1
|
Janthong A, Utama K, Khamto N, Chawapun P, Siriphong S, Van Doan H, Meerak J, Meepowpan P, Sangthong P. Semi-synthetic flavonoid derivatives from Boesenbergiarotunda induce extrinsic apoptosis pathway via Caspase-3 and Caspase-8 in HCT116 Colon Cancer cell lines. Bioorg Chem 2025; 159:108343. [PMID: 40096806 DOI: 10.1016/j.bioorg.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Colorectal cancer ranks as the second most common cancer and the leading cause of cancer-related deaths globally. Phytochemicals like flavonoids from Boesenbergia rotunda showed potential anti-cancer activities. Chemical structures of the parental compounds of flavonoids were modified by conjugating with an acryloyl group to form semi-synthetic flavonoid derivatives to increasing in anti-colon cancer activities. 7-Acryloyloxypinocembrin (5) showed potential antiproliferative activities of IC50 value of 1.87 ± 0.17 μM in HCT116. In addition, compound 5 showed low cytotoxicity in Vero cells with an IC50 value of 2.84 ± 0.13 μM which is two-fold less cytotoxic than osimertinib. Biological mechanisms studies indicated that compound 5, HCT116 cells demonstrated a two-fold increase in apoptotic cell death. Subsequently, compound 5 upregulated caspase-8 and LC3, triggering the upregulation of caspase-3 and leading to the activation of both the extrinsic apoptosis pathway and the autophagy pathway. Network pharmacology analysis highlighted TNF-α receptor is a key gene associated with the extrinsic apoptosis pathway in HCT116 cells treated with compound 5. Molecular dynamics simulation confirmed the strong interaction between compound 5 and TACE, a crucial element in the EGFR and IL-6 signaling pathway's reduction which may lead to a decline in the survival rate of colon cancer. These findings indicate compound 5 as a promising anti-colon cancer drug candidate.
Collapse
Affiliation(s)
- Atchara Janthong
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kraikrit Utama
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornthip Chawapun
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sandanon Siriphong
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jomkhwan Meerak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Research Laboratory on Advanced Materials for Sensor and Biosensor Innovation, Materials Science Research Center, and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Biochemistry and Biochemical innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Lo CH. Targeting the inter-monomeric space of TNFR1 pre-ligand dimers: A novel binding pocket for allosteric modulators. Comput Struct Biotechnol J 2025; 27:1335-1341. [PMID: 40235642 PMCID: PMC11999085 DOI: 10.1016/j.csbj.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1) plays a central role in signal transduction mediating inflammation and cell death associated with autoimmune and neurodegenerative disorders. Inhibition of TNFR1 signaling is a highly sought-after strategy to target these diseases. TNFR1 forms pre-ligand dimers held together by the pre-ligand assembly domain (PLAD), which is essential for receptor signaling. TNFR1 dimers form the crucial points of interaction for the entire receptor signaling complex by connecting TNF ligand bound trimeric receptors. While previous studies have shown the feasibility of disrupting TNFR1 dimeric interactions through competitive mechanism that targets the PLAD, our recent studies have demonstrated that small molecules could also bind PLAD to modulate TNFR1 signaling through an allosteric mechanism. Importantly, these allosteric modulators alter receptor dynamics and propagate long-range conformational perturbation that involves reshuffling of the receptors in the cytosolic domains without disrupting receptor-receptor or receptor-ligand interactions. In this study, we perform molecular docking of previously reported allosteric modulators on the extracellular domain of TNFR1 to understand their binding sites and interacting residues. We identify the inter-monomeric space between TNFR1 pre-ligand dimers as a novel binding pocket for allosteric modulators. We further conduct pharmacological analyses to understand the bioactivity of these compounds and their interacting residues and pharmacological properties. We then provide insights into the structure-activity relationship of these allosteric modulators and the feasibility of targeting TNFR1 conformational dynamics. This paves the way for developing new therapeutic strategies and designing chemical scaffolds to target TNFR1 signaling.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biology, Syracuse University, NY 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, NY 13244, USA
| |
Collapse
|
3
|
Sousa FSS, Baldinotti R, Fronza MG, Balaguez R, Alves D, Brüning CA, Savegnago L. Exploring the therapeutic potential of α-(Phenylselanyl) acetophenone in tumor necrosis Factor-α-Induced depressive-like and hyperalgesic behavior in mice. Brain Res 2025; 1851:149473. [PMID: 39884490 DOI: 10.1016/j.brainres.2025.149473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Chronic pain and depression exhibit a high comorbidity, are challenging to manage, and their pathophysiology mechanisms are intricated and closely related to the up-regulation of pro-inflammatory response and oxidative stress. Chronic pain and depression often coexist and present significant management challenges. Their underlying pathophysiological mechanisms are complex and closely linked to the up-regulation of pro-inflammatory responses and oxidative stress. α-(Phenylselanyl) acetophenone (PSAP), an organoselenium compound, has shown antioxidant, antidepressant-like and antinociceptive effects in animal models. This study aimed to evaluate the effects of acute PSAP administration in a comorbid pain-depression model induced by intracerebroventricular (i.c.v.) injection of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) in male Swiss mice. TNF-α (0.1 ƒg/5 µL, i.c.v.) was injected 1 h before the behavioral tests, followed by acute PSAP treatment (10 mg/kg, intragastrically [i.g.]) 30 min post-TNF-α injection. TNF-α decreased the latency time to first immobility episode and increased the total immobility time of mice in the forced swimming test (FST), effects prevented by PSAP treatment. PSAP also reversed TNF-α-induced nociceptive responses in mice, assessed by the hot plate test. These behavioral improvements may be attributed, at least in part, to the capacity of PSAP treatment reverse the TNF-α-induced increase on reactive species and lipoperoxidation levels, as well as modulate altered activities of antioxidant enzymes catalase and superoxide dismutase in the cerebral cortex and hippocampus. Furthermore, PSAP decreased circulating corticosterone levels elevated by TNF-α injection. In conclusion, PSAP emerges as a promising candidate for the development of innovative therapeutic strategies to address the comorbidity of pain and depression.
Collapse
Affiliation(s)
- Fernanda Severo Sabedra Sousa
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Grupo de Pesquisa em Neurobiotecnologia - GPN, Universidade Federal de Pelotas, UFPel, Postal Code 96010-900, Pelotas, RS, Brazil
| | - Rodolfo Baldinotti
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Neurobiotecnologia- GPN, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mariana G Fronza
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Neurobiotecnologia- GPN, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Renata Balaguez
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa- LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química (PPGQ), Laboratório de Síntese Orgânica Limpa- LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Neurobiotecnologia- GPN, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - César Augusto Brüning
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular - LABIONEM, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Postal Code 96010-900, Pelotas, RS, Brazil.
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Grupo de Pesquisa em Neurobiotecnologia - GPN, Universidade Federal de Pelotas, UFPel, Postal Code 96010-900, Pelotas, RS, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Neurobiotecnologia- GPN, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
4
|
Cantero-Téllez A, Moreno-Fierros L, Gutiérrez-Ospina G, Santiago-Prieto AC, Juárez I, Rodríguez-Sosa M, Hernández-Echeagaray E. Systemic Neuroprotection by Chlorogenic Acid: Antioxidant and Anti-inflammatory Evaluation in Early Neurodegeneration Induced by 3-Nitropropionic Acid in Mice. Neurochem Res 2025; 50:113. [PMID: 40038202 DOI: 10.1007/s11064-025-04356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Neurodegeneration is characterized by the progressive loss of neurons commonly attributed to neurological causes. Studies published over the past two decades suggest that neurodegeneration may occur due to systemic diseases that compromise energy metabolism throughout the body. This metabolic imbalance develops over decades before neurodegeneration is clinically documented or inferred. It is now accepted that long-lasting oxidative stress and inflammation link neurodegeneration with altered energy metabolism in the body. Systemic prevention of these factors may reduce the odds of developing neurodegeneration and delay or prevent its progression as individuals age. Chlorogenic acid (CGA) is a polyphenol prevalent in fruits and vegetables that exhibits antioxidant and anti-inflammatory properties. It may serve as a systemic neuroprotectant when consumed regularly before the onset of neurodegeneration. To test this possibility, an experimental model of striatal early neurodegeneration induced by systemic administration of 3-nitropropionic acid (3-NP) was used. This toxin inhibits succinate dehydrogenase (SDH), disrupts electron flow and leads to increased production of reactive oxygen species (ROS) and a pro-inflammatory environment. The severity of symptoms induced by 3-NP varies depending on dosage, duration of exposure and administration route. In the brain, 3-NP affects striatal medium spiny neurons in the basal ganglia and in less degree pyramidal neurons from frontal cortex, a feature observed in Huntington's disease (HD). The aim of this study was to investigate the antioxidant and anti-inflammatory properties of CGA in the 3-NP-induced model of early neurodegeneration. Systemic administration of CGA significantly reduced lipid peroxidation and promoted an anti-inflammatory profile in the brain when co-administered with 3-NP. These results support that CGA could serve as a systemic neuroprotectant in individuals challenged by environmental toxins that disrupt mitochondrial function.
Collapse
Affiliation(s)
- Angélica Cantero-Téllez
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-I, UNAM, Av. de los Barrios # 1, Los Reyes Iztacala, C.P.54090, Tlalnepantla de Baz, Estado de México, México
| | - Leticia Moreno-Fierros
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva S/N, C.U., Coyoacán, 04510, Ciudad de México, México
| | - Ana Cecilia Santiago-Prieto
- Laboratorio de Anatomía Patológica, Hospital H+Querétaro, Privada Ignacio Zaragoza 16, Centro, 76000, Santiago de Querétaro, Qro, Mexico
| | - Imelda Juárez
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México
| | - Miriam Rodríguez-Sosa
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México
| | - Elizabeth Hernández-Echeagaray
- Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla de Baz, Estado de México, México.
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-I, UNAM, Av. de los Barrios # 1, Los Reyes Iztacala, C.P.54090, Tlalnepantla de Baz, Estado de México, México.
| |
Collapse
|
5
|
Abdel-Latif RT, El-Abhar HS, Abdallah DM, Fawzy IM, Mansour SM. Dual inhibition of canonical and noncanonical PAR-1 by SCH79797 mitigates neurodegeneration in 3-NP-induced Huntington's disease: An in vivo and in silico approach. Arch Pharm (Weinheim) 2025; 358:e2400846. [PMID: 40123421 DOI: 10.1002/ardp.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Though abnormal platelet function is detected in Huntington's disease (HD), thrombin's role is indistinct. Through protease-activated receptor 1 (PAR-1) activation, thrombin triggers intricate pathways relevant to HD. Therefore, we propose that posttreatment with the PAR-1 inhibitor SCH79797 may alleviate symptoms in a 3-nitropropionic acid (3-NP) HD model. Wistar rats were administered 3-NP alone or treated with SCH79797. In silico study showed better blood-brain barrier (BBB) diffusion by SCH79797 than by vorapaxar. Docking showed that SCH79797 blocks thrombin/PAR-1 binding and directly inhibits metalloproteinase (MMP)-1. Molecular dynamics confirmed minimal energy deviation and stable interactions with both PAR-1 and MMP-1 and root mean square deviation (RMSD) verified conformational stability. In the in vivo part, behavioral and striatal improvements were observed, with SCH79797 reducing striatal levels of thrombin and MMP-1, and the expression of PAR-1, N-methyl-d-aspartate (NMDA) receptor subunits (1 and 2B), and MMP-9, while increasing that of claudin-5, contributing to BBB integrity. SCH79797 also lowered tumor necrosis factor (TNF)-α and mitofusin (Mfn)-2, rebalanced the redox system by reducing malondialdehyde (MDA) and enhancing superoxide dismutase (SOD), and prevented 3-NP-induced mitophagy via the PTEN-induced kinase (PINK)-1/ubiquitin pathway. SCH79797 inhibited apoptosis, by reducing caspase-3 and cytochrome C, and increased voltage-dependent anion channel-1 (VDAC1) to maintain mitochondrial function. Overall, SCH79797 inhibited PAR-1 canonically and noncanonically to counter excitotoxicity, oxidative stress, inflammation, apoptosis, and mitophagy, thereby preserving BBB and mitochondrial integrity, improving histological outcomes, and enhancing behavioral performance.
Collapse
Affiliation(s)
- Raghda T Abdel-Latif
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Suzan M Mansour
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Christiansen JR, Ferreira SA, Szymkowski DE, Jakobsson J, Tansey MG, Romero-Ramos M. Peripherally administered TNF inhibitor is not protective against α-synuclein-induced dopaminergic neuronal death in rats. Neurobiol Dis 2025; 206:106803. [PMID: 39800228 DOI: 10.1016/j.nbd.2025.106803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
The underlying cause of neuronal loss in Parkinson's disease (PD) remains unknown, but evidence implicates neuroinflammation in PD pathobiology. The pro-inflammatory cytokine soluble tumor necrosis factor (TNF) seems to play an important role and thus has been proposed as a therapeutic target for modulation of the neuroinflammatory processes in PD. In this regard, dominant-negative TNF (DN-TNF) agents are promising antagonists that selectively inhibit soluble TNF signaling, while preserving the beneficial effects of transmembrane TNF. Previous studies have tested the protective potential of DN-TNF-based therapy in toxin-based PD models. Here we test for the first time the protective potential of a DN-TNF therapeutic against α-synuclein-driven neurodegeneration in the viral vector-based PD female rat model. To do so, we administered the DN-TNF agent XPro1595 subcutaneously for a period of 12 weeks. In contrast to previous studies using different PD models, neuroprotection was not achieved by systemic XPro1595 treatment. α-Synuclein-induced loss of nigrostriatal neurons, accumulation of pathological inclusions and microgliosis was detected in both XPro1595- and saline-treated animals. XPro1595 treatment increased the percentage of the hypertrophic/ameboid Iba1+ cells in SN and reduced the striatal MHCII+ expression in the α-synuclein-overexpressing animals. However, the treatment did not prevent the MHCII upregulation seen in the SN of the model, nor the increase of CD68+ phagocytic cells. Therefore, despite an apparently immunomodulatory effect, this did not suffice to protect against viral vector-derived α-synuclein-induced neurotoxicity. Further studies are warranted to better elucidate the therapeutic potential of soluble TNF inhibitors in PD.
Collapse
Affiliation(s)
- Josefine R Christiansen
- Department of Biomedicine & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus, Denmark
| | - Sara A Ferreira
- Department of Biomedicine & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus, Denmark
| | | | - Johan Jakobsson
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, United States of America
| | - Marina Romero-Ramos
- Department of Biomedicine & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
7
|
Ren M, Li Y, Yuan J, Wang J, Lu D, Xu Z, Xie Q, Ma R, Chen J, Gong D, Li J, Wang J. The mechanism of Bovis Culus Sativus protecting BBB damage in stroke: Insights from network pharmacology, bioinformatics, and experiments. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119390. [PMID: 39880065 DOI: 10.1016/j.jep.2025.119390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bovis calculus (BC) has a medicinal history of over 2000 years in treating stroke in China. Bovis Culus Sativus (BCS) has similar pharmacological effects to BC. Due to the scarcity of BC, BCS is often used as a substitute for BC in clinical practice for treating stroke in traditional Chinese medicine. AIM OF THE STUDY This study aims to investigate the inhibitory effect of BCS on blood-brain barrier (BBB) damage following stroke, and to elucidate the molecular basis of BCS neuroprotection through network pharmacology and bioinformatics. MATERIALS AND METHODS The contents of bilirubin and bile acids in BCS were quantified using HPLC. A cerebral ischemia-reperfusion injury (CIRI) rat model was established to assess neurological function, cerebral infarction, pathological damage, and Evans Blue staining. R language was used to analyze GEO public data to identify therapeutic targets for ischemic stroke. Public databases and literature were utilized to screen for active components of BCS, and the Swiss Target Prediction database was used to predict the active drug targets. Network pharmacology analysis was conducted on drug and disease targets, followed by immune infiltration and molecular docking of key targets. Finally, ELISA, RT-PCR, Western blot, IHC, and TEM were employed to validate the effectiveness of the targets. RESULTS The content of bile acids and bilirubin in the tested BCS was 6.9% and 37.89%, respectively. The study showed that BCS reduced neurological function scores and cerebral infarction rates in stroke rats, prevented Evans Blue leakage, and mitigated histopathological damage in the ischemic brain region. Additionally, BCS improved the structural and functional integrity of the BBB, enhancing the expression of Occludin, ZO-1, and Claudin-5 while downregulating the expression of MDR1, aquaporin-4, MMP-9, and MMP2. Bioinformatics and network pharmacology analyses indicated that the therapeutic effects of BCS in stroke are primarily associated with the inhibition of inflammatory pathways, including TNF, NFKB, and MAPK. ELISA, RT-PCR, and Western blot results further confirmed that BCS significantly suppressed neuroinflammation in stroke rats. CONCLUSION BCS shows promising efficacy against ischemic stroke, maintaining the function and structural integrity of the BBB. Its protective effect on the BBB may be related to the inhibition of the TNF-NFκB-MAPK signaling pathways.
Collapse
Affiliation(s)
- Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; School of medicine, Foshan university, Foshan, 528225, PR China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; School of medicine, Foshan university, Foshan, 528225, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jinxiu Li
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, 610041, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
8
|
Walter NM, Yde Ohki CM, Smigielski L, Walitza S, Grünblatt E. Investigating the impact of omega-3 fatty acids on oxidative stress and pro-inflammatory cytokine release in iPSC-derived forebrain cortical neurons from ADHD patients. J Psychiatr Res 2025; 182:257-269. [PMID: 39826376 DOI: 10.1016/j.jpsychires.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Natalie M Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; ZNZ PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Cristine M Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland.
| |
Collapse
|
9
|
Li Y, Ye R, Dai H, Lin J, Cheng Y, Zhou Y, Lu Y. Exploring TNFR1: from discovery to targeted therapy development. J Transl Med 2025; 23:71. [PMID: 39815286 PMCID: PMC11734553 DOI: 10.1186/s12967-025-06122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention. Given the potential risks associated with targeting tumor necrosis factor-alpha (TNF-α), selective inhibition of the TNFR1 signaling pathway has been proposed as a promising strategy to reduce side effects and enhance therapeutic efficacy. This review emphasizes the emerging field of targeted therapies aimed at selectively modulating TNFR1 activity, identifying promising therapeutic strategies that exploit TNFR1 as a drug target through an evaluation of current clinical trials and preclinical studies. In conclusion, this study contributes novel insights into the biological functions of TNFR1 and presents potential therapeutic strategies for clinical application, thereby having substantial scientific and clinical significance.
Collapse
Affiliation(s)
- Yingying Li
- School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiwei Ye
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Haorui Dai
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiayi Lin
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yue Cheng
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yonghong Zhou
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Yiming Lu
- School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Álvarez-López AI, Cruz-Chamorro I, Lardone PJ, Bejarano I, Aspiazu-Hinostroza K, Ponce-España E, Santos-Sánchez G, Álvarez-Sánchez N, Carrillo-Vico A. Melatonin, an Antitumor Necrosis Factor Therapy. J Pineal Res 2025; 77:e70025. [PMID: 39740227 DOI: 10.1111/jpi.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Tumor necrosis factor (TNF) is a biomarker of inflammation whose levels are elevated in patients with several diseases associated with dysregulation of the immune response. The main limitations of currently used anti-TNF therapies are the induction of immunodepression, which in many cases leads to serious adverse effects such as infection and cancer, and the inability to cross the blood-brain barrier in neuroinflammatory conditions. Melatonin, in addition to being a chronobiotic compound, is widely known for its antioxidant and immunomodulatory capacity to control inflammatory processes in different pathological contexts. The aim of the present review is to address human-based studies that describe the effect of melatonin on TNF production. The review includes all the articles published in PubMed databases until April 15, 2024. After depuration, 45 studies were finally included in the review, 23 related to the in vitro action of melatonin in human cells and 22 in vivo studies in humans. Most of the data reviewed support the idea that melatonin has an immunosuppressive effect on TNF levels, which, together with its low toxicity profile, low cost, and ability to cross the blood-brain barrier, points to melatonin as a potential anti-TNF therapy. Therefore, improving our knowledge of the action of melatonin in regulating TNF through appropriate clinical trials would reveal the true potential of this molecule as a possible anti-TNF therapy.
Collapse
Grants
- This work was supported by the Andalusian Government Ministry of Health PC-0019-2017, PI-0015-2018 and PEMP-0085-2020 (co-financed with FEDER funds, call Resolution of 7 July 2021 of the General Secretary for Research, Development and Innovation in Health, which calls for grants to finance research, development and innovation in biomedicine and health sciences in Andalusia by 2021), the PAIDI Program from the Andalusian Government (CTS160) and Regional Ministry of Economy and Knowledge of Andalusia (US-1263804) into the European Regional Development Fund Operational Programme 2014 to 2020. A.I.A.L. was supported by grants US-1263804 and PEMP-0085-2020. I.C.C. was supported by a postdoctoral fellowship from the Andalusian Government Ministry of Economy, Knowledge, Business, and University (DOC_00587/2020). I.B. and E.P.E were supported by the VI Program of Inner Initiative for Research and Transfer of the University of Seville [VI PPIT-US]. G.S.S. was supported by a FPU grant from the Spanish Ministerio de Educación, Cultura y Deporte (FPU16/02339). N.A.-S. was supported by a fellowship from the Andalusian Regional Ministry of Health (PC-0111-2016-0111).
Collapse
Affiliation(s)
- Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Karla Aspiazu-Hinostroza
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Universidad Católica de Cuenca, Research Department, Cuenca-Azuay, Ecuador
| | - Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
12
|
Yasir M, Park J, Han ET, Han JH, Park WS, Hassan M, Kloczkowski A, Chun W. Discovery of novel TACE inhibitors using graph convolutional network, molecular docking, molecular dynamics simulation, and Biological evaluation. PLoS One 2024; 19:e0315245. [PMID: 39729480 DOI: 10.1371/journal.pone.0315245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis. Reference datasets containing active and decoy compounds specific to TACE were obtained from the DUD-E database. Using RDKit, a cheminformatics toolkit, we extracted molecular features from these compounds. We applied the GraphConvMol model within the DeepChem framework, which utilizes graph convolutional networks, to build a predictive model based on the DUD-E datasets. Our trained model was subsequently used to predict the TACE inhibitory potential of FDA-approved drugs. From these predictions, Vorinostat was identified as a potential TACE inhibitor. Moreover, molecular docking and molecular dynamics simulation were conducted to validate these findings, using BMS-561392 as a reference TACE inhibitor. Vorinostat, originally an FDA-approved drug for cancer treatment, exhibited strong binding interactions with key TACE residues, suggesting its repurposing potential. Biological evaluation with RAW 264.7 cell confirmed the computational results, demonstrating that Vorinostat exhibited comparable inhibitory activity against TACE. In conclusion, our study highlights the capability of deep learning models to enhance virtual screening efforts in drug discovery, efficiently identifying potential candidates for specific targets such as TACE. Vorinostat, as a newly identified TACE inhibitor, holds promise for further exploration and investigation in the treatment of inflammatory diseases like rheumatoid arthritis.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
13
|
Katola FO, Adana MY, Olajide OA. Inhibition of neuroinflammation and neuronal damage by the selective non-steroidal ERβ agonist AC-186. Inflamm Res 2024; 73:2109-2121. [PMID: 39361032 PMCID: PMC11632062 DOI: 10.1007/s00011-024-01952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND AC-186 (4-[4-4-Difluoro-1-(2-fluorophenyl) cyclohexyl] phenol) is a neuroprotective non-steroidal selective oestrogen receptor modulator. This study investigated whether inhibition of neuroinflammation contributed to neuroprotective activity of this compound. METHODS BV-2 microglia were treated with AC-186 (0.65-5 μM) prior to stimulation with LPS (100 ng/mL). Levels of pro-inflammatory mediators and proteins were then evaluated. RESULTS Treatment of LPS-activated BV-2 microglia with AC-186 resulted in significant (p < 0.05) reduction in TNFα, IL-6, NO, PGE2, iNOS and COX-2. Further investigations showed that AC-186 decreased LPS-induced elevated levels of phospho-p65, phospho-IκBα and acetyl-p65 proteins, while blocking DNA binding and luciferase activity of NF-κB. AC-186 induced significant (p < 0.05) increase in protein expression of ERβ, while enhancing ERE luciferase activity in BV-2 cells. Effects of the compound on oestrogen signalling in the microglia was confirmed in knockdown experiments which revealed a loss of anti-inflammatory activity following transfection with ERβ siRNA. In vitro neuroprotective activity of AC-186 was demonstrated by inhibition of activated microglia-mediated damage to HT-22 neurons. CONCLUSIONS This study established that AC-186 produces NF-κB-mediated anti-inflammatory activity, which is proposed as a contributory mechanism involved in its neuroprotective actions. It is suggested that the anti-inflammatory activity of this compound is linked to its agonist effect on ERβ.
Collapse
Affiliation(s)
- Folashade O Katola
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
- Current Address: Peter O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Misturah Y Adana
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
14
|
Duan X, Wan JMF, Yu ACH. The molecular impact of sonoporation: A transcriptomic analysis of gene regulation profile. ULTRASONICS SONOCHEMISTRY 2024; 111:107077. [PMID: 39368882 PMCID: PMC11600025 DOI: 10.1016/j.ultsonch.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Sonoporation has long been known to disrupt intracellular signaling, yet the involved molecules and pathways have not been identified with clarity. In this study, we employed whole transcriptome shotgun sequencing (RNA-seq) to profile sonoporation-induced gene responses after membrane resealing has taken place. Sonoporation was achieved by microbubble-mediated ultrasound (MB-US) exposure in the form of 1 MHz ultrasound pulsing (0.50 MPa peak negative pressure, 10 % duty cycle, 30 s exposure period) in the presence of microbubbles (1:1 cell-to-bubble ratio). Using propidium iodide (PI) and calcein respectively as cell viability and cytoplasmic uptake labels, post-exposure flow cytometry was performed to identify three viable cell populations: 1) unsonoporated cells, 2) sonoporated cells with low uptake, and 3) sonoporated cells with high uptake. Fluorescence-activated cell sorting was then conducted to separate the different groups followed by RNA-seq analysis of the gene expressions in each group of cells. We found that sonoporated cells with low or high calcein uptake showed high similarity in the gene responses, including the activation of multiple heat shock protein (HSP) genes and immediate early response genes mediating apoptosis and transcriptional regulation. In contrast, unsonoporated cells exhibited a more extensive gene expression alteration that included the activation of more HSP genes and the upregulation of diverse apoptotic mediators. Four oxidative stress-related and three immune-related genes were also differentially expressed in unsonoporated cells. Our results provided new information for understanding the intracellular mobilization in response to sonoporation at the molecular level, including the identification of new molecules in the sonoporation-induced apoptosis regulatory network. Our data also shed light on the innovative therapeutic strategy which could potentially leverage the responses of viable unsonoporated cells as a synergistic effector in the microenvironment to favor tumor treatment.
Collapse
Affiliation(s)
- Xinxing Duan
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada; School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
| | - Jennifer M F Wan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada.
| |
Collapse
|
15
|
Savoca G, Gianfredi A, Bartolini L. The Development of Epilepsy Following CNS Viral Infections: Mechanisms. Curr Neurol Neurosci Rep 2024; 25:2. [PMID: 39549124 DOI: 10.1007/s11910-024-01393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE OF REVIEW This review examines the role of different viral infections in epileptogenesis, with a focus on Herpesviruses such as Human Herpesvirus 6 (HHV-6) and Epstein Barr Virus (EBV), Flaviviruses, Picornaviruses, Human Immunodeficiency Virus (HIV), Influenzavirus and Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). RECENT FINDINGS A growing literature on animal models, such as the paradigmatic Theiler's murine encephalomyelitis virus (TMEV) model, and clinical investigations in patients with epilepsy have started to elucidate cellular mechanisms implicated in seizure initiation and development of epilepsy following viral infections. A central role of neuroinflammation has emerged, with evidence of activation of the innate and adaptive immunity, dysregulation of microglial and astrocytic activity and production of multiple cytokines and other inflammatory mediators. Several chronic downstream effects result in increased blood-brain barrier permeability, direct neuronal damage, and modifications of ion channels ultimately leading to altered neuronal excitability and seizure generation. Key findings underscore the complex interplay between initial viral infection, neuroinflammation, and later development of epilepsy. Further research is needed to elucidate these mechanisms and develop targeted interventions.
Collapse
Affiliation(s)
- Giulia Savoca
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Arianna Gianfredi
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
- University of Florence School of Medicine, Florence, Italy
| | - Luca Bartolini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy.
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
16
|
Liu K, An J, Zhang J, Zhao J, Sun P, He Z. Network pharmacology combined with experimental validation show that apigenin as the active ingredient of Campsis grandiflora flower against Parkinson's disease by inhibiting the PI3K/AKT/NF-κB pathway. PLoS One 2024; 19:e0311824. [PMID: 39383141 PMCID: PMC11463827 DOI: 10.1371/journal.pone.0311824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
The exploration of novel natural products for Parkinson's disease (PD) is a focus of current research, as there are no definitive drugs to cure or stop the disease. Campsis grandiflora (Thunb.) K. Schum (Lingxiaohua) is a traditional Chinese medicine (TCM), and the exact active constituents and putative mechanisms for treating PD are unknown. Through data mining and network pharmacology, apigenin (APi) was identified as the main active ingredient of Lingxiaohua, and key targets (TNF, AKT1, INS, TP53, CASP3, JUN, BCL2, MMP9, FOS, and HIF1A) of Lingxiaohua for the treatment of PD were discovered. The primary routes implicated were identified as PI3K/AKT, Apoptosis, TNF, and NF-κB pathways. Subsequently, therapeutic potential of APi in PD and its underlying mechanism were experimentally evaluated. APi suppressed the release of mediators of inflammation and initiation of NF-κB pathways in MES23.5 cells induced by MPP+. APi suppressed caspase-3 activity and apoptosis and elevated p-AKT levels in MES23.5 cells. Pretreatment with LY294002, a PI3K inhibitor, resulted in APi treatment blocking the activation of NF-κB pathway and expression of inflammatory factors in MES23.5 cells by activating the PI3K/AKT pathway. In conclusion, APi protects dopaminergic neurons by controlling the PI3K/AKT/NF-κB pathway, giving novel insights into the pharmacological mechanism of Lingxiaohua in treating PD.
Collapse
Affiliation(s)
- Kai Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurosurgery, People’s Hospital of Rizhao, Jining Medical College, Rizhao, Shandong, China
| | - Jing An
- Department of Pathology, People’s Hospital of Rizhao, Jining Medical College, Rizhao, Shandong, China
| | - Jing Zhang
- Department of Pharmacy, Jining Medical College, Rizhao, Shandong, China
| | - Jihu Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
18
|
Ollen-Bittle N, Roseborough AD, Wang W, Wu JLD, Whitehead SN. Connecting cellular mechanisms and extracellular vesicle cargo in traumatic brain injury. Neural Regen Res 2024; 19:2119-2131. [PMID: 38488547 PMCID: PMC11034607 DOI: 10.4103/1673-5374.391329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Austyn D. Roseborough
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jeng-liang D. Wu
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Shawn N. Whitehead
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Deparment of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
19
|
Cantón-Habas V, Rich-Ruiz M, Martínez-Martos JM, Ramírez-Expósito MJ, Carrera-González MP. Determination of soluble tumor necrosis factor receptor II and secretory immunoglobulin A in saliva of patients with dementia. Eur Arch Psychiatry Clin Neurosci 2024; 274:1689-1696. [PMID: 37838644 DOI: 10.1007/s00406-023-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
The prevalence of pain and dementia increases with age, affecting a significant percentage of the population due to aging. Both pathologies are connected through the inflammatory process, specifically through the tumor necrosis factor. The effect of this cytokine is mediated through the modulation of its TNFRI and TNFRII receptors, which are linked to the dementia process. In addition, immunoglobulins such as secretory immunoglobulin A (sIgA) have been recognized as one of the main biomarkers of pain in saliva. sTNFRII and sIgA levels were determined in saliva samples by ELISA from healthy people and patients with dementia in GDS stages 5-7. The concentrations of these markers were also correlated with the GDS stage and sex. We observed a significant decrease (*** p ≤ 0.001) in the levels of sTNFRII (pg/mL) and a significant increase (** p ≤ 0.01) in the levels of sIgA (ng/mL) in the saliva of patients with dementia compared to the healthy control group. We did not observe a correlation with the data of the biomarkers regarding the GDS stage and sex. The results obtained for sTNFRII are consistent with those obtained by other authors on brain tissue, who conclude that unopposed neuronal TNFRI signaling, when TNFRII is selectively downregulated, leads to a more severe course of AD pathogenesis. Regarding sIgA, the elevated values of sIgA may reflect the immune status of these patients. Therefore, these biomarkers can provide us with relevant information through a non-invasive method such as saliva analysis.
Collapse
Affiliation(s)
- V Cantón-Habas
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina, Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004, Córdoba, Spain
| | - M Rich-Ruiz
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina, Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - J M Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaén, Campus Universitario Las Lagunillas, 23071, Jaén, Spain
| | - M J Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaén, Campus Universitario Las Lagunillas, 23071, Jaén, Spain
| | - M P Carrera-González
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC) IMIBIC Building, Reina, Sofia University Hospital, Av. Menéndez Pidal, s/n, 14004, Córdoba, Spain.
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, Faculty of Health Sciences, University of Jaén, Campus Universitario Las Lagunillas, 23071, Jaén, Spain.
| |
Collapse
|
20
|
Zhong X, Li C, Li Y, Huang Y, Liu J, Jiang A, Chen J, Peng Y. IRAK-M Plays A Role in the Pathology of Amyotrophic Lateral Sclerosis Through Suppressing the Activation of Microglia. Mol Neurobiol 2024; 61:7603-7610. [PMID: 38421467 DOI: 10.1007/s12035-024-04065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Microglial activation plays a crucial role in the disease progression in amyotrophic lateral sclerosis (ALS). Interleukin receptor-associated kinases-M (IRAK-M) is an important negative regulatory factor in the Toll-like receptor 4 (TLR4) pathway during microglia activation, and its mechanism in this process is still unclear. In the present study, we aimed to investigate the dynamic changes of IRAK-M and its protective effects for motor neurons in SOD1-G93A mouse model of ALS. qPCR (Real-time Quantitative PCR Detecting System) were used to examine the mRNA levels of IRAK-M in the spinal cord in both SOD1-G93A mice and their age-matched wild type (WT) littermates at 60, 100 and 140 days of age. We established an adeno-associated virus 9 (AAV9)-based platform by which IRAK-M was targeted mostly to microglial cells to investigate whether this approach could provide a protection in the SOD1-G93A mouse. Compared with age-matched WT mice, IRAK-M mRNA level was elevated at 100 and 140 days in the anterior horn region of spinal cords in the SOD1-G93A mouse. AAV9-IRAK-M treated SOD1-G93A mice showed reduction of IL-1β mRNA levels and significant improvements in the numbers of spinal motor neurons in spinal cord. Mice also showed previously reduction of muscle atrophy. Our data revealed the dynamic changes of IRAK-M during ALS pathological progression and demonstrated that an AAV9-IRAK-M delivery was an effective and translatable therapeutic approach for ALS. These findings may help identify potential molecular targets for ALS therapy.
Collapse
Affiliation(s)
- Xinghua Zhong
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Chuqiao Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yanran Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yingyi Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jingsi Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Anqi Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jinyu Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Yu Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, China.
| |
Collapse
|
21
|
Li CY, Chang WC, Chen MH, Tu PC, Chen TL, Chen CC, Chang YT, Chen YY, Bai YM. Correlation of Disease Severity, Proinflammatory Cytokines, and Reduced Brain Gray Matter Volumes in Patients with Atopic Dermatitis. Dermatitis 2024; 35:489-497. [PMID: 38634841 DOI: 10.1089/derm.2023.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease. However, few studies have investigated brain changes associated with chronic inflammation. We hypothesized that chronic inflammation might be related to brain structural alterations in patients with AD. Objectives: To investigate the association between disease severity (Eczema Area and Severity Index [EASI]), proinflammatory cytokines, and differences in brain gray matter (GM) volume in patients with AD. Methods: Nineteen patients with AD and 19 age- and sex-matched healthy subjects were enrolled. All participants underwent clinical assessment and brain magnetic resonance imaging. Voxel-based morphometry was performed to analyze GM volume differences. Results: Patients with AD exhibited significantly decreased GM volume in many brain regions, such as bilateral precentral gyrus, right frontal pole, and right middle temporal gyrus (P < 0.001), compared with healthy subjects. Notably, in patients with AD, the GM volume in right middle temporal gyrus was negatively associated with both EASI score and proinflammatory cytokines (sIL-2R [soluble interleukin 2 receptor] and TNF-α receptor-1), whereas the GM volume in left precentral gyrus was negatively associated with both EASI score and proinflammatory cytokines (sIL-2R and CRP). Conclusion: Patients with AD demonstrated significant brain GM volume reduction in many brain regions, which is related to disease severity and proinflammatory cytokines.
Collapse
Affiliation(s)
- Cheng-Yuan Li
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Chen Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Philosophy of Mind and Cognition, National Yang-Ming University, Taipei, Taiwan
| | - Tai-Li Chen
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chiang Chen
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- From the Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ya-Mei Bai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
22
|
Liu H, Yi J, Zhang C, Li Y, Wang Q, Wang S, Dai S, Zheng Z, Jiang T, Gao P, Xue A, Huang Z, Kong F, Wang Y, He B, Guo X, Li Q, Chen J, Yin G, Zhao S. Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury. Glia 2024; 72:1674-1692. [PMID: 38899731 DOI: 10.1002/glia.24577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein-coupled receptor kinase-interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2-Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor-alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Chenxi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shenyu Wang
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Siming Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziyang Zheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ao Xue
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenfei Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fanqi Kong
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Baorong He
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Godoy MI, Pandey V, Wohlschlegel JA, Zhang Y. Secretome analysis of oligodendrocytes and precursors reveals their roles as contributors to the extracellular matrix and potential regulators of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604699. [PMID: 39091874 PMCID: PMC11291107 DOI: 10.1101/2024.07.22.604699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Oligodendrocytes form myelin that ensheaths axons and accelerates the speed of action potential propagation. Oligodendrocyte progenitor cells (OPCs) proliferate and replenish oligodendrocytes. While the myelin-forming role of oligodendrocytes and OPCs is well-established, potential additional roles of these cells are yet to be fully explored. Here, we analyzed the secreted proteome of oligodendrocytes and OPCs in vitro to determine whether these cell types are major sources of secreted proteins in the central nervous system (CNS). Interestingly, we found that both oligodendrocytes and OPCs secret various extracellular matrix proteins. Considering the critical role of neuroinflammation in neurological disorders, we evaluated the responses and potential contributions of oligodendrocytes and OPCs to this process. By characterizing the secreted proteomes of these cells after pro-inflammatory cytokine treatment, we discovered the secretion of immunoregulators such as C2 and B2m. This finding sheds new light on the hitherto underappreciated role of oligodendrocytes and OPCs in actively modulating neuroinflammation. Our study provides a comprehensive and unbiased proteomic dataset of proteins secreted by oligodendrocyte and OPC under both physiological and inflammatory conditions. It revealed the potential of these cells to secrete matrix and signaling molecules, highlighting their multifaceted function beyond their conventional myelin-forming roles.
Collapse
Affiliation(s)
- Marlesa I. Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| |
Collapse
|
24
|
Kim TW, Koo SY, Riessland M, Chaudhry F, Kolisnyk B, Cho HS, Russo MV, Saurat N, Mehta S, Garippa R, Betel D, Studer L. TNF-NF-κB-p53 axis restricts in vivo survival of hPSC-derived dopamine neurons. Cell 2024; 187:3671-3689.e23. [PMID: 38866017 PMCID: PMC11641762 DOI: 10.1016/j.cell.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Ongoing, early-stage clinical trials illustrate the translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, an unresolved challenge is the extensive cell death following transplantation. Here, we performed a pooled CRISPR-Cas9 screen to enhance postmitotic dopamine neuron survival in vivo. We identified p53-mediated apoptotic cell death as a major contributor to dopamine neuron loss and uncovered a causal link of tumor necrosis factor alpha (TNF-α)-nuclear factor κB (NF-κB) signaling in limiting cell survival. As a translationally relevant strategy to purify postmitotic dopamine neurons, we identified cell surface markers that enable purification without the need for genetic reporters. Combining cell sorting and treatment with adalimumab, a clinically approved TNF-α inhibitor, enabled efficient engraftment of postmitotic dopamine neurons with extensive reinnervation and functional recovery in a preclinical PD mouse model. Thus, transient TNF-α inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic hPSC-derived dopamine neurons in PD.
Collapse
Affiliation(s)
- Tae Wan Kim
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - So Yeon Koo
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill Cornell Neuroscience PhD Program, New York, NY, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | - Fayzan Chaudhry
- Tri-Institutional PhD program in Computational Biology, New York, NY, USA
| | - Benjamin Kolisnyk
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hyein S Cho
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Marco Vincenzo Russo
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sanjoy Mehta
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Division of Hematology & Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
25
|
Kutuk MO, Tufan AE, Kilicaslan F, Gokcen C, Aksu GG, Yektas C, Kandemir H, Celik F, Mutluer T, Buber A, Karadag M, Coban N, Coskun S, Hangul Z, Altintas E, Acikbas U, Giray A, Aka Y, Basturk B, Kutuk O. Cytokine expression profiles in children and adolescents with tic disorders. Sci Rep 2024; 14:15101. [PMID: 38956051 PMCID: PMC11219894 DOI: 10.1038/s41598-024-62121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/14/2024] [Indexed: 07/04/2024] Open
Abstract
The etiology of tic disorders (TDs) is not precisely known, although several lines of evidence suggest involvement of the immune system in pathogenesis. Here, we aimed to determine the expression levels of pro-inflammatory and anti-inflammatory cytokines in children with TD and compare them with those of healthy controls. Furthermore, we also evaluated their association with clinical variables in the TD group. Within the study period, 88 children with tic disorders and 111 healthy control children were enrolled. Most children with tic disorders were diagnosed with Tourette's disorder (n = 47, 53.4%) or persistent motor tic disorder (n = 39, 44.3%), while the remainder (n = 2, 2.3%) were diagnosed with persistent vocal tic disorder. We found that children with tic disorders had significantly elevated levels of IL-1β, TNF-α, IL-6 and IL-4 expression, while we detected lower expression levels of IL-17 in children with tic disorders. Our findings provide a molecular landscape of cytokine expression in children with TD, which may suggest a proinflammatory state not affected by the presence of comorbidity and symptom severity. Delineating the contribution of alterations in the immune system to the pathogenesis of tic disorders may pave the way for better therapeutic interventions.
Collapse
Affiliation(s)
- Meryem Ozlem Kutuk
- Department of Child and Adolescent Psychiatry, Baskent University School of Medicine, Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Ali Evren Tufan
- Department of Child and Adolescent Psychiatry, Bolu Abant Izzet, Baysal University School of Medicine, Bolu, Turkey
| | - Fethiye Kilicaslan
- Department of Child and Adolescent Psychiatry, Harran University School of Medicine, Sanliurfa, Turkey
| | - Cem Gokcen
- Department of Child and Adolescent Psychiatry, Private Practice, Istanbul, Turkey
| | - Gulen Guler Aksu
- Department of Child and Adolescent Psychiatry, Mersin University School of Medicine, Mersin, Turkey
| | - Cigdem Yektas
- Department of Child and Adolescent Psychiatry, Private Practice, Istanbul, Turkey
| | - Hasan Kandemir
- Department of Child and Adolescent Psychiatry, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Fatma Celik
- Department of Psychology, Ankara Gazi Mustafa Kemal Occupational and Environmental Diseases Hospital, Ankara, Turkey
| | - Tuba Mutluer
- Department of Child and Adolescent Psychiatry, Koc University School of Medicine, Istanbul, Turkey
| | - Ahmet Buber
- Department of Child and Adolescent Psychiatry, Pamukkale University School of Medicine, Denizli, Turkey
| | - Mehmet Karadag
- Department of Child and Adolescent Psychiatry, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Nurdan Coban
- Department of Child and Adolescent Psychiatry, Adana City Training and Research Hospital, Adana, Turkey
| | - Seyma Coskun
- Department of Child and Adolescent Psychiatry, Private Practice, Adana, Turkey
| | - Zehra Hangul
- Department of Child and Adolescent Psychiatry, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Ebru Altintas
- Department of Psychiatry, Baskent University School of Medicine, Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | | | - Asli Giray
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Yeliz Aka
- Department of Medical Biology, Baskent University School of Medicine, Ankara, Turkey
| | - Bilkay Basturk
- Department of Immunology, Baskent University School of Medicine, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Ozgur Kutuk
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| |
Collapse
|
26
|
Živančević K, Živanović J, Baralić K, Božić D, Marić Đ, Vukelić D, Miljaković EA, Djordjevic AB, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Integrative investigation of hematotoxic effects induced by low doses of lead, cadmium, mercury and arsenic mixture: In vivo and in silico approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172608. [PMID: 38653421 DOI: 10.1016/j.scitotenv.2024.172608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The effect of the lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) mixture (MIX) on hematotoxicity development was investigated trough combined approach. In vivo subacute study (28 days) was performed on rats (5 per group): a control group and five groups orally exposed to increasing metal(loid) mixture doses, MIX 1- MIX 5 (mg/kg bw./day) (Pb: 0.003, 0.01, 0.1, 0.3, 1; Cd: 0.01, 0.03, 0.3, 0.9, 3; Hg: 0.0002, 0.0006, 0.006, 0.018, 0.06; As: 0.002, 0.006, 0.06, 0.18, 0.6). Blood was taken for analysis of hematological parameters and serum iron (Fe) analysis. MIX treatment increased thrombocyte/platelet count and MCHC and decreased Hb, HCT, MCV and MCH values compared to control, indicating the development of anemia and thrombocytosis. BMDIs with the narrowest width were identified for MCH [pg] (6.030E-03 - 1.287E-01 mg Pb/kg bw./day; 2.010E-02 - 4.290E-01 mg Cd/kg bw./day; 4.020E-04 - 8.580E-03 mg Hg/kg bw./day; 4.020E-03 - 8.580E-02 mg As/kg bw./day). In silico analysis showed target genes connected with MIX and the development of: anemia - ACHE, GSR, PARP1, TNF; thrombocytosis - JAK2, CALR, MPL, THPO; hematological diseases - FAS and ALAD. The main extracted pathways for anemia were related to apoptosis and oxidative stress; for thrombocytosis were signaling pathways of Jak-STAT and TPO. Changes in miRNAs and transcription factors enabled the mode of action (MoA) development based on the obtained results, contributing to mechanistic understanding and hematological risk related to MIX exposure.
Collapse
Affiliation(s)
- Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; University of Belgrade - Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja", Department of General Physiology and Biophysics, Center for Laser Microscopy, Studentski trg 16, 11158 Belgrade, Serbia.
| | - Jovana Živanović
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragica Božić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", Toxicological Risk Assessment Center, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
27
|
Kostin A, Alam MA, Saevskiy A, Alam MN. Chronic Astrocytic TNFα Production in the Preoptic-Basal Forebrain Causes Aging-like Sleep-Wake Disturbances in Young Mice. Cells 2024; 13:894. [PMID: 38891027 PMCID: PMC11171867 DOI: 10.3390/cells13110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Sleep disruption is a frequent problem of advancing age, often accompanied by low-grade chronic central and peripheral inflammation. We examined whether chronic neuroinflammation in the preoptic and basal forebrain area (POA-BF), a critical sleep-wake regulatory structure, contributes to this disruption. We developed a targeted viral vector designed to overexpress tumor necrosis factor-alpha (TNFα), specifically in astrocytes (AAV5-GFAP-TNFα-mCherry), and injected it into the POA of young mice to induce heightened neuroinflammation within the POA-BF. Compared to the control (treated with AAV5-GFAP-mCherry), mice with astrocytic TNFα overproduction within the POA-BF exhibited signs of increased microglia activation, indicating a heightened local inflammatory milieu. These mice also exhibited aging-like changes in sleep-wake organization and physical performance, including (a) impaired sleep-wake functions characterized by disruptions in sleep and waking during light and dark phases, respectively, and a reduced ability to compensate for sleep loss; (b) dysfunctional VLPO sleep-active neurons, indicated by fewer neurons expressing c-fos after suvorexant-induced sleep; and (c) compromised physical performance as demonstrated by a decline in grip strength. These findings suggest that inflammation-induced dysfunction of sleep- and wake-regulatory mechanisms within the POA-BF may be a critical component of sleep-wake disturbances in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
| | - Md. Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
- Department of Psychiatry, University of California, Los Angeles, CA 90025, USA
| | - Anton Saevskiy
- Scientific Research and Technology Center for Neurotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Md. Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
- Department of Medicine, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
28
|
Cardinale A, de Iure A, Picconi B. Neuroinflammation and Dyskinesia: A Possible Causative Relationship? Brain Sci 2024; 14:514. [PMID: 38790492 PMCID: PMC11118841 DOI: 10.3390/brainsci14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Levodopa (L-DOPA) treatment represents the gold standard therapy for Parkinson's disease (PD) patients. L-DOPA therapy shows many side effects, among them, L-DOPA-induced dyskinesias (LIDs) remain the most problematic. Several are the mechanisms underlying these processes: abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events, changes in gene expression, and altered plasticity. In recent years, researchers have also suggested non-neuronal mechanisms as a possible cause for LIDs. We reviewed recent clinical and pre-clinical studies on neuroinflammation contribution to LIDs. Microglia and astrocytes seem to play a strategic role in LIDs phenomenon. In particular, their inflammatory response affects neuron-glia communication, synaptic activity and neuroplasticity, contributing to LIDs development. Finally, we describe possible new therapeutic interventions for dyskinesia prevention targeting glia cells.
Collapse
Affiliation(s)
- Antonella Cardinale
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Antonio de Iure
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| |
Collapse
|
29
|
Liu W, Li W, Liu Z, Li Y, Wang X, Guo M, Wang S, Wang S, Li Y, Jia J. Cerebrospinal fluid α-synuclein adds the risk of cognitive decline and is associated with tau pathology among non-demented older adults. Alzheimers Res Ther 2024; 16:103. [PMID: 38725083 PMCID: PMC11084056 DOI: 10.1186/s13195-024-01463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The role of α-synuclein in dementia has been recognized, yet its exact influence on cognitive decline in non-demented older adults is still not fully understood. METHODS A total of 331 non-demented individuals were included in the study from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Participants were divided into two distinct groups based on their α-synuclein levels: one with lower levels (α-synuclein-L) and another with higher levels (α-synuclein-H). Measurements included neuropsychiatric scales, cerebrospinal fluid (CSF) biomarkers, and blood transcriptomics. The linear mixed-effects model investigated the longitudinal changes in cognition. Kaplan-Meier survival analysis and the Cox proportional hazards model were utilized to evaluate the effects of different levels of α-synuclein on dementia. Gene set enrichment analysis (GSEA) was utilized to investigate the biological pathways related to cognitive impairment. Pearson correlation, multiple linear regression models, and mediation analysis were employed to investigate the relationship between α-synuclein and neurodegenerative biomarkers, and their potential mechanisms affecting cognition. RESULTS Higher CSF α-synuclein levels were associated with increased risk of cognitive decline and progression to dementia. Enrichment analysis highlighted the activation of tau-associated and immune response pathways in the α-synuclein-H group. Further correlation and regression analysis indicated that the CSF α-synuclein levels were positively correlated with CSF total tau (t-tau), phosphorylated tau (p-tau) 181, tumor necrosis factor receptor 1 (TNFR1) and intercellular cell adhesion molecule-1 (ICAM-1). Mediation analysis further elucidated that the detrimental effects of CSF α-synuclein on cognition were primarily mediated through CSF t-tau and p-tau. Additionally, it was observed that CSF α-synuclein influenced CSF t-tau and p-tau181 levels via inflammatory pathways involving CSF TNFR1 and ICAM-1. CONCLUSIONS These findings elucidate a significant connection between elevated levels of CSF α-synuclein and the progression of cognitive decline, highlighting the critical roles of activated inflammatory pathways and tau pathology in this association. They underscore the importance of monitoring CSF α-synuclein levels as a promising biomarker for identifying individuals at increased risk of cognitive deterioration and developing dementia.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhaojun Liu
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yan Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xuechu Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mengmeng Guo
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Shuheng Wang
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
30
|
Cogut V, Goris M, Jansma A, van der Staaij M, Henning RH. Hippocampal neuroimmune response in mice undergoing serial daily torpor induced by calorie restriction. Front Neuroanat 2024; 18:1334206. [PMID: 38686173 PMCID: PMC11056553 DOI: 10.3389/fnana.2024.1334206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
Hibernating animals demonstrate a remarkable ability to withstand extreme physiological brain changes without triggering adverse neuroinflammatory responses. While hibernators may offer valuable insights into the neuroprotective mechanisms inherent to hibernation, studies using such species are constrained by the limited availability of molecular tools. Laboratory mice may serve as an alternative, entering states of hypometabolism and hypothermia similar to the torpor observed in hibernation when faced with energy shortage. Notably, prolonged calorie restriction (CR) induces serial daily torpor patterns in mice, comparable to species that utilize daily hibernation. Here, we examined the neuroinflammatory response in the hippocampus of male C57BL/6 mice undergoing serial daily torpor induced by a 30% CR for 4 weeks. During daily torpor episodes, CR mice exhibited transient increases in TNF-α mRNA expression, which normalized upon arousal. Concurrently, the CA1 region of the hippocampus showed persistent morphological changes in microglia, characterized by reduced cell branching, decreased cell complexity and altered shape. Importantly, these morphological changes were not accompanied by evident signs of astrogliosis or oxidative stress, typically associated with detrimental neuroinflammation. Collectively, the adaptive nature of the brain's inflammatory response to CR-induced torpor in mice parallels observations in hibernators, highlighting its value for studying the mechanisms of brain resilience during torpor. Such insights could pave the way for novel therapeutic interventions in stroke and neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Valeria Cogut
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | | | | | | | |
Collapse
|
31
|
Yurkina DM, Romanova EA, Tvorogova AV, Naydenysheva ZK, Feoktistov AV, Yashin DV, Sashchenko LP. The 12-Membered TNFR1 Peptide, as Well as the 16-Membered and 6-Membered TNF Peptides, Regulate TNFR1-Dependent Cytotoxic Activity of TNF. Int J Mol Sci 2024; 25:3900. [PMID: 38612709 PMCID: PMC11011327 DOI: 10.3390/ijms25073900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Understanding the exact mechanisms of the activation of proinflammatory immune response receptors is very important for the targeted regulation of their functioning. In this work, we were able to identify the sites of the molecules in the proinflammatory cytokine TNF (tumor necrosis factor) and its TNFR1 (tumor necrosis factor receptor 1), which are necessary for the two-stage cytotoxic signal transduction required for tumor cell killing. A 12-membered TNFR1 peptide was identified and synthesized, interacting with the ligands of this receptor protein's TNF and Tag7 and blocking their binding to the receptor. Two TNF cytokine peptides interacting with different sites of TNFR1 receptors were identified and synthesized. It has been demonstrated that the long 16-membered TNF peptide interferes with the binding of TNFR1 ligands to this receptor, and the short 6-membered peptide interacts with the receptor site necessary for the transmission of a cytotoxic signal into the cell after the ligands' interaction with the binding site. This study may help in the development of therapeutic approaches to regulate the activity of the cytokine TNF.
Collapse
Affiliation(s)
- Daria M. Yurkina
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| | - Elena A. Romanova
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| | - Anna V. Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia;
| | - Zlata K. Naydenysheva
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| | - Alexey V. Feoktistov
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
- Engelhardt Institute of Molecular Biology (RAS), Moscow 119334, Russia
| | - Denis V. Yashin
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| | - Lidia P. Sashchenko
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| |
Collapse
|
32
|
Takada R, Toritsuka M, Yamauchi T, Ishida R, Kayashima Y, Nishi Y, Ishikawa M, Yamamuro K, Ikehara M, Komori T, Noriyama Y, Kamikawa K, Saito Y, Okano H, Makinodan M. Granulocyte macrophage colony-stimulating factor-induced macrophages of individuals with autism spectrum disorder adversely affect neuronal dendrites through the secretion of pro-inflammatory cytokines. Mol Autism 2024; 15:10. [PMID: 38383466 PMCID: PMC10882766 DOI: 10.1186/s13229-024-00589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.
Collapse
Affiliation(s)
- Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan.
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
- Osaka Psychiatric Research Center, 3-16-21 Miyanosaka, Hirakata City, Osaka, 573-0022, Japan
| |
Collapse
|
33
|
Osei D, Baumgart-Vogt E, Ahlemeyer B, Herden C. Tumor Necrosis Factor-α Receptor 1 Mediates Borna Disease Virus 1-Induced Changes in Peroxisomal and Mitochondrial Dynamics in Neurons. Int J Mol Sci 2024; 25:1849. [PMID: 38339126 PMCID: PMC10855776 DOI: 10.3390/ijms25031849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Borna disease virus 1 (BoDV1) causes a persistent infection in the mammalian brain. Peroxisomes and mitochondria play essential roles in the cellular antiviral immune response, but the effect of BoDV1 infection on peroxisomal and mitochondrial dynamics and their respective antioxidant capacities is still not clear. Using different mouse lines-i.e., tumor necrosis factor-α transgenic (TNFTg; to pro-inflammatory status), TNF receptor-1 knockout (TNFR1ko), and TNFR2ko mice in comparison to wild-type (Wt) mice-we analyzed the abundances of both organelles and their main antioxidant enzymes, catalase and superoxide dismutase 2 (SOD2), in neurons of the hippocampal, cerebral, and cerebellar cortices. In TNFTg mice, a strong increase in mitochondrial (6.9-fold) and SOD2 (12.1-fold) abundances was detected; meanwhile, peroxisomal abundance increased slightly (1.5-fold), but that of catalase decreased (2.9-fold). After BoDV1 infection, a strong decrease in mitochondrial (2.1-6.5-fold), SOD2 (2.7-9.1-fold), and catalase (2.7-10.3-fold) abundances, but a slight increase in peroxisomes (1.3-1.6-fold), were detected in Wt and TNFR2ko mice, whereas no changes occurred in TNFR1ko mice. Our data suggest that the TNF system plays a crucial role in the biogenesis of both subcellular organelles. Moreover, TNFR1 signaling mediated the changes in peroxisomal and mitochondrial dynamics after BoDV1 infection, highlighting new mechanisms by which BoDV1 may achieve immune evasion and viral persistence.
