1
|
Martins RX, Gomes C, Carvalho M, Souza JADCR, Souza T, Farias D. A network toxicology and molecular docking-based approach revealed shared hepatotoxic mechanisms and targets between the herbicide 2,4-D and its metabolite 2,4-DCP. Toxicology 2025; 513:154086. [PMID: 39954767 DOI: 10.1016/j.tox.2025.154086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its major environmental metabolite 2,4-dichlorophenol (2,4-DCP) are pollutants associated with hepatotoxicity, whose molecular mechanisms remain poorly understood. This study investigated the molecular pathways and targets involved in 2,4-D and 2,4-DCP-induced hepatotoxicity using protein-protein interaction (PPI) network analyses and molecular docking. Target genes were identified using PharmMapper and SwissTargetPrediction, and cross-referenced with hepatotoxicity-related genes from GeneCards and OMIM databases. The PPI network, constructed via STRING and visualized in Cytoscape, revealed 12 critical hub nodes, including HSP90AA1, RXRA, EGFR, SRC, CREBBP, PIK3R1, ESR1, AKT1, RAF1, IGF1R, MDM2, and MAPK14. Gene Ontology (GO) analysis indicated processes such as apoptosis, oxidative stress, mitochondrial dysfunction, and lipid metabolism impairment, while Reactome pathway analysis highlighted disruptions in PI3K/AKT and nuclear receptors signaling. Molecular docking confirmed significant interactions of 2,4-D and 2,4-DCP with key proteins, including SRC, AKT, RXRA, MDM2, and HSP90AA1. These results suggest that 2,4-D and 2,4-DCP share similar toxic mechanisms, providing new insights into their hepatotoxicity pathways for the first time.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará Building 907, Campus Pici, Fortaleza 60455-970, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Cleyton Gomes
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Juliana Alves da Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará Building 907, Campus Pici, Fortaleza 60455-970, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil.
| |
Collapse
|
2
|
Obeme-Nmom JI, Abioye RO, Reyes Flores SS, Udenigwe CC. Regulation of redox enzymes by nutraceuticals: a review of the roles of antioxidant polyphenols and peptides. Food Funct 2024; 15:10956-10980. [PMID: 39465304 DOI: 10.1039/d4fo03549f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Redox enzymes are essential components of the cellular defence system against oxidative stress, which is a common factor in various diseases. Therefore, understanding the role of bioactive nutraceuticals in modulating the activity of these enzymes holds immense therapeutic potential. This paper provides a comprehensive review of the regulation of redox enzymes in cell and animal models by food-derived bioactive nutraceuticals, focusing on polyphenols and peptides. Specifically, this paper discusses the regulation of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), NAPDH oxidase, xanthine oxidase (XO), myeloperoxidase (MPO), and haem oxygenase (HO) in cell and animal models. Polyphenols, which are abundant in fruits, vegetables, and beverages, have diverse antioxidant properties, including direct scavenging of reactive oxygen species and regulation of transcription factors such as nuclear factor erythroid 2-related factor 2, which leads to the increased expression of the redoxenzymes SOD, HO, and GPx. Similarly, bioactive peptides from various food proteins can enhance antioxidative enzyme activity by regulating gene expression and directly activating the enzyme CAT. In other cases, an antioxidative response requires the downregulation or inhibition of the redox enzymes XO, MPO, and NAPDH oxidase. This paper highlights the potential of bioactive nutraceuticals in mitigating oxidative stress-related diseases and their mechanisms in modulating the redox enzyme expression or activity. Furthermore, the review highlights the need for further research to uncover new therapeutic strategies using nutraceuticals for enhancing cellular antioxidant defence mechanisms and improving health outcomes.
Collapse
Affiliation(s)
- Joy I Obeme-Nmom
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Samanta S Reyes Flores
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemical, Food and Environmental Engineering, University of the Americas Puebla, San Andrés Cholula 72810, Puebla, Mexico
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- University Research Chair in Food Properties and Nutrient Bioavailability, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
3
|
Shahidi S, Ramezani-Aliakbari K, Sarihi A, Heshmati A, Shiri E, Nosrati S, Hashemi S, Bahrami M, Ramezani-Aliakbari F. Olive oil protects against cardiac hypertrophy in D-galactose induced aging rats. BMC Cardiovasc Disord 2024; 24:626. [PMID: 39516715 PMCID: PMC11545806 DOI: 10.1186/s12872-024-04278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aged heart is defined via structural and mitochondrial dysfunction of the heart. However, there is still no potent compound to improve cardiac function abnormalities in aged individuals. Olive oil (OLO), as an oil with monounsaturated fatty acids, has diverse protective effects on the cardiovascular system, including anti-inflammatory, anti-diabetic, and mitigating effects on blood pressure. In the present study, we evaluated the protective effects of OLO against aging-related cardiac dysfunction. METHODS Male Wistar rats were randomly divided into three groups: Control, D-galactose-induced aging rats (D-GAL group), and aging rats treated with OLO (D-GAL + OLO group). Aging in rats was induced by intraperitoneal injection of D-GAL at 150 mg/kg dose for eight weeks and the D-GAL + OLO group was treated with oral OLO by gavage for eight weeks. The heart tissues were harvested to assay the oxidative stress, molecular parameters, and histological analysis. RESULTS The D-GAL given rats indicated increased cardiomyocyte diameter as cardiac hypertrophy marker (21 ± 0.8, p < 0.001), an increased Malondialdehyde (MDA) level (27 ± 3, p < 0.001), a reduced Superoxide dismutase (SOD) (p < 0.001, 18.12 ± 1.3), and reduction in gene expression of Sirtuin 1 (SIRT1) (p < 0.05, 0.37 ± 0.06), Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α (p < 0.001, 0.027 ± 0.04), and Transcription Factor A, Mitochondrial (TFAM) (p < 0.001, 0.023 ± 0.01), Bcl2 (p < 0.001, 0.04 ± 0.004) and an increase in gene expression of Bax (p < 0.001, 23.5 ± 5.4) in comparison with the control animals. Treatment with OLO improved cardiac hypertrophy (14 ± 0.4, p < 0.001), MDA (22 ± 2.5, p < 0.01), SOD (p < 0.001, 34.9 ± 2), SIRