cells 2025; 14:487. [PMID: 40214441 PMCID: PMC11988158 DOI: 10.3390/cells14070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Chronic pain is a widespread global health problem with profound socioeconomic implications, affecting millions of people of all ages. Glial cells (GCs) in pain pathways play essential roles in the processing of pain signals. Dysregulation of GC activity contributes to chronic pain states, making them targets for therapeutic interventions. Non-pharmacological approaches, such as exercise, are strongly recommended for effective pain management. This review examines the link between exercise, regular physical activity (PA), and glial cell-mediated pain processing, highlighting its potential as a strategy for managing chronic pain. Exercise not only improves overall health and quality of life but also influences the function of GCs. Recent research highlights the ability of exercise to mitigate neuroinflammatory responses and modulate the activity of GCs by reducing the activation of microglia and astrocytes, as well as modulating the expression biomarkers, thereby attenuating pain hypersensitivity. Here, we summarize new insights into the role of exercise as a non-pharmacological intervention for the relief of chronic pain.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| | - Caroline C. Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | | | - Marucia Chacur
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
16
|
Bo C, Liu X, Liu Y, Xu L, Huang Q. Resolvin D1 accelerates resolution of neuroinflammation by inhibiting microglia activation through the BDNF/TrkB signaling pathway. Eur J Med Res 2025; 30:189. [PMID: 40114280 PMCID: PMC11924792 DOI: 10.1186/s40001-025-02424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Neuropathic pain is characterized by hyperalgesia, allodynia, and inflammation and it is often resistant to treatment. The formyl peptide receptor 2 (ALX/FPR2), a G-protein-coupled receptor, has been implicated in resolving inflammation, making its agonist, Resolvin D1 (RvD1), a potential therapeutic agent. Previous studies suggest that RvD1 alleviates neuropathic pain via anti-inflammatory effects, but its mechanisms remain unclear, particularly in relation to microglial activation and the brain-derived neurotrophic factor (BDNF)/TrkB signaling pathway. OBJECTIVE To investigate the analgesic effects of RvD1 in a spared nerve injury (SNI) model of neuropathic pain and explore its mechanisms through the regulation of neuroinflammation and the BDNF/TrkB signaling pathway. METHODS SNI mice received intrathecal RvD1 at varying doses (10-40 ng) to determine its efficacy in reducing mechanical allodynia and thermal sensitivity. The anti-inflammatory effects of RvD1 were assessed using ELISA, immunofluorescence, and western blotting to measure the expression of pro-inflammatory cytokines and BDNF. The involvement of ALX/FPR2 and TrkB receptors was further examined using antagonists Boc2 and K252a. RESULTS RvD1 significantly reduced mechanical and thermal allodynia in SNI mice in a dose-dependent manner. RvD1 also decreased microglial activation and expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and BDNF in both in vivo and in vitro models. These effects were reversed by Boc2 and K252a, confirming that the analgesic actions of RvD1 are mediated via the ALX/FPR2 receptor and inhibition of BDNF/TrkB signaling. CONCLUSION RvD1 alleviates neuropathic pain by reducing neuroinflammation through the ALX/FPR2 receptor and suppressing BDNF/TrkB signaling. These findings suggest RvD1 as a promising therapeutic agent for neuropathic pain management.
Collapse
Affiliation(s)
- Cunju Bo
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China
| | - Xiaoming Liu
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China
| | - Yongjian Liu
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China
| | - Lingjun Xu
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China
| | - Qiaodong Huang
- Department of Pain Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, Guangdong, China.
| |
Collapse
|
17
|
Thau-Habermann N, Gschwendtberger T, Bodemer C, Petri S. Parthenolide regulates microglial and astrocyte function in primary cultures from ALS mice and has neuroprotective effects on primary motor neurons. PLoS One 2025; 20:e0319866. [PMID: 40100917 PMCID: PMC11918366 DOI: 10.1371/journal.pone.0319866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Over the last twenty years, the role of microgliosis and astrocytosis in the pathophysiology of neurodegenerative diseases has increasingly been recognized. Dysregulation of microglial and astrocyte properties and function has been described also in the fatal degenerative motor neuron disease amyotrophic lateral sclerosis (ALS). Microglia cells, the immune cells of the nervous system, can either have an immunonegative neurotoxic or immunopositive neuroprotective phenotype. The feverfew plant (Tanacetum parthenium) derived compound parthenolide has been found to be capable of interfering with microglial phenotype and properties. Positive treatment effects were shown in animal models of neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Now we were able to show that PTL has a modulating effect on primary mouse microglia cells, both wild type and SOD1, causing them to adopt a more neuroprotective potential. Furthermore, we were able to show that PTL, through its positive effect on microglia, also has an indirect positive impact on motor neurons, although PTL itself has no direct effect on these primary motor neurons. The results of our study give reason to consider PTL as a drug candidate for ALS.
Collapse
Affiliation(s)
| | | | - Colin Bodemer
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
18
|
Chen S, Li Z, Yang L, Xu Z, Liu A, He Q, Xiao F, Zhan J. Cannabinoid Receptor-2 Alleviates Sepsis-Induced Neuroinflammation by Modulating Microglia M1/M2 Subset Polarization Through Inhibiting Nogo-B Expression. Mol Neurobiol 2025:10.1007/s12035-025-04836-2. [PMID: 40102346 DOI: 10.1007/s12035-025-04836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Few studies have investigated how Nogo-B affects sepsis-associated encephalopathy (SAE). Cannabinoid receptor 2 (CB2R) plays a critical role in regulating M1/M2 polarization in microglia. This study aimed to explore the association between CB2R and Nogo-B by assessing changes in microglial polarization markers.C57BL/6 mice with SAE induced by cecal ligation and puncture (CLP) surgery were intraperitoneally injected with HU308 for 3 consecutive days at the same time after that, and changes in cognitive function were assessed. After Lipopolysaccharides (LPS) and Interleukin-4 (IL-4) were used to induce BV2 microglial cell models respectively, HU308 and AM630 were applied to assess changes in inflammatory factors, microglial polarization markers, and the expression levels of CB2R and Nogo-B in microglial cells. We established a stable Nogo-B overexpression cell line. ELISA, Western blot, and flow cytometry were utilized to verify whether Nogo-B is a crucial protein in controlling BV2 cell polarization by HU308. There was an increase in Nogo-B protein expression during SAE. HU308 treatment alleviated the cognitive impairment of the CLP mice and markedly decreased the level of Nogo-B in the hippocampus tissues. The efficacy of CB2R activation to promote microglia polarization from M1 to M2 was diminished in BV2 cells overexpressing Nogo-B, although its anti-inflammatory effect was not entirely reversed. Inhibiting the Nogo-B expression, which in turn encourages the conversion of BV2 microglia to M2, attenuates inflammatory responses, and promotes neuronal repair, could be a key mechanism whereby activation of CB2R ameliorates septic encephalopathy.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Zhen Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Liu Yang
- Department of Anesthesiology, Wuhan Asian Heart Hospital, 430022, Wuhan, Hubei, People's Republic of China
| | - Zujin Xu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Anpeng Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Fei Xiao
- Department of Orthopedics, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430033, Hubei, People's Republic of China.
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 169, East-Lake Road, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Zhang X, Liu Q, Li S, Wu R, Xiong Y, Wang Y, Gu Y, Song Z, Gong J, Zhao S. Traditional pediatric massage exerted an antidepressant effect and activated IGF-1/Nrf2 pathway in CUMS-exposed adolescent rats. J Neuroimmunol 2025; 400:578554. [PMID: 39954614 DOI: 10.1016/j.jneuroim.2025.578554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
The activation of insulin-like growth factor-1 (IGF-1)/nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway contributes to enhance anti-inflammatory M2 microglia polarization and inhibit proinflammatory M1 microglia polarization, which is essential to resist neuroinflammation and thus resist depression. The prevalence of depression is high in adolescents, who are hypersensitive to chronic stress. Traditional pediatric massage (TPM) can effectively relieve depression. In this study, we investigated the action mechanism of TPM on preventing depression-like behaviors in adolescent rats exposed to chronic unpredictable mild stress (CUMS). In this investigation, we employed several behavioral tests and detections, including western blotting, immunofluorescence staining and RT-qPCR. The findings of this study demonstrated that TPM had an effectively antidepressant effect, maintained microglia polarization homeostasis and resisted neuroinflammation in the hippocampus in CUMS-exposed adolescent rats. With the treatment of picropodophyllin, the inhibitor of IGF-1 receptor, the antidepressant effect of TPM was blocked, along with inhibited IGF-1/Nrf2 pathway which were closely related with anti-inflammatory and anti-ferroptosis actions. The results suggest that TPM enhanced the resilience of adolescent rats to CUMS and exerted an antidepressant effect partially via activating IGF-1/Nrf2 pathway.
Collapse
Affiliation(s)
- Xingxing Zhang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Que Liu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Siyuan Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Rong Wu
- Department of Medicine, Qinghai University, Xining 810016, Qinghai Province, China
| | - Ying Xiong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Yuhang Wang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yun Gu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhixiu Song
- College of Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jiaxuan Gong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shaoyun Zhao
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
20
|
Fu X, Zhang Y, Chen G, Mao G, Tang J, Xu J, Han Y, Chen H, Ding L. Responsive nanoparticles synergize with Curcumin to break the "reactive oxygen Species-Neuroinflammation" vicious cycle, enhancing traumatic brain injury outcomes. J Nanobiotechnology 2025; 23:172. [PMID: 40045354 PMCID: PMC11881390 DOI: 10.1186/s12951-025-03251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Traumatic brain injury (TBI) disrupts oxygen homeostasis in the brain, leading to excessive reactive oxygen species (ROS) production and dysregulated antioxidant mechanisms, which fail to clear excess ROS. This ROS overload promotes the expression of pro-inflammatory genes, releasing cytokines and chemokines and creating a vicious "ROS-neuroinflammation" cycle, making it essential to break this cycle for effective TBI treatment. In this study, we developed cysteine-alanine-glutamine-lysine (CAQK) peptide-modified antioxidant nanoparticles (C-PPS/C) for co-delivery of curcumin (Cur) to modulate oxidative and neuroinflammatory disturbances after TBI. In TBI mice, C-PPS/C nanoparticles accumulated in injured brain regions, where poly (propylene sulfide)120 scavenged ROS, reducing oxidative stress, while Cur release further suppressed ROS and inflammation. C-PPS/C nanoparticles broke the "ROS-neuroinflammation" cycle, protecting the blood-brain barrier (BBB), reducing acute brain edema, and promoting long-term neurological recovery. Further investigation showed that C-PPS/C nanoparticles inhibited the NF-κB pathway, reducing pro-inflammatory gene expression and mitigating inflammation, suggesting a promising approach for TBI treatment.
Collapse
Affiliation(s)
- Xianhua Fu
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yongkang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guojie Chen
- Clinical Laboratory, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Guangyao Mao
- Clinical Laboratory, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jiajia Tang
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Jin Xu
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yuhan Han
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Honglin Chen
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China.
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.
| |
Collapse
|
21
|
Soares AR, Garcia-Rivas V, Fai C, Thomas M, Zheng X, Picciotto MR, Mineur YS. Sex differences in the microglial response to stress and chronic alcohol exposure in mice. Biol Sex Differ 2025; 16:19. [PMID: 40038827 DOI: 10.1186/s13293-025-00701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Women are more susceptible to stress-induced alcohol drinking, and preclinical data suggest that stress can increase alcohol intake in female rodents; however, a comprehensive understanding of the neurobiological processes underlying this sex difference is still emerging. Neuroimmune signaling, particularly by microglia, the brain's macrophages, is known to contribute to dysregulation of limbic circuits following stress and alcohol exposure. Females exhibit heightened immune reactivity, so we set out to characterize sex differences in the microglial response to stress and alcohol exposure. METHODS Male and female C57BL/6J mice were administered alcohol over 15 or 22 trials of a modified Drinking in the Dark paradigm, with repeated exposure to inescapable footshock stress and the stress-paired context. Mice were perfused immediately after drinking and we performed immunohistochemical analyses of microglial density, morphology, and protein expression in subregions of the amygdala and hippocampus. RESULTS We observed dynamic sex differences in microglial phenotypes at baseline and in response to stress and alcohol. Microglia in the hippocampus displayed more prominent sex differences and heightened reactivity to stress and alcohol. Chronic alcohol exposure decreased density of amygdala microglia and lysosomal expression. CONCLUSION We analyzed multiple measures of microglial activation, resulting in a comprehensive assessment of microglial changes mediated by sex, stress, and alcohol. These findings highlight the complexity of microglial contributions to the development of AUD and comorbid mood and stress disorders in men and women.
Collapse
Affiliation(s)
- Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Vernon Garcia-Rivas
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Caroline Fai
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Merrilee Thomas
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Xiaoying Zheng
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA.
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA.
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street - 3rd Floor Research, New Haven, CT, 06508, USA.
| | - Yann S Mineur
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| |
Collapse
|
22
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Zhou Y, Zhao L, Tang Y, Qian S. Association between serum inflammatory cytokines levels and post-stroke depression among stroke patients: A meta-analysis and systematic review. J Psychosom Res 2025; 190:112050. [PMID: 39952012 DOI: 10.1016/j.jpsychores.2025.112050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Post-stroke depression (PSD) is a common neuropsychiatric complication after stroke. Neuroinflammation triggered by the stroke event may be its predisposing factor. METHODS We systematically searched all electronic databases up to December 22, 2024. Observational studies comparing cytokine levels between PSD and non-PSD patients were included. Sensitivity analysis, subgroup analysis, and meta-regression were conducted to assess robustness, explore heterogeneity, and identify effect modifiers. RESULTS A total of 26 studies with 6573 acute stroke patients were included, of whom 2453 developed PSD. PSD patients were older (63.7 vs. 62.8 years) and included more females (36.4 % vs. 35.1 %) than non-PSD patients. PSD patients had significantly higher serum levels of IL-1β (SMD = 0.35, 95 % CI = [0.07, 0.63], p = 0.02), IL-6 (SMD = 0.74, 95 % CI = [0.50, 0.97], p < 0.001), IL-18 (SMD = 0.49, 95% CI = [0.13, 0.86], p = 0.007), TNF-α (SMD = 0.44, 95 % CI = [0.15, 0.72], p = 0.003) and IFN-γ (SMD = 0.11, 95 % CI = [0.02, 0.19], p = 0.01), while IL-10 levels showed no significant difference (p = 0.06). IL-6 levels remained associated with PSD diagnosis at 1, 3 and 6 months. Meta-regression identified female proportion (IL-6: p = 0.043; IL-10: p = 0.024), mean age (IL-18: p = 0.015; TNF-α: p = 0.040), BMI (IL-18: p = 0.019), and diabetes proportion (IL-6: p = 0.009; TNF-α: p = 0.033) as significant moderators. CONCLUSIONS Inflammatory cytokines may serve as biomarkers for PSD, offering insights into its pathophysiology and potential diagnostic tools. Prospero registration number: CRD42024548753.