Collapse
Affiliation(s)
- Dominic Osei
- Institute for Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.O.); (E.B.-V.)
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.O.); (E.B.-V.)
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.O.); (E.B.-V.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany
- Center for Mind, Brain and Behavior, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
34
|
Li HY, Liu DS, Li LB, Zhang YB, Dong HY, Rong H, Zhang JY, Wang JP, Jin M, Luo N, Zhang XJ. Total Glucosides of White Paeony Capsule ameliorates Parkinson's disease-like behavior in MPTP-induced mice model by regulating LRRK2/alpha-synuclein signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117319. [PMID: 37838295 DOI: 10.1016/j.jep.2023.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Total Glucosides of White Paeony Capsule (TGPC), one of the traditional Chinese patent medicines, has been used for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) in clinical practice. Besides, the components of TGPC are extracted from Radix Paeoniae Alba (RPA) and have displayed neuroprotective properties. AIM OF THE STUDY The present study was designed to evaluate the anti-PD-like effects of TGPC on a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mice model and explore its potential molecular mechanisms. MATERIALS AND METHODS Behavioral tests, hematoxylin and eosin (HE) staining, Nissl staining, immunohistochemistry (IHC), western blotting (WB) and Enzyme-Linked Immunosorbent Assay (ELISA) were performed in this study. RESULTS It was observed that TGPC treatment (150, 300 mg/kg) significantly reversed MPTPinduced PD-like behaviors, such as reduced locomotive activity in the open field test, prolonged time to turn downward on the ball (T-turn) and to climb down the whole pole (T-descend) in the pole test, decreased movement scores in the traction test and extended the latency to fall in the hanging wire test. In addition, TGPC improved neurodegeneration, inhibited the excessive activation of microglia and suppressed the overproduction of proinflammatory cytokines induced by MPTP, partially by restoring leucine-rich repeat kinase 2 (LRRK2) activity and inhibiting alpha-synuclein (α-syn) mediated neuroinflammation signaling. CONCLUSION Taken together, TGPC exhibited neuroprotective effects on MPTP-induced mice model of PD, which was associated with the prevention of neuroinflammation and neurodegeneration modulated by LRRK2/α-syn pathway.
Collapse
MESH Headings
- Mice
- Animals
- Parkinson Disease/drug therapy
- alpha-Synuclein/metabolism
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Glucosides/metabolism
- Paeonia
- Neuroinflammatory Diseases
- Mice, Inbred C57BL
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neuroprotective Agents/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Dopaminergic Neurons
- Disease Models, Animal
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Li-Bo Li
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Hai-Ying Dong
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Jing-Yan Zhang
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Jun-Ping Wang
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Ming Jin
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Nan Luo
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, PR China; Heilongjiang Nursing College, Haerbin, 150000, PR China.
| |
Collapse
|
35
|
Tettevi EJ, Kuevi DNO, Sumabe BK, Simpong DL, Maina MB, Dongdem JT, Osei-Atweneboana MY, Ocloo A. In Silico Identification of a Potential TNF-Alpha Binder Using a Structural Similarity: A Potential Drug Repurposing Approach to the Management of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9985719. [PMID: 38221912 PMCID: PMC10787656 DOI: 10.1155/2024/9985719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disorder with no conclusive remedy. Yohimbine, found in Rauwolfia vomitoria, may reduce brain inflammation by targeting tumour necrosis factor-alpha (TNFα), implicated in AD pathogenesis. Metoserpate, a synthetic compound, may inhibit TNFα. The study is aimed at assessing the potential utility of repurposing metoserpate for TNFα inhibition to reduce neuronal damage and inflammation in AD. The development of safe and effective treatments for AD is crucial to address the growing burden of the disease, which is projected to double over the next two decades. Methods Our study repurposed an FDA-approved drug as TNFα inhibitor for AD management using structural similarity studies, molecular docking, and molecular dynamics simulations. Yohimbine was used as a reference compound. Molecular docking used SeeSAR, and molecular dynamics simulation used GROMACS. Results Metoserpate was selected from 10 compounds similar to yohimbine based on pharmacokinetic properties and FDA approval status. Molecular docking and simulation studies showed a stable interaction between metoserpate and TNFα over 100 ns (100000 ps). This suggests a reliable and robust interaction between the protein and ligand, supporting the potential utility of repurposing metoserpate for TNFα inhibition in AD treatment. Conclusion Our study has identified metoserpate, a previously FDA-approved antihypertensive agent, as a promising candidate for inhibiting TNFα in the management of AD.
Collapse
Affiliation(s)
- Edward Jenner Tettevi
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Legon, Accra, P.O. Box LG 25, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, School of Biological Science, University of Ghana, Legon, Accra, P.O. Box LG 25, Ghana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra, P.O. Box M 32, Ghana
| | - Deryl Nii Okantey Kuevi
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra, P.O. Box M 32, Ghana
| | - Balagra Kasim Sumabe
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra, P.O. Box M 32, Ghana
| | - David Larbi Simpong
- Department of Medical Laboratory Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mahmoud B. Maina
- Serpell Laboratory, Sussex Neuroscience, School of Life Sciences, University of Sussex, UK
- Biomedical Science Research and Training Centre, College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Julius T. Dongdem
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale Campus, Ghana
| | - Mike Y. Osei-Atweneboana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research-Water Research Institute, Accra, P.O. Box M 32, Ghana
- CSIR-College of Science and Technology, 2nd CSIR Close, Airport Residential Area, Behind Golden Tulip Hotel, Greater Accra Region, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Legon, Accra, P.O. Box LG 25, Ghana
| |
Collapse
|
36
|
Nadarajapillai K, Jung S, Sellaththurai S, Ganeshalingam S, Kim MJ, Lee J. CRISPR/Cas9-mediated knockout of tnf-α1 in zebrafish reduces disease resistance after Edwardsiella piscicida bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109249. [PMID: 38040136 DOI: 10.1016/j.fsi.2023.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Tumor necrosis factor (TNF) is an important cytokine involved in immune responses to bacterial infections in vertebrates, including fish. Although Tnf-α is a well-studied cytokine, there are contradictory findings about Tnf-α function following bacterial infection. In this study, we analyzed the expression and function of the Tnf-α-type I isoform (Tnf-α1) in zebrafish by knockout experiments using the CRISPR/Cas9 gene-editing tool. The open reading frame of tnf-α1 encodes a 25.82 kDa protein with 234 amino acids (aa). The expression of tnf-α1 in the early stages of zebrafish was observed from the 2-cell stage. Adult zebrafish spleens showed the highest expression of tnf-α1. To evaluate the function of Tnf-α1, an 8 bp deletion in the target region, resulting in a short truncated protein of 55 aa, was used to create the tnf-α1 knockout mutant. The pattern of downstream gene expression in 7-day larvae in wild-type (WT) and tnf-α1 knockout fish was examined. We also verified the fish mortality rate after Edwardsiella piscicida challenge and found that it was much higher in tnf-α1 knockout fish than in WT fish. Additionally, downstream gene expression analyses after E. piscicida exposure revealed a distinct expression pattern in tnf-α1 knockout fish compared to that in WT fish. Overall, our study using tnf-α1 deletion in zebrafish confirmed that Tnf-α1 is critical for immune regulation during bacterial infection.
Collapse
Affiliation(s)
- Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
37
|
Costantini E, Carrarini C, Calisi D, De Rosa M, Simone M, Di Crosta A, Palumbo R, Cipollone A, Aielli L, De Laurentis M, Colarusso L, Pilotto A, Padovani A, Konstantinidou F, Gatta V, Stuppia L, Cipollone F, Di Nicola M, Reale M, Bonanni L. Search in the Periphery for Potential Inflammatory Biomarkers of Dementia with Lewy Bodies and Alzheimer's Disease. J Alzheimers Dis 2024; 99:1147-1158. [PMID: 38759010 PMCID: PMC11191525 DOI: 10.3233/jad-231471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
Background Neuroinflammation, with altered peripheral proinflammatory cytokine production, plays a major role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), while the role of inflammation in dementia with Lewy bodies (DLB) is less known and the results of different studies are often in disagreement. Objective The present study aimed to investigate the levels of TNFα and IL-6 in serum and supernatants, and the related DNA methylation in patients affected by DLB and AD compared to healthy controls (HCs), to clarify the role of epigenetic mechanisms of DNA promoter methylation on of pro-inflammatory cytokines overproduction. Methods Twenty-one patients with DLB and fourteen with AD were frequency-matched for age and sex with eleven HCs. Clinical evaluation, TNFα and IL-6 gene methylation status, cytokine gene expression levels and production in serum and peripheral blood mononuclear cell (PBMC) supernatants were performed. Results In AD and DLB patients, higher serum levels of IL-6 and TNFα were detected than in HCs. Differences in LPS-stimulated versus spontaneous PBMCs were observed between DLB, AD, and HC in the levels of TNFα (p = 0.027) and IL-6 (p < 0.001). Higher levels were also revealed for sIL-6R in DLB (p < 0.001) and AD (p < 0.001) in comparison with HC.DNA hypomethylation in IL-6 and TNFα CpG promoter sites was detected for DLB and AD patients compared to the corresponding site in HCs. Conclusions Our preliminary study documented increased levels of IL-6 and TNFα in DLB and AD patients to HCs. This overproduction can be due to epigenetic mechanisms regarding the hypomethylation of DNA promoters.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Dario Calisi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Matteo De Rosa
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Marianna Simone
- Clinics of Neurology SS. Annunziata Hospital of Chieti, Chieti, Italy
| | - Adolfo Di Crosta
- Department of Psychological Health and Territorial Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Rocco Palumbo
- Department of Psychological Health and Territorial Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Alessia Cipollone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Chieti, Italy
| | | | | | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
- Parkinson’s Disease Rehabilitation Centre, FERB ONLUS-S, Isidoro Hospital, Trescore Balneario, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti, Italy
| | - Marta Di Nicola
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Chieti, Italy
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti, Italy
| |
Collapse
|
38
|
Wen S, Lv X, Li P, Li J, Qin D. Analysis of cancer-associated fibroblasts in cervical cancer by single-cell RNA sequencing. Aging (Albany NY) 2023; 15:15340-15359. [PMID: 38157264 PMCID: PMC10781451 DOI: 10.18632/aging.205353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Since scRNA-seq is an effective tool to study tumor heterogeneity, this paper intends to reveal the differences of cervical cancer in patients at the individual cell level by scRNA-seq, and focus on the biological functions of cancer-associated fibroblasts (CAFs) in cervical cancer, facilitating the provision of a new interpretation of the heterogeneity of the microenvironment of cervical cancer, and an in-depth exploration of the pathogenesis of cervical cancer as well as pursuit of effective means of treatment intake. METHODS 3 cervical cancer specimens were collected by clinical surgery for single-cell RNA sequencing. Cell suspensions of fresh cervical cancer tissues were prepared, and cDNA libraries were created and sequenced on the machine. Furthermore, the sequencing data were analyzed using bioinformatics, including descending clustering of cells, identification of cell populations, mimetic time series analysis, inferCNV, cell communication analysis, and identification of transcription factors. RESULTS A total of 9 cell types were identified, encompassing T cells, epithelial cells, smooth muscle cells, CAFs, endothelial cells, macrophages, B cells, lymphocytes, and plasma cells. CAFs were further divided into three cell subtypes, named type1 cells, type2 cells, and type3 cells. With key transcription factors for the three cells, TCF21, ZC3H11A, and MYEF2 obtained, this research revealed the communication relationship between CAFs and several other cells, and found an important role of CAFs in the MK signaling pathway. CONCLUSIONS scRNA-seq technology contributed to exploring the tumor heterogeneity of cervical cancer more deeply, and also further gaining insight into the biological functions of CAFs in cervical cancer.