Collapse
Affiliation(s)
- Yao Zhou
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
| | - Lijuan Zhao
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yunzhu Tang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Zhejiang, China
| | - Shuxia Qian
- Department of Neurology, the Second Affiliated Hospital of Jiaxing University, Zhejiang, China.
| |
Collapse
|
24
|
von Bernhardi R, Eugenín J. Ageing-related changes in the regulation of microglia and their interaction with neurons. Neuropharmacology 2025; 265:110241. [PMID: 39617175 DOI: 10.1016/j.neuropharm.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Ageing is one of the most important risk factors for chronic health conditions, including neurodegenerative diseases. Inflammation is a feature of ageing, as well as a key pathophysiological mechanism for degenerative diseases. Microglia play multiple roles in the central nervous system; their states entail a complex assemblage of responses reflecting the multiplicity of functions they fulfil both under homeostatic basal conditions and in response to stimuli. Whereas glial cells can promote neuronal homeostasis and limit neurodegeneration, age-related inflammation (i.e. inflammaging) leads to the functional impairment of microglia and astrocytes, exacerbating their response to stimuli. Thus, microglia are key mediators for age-dependent changes of the nervous system, participating in the generation of a less supportive or even hostile environment for neurons. Whereas multiple changes of ageing microglia have been described, here we will focus on the neuron-microglia regulatory crosstalk through fractalkine (CX3CL1) and CD200, and the regulatory cytokine Transforming Growth Factor β1 (TGFβ1), which is involved in immunomodulation and neuroprotection. Ageing results in a dysregulated activation of microglia, affecting neuronal survival, and function. The apparent unresponsiveness of aged microglia to regulatory signals could reflect a restriction in the mechanisms underlying their homeostatic and reactive states. The spectrum of functions, required to respond to life-long needs for brain maintenance and in response to disease, would progressively narrow, preventing microglia from maintaining their protective functions. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Universidad San Sebastian, Faculty for Odontology and Rehabilitation Sciences. Lota 2465, Providencia, Santiago, PO. 7510602, Chile.
| | - Jaime Eugenín
- Universidad de Santiago de Chile, Faculty of Chemistry and Biology, Av. Libertador Bernardo O'Higgins 3363, Santiago, PO. 7510602, Chile.
| |
Collapse
|
25
|
Zhang SQ, Deng Q, Tian C, Zhao HH, Yang LY, Cheng XW, Wang GP, Liu D. Costunolide normalizes neuroinflammation and improves neurogenesis deficits in a mouse model of depression through inhibiting microglial Akt/mTOR/NF-κB pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01506-w. [PMID: 40011631 DOI: 10.1038/s41401-025-01506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
Neuroinflammation is crucial for the pathogenesis of major depression. Preclinical studies have shown the potential of anti-inflammatory agents, specifically costunolide (COS), correlate with antidepressant effects. In this study, we investigated the molecular mechanisms underlying the antidepressant actions of COS. Chronic restraint stress (CRS) was induced in male mice. The mice were treated with either intra-DG injection of COS (5 μM, 1 μL per side) or COS (20 mg/kg, i.p.) for 1 week. We showed that administration of COS through the both routes significantly ameliorated the depressive-like behavior in CRS-exposed mice. Furthermore, administration of COS significantly improved chronic stress-induced adult hippocampal neurogenesis deficits in the mice through attenuating microglia-derived neuroinflammation. We demonstrated that COS (5 μM) exerted anti-neuroinflammatory effects in LPS-treated BV2 cells via inhibiting microglial Akt/mTOR/NF-κB pathway; inactivation of mTOR/NF-κB/IL-1β pathway was required for the pro-neurogenic action of COS in CRS-exposed mice. Our results reveal the antidepressant mechanism of COS that is normalizing neuroinflammation to improve neurogenesis deficits, supporting anti-inflammatory agents as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Shao-Qi Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiao Deng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng Tian
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan-Huan Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, China
| | - Li-Ying Yang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Wei Cheng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guo-Ping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Sun J, Lu L, Lian Y, Xu S, Zhu Y, Wu Y, Lin Q, Hou J, Li Y, Yu Z. Sodium butyrate attenuates microglia-mediated neuroinflammation by modulating the TLR4/MyD88/NF-κB pathway and microbiome-gut-brain axis in cardiac arrest mice. Mol Brain 2025; 18:13. [PMID: 39962509 PMCID: PMC11834616 DOI: 10.1186/s13041-025-01179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Cardiac arrest (CA) is one of the most common illnesses worldwide. Post-CA brain injury (PCABI) is a major cause of death and poor recovery in CA patients and the current CA treatments are not very effective. The microbiome-gut-brain axis has been found to significantly affect brain ischemia injury. Furthermore, in ischemic stroke patients, short-chain fatty acids (SCFA), especially sodium butyrate (SB), have been observed to promote neuroprotective effects by modulating inflammatory response and microglial polarization in the cortex. However, the precise mechanism of SB on CA-induced injury remains elusive. Therefore, this research study established an oxygen-glucose deprivation and reoxygenation (OGD/R) model using BV-2 microglial and HT22 cells to simulate cerebral ischemia/reperfusion injury in vitro and a potassium chloride-induced CA mouse model to mimic CA in vivo. The data revealed that SB markedly improved neurological scores and reduced neuronal death and apoptosis. Moreover, it reduced M1 microglia and neuroinflammation in CA mice. In addition, SB increased intestinal integrity and alleviated systemic inflammation. The 16S rDNA sequencing analysis indicated that SB intervention mitigated CA-induced gut microbiota dysbiosis and SCFA depletion. It was also observed that CA mice's brain and OGD/R-exposed BV2 cells had substantially increased levels of MyD88, phosphorylated NF-κB p65, and TLR4 proteins, which were reduced after SB treatment. In summary, this study revealed that SB can protect against cerebral ischemia-reperfusion injury by controlling microglia polarization and microbiome-gut-brain axis to inhibit brain inflammation via the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Jianfei Sun
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, No. 99 ZhangZhidong Road, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, No. 99 ZhangZhidong Road, Wuhan, 430060, Hubei, China
| | - Yingtao Lian
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, No. 99 ZhangZhidong Road, Wuhan, 430060, Hubei, China
| | - Ying Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, No. 99 ZhangZhidong Road, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanping Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, No. 99 ZhangZhidong Road, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianhui Lin
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, No. 99 ZhangZhidong Road, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Hou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, No. 99 ZhangZhidong Road, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yinping Li
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430060, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, No. 99 ZhangZhidong Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
27
|
Balkhi S, Di Spirito A, Poggi A, Mortara L. Immune Modulation in Alzheimer's Disease: From Pathogenesis to Immunotherapy. Cells 2025; 14:264. [PMID: 39996737 PMCID: PMC11853524 DOI: 10.3390/cells14040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia, affecting a significant proportion of the elderly population. AD is characterized by cognitive decline and functional impairments due to pathological hallmarks like amyloid β-peptide (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglial activation, chronic neuroinflammation, and disruptions in neuronal communication further exacerbate the disease. Emerging research suggests that immune modulation could play a key role in AD treatment given the significant involvement of neuroinflammatory processes. This review focuses on recent advancements in immunotherapy strategies aimed at modulating immune responses in AD, with a specific emphasis on microglial behavior, amyloid clearance, and tau pathology. By exploring these immunotherapeutic approaches, we aim to provide insights into their potential to alter disease progression and improve patient outcomes, contributing to the evolving landscape of AD treatment.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| |
Collapse
|
28
|
Ikpeama EU, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Nwaogazie IL, Orisakwe OE. Selenium and zinc protect against heavy metal mixture-induced, olfactory bulb and hippocampal damage by augmenting antioxidant capacity and activation of Nrf2-Hmox-1 signaling in male rats. Int J Neurosci 2025; 135:242-256. [PMID: 38108304 DOI: 10.1080/00207454.2023.2295227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE/AIM OF THE STUDY Heavy metals and metalloids have been implicated in neurodenerative diseases. Present study has evaluated the potential protective effects of Se and Zn on heavy metals and metalloids mixture-induced (Cd, Pb, Hg and As) toxicity in the hippocampus and olfactory bulb in male rats. MATERIALS AND METHODS Five groups of Wistar rats were randomly divided in to: controls, toxic metals mixture (TMM) exposed rats (PbCl2, 20 mg·kg-1; CdCl2, 1.61 mg·kg-1; HgCl2, 0.40 mg·kg-1 and NaAsO3, 10 mg·kg-1)), TMM + Zn, TMM + Se and TMM-+Zn + Se groups and were orally treated for 60 days. RESULTS We found that in hippocampus and olfactory bulb, TMM generated increased lipid peroxidation and diminished antioxidant capacity. These adverse effects induced by TMM were alleviated by Zn and Se co-treatment; moreover, essential trace elements (Zn and Se) decreased activity of acetylcholinesterase, reduced Cd, Pb, Hg and As bioaccumulation in hippocampus and olfactory bulb and decreased levels of TNF-α in the hippocampus. TMM treated rats had lower levels of Hmox-1 (hippocampus), higher levels of Nrf2 (olfactory bulb and hippocampus) and NF-kB (olfactory bulb). TMM treated rats showed significantly highest time in locating the escape hole. Histopathological examination revealed hypertrophied granule cells in OB of TMM exposed rats. CONCLUSION Zn and Se supplementation can reverse quaternary mixture-induced (Cd, Pb, Hg and As) toxicity in hippocampus and OB in male albino rats.
Collapse
Affiliation(s)
- Evelyn U Ikpeama
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Ify L Nwaogazie
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, Nigeria
| |
Collapse
|
29
|
Lv J, Jiao Y, Zhao X, Kong X, Chen Y, Li L, Chen X, Tao X, Dong D. Examining the Impact of Microglia on Ischemic Stroke With an Emphasis on the Metabolism of Immune Cells. CNS Neurosci Ther 2025; 31:e70229. [PMID: 39945118 PMCID: PMC11822359 DOI: 10.1111/cns.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 01/11/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Ischemic stroke, a major cause of disability and the second leading cause of death, poses a significant public health challenge. Post-stroke inflammation can harm the blood-brain barrier and worsen neurological deficits, which are key factors in neuronal damage in patients with ischemic stroke. Microglia are crucial in the central nervous system, involved in inflammation, neuronal damage, and repair after cerebral ischemia. While cellular immune metabolism has been widely studied, its role in ischamic stroke remains unclear. AIM This review aims to examine how inflammation affects the phenotypic characteristics of immune cells after ischemic stroke and to explore the effects of the immune metabolic microenvironment on the phenotypic profiles and functions of microglia in ischemic stroke. METHOD The review refers to the available literature in PubMed, searching for critical terms related to Ischemic stroke, neuroinflammation, microglia, and immunometabolism. RESULT In this review, we found that during stroke progression, microglia can dynamically switch between pro-inflammatory and anti-inflammatory phenotypes. Microglial glycometabolism includes oxidative phosphorylation and glycolysis, and lipid metabolism involves lipid synthesis and breakdown. Modulating the production of inflammatory mediator precursors can induce an anti-inflammatory phenotype in microglia. CONCLUSION Thus, studying microglial metabolic pathways and their products may offer new insights for ischemic stroke treatment.
Collapse
Affiliation(s)
- Jing Lv
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yang Jiao
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianChina
| | - Xinya Zhao
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xin Kong
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianChina
| | - Yanwei Chen
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lu Li
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xuyang Chen
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xufeng Tao
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Deshi Dong
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
30
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Hashim A, Wilson DA, Weiss LM, Shukla S, Chokkalingam P, Das S, Das BC, Saito M. Methionine Aminopeptidase 2 (MetAP2) Inhibitor BL6 Attenuates Inflammation in Cultured Microglia and in a Mouse Model of Alzheimer's Disease. Molecules 2025; 30:620. [PMID: 39942725 PMCID: PMC11820257 DOI: 10.3390/molecules30030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) plays an important role in the regulation of protein synthesis and post-translational processing. Preclinical/clinical applications of MetAP2 inhibitors for the treatment of various diseases have been explored because of their antiangiogenic, anticancer, antiobesity, antidiabetic, and immunosuppressive properties. However, the effects of MetAP2 inhibitors on CNS diseases are rarely examined despite the abundant presence of MetAP2 in the brain. Previously, we synthesized a novel boron-containing MetAP2 inhibitor, BL6, and found that it suppressed angiogenesis and adipogenesis yet improved glucose uptake. Here, we studied the anti-inflammatory effects of BL6 in SIM-A9 microglia and in a mouse model of Alzheimer's disease generated by the intracerebroventricular (icv) injection of streptozotocin (STZ). We found that BL6 reduced proinflammatory molecules, such as nitric oxide, iNOS, IL-1β, and IL-6, together with phospho-Akt and phospho-NF-κB p65, which were elevated in lipopolysaccharide (LPS)-activated microglial SIM-A9 cells. However, the LPS-induced reduction in Arg-1 and CD206 was attenuated by BL6, suggesting that BL6 promotes microglial M1 to M2 polarization. BL6 also decreased glial activation along with a reduction in phospho-tau and an elevation in synaptophysin in the icv-STZ mouse model. Thus, our experiments demonstrate an anti-neuroinflammatory action of BL6, suggesting possible clinical applications of MetAP2 inhibitors for brain disorders in which neuroinflammation is involved.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Audrey Hashim
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY 10016, USA
| | - Louis M. Weiss
- Department of Pathology/Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Srushti Shukla
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Parthiban Chokkalingam
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Sasmita Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Bhaskar C. Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Nakisli S, Fanelli K, LaComb J, Arnold LJ, Nielsen CM. CNS resident macrophages exhibit region-specific states and immunogenic responses during Rbpj-deficient brain arteriovenous malformation. Sci Rep 2025; 15:3932. [PMID: 39890825 PMCID: PMC11785973 DOI: 10.1038/s41598-025-86150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025] Open
Abstract
Microglia are heterogeneous macrophage cells that serve as the central nervous system's resident immune cells. During neuro-related diseases, CNS resident macrophages change their molecular, cellular, and functional properties-that collectively define "states"-in response to specific neural perturbations. Neurovascular diseases elicit state changes, by promoting increased vascular permeability among microvessels and thus altering blood-brain barrier integrity. Here, we used a mouse model of brain arteriovenous malformation (bAVM)-mediated by endothelial loss of Recombination signal binding protein for immunoglobulin kappa J region (Rbpj)-to investigate changes to brain resident macrophage states during neurovascular disease pathogenesis. We found increased area of Ionized calcium-binding adapter molecule 1 (Iba1) expression in Rbpj-deficient bAVM tissue, as well as Iba1 + cell hypertrophy, increased cell number, and hyperproliferation within areas of increased Iba1 + density. Hypertrophic cells had increased cell body areas and decreased process length, suggesting a transition in surveillance state. Gene expression data revealed region-specific molecular changes to Iba + cells, suggestive of altered metabolic activity. CNS resident macrophages isolated from cortical and cerebellar regions showed profiles consistent with cytokine-associated immunogenic responses and an immunovigilant pathogen-recognition response, respectively. Thus, our findings demonstrate region-specific changes to CNS resident macrophages during Rbpj-deficient bAVM.
Collapse
Affiliation(s)
- Sera Nakisli
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
- Neuroscience Program, Ohio University, Athens, OH, USA
| | - Kayleigh Fanelli
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
- Neuroscience Program, Ohio University, Athens, OH, USA
| | - Julia LaComb
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
| | - Lily J Arnold
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
- Honors Tutorial College Biological Sciences Program, Ohio University, Athens, OH, USA
| | - Corinne M Nielsen
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA.