Collapse
Affiliation(s)
- Shuang Wen
- Reproductive Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuefeng Lv
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengxiang Li
- Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Jinpeng Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongchun Qin
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Moslemi Z, Toledo-Aldana EA, Baldwin B, Donkers SJ, Eng JJ, Mondal P, de Zepetnek JOT, Buttigieg J, Levin MC, Mang CS. Task-oriented exercise effects on walking and corticospinal excitability in multiple sclerosis: protocol for a randomized controlled trial. BMC Sports Sci Med Rehabil 2023; 15:175. [PMID: 38129896 PMCID: PMC10734154 DOI: 10.1186/s13102-023-00790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a degenerative disease of the central nervous system (CNS) that disrupts walking function and results in other debilitating symptoms. This study compares the effects of 'task-oriented exercise' against 'generalized resistance and aerobic exercise' and a 'stretching control' on walking and CNS function in people with MS (PwMS). We hypothesize that task-oriented exercise will enhance walking speed and related neural changes to a greater extent than other exercise approaches. METHODS This study is a single-blinded, three-arm randomized controlled trial conducted in Saskatchewan, Canada. Eligible participants are those older than 18 years of age with a diagnosis of MS and an expanded Patient-Determined Disease Steps (PDDS) score between 3 ('gait disability') and 6 ('bilateral support'). Exercise interventions are delivered for 12 weeks (3 × 60-min per week) in-person under the supervision of a qualified exercise professional. Interventions differ in exercise approach, such that task-oriented exercise involves weight-bearing, walking-specific activities, while generalized resistance and aerobic exercise uses seated machine-based resistance training of major upper and lower body muscle groups and recumbent cycling, and the stretching control exercise involves seated flexibility and relaxation activities. Participants are allocated to interventions using blocked randomization that stratifies by PDDS (mild: 3-4; moderate: 5-6). Assessments are conducted at baseline, post-intervention, and at a six-week retention time point. The primary and secondary outcome measures are the Timed 25-Foot Walk Test and corticospinal excitability for the tibialis anterior muscles determined using transcranial magnetic stimulation (TMS), respectively. Tertiary outcomes include assessments of balance, additional TMS measures, blood biomarkers of neural health and inflammation, and measures of cardiorespiratory and musculoskeletal fitness. DISCUSSION A paradigm shift in MS healthcare towards the use of "exercise as medicine" was recently proposed to improve outcomes and alleviate the economic burden of MS. Findings will support this shift by informing the development of specialized exercise programming that targets walking and changes in corticospinal excitability in PwMS. TRIAL REGISTRATION ClinicalTrials.gov, NCT05496881, Registered August 11, 2022. https://classic. CLINICALTRIALS gov/ct2/show/NCT05496881 . Protocol amendment number: 01; Issue date: August 1, 2023; Primary reason for amendment: Expand eligibility to include people with all forms of MS rather than progressive forms of MS only.
Collapse
Affiliation(s)
- Zahra Moslemi
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Eduardo A Toledo-Aldana
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Bruce Baldwin
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Sarah J Donkers
- School of Rehabilitation Sciences, College of Medicine, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK, S7N 2Z4, Canada
| | - Janice J Eng
- Centre for Aging SMART at Vancouver Coastal Health, Department of Physical Therapy, University of British Columbia, 2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Prosanta Mondal
- Clinical Research Support Unit, University of Saskatchewan, 3200 Health Science E-wing, Saskatoon, SK, S7N 5B5, Canada
| | - Julia O Totosy de Zepetnek
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Josef Buttigieg
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada
| | - Michael C Levin
- Department of Neurology and Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Cameron S Mang
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A1, Canada.
| |
Collapse
|
40
|
Nady R, Ahmed RR, Moustafa N, Abdul-Hamid M. TNF-α blockage by etanercept restores spatial learning and reduces cellular degeneration in the hippocampus during liver cirrhosis. Tissue Cell 2023; 85:102249. [PMID: 37865039 DOI: 10.1016/j.tice.2023.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Hepatic encephalopathy (HE) is one of the most debilitating cerebral complications of liver cirrhosis. The one-year survival of patients with liver cirrhosis and severe encephalopathy is less than 50%. Recent studies have indicated that neuroinflammation is a new player in the pathogenesis of HE, which seems to be involved in the development of cognitive impairment. In this study, we demonstrated neurobehavioral and neuropathological consequences of liver cirrhosis and tested the therapeutic potential of the tumor necrosis factor-α (TNF-α) inhibitor, etanercept. Sixty male adult Wistar albino rats (120-190 g) were allocated into four groups, where groups I and IV served as controls. Thioacetamide (TAA; 300 mg/kg) was intraperitoneally injected twice a week for five months to induce liver cirrhosis in group II (n = 20). Both TAA and etanercept (2 mg/kg) were administered to group III (n = 20). At the end of the experiment, spatial learning was assessed using Morris water maze. TNF-α was detected in both serum and hippocampus. The excised brains were also immunohistochemically stained with glial fibrillary acidic protein (GFAP) to estimate both the number and integrity of hippocampal astrocytes. Ultrastructural changes in the hippocampus were characterized by transmission electron microscopy. The results showed that blocking TNF-α by etanercept was accompanied by a lower TNF-α expression and a higher number of GFAP-positive astrocytes in the hippocampus. Etanercept intervention alleviated the neuronal and glial degenerative changes and impeded the deterioration of spatial learning ability. In conclusion, TNF-α is strongly involved in the development of liver cirrhosis and the associated encephalopathy. TNF-α blockers may be a promising approach for management of hepatic cirrhosis and its cerebral complications.
Collapse
Affiliation(s)
- Rehab Nady
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Rasha R Ahmed
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Nadia Moustafa
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Manal Abdul-Hamid
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt.
| |
Collapse
|
41
|
Davuluri KS, Singh AK, Yadav VK, Singh AV, Singh SV, Chauhan DS. Dominant negative biologics normalise the tumour necrosis factor (TNF-α) induced angiogenesis which exploits the Mycobacterium tuberculosis dissemination. BMC Immunol 2023; 24:49. [PMID: 38036985 PMCID: PMC10691138 DOI: 10.1186/s12865-023-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF) is known to promote T cell migration and increase the expression of vascular endothelial growth factor (VEGF) and chemokines. The administration of Xpro-1595, a dominant-negative TNF (DN-TNF) engineered to selectively inactivate soluble TNF (solTNF), has been extensively studied and proven effective in reducing TNF production without suppressing innate immunity during infection. The literature also supports the involvement of glutamic acid-leucine-arginine (ELR+) chemokines and VEGF in angiogenesis and the spread of infections. MATERIALS AND METHODS In this study, we administered Xpro-1595 to guinea pigs to selectively inhibit solTNF, aiming to assess its impact on Mycobacterium tuberculosis (M.tb) dissemination, bacterial growth attenuation, and immunological responses. We conducted immunohistochemical analyses, immunological assays, and colony enumeration to comprehensively study the effects of Xpro-1595 by comparing with anti-TB drugs treated M.tb infected guinea pigs. Throughout the infection and treatment period, we measured the levels of Interleukin-12 subunit alpha (IL-12), Interferon-gamma (IFN-γ), TNF, Tumor growth factor (TGF), and T lymphocytes using ELISA. RESULTS Our findings revealed a reduction in M.tb dissemination and inflammation without compromising the immune response during Xpro-1595 treatment. Notably, Xpro-1595 therapy effectively regulated the expression of VEGFA and ELR + chemokines, which emerged as key factors contributing to infection dissemination. Furthermore, this treatment influenced the migration of CD4 T cells in the early stages of infection, subsequently leading to a reduced T cell response and controlled proinflammatory signalling, thus mitigating inflammation. CONCLUSION Our study underscores the pivotal role of solTNF in the dissemination of M.tb to other organs. This preliminary investigation sheds light on the involvement of solTNF in the mechanisms underlying M.tb dissemination, although further in-depth research is warranted to fully elucidate its role in this process.
Collapse
Affiliation(s)
- Kusuma Sai Davuluri
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
- Department Biotechnology, GLA University, Mathura, India
| | - Amit Kumar Singh
- Department of Animal Experimentation Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Vimal Kumar Yadav
- Department of Animal Experimentation Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | | | - Devendra Singh Chauhan
- Department of Microbiology and Molecular Biology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India.
| |
Collapse
|
42
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
43
|
Sara Salahuddin H, Attaullah S, Ali Shah S, Khan S, Zahid M, Ullah M, Khayyam, Salahuddin S, Gul S, Alsugoor MH. Ranuncoside's attenuation of scopolamine-induced memory impairment in mice via Nrf2 and NF-ĸB signaling. Saudi Pharm J 2023; 31:101702. [PMID: 37533493 PMCID: PMC10391653 DOI: 10.1016/j.jsps.2023.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Scopolamine is a well-known pharmacological agent responsible for causing memory impairment in animals, as well as oxidative stress and neuroinflammation inducer which lead to the development of Alzheimer disease. Although a cure for Alzheimer's disease is unavailable. Ranuncoside, a metabolite obtained from a medicinal plant has demonstrated antioxidant and anti-inflammatory properties in vitro, making it a promising treatment with potential anti-Alzheimer disease properties. However, as ranuncoside has not been evaluated for its antioxidant and anti-neuroinflammatory properties in any in vivo model, our study aimed to evaluate its neurotherapeutic efficacy against scopolamine-induced memory impairment in adult male albino mice. Mice were randomly divided into four experimental groups. Mice of group I was injected with saline, group II was injected with scopolamine (1 mg/kg/day) for 3 weeks. After receiving a daily injection of scopolamine for 1 week, the mice of group III were injected with ranuncoside (10 mg/kg) every other day for 2 weeks along with scopolamine daily and group IV were injected with ranuncoside on 5th alternate days. Behavioral tests (i.e., Morris water maze and Y-maze) were performed to determine the memory-enhancing effect of ranuncoside against scopolamine's memory deleterious effect. Western blot analysis was also performed to further elucidate the anti-neuroinflammatory and antioxidant effects of ranuncoside against scopolamine-induced neuroinflammation and oxidative stress. Our results showed memory-enhancing, anti-neuroinflammatory effect, and antioxidant effects of ranuncoside against scopolamine by increasing the expression of the endogenous antioxidant system (i.e., Nrf2 and HO-1), followed by blocking neuroinflammatory markers such as NF-κB, COX-2, and TNF-α. The results also revealed that ranuncoside possesses hypoglycemic and hypolipidemic effects against scopolamine-induced hyperglycemia and hyperlipidemia in mice as well as scopolamine's hyperglycemic effect. In conclusion, our findings suggest that ranuncoside could be a potential agent for the management of Alzheimer's disease, hyperglycemia, and hyperlipidemia.