- Neuroscience Program, Ohio University, Athens, OH, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA.
| |
Collapse
|
32
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
33
|
Amato S, Arnold A. A Data-Informed Mathematical Model of Microglial Cell Dynamics During Ischemic Stroke in the Middle Cerebral Artery. Bull Math Biol 2025; 87:31. [PMID: 39847151 DOI: 10.1007/s11538-025-01412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Neuroinflammation immediately follows the onset of ischemic stroke in the middle cerebral artery. During this process, microglial cells are activated in and recruited to the penumbra. Microglial cells can be activated into two different phenotypes: M1, which can worsen brain injury; or M2, which can aid in long-term recovery. In this study, we contribute a summary of experimental data on microglial cell counts in the penumbra following ischemic stroke induced by middle cerebral artery occlusion (MCAO) in mice and compile available data sets into a single set suitable for time series analysis. Further, we formulate a mathematical model of microglial cells in the penumbra during ischemic stroke due to MCAO. Through use of global sensitivity analysis and Markov Chain Monte Carlo (MCMC)-based parameter estimation, we analyze the effects of the model parameters on the number of M1 and M2 cells in the penumbra and fit identifiable parameters to the compiled experimental data set. We utilize results from MCMC parameter estimation to ascertain uncertainty bounds and forward predictions for the number of M1 and M2 microglial cells over time. Results demonstrate the significance of parameters related to M1 and M2 activation on the number of M1 and M2 microglial cells. Simulations further suggest that potential outliers in the observed data may be omitted and forecast predictions suggest a lingering inflammatory response.
Collapse
Affiliation(s)
- Sara Amato
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Andrea Arnold
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA.
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
34
|
Haorah J, Malaroviyam S, Iyappan H, Samikkannu T. Neurological impact of HIV/AIDS and substance use alters brain function and structure. Front Med (Lausanne) 2025; 11:1505440. [PMID: 39839621 PMCID: PMC11747747 DOI: 10.3389/fmed.2024.1505440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection is the cause of acquired immunodeficiency syndrome (AIDS). Combination antiretroviral therapy (cART) has successfully controlled AIDS, but HIV-associated neurocognitive disorders (HANDs) remain prevalent among people with HIV. HIV infection is often associated with substance use, which promotes HIV transmission and viral replication and exacerbates HANDs even in the era of cART. Thus, the comorbid effects of substance use exacerbate the neuropathogenesis of HANDs. Unraveling the mechanism(s) of this comorbid exacerbation at the molecular, cell-type, and brain region levels may provide a better understanding of HAND persistence. This review aims to highlight the comorbid effects of HIV and substance use in specific brain regions and cell types involved in the persistence of HANDs. This review includes an overview of post-translational modifications, alterations in microglia-specific biomarkers, and possible mechanistic pathways that may link epigenomic modifications to functional protein alterations in microglia. The impairment of the microglial proteins that are involved in neural circuit function appears to contribute to the breakdown of cellular communication and neurodegeneration in HANDs. The epigenetic modification of N-terminal acetylation is currently understudied, which is discussed in brief to demonstrate the important role of this epigenetic modification in infected microglia within specific brain regions. The discussion also explores whether combined antiretroviral therapy is effective in preventing HIV infection or substance-use-mediated post-translational modifications and protein alterations in the persistence of neuropathogenesis in HANDs.
Collapse
Affiliation(s)
| | | | | | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, United States
| |
Collapse
|
35
|
Henry RJ, Loane DJ. Unraveling the complexity of microglial responses in traumatic brain and spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:113-132. [PMID: 40148040 DOI: 10.1016/b978-0-443-19102-2.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Microglia, the resident innate immune cells of the central nervous system (CNS), play an important role in neuroimmune signaling, neuroprotection, and neuroinflammation. In the healthy CNS, microglia adopt a surveillant and antiinflammatory phenotype characterized by a ramified scanning morphology that maintains CNS homeostasis. In response to acquired insults, such as traumatic brain injury (TBI) or spinal cord injury (SCI), microglia undergo a dramatic morphologic and functional switch to that of a reactive state. This microglial switch is initially protective and supports the return of the injured tissue to a physiologic homeostatic state. However, there is now a significant body of evidence that both TBI and SCI can result in a chronic state of microglial activation, which contributes to neurodegeneration and impairments in long-term neurologic outcomes in humans and animal models. In this review, we discuss the complex role of microglia in the pathophysiology of TBI and SCI, and recent advancements in knowledge of microglial phenotypic states in the injured CNS. Furthermore, we highlight novel therapeutic strategies targeting chronic microglial responses in experimental models and discuss how they may ultimately be translated to the clinic for human brain and SCI.
Collapse
Affiliation(s)
- Rebecca J Henry
- Department of Pharmacology, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Salia S, Burke FF, Hinks ME, Randell AM, Matheson MA, Walling SG, Swift-Gallant A. Gut microbiota transfer from the preclinical maternal immune activation model of autism is sufficient to induce sex-specific alterations in immune response and behavioural outcomes. Brain Behav Immun 2025; 123:813-823. [PMID: 39471905 DOI: 10.1016/j.bbi.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024] Open
Abstract
The gut microbiome plays a vital role in health and disease, including neurodevelopmental disorders like autism spectrum disorder (ASD). ASD affects 4:1 males-to-females, and sex differences are apparent in gut microbiota composition among ASD individuals and in animal models of this condition, such as the maternal immune activation (MIA) mouse model. However, few studies have included sex as a biological variable when assessing the role of gut microbiota in mediating ASD symptoms. Using the MIA model of ASD, we assessed whether gut microbiota contributes to the sex differences in the presentation of ASD-like behaviors. Gut microbiota transplantation from MIA or vehicle/control male and female mice into healthy, otherwise unmanipulated, 4-week-old C57Bl/6 mice was performed for 6 treatments over 12 days. Colonization with male, but not female, MIA microbiota was sufficient to reduce sociability, decrease microbiota diversity and increase neuroinflammation with more pronounced deficits in male recipients. Colonization with both male and female donor microbiota altered juvenile ultrasonic vocalizations and anxiety-like behavior in recipients of both sexes, and there was an accompanied change in the gut microbiota and serum cytokine IL-4 and IL-7 levels of all recipients of MIA gut microbiota. In addition to the increases in gut microbes associated with pathological states, the female donor microbiota profile also had increases in gut microbes with known neural protective effects (e.g., Lactobacillus and Rikenella). These results suggest that gut reactivity to environmental insults, such as in the MIA model, may play a role in shaping the sex disparity in ASD development.
Collapse
Affiliation(s)
- Stephanie Salia
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B 3X9, Canada.
| | - Francine F Burke
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B 3X9, Canada
| | - Meagan E Hinks
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B 3X9, Canada
| | - Alison M Randell
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B 3X9, Canada
| | - Mairead Anna Matheson
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B 3X9, Canada
| | - Susan G Walling
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B 3X9, Canada
| | - Ashlyn Swift-Gallant
- Department of Psychology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
37
|
Feghali J, Jackson CM. Therapeutic implications for the PD-1 axis in cerebrovascular injury. Neurotherapeutics 2025; 22:e00459. [PMID: 39368872 PMCID: PMC11840351 DOI: 10.1016/j.neurot.2024.e00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Since the discovery and characterization of the PD-1/PD-L pathway, mounting evidence has emerged regarding its role in regulating neuroinflammation following cerebrovascular injury. Classically, PD-L1 on antigen-presenting cells or tissues binds PD-1 on T cell surfaces resulting in T cell inhibition. In myeloid cells, PD-1 stimulation induces polarization of microglia and macrophages into an anti-inflammatory, restorative phenotype. The therapeutic potential of PD-1 agonism in ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage-related vasospasm, and traumatic brain injury rests on the notion of harnessing the immunomodulatory function of immune checkpoint pathways to temper the harmful effects of immune overactivation and secondary injury while promoting repair and recovery. Immune checkpoint agonism has greater specificity than the wider and non-specific anti-inflammatory effects of other agents, such as steroids. PD-1 agonism has already demonstrated success in clinical trials for rheumatoid arthritis and is being tested in other chronic inflammatory diseases. Further investigation of PD-1 agonism as a therapeutic strategy in cerebrovascular injury can help clarify the mechanisms underlying clinical benefit, develop drugs with optimal pharmacodynamic and pharmacokinetic properties, and mitigate unwanted side effects.
Collapse
Affiliation(s)
- James Feghali
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Kim ME, Lee JS. Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders. Curr Issues Mol Biol 2024; 47:8. [PMID: 39852123 PMCID: PMC11763386 DOI: 10.3390/cimb47010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells. Key signaling pathways, including NF-κB, JAK-STAT, and the NLRP3 inflammasome, are discussed alongside emerging regulators such as non-coding RNAs, epigenetic modifications, and the gut-brain axis. The therapeutic landscape is evolving, with traditional anti-inflammatory drugs like NSAIDs and corticosteroids offering limited efficacy in chronic conditions. Immunomodulators, gene and RNA-based therapeutics, and stem cell methods have all shown promise for more specific and effective interventions. Additionally, the modulation of metabolic states and gut microbiota has emerged as a novel strategy to regulate neuroinflammation. Despite significant progress, challenges remain in translating these findings into clinically viable therapies. Future studies should concentrate on integrated, interdisciplinary methods to reduce chronic neuroinflammation and slowing the progression of neurodegenerative disorders, providing opportunities for revolutionary advances in CNS therapies.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
39
|
Li M, Tong F, Wu B, Dong X. Radiation-Induced Brain Injury: Mechanistic Insights and the Promise of Gut-Brain Axis Therapies. Brain Sci 2024; 14:1295. [PMID: 39766494 PMCID: PMC11674909 DOI: 10.3390/brainsci14121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Radiation therapy is widely recognized as an efficacious modality for treating neoplasms located within the craniofacial region. Nevertheless, this approach is not devoid of risks, predominantly concerning potential harm to the neural structures. Adverse effects may encompass focal cerebral necrosis, cognitive function compromise, cerebrovascular pathology, spinal cord injury, and detriment to the neural fibers constituting the brachial plexus. With increasing survival rates among oncology patients, evaluating post-treatment quality of life has become crucial in assessing the benefits of radiation therapy. Consequently, it is imperative to investigate therapeutic strategies to mitigate cerebral complications from radiation exposure. Current management of radiation-induced cerebral damage involves corticosteroids and bevacizumab, with preclinical research on antioxidants and thalidomide. Despite these efforts, an optimal treatment remains elusive. Recent studies suggest the gut microbiota's involvement in neurologic pathologies. This review aims to discuss the causes and existing treatments for radiation-induced cerebral injury and explore gut microbiota modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mengting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
40
|
Mazarati A. Gut-microbiota-brain Axis and post-traumatic epilepsy. Epilepsia Open 2024. [PMID: 39688879 DOI: 10.1002/epi4.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
There has been growing evidence that perturbations in gut-microbiota-brain axis (GMBA) are involved in mechanisms of chronic sequelae of traumatic brain injury (TBI). This review discusses the connection between GMBA and post-traumatic epilepsy (PTE), the latter being a common outcome of TBI. The focus is on two aspects of post-TBI GMBA dysfunction that are relevant to epilepsy. First are impairments in intestinal permeability with subsequent translocation of gut bacteria into the bloodstream. Specifically, endotoxemia following TBI may have a serendipitous protective effect against PTE through lipopolysaccharide conditioning, which may be leveraged for the development of therapeutic interventions. Second are changes in microbial composition (i.e., dysbiosis). Here, the GMBA-PTE connection is explored from predictive biomarker perspective, whereby the risk of PTE can be stratified based on specific microbial profiles. Finally, microbiota transplantation is discussed both as a tool to examine the role of gut microbiota in PTE and as a prelude to novel approaches for PTE therapy and prevention.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Pediatrics and Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| |
Collapse
|
41
|
Shrivastava P, Lu Y, Su S, Kobayashi Y, Zhao Y, Lien N, Masoud AR, Lukiw WJ, Hong S. Maresin-like 1 Ameliorates Neuropathology of Alzheimer's Disease in Brains of a Transgenic Mouse Model. Biomedicines 2024; 12:2865. [PMID: 39767773 PMCID: PMC11673747 DOI: 10.3390/biomedicines12122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: Impeded resolution of inflammation contributes substantially to the pathogenesis of Alzheimer's disease (AD); consequently, resolving inflammation is pivotal to the amelioration of AD pathology. This can potentially be achieved by the treatment with specialized pro-resolving lipid mediators (SPMs), which should resolve neuroinflammation in brains. (2) Methods: Here, we report the histological effects of long-term treatment with an SPM, maresin-like 1 (MarL1), on AD pathogenesis in a transgenic 5xFAD mouse model. (3) Results: MarL1 treatment reduced Aβ overload, curbed the loss of neurons in brains especially cholinergic neurons associated with cleaved-caspase-3-associated apoptotic degeneration, reduced microgliosis and the pro-inflammatory M1 polarization of microglia, curbed the AD-associated decline in anti-inflammatory Iba1+Arg-1+-M2 microglia, inhibited phenotypic switching to pro-inflammatory N1 neutrophils, promoted the blood-brain barrier-associated tight-junction protein claudin-5 and decreased neutrophil leakage in 5xFAD brains, and induced the switch of neutrophils toward the inflammation-resolving N2 phenotype. (4) Conclusions: Long-term administration of MarL1 mitigates AD-related neuropathogenesis in brains by curbing neuroinflammation and neurodegeneration, based on the histological results. These findings provide preclinical leads and mechanistic insights for the development of MarL1 into an effective modality to ameliorate AD pathogenesis.
Collapse
Affiliation(s)
- Pallavi Shrivastava
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA (Y.Z.); (N.L.); (A.-R.M.)
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA (Y.Z.); (N.L.); (A.-R.M.)
| | - Shanchun Su
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA (Y.Z.); (N.L.); (A.-R.M.)
| | - Yuichi Kobayashi
- Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Yuhai Zhao
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA (Y.Z.); (N.L.); (A.-R.M.)
| | - Nathan Lien
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA (Y.Z.); (N.L.); (A.-R.M.)
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA (Y.Z.); (N.L.); (A.-R.M.)
| | - Walter J. Lukiw
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA (Y.Z.); (N.L.); (A.-R.M.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA (Y.Z.); (N.L.); (A.-R.M.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA
| |
Collapse
|
42
|
Darwish R, Alcibahy Y, Bucheeri S, Albishtawi A, Tama M, Shetty J, Butler AE. The Role of Hypothalamic Microglia in the Onset of Insulin Resistance and Type 2 Diabetes: A Neuro-Immune Perspective. Int J Mol Sci 2024; 25:13169. [PMID: 39684879 DOI: 10.3390/ijms252313169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Historically, microglial activation has been associated with diseases of a neurodegenerative and neuroinflammatory nature. Some, like Alzheimer's disease, Parkinson's disease, and multiple system atrophy, have been explored extensively, while others pertaining to metabolism not so much. However, emerging evidence points to hypothalamic inflammation mediated by microglia as a driver of metabolic dysregulations, particularly insulin resistance and type 2 diabetes mellitus. Here, we explore this connection further and examine pathways that underlie this relationship, including the IKKβ/NF-κβ, IRS-1/PI3K/Akt, mTOR-S6 Kinase, JAK/STAT, and PPAR-γ signaling pathways. We also investigate the role of non-coding RNAs, namely microRNAs and long non-coding RNAs, in insulin resistance related to neuroinflammation and their diagnostic and therapeutic potential. Finally, we explore therapeutics further, searching for both pharmacological and non-pharmacological interventions that can help mitigate microglial activation.