Collapse
Affiliation(s)
| | - Sobia Attaullah
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ali Shah
- Neuro Molecular Medicine Research Centre (NMMRC), Ring Road, Peshawar, KPK, Pakistan
- The University of Haripur, KPK, Pakistan
| | - SanaUllah Khan
- Department of Zoology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mujeeb Ullah
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Khayyam
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sidra Salahuddin
- Hayatabad Medical Complex, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Seema Gul
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mahdi H Alsugoor
- Department of Emergency Medical Services, College of Health Sciences-AlQunfudah, Umm Al- Qura University, Makkah 21912, Saudi Arabia
| |
Collapse
|
44
|
Goh XX, Tang PY, Tee SF. Meta-analysis of soluble tumour necrosis factor receptors in severe mental illnesses. J Psychiatr Res 2023; 165:180-190. [PMID: 37515950 DOI: 10.1016/j.jpsychires.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
Tumour necrosis factor (TNF), as an innate immune defense molecule, functions through binding to TNF receptor 1 (TNFR1) or TNF receptor 2 (TNFR2). Peripheral levels of soluble TNFR1 (sTNFR1) and soluble TNFR2 (sTNFR2) were widely measured in severe mental illnesses (SMIs) including schizophrenia (SCZ), bipolar disorder (BD) and major depressive disorder (MDD) but inconsistencies existed. Hence, the present meta-analysis was conducted to identify the overall association between plasma/serum sTNFR1 and sTNFR2 levels and SMIs. Published studies were searched using Pubmed and Scopus. Data were analysed using Comprehensive Meta-Analysis version 2. Hedges's g effect sizes and 95% confidence intervals were pooled using fixed-effect or random-effects models. Heterogeneity, publication bias and study quality were assessed. Sensitivity analysis and subgroup analysis were performed. Our findings revealed that sTNFR1 level was significantly higher in SMI, particularly in BD. The sTNFR2 level significantly elevated in SMI but with smaller effect size. These findings further support the association between altered immune system and inflammatory abnormalities in SMI, especially in patients with BD. Subgroup analysis showed that younger age of onset, longer illness duration and psychotropic medication raised both sTNFR levels, especially sTNFR1, as these factors may contribute to the activation of inflammation. Future studies were suggested to identify the causality between TNFR pathway and SCZ, BD and MDD respectively using homogenous group of each SMI, and to determine the longitudinal effect of each psychotropic medication on TNFR pathway.
Collapse
Affiliation(s)
- Xue Xin Goh
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia
| | - Shiau Foon Tee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Malaysia.
| |
Collapse
|
45
|
Bosco F, Ruga S, Citraro R, Leo A, Guarnieri L, Maiuolo J, Oppedisano F, Macrì R, Scarano F, Nucera S, Bava I, Palma E, Muscoli C, Hancke J, De Sarro G, Mollace V. The Effects of Andrographis paniculata (Burm.F.) Wall. Ex Nees and Andrographolide on Neuroinflammation in the Treatment of Neurodegenerative Diseases. Nutrients 2023; 15:3428. [PMID: 37571363 PMCID: PMC10421033 DOI: 10.3390/nu15153428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect millions of people worldwide, and to date, Alzheimer's and Parkinson's diseases are the most common NDs. Of the many risk factors for neurodegeneration, the aging process has the most significant impact, to the extent that it is tempting to consider neurodegenerative disease as a manifestation of accelerated aging. However, genetic and environmental factors determine the course of neurodegenerative disease progression. It has been proposed that environmental stimuli influence neuroplasticity. Some clinical studies have shown that healthy lifestyles and the administration of nutraceuticals containing bioactive molecules possessing antioxidant and anti-inflammatory properties have a preventive impact or mitigate symptoms in previously diagnosed patients. Despite ongoing research efforts, the therapies currently used for the treatment of NDs provide only marginal therapeutic benefits; therefore, the focus is now directly on the search for natural products that could be valuable tools in combating these diseases, including the natural compound Andrographis paniculata (Ap) and its main constituent, andrographolide (Andro). Preclinical studies have shown that the aqueous extract of Ap can modulate neuroinflammatory and neurodegenerative responses, reducing inflammatory markers and oxidative stress in various NDs. Therefore, in this review, we will focus on the molecular mechanisms by which Ap and Andro can modulate the processes of neurodegeneration and neuroinflammation, which are significant causes of neuronal death and cognitive decline.
Collapse
Affiliation(s)
- Francesca Bosco
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Science of Health Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Science of Health Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Irene Bava
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | | | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Science of Health Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| |
Collapse
|
46
|
Gonzalez Caldito N. Role of tumor necrosis factor-alpha in the central nervous system: a focus on autoimmune disorders. Front Immunol 2023; 14:1213448. [PMID: 37483590 PMCID: PMC10360935 DOI: 10.3389/fimmu.2023.1213448] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune cytokine that belongs to the TNF superfamily of receptor ligands. The cytokine exists as either a transmembrane or a soluble molecule, and targets two distinct receptors, TNF-α receptor 1 (TNFR1) and TNF-α receptor 2 (TNFR2), which activate different signaling cascades and downstream genes. TNF-α cellular responses depend on its molecular form, targeted receptor, and concentration levels. TNF-α plays a multifaceted role in normal physiology that is highly relevant to human health and disease. In the central nervous system (CNS), this cytokine regulates homeostatic functions, such as neurogenesis, myelination, blood-brain barrier permeability and synaptic plasticity. However, it can also potentiate neuronal excitotoxicity and CNS inflammation. The pleiotropism of TNF-α and its various roles in the CNS, whether homeostatic or deleterious, only emphasizes the functional complexity of this cytokine. Anti-TNF-α therapy has demonstrated effectiveness in treating various autoimmune inflammatory diseases and has emerged as a significant treatment option for CNS autoimmune diseases. Nevertheless, it is crucial to recognize that the effects of this therapeutic target are diverse and complex. Contrary to initial expectations, anti-TNF-α therapy has been found to have detrimental effects in multiple sclerosis. This article focuses on describing the various roles, both physiological and pathological, of TNF-α in the CNS. Additionally, it discusses the specific disease processes that are dependent or regulated by TNF-α and the rationale of its use as a therapeutic target.
Collapse
Affiliation(s)
- Natalia Gonzalez Caldito
- Department of Neurology, Northwestern Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
47
|
Kaya ZB, Karakoc E, McLean PJ, Saka E, Atilla P. Post-inflammatory administration of N-acetylcysteine reduces inflammation and alters receptor levels in a cellular model of Parkinson's disease. FASEB Bioadv 2023; 5:263-276. [PMID: 37415931 PMCID: PMC10320847 DOI: 10.1096/fba.2022-00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/10/2023] [Accepted: 04/28/2023] [Indexed: 07/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex, multifactorial neurodegenerative disease with a prevalence of 1% over the age of 55. Neuropathological hallmarks of PD include the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of Lewy bodies that contain a variety of proteins and lipids including alpha-synuclein (α-syn). Although the formation of α-syn occurs intracellularly, it can also be found in the extracellular space where it can be taken up by neighboring cells. Toll-like receptor 2 (TLR2) is an immune system receptor that has been shown to recognize extracellular α-syn and modulate its uptake by other cells. Lymphocyte-activation gene 3 (LAG3), an immune checkpoint receptor, has also been proposed to play a role in extracellular α-syn internalization; however, a recent study has disputed this role. Internalized α-syn can trigger expression and secretion of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-2, and IL-6 and induce neuroinflammation, apoptosis, and mitophagy that results in cellular death. In this study, we tested if N-acetylcysteine (NAC), an anti-inflammatory and anti-carcinogenic drug, can circumvent the detrimental effects of neuroinflammation and induce an anti-inflammatory response by modulating transcription and expression of TLR2 and LAG3 receptors. Cells overexpressing wild-type α-syn were treated with TNF-α to induce inflammation followed by NAC to inhibit the deleterious effects of TNF-α-induced inflammation and apoptosis. SNCA gene transcription and α-syn protein expression were validated by q-PCR and Western blot (WB), respectively. Cell viability was measured, and apoptosis was evaluated by WB and terminal deoxynucleotidyl transferase nick end labeling methods. Alterations in LAG3 and TLR2 receptor levels were evaluated by immunofluorescent labeling, WB, and q-PCR. TNF-α not only increased inflammation but also increased endogenous and overexpressed α-syn levels. NAC treatment decreased expression of TLR2 and increased transcription of LAG3 receptor and diminished inflammation-mediated toxicity and cell death. Here, we demonstrate that NAC can reduce neuroinflammation that occurs as a result of alpha-synuclein overexpression, via a TLR2-associated pathway, making it a promising candidate for therapeutic intervention. Further studies are needed to elucidate molecular mechanisms and pathways related to neuroinflammation in PD and to develop possible new therapeutic approaches to slow the clinical progression of PD.
Collapse
Affiliation(s)
- Zeynep Bengisu Kaya
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Elif Karakoc
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| | | | - Esen Saka
- Department of NeurologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Pergin Atilla
- Department of Histology and EmbryologyHacettepe University Faculty of MedicineAnkaraTurkey
| |
Collapse
|
48
|
Lund MC, Ellman DG, Nielsen PV, Raffaele S, Fumagalli M, Guzman R, Degn M, Brambilla R, Meyer M, Clausen BH, Lambertsen KL. Selective Inhibition of Soluble Tumor Necrosis Factor Alters the Neuroinflammatory Response following Moderate Spinal Cord Injury in Mice. BIOLOGY 2023; 12:845. [PMID: 37372129 DOI: 10.3390/biology12060845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Clinical and animal model studies have implicated inflammation and glial and peripheral immune cell responses in the pathophysiology of spinal cord injury (SCI). A key player in the inflammatory response after SCI is the pleiotropic cytokine tumor necrosis factor (TNF), which exists both in both a transmembrane (tmTNF) and a soluble (solTNF) form. In the present study, we extend our previous findings of a therapeutic effect of topically blocking solTNF signaling after SCI for three consecutive days on lesion size and functional outcome to study the effect on spatio-temporal changes in the inflammatory response after SCI in mice treated with the selective solTNF inhibitor XPro1595 and compared to saline-treated mice. We found that despite comparable TNF and TNF receptor levels between XPro1595- and saline-treated mice, XPro1595 transiently decreased pro-inflammatory interleukin (IL)-1β and IL-6 levels and increased pro-regenerative IL-10 levels in the acute phase after SCI. This was complemented by a decrease in the number of infiltrated leukocytes (macrophages and neutrophils) in the lesioned area of the spinal cord and an increase in the number of microglia in the peri-lesion area 14 days after SCI, followed by a decrease in microglial activation in the peri-lesion area 21 days after SCI. This translated into increased myelin preservation and improved functional outcomes in XPro1595-treated mice 35 days after SCI. Collectively, our data suggest that selective targeting of solTNF time-dependently modulates the neuroinflammatory response by favoring a pro-regenerative environment in the lesioned spinal cord, leading to improved functional outcomes.
Collapse
Affiliation(s)
- Minna Christiansen Lund
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Ditte Gry Ellman
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Pernille Vinther Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Stefano Raffaele
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Matilda Degn
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Roberta Brambilla
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, 5000 Odense, Denmark
| |
Collapse
|
49
|
Mehra A, Gomez F, Bischof H, Diedrich D, Laudanski K. Cortical Spreading Depolarization and Delayed Cerebral Ischemia; Rethinking Secondary Neurological Injury in Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:9883. [PMID: 37373029 DOI: 10.3390/ijms24129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Poor outcomes in Subarachnoid Hemorrhage (SAH) are in part due to a unique form of secondary neurological injury known as Delayed Cerebral Ischemia (DCI). DCI is characterized by new neurological insults that continue to occur beyond 72 h after the onset of the hemorrhage. Historically, it was thought to be a consequence of hypoperfusion in the setting of vasospasm. However, DCI was found to occur even in the absence of radiographic evidence of vasospasm. More recent evidence indicates that catastrophic ionic disruptions known as Cortical Spreading Depolarizations (CSD) may be the culprits of DCI. CSDs occur in otherwise healthy brain tissue even without demonstrable vasospasm. Furthermore, CSDs often trigger a complex interplay of neuroinflammation, microthrombi formation, and vasoconstriction. CSDs may therefore represent measurable and modifiable prognostic factors in the prevention and treatment of DCI. Although Ketamine and Nimodipine have shown promise in the treatment and prevention of CSDs in SAH, further research is needed to determine the therapeutic potential of these as well as other agents.
Collapse
Affiliation(s)
- Ashir Mehra
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Holly Bischof
- Penn Presbyterian Medical Center, Philadelphia, PA 19104, USA
| | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
50
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|