Collapse
Affiliation(s)
- Radwan Darwish
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Yasmine Alcibahy
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Shahd Bucheeri
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Ashraf Albishtawi
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Maya Tama
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Jeevan Shetty
- Department of Biochemistry, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| | - Alexandra E Butler
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain (RCSI-MUB), Busaiteen 228, Bahrain
| |
Collapse
|
43
|
Lee SH, Shin HS, So YH, Lee DH, An BS, Lee GS, Jung EM. Maternal exposure to 4-tert-octylphenol causes alterations in the morphology and function of microglia in the offspring mouse brain. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136258. [PMID: 39471617 DOI: 10.1016/j.jhazmat.2024.136258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
4-tert-Octylphenol (OP), an endocrine disrupting chemical is widely used in the production of industrial products. Prenatal exposure to endocrine-disrupting chemicals negatively affects the brain. However, the influence of OP exposure during neurodevelopment in adult offspring remains unclear. Thus, in the present study, we investigated the effects of maternal OP exposure on brain development in adult offspring by analyzing primary glial cell cultures and mice. Our findings revealed that OP exposure led to a specific increase in the mRNA expression of the ionized calcium-binding adapter molecule 1 (Iba-1) and the proportion of amoeboid microglia in the primary glial cell culture and adult offspring mice. Exposure to OP increased the transcriptional activation of Iba-1 and estrogen response element, which were counteracted by estrogen receptor antagonists ICI 182,780. Moreover, OP exposure increased the nuclear localization of the estrogen receptor. Remarkably, OP exposure decreased the mRNA expression levels of proinflammatory cytokines and genes associated with immune response in the brains of the offspring. OP exposure upregulated actin filament-related genes and altered cytoskeletal gene expression, as demonstrated by microarray analysis. The morphological changes in microglia did not result in an inflammatory response following lipopolysaccharide treatment. Taken together, the effects of OP exposure during neurodevelopment persist into adulthood, resulting in microglial dysfunction mediated by estrogen receptor signaling pathways in the brains of adult offspring mice.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Hyun Seung Shin
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Yun Hee So
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Dong Hun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Geun-Shik Lee
- Department of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute for Future Earth, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
44
|
Xing D, Zhang W, Liu Y, Huang H, Xie J. Genes related to microglia polarization and immune infiltration in Alzheimer's Disease. Mamm Genome 2024; 35:749-763. [PMID: 39390284 DOI: 10.1007/s00335-024-10073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Alzheimer's Disease (AD) remains a significant challenge due to its complex etiology and socio-economic burden. In this study, we investigated the roles of macrophage polarization-related hub genes in AD pathology, focusing on their impact on immune infiltration and gene regulation in distinct brain regions. Using Gene Expression Omnibus (GEO) datasets GSE110226 (choroid plexus) and GSE1297 (hippocampal CA1), we identified key genes-EDN1, HHLA2, KL, TREM2, and WWTR1-associated with AD mechanisms and immune responses. Based on these findings, we developed a diagnostic model demonstrating favorable calibration and clinical applicability. Furthermore, we explored molecular interactions within mRNA-transcription factor and mRNA-miRNA regulatory networks, providing deeper insights into AD progression and identifying potential therapeutic targets. The novel identification of WWTR1 and HHLA2 as biomarkers expands the diagnostic toolkit for AD, offering new perspectives on the disease's underlying immune dynamics. However, external dataset validation and further in vitro and in vivo studies are required to confirm these results and their clinical relevance.
Collapse
Affiliation(s)
- Dianxia Xing
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China.
| | - Wenjin Zhang
- Central Laboratory of Chongqing University Three Gorges Hospital, Chongqing, 404100, China
| | - Yan Liu
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Hong Huang
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Junjie Xie
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| |
Collapse
|
45
|
Hu X, Zhao M, Wang M, Wang D, Zhu L, Su C, Wu Q. Elevated serum and cerebrospinal fluid levels of Interleukin-4 related to poor outcome of Aneurysmal subarachnoid hemorrhage. Cytokine 2024; 184:156780. [PMID: 39432948 DOI: 10.1016/j.cyto.2024.156780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a hemorrhagic cerebrovascular disease that seriously jeopardizes human life and health. Some studies have shown that although Interleukin-4 (IL-4) acts as an anti-inflammatory factor, IL-4 levels are elevated when the disease occurs. This study focuses on exploring the relationship between IL and 4 concentrations in the serum and cerebrospinal fluid (CSF) and poor outcome in patients with aSAH. This study was a prospective observational study and 210 aSAH patients who met the inclusion criteria were divided into two groups according to the mRS score at 3 months after discharge, and 210 healthy people were selected as controls. The IL-4 concentrations were quantitatively determined with enzyme-linked adsorption assay (ELISA). We can draw a conclusion that Serum and CSF IL-4 concentrations are generally elevated in patients with poor outcome(P < 0.05), and the CSF IL-4 concentration decreased gradually over the progress of time (P < 0.05). The IL-4 concentration in the CSF was positively correlated with age, platelet-lymphocyte ratio (PLR), C-reactive protein (CRP), Hunt-Hess grade, mRS score, and World Federation of Neurological Surgeons score (WFNS) (P < 0.0001). Additionally, IL-4 concentrations in the CSF were correlated with complications such as intracranial infection (P = 0.01), cerebral edema (P < 0.01), hydrocephalus (P = 0.02), and complications by DCI (P = 0.02). Elevated serum and CSF concentrations of IL-4 may associated with the outcome of aSAH and may be a candidate early biomarkers for outcome of aSAH.
Collapse
Affiliation(s)
- Xuemei Hu
- Clinical Medical College of Jining Medical University, Jining 272067, China; Department of Emergency, Jining No. 1 People's Hospital, Jining 272011, China
| | - Mingyang Zhao
- Clinical Medical College of Jining Medical University, Jining 272067, China; Department of Emergency, Jining No. 1 People's Hospital, Jining 272011, China
| | - Meixue Wang
- Clinical Medical College of Jining Medical University, Jining 272067, China; Department of Emergency, Jining No. 1 People's Hospital, Jining 272011, China
| | - Dongsen Wang
- Department of Emergency, Zouping People's Hospital, Binzhou 256200, China
| | - Liangzhen Zhu
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Chunhai Su
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining 272011, China.
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People's Hospital, Jining 272011, China.
| |
Collapse
|
46
|
Alrouji M, Anwar S, Venkatesan K, Shahwan M, Hassan MI, Islam A, Shamsi A. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res Rev 2024; 102:102575. [PMID: 39515619 DOI: 10.1016/j.arr.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Ageing is a major risk factor for various chronic diseases and offers a potential target for developing novel and broadly effective preventatives or therapeutics for age-related conditions, including those affecting the brain. Mechanisms contributing to ageing have been summarized as the hallmarks of ageing, with iron imbalance being one of the major factors. Ferroptosis, an iron-mediated lipid peroxidation-induced programmed cell death, has recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Addressing ferroptosis offers both opportunities and challenges for treating neurodegenerative diseases, though the specific mechanisms remain unclear. This research explores the key processes behind how ferroptosis contributes to brain ageing, with a focus on the complex signaling networks that are involved. The current article aims to uncover that how ferroptosis, a specific type of cell death, may drive age-related changes in the brain. Additionally, the article also unveils its role in neurodegenerative diseases, discussing how understanding these mechanisms could open up new therapeutic avenues.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Saleha Anwar
- Center for Global Health Research, Saveetha medical college, Saveetha institute of Medical and Technical Sciences, Chennai, India.
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Asimul Islam
- Center for Interdsicplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
47
|
Chen W, Liu M, Li Z, Luo Z, Wu J. Phloretin alleviates sleep deprivation-induced cognitive impairment by reducing inflammation through PPARγ/NF-κB signaling pathway. Exp Neurol 2024; 382:114949. [PMID: 39284540 DOI: 10.1016/j.expneurol.2024.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Sleep loss leads to significant pathophysiological consequences, including cognitive impairment. The neuroinflammation are pivotal factors in the pathogenesis of cognitive impairment induced by sleep loss. The phloretin (PHL), derived from peel of juicy fruits, has demonstrated potent anti-inflammatory properties. However, the precise influence of PHL on the cognitive impairment triggered by sleep loss and its underlying mechanism remain uncertain. In the present study, mice were subjected to sleep deprivation (SD) paradigm. Cognitive impairment induced by SD were significantly relieved by administration of PHL in a dose-dependent manner. Furthermore, PHL not only mitigated the synaptic losses but also enhanced dendritic spine density and neuronal activity within mice hippocampus following exposure to SD. Moreover, PHL treatment decreased the microglial numbers and altered microglial morphology in the hippocampus to restore the M1/M2 balances; these effects were accompanied by regulation of pro-/anti-inflammatory cytokine production and secretion in SD-exposed mice. Additionally, in vivo and in vitro studies showed PHL might attenuate the inflammation through the PPARγ/NF-κB pathway. Our findings suggest that PHL exerts inhibitory effects on microglia-mediated neuroinflammation, thereby providing protection against cognitive impairment induced by SD through a PPAR-γ dependent mechanism. The results indicate PHL is expected to provide a valuable candidate for new drug development for SD-induced cognitive impairment in the future.
Collapse
Affiliation(s)
- Wenjun Chen
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China; Meizhou Clinical Medical College of Guangdong Medical University, Meizhou 514000, China; Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514000, China.
| | - Mei Liu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Afffliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziming Li
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| | - Zhoucai Luo
- National Canine Laboratory Animal Resources Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd., Guangzhou 510240, China
| | - Jianlin Wu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China; Meizhou Clinical Medical College of Guangdong Medical University, Meizhou 514000, China; Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514000, China.
| |
Collapse
|
48
|
Meer E. Role of Noncoding RNAs in Modulating Microglial Phenotype. Glob Med Genet 2024; 11:304-311. [PMID: 39258255 PMCID: PMC11383642 DOI: 10.1055/s-0044-1790283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Microglia are immunocompetent cells that are present in the retina and central nervous system, and are involved in the development maintenance and immune functions in these systems. Developing from yolk sac-primitive macrophages, they proliferate in the local tissues during the embryonic period without resorting to the production from the hematopoietic stem cells, and are critical in sustaining homeostasis and performing in disease and injury; they have morphological characteristics and distinct phenotypes according to the microenvironment. Microglia are also present in close association with resident cells in the retina where they engage in synapse formation, support normal functions, as well as immune defense. They are involved in the development of numerous neurodegenerative and ophthalmic diseases and act as diversity shields and triggers. Noncoding ribonucleic acids (ncRNAs) refer to RNA molecules synthesized from the mammalian genome, and these do not have protein-coding capacity. These ncRNAs play a role in the regulation of gene expression patterns. ncRNAs have only been recently identified as vastly significant molecules that are involved in the posttranscriptional regulation. Microglia are crucial for brain health and functions and current studies have focused on the effects caused by ncRNA on microglial types. Thus, the aim of the review was to provide an overview of the current knowledge about the regulation of microglial phenotypes by ncRNAs.
Collapse
Affiliation(s)
- Eiman Meer
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| |
Collapse
|
49
|
Haque A, Zaman V, Drasites KP, Matzelle D, Sawant S, Vertegel A, Varma A, Banik NL. Induction of Neural Differentiation and Protection by a Novel Slow-Release Nanoparticle Estrogen Construct in a Rat Model of Spinal Cord Injury. Neurochem Res 2024; 50:41. [PMID: 39613948 PMCID: PMC11607007 DOI: 10.1007/s11064-024-04289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Spinal cord injury (SCI) is a complex debilitating condition leading to permanent life-long neurological deficits. Estrogen (E2) treatment is known to be neuroprotectant in SCI. This hormone is highly pleiotropic and has been shown to decrease apoptosis, modulate calcium signaling, regulate growth factor expression, act as an anti-inflammatory, and drive angiogenesis. These beneficial effects were found in our earlier study at the low dose of 10 µg/kg E2 in rats. However, the dose remains non-physiologic, which poses a safety hurdle for clinical use. Thus, we recently devised/constructed a fast release nanoparticle (NP) estrogen embedded (FNP-E2) construct and tested a focal delivery system in a contused SCI rat model which showed protection in the short run. In the current study, we have developed a novel slow-release NP estrogen (SNP-E2) delivery system that shows sustained release of E2 in the injured spinal cord and no systemic exposure in the host. The study of E2 release and kinetics of this SNP-E2 construct in vitro and in vivo supported this claim. Delivery of E2 to the injured spinal cord via this approach reduced inflammation and gliosis, and induced microglial differentiation of M1 to M2 in rats after SCI. Analysis of spinal cord samples showed improved myelination and survival signals (AKT) as demonstrated by western blot analysis. SNP-E2 treatment also induced astrocytic differentiation into neuron-like (MAP2/NeuN) cells, supported the survival of oligodendrocyte precursor cells (OPC), and improved bladder and locomotor function in rats following SCI. These data suggest that this novel delivery strategy of SNP-E2 to the injured spinal cord may provide a safe and effective therapeutic approach to treat individuals suffering from SCI.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA.
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Kelsey P Drasites
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Sushant Sawant
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Abhay Varma
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA.
| |
Collapse
|
50
|
Bhatt M, Sharma M, Das B. The Role of Inflammatory Cascade and Reactive Astrogliosis in Glial Scar Formation Post-spinal Cord Injury. Cell Mol Neurobiol 2024; 44:78. [PMID: 39579235 PMCID: PMC11585509 DOI: 10.1007/s10571-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Reactive astrogliosis and inflammation are pathologic hallmarks of spinal cord injury. After injury, dysfunction of glial cells (astrocytes) results in glial scar formation, which limits neuronal regeneration. The blood-spinal cord barrier maintains the structural and functional integrity of the spinal cord and does not allow blood vessel components to leak into the spinal cord microenvironment. After the injury, disruption in the spinal cord barrier causes an imbalance of the immunological microenvironment. This triggers the process of neuroinflammation, facilitated by the actions of microglia, neutrophils, glial cells, and cytokines production. Recent work has revealed two phenotypes of astrocytes, A1 and A2, where A2 has a protective type, and A1 releases neurotoxins, further promoting glial scar formation. Here, we first describe the current understanding of the spinal cord microenvironment, both pre-, and post-injury, and the role of different glial cells in the context of spinal cord injury, which forms the essential update on the cellular and molecular events following injury. We aim to explore in-depth signaling pathways and molecular mediators that trigger astrocyte activation and glial scar formation. This review will discuss the activated signaling pathways in astrocytes and other glial cells and their collaborative role in the development of gliosis through inflammatory responses.
Collapse
Affiliation(s)
- Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, India
| | - Muskan Sharma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Bara Phool, Punjab, India.
| |
Collapse
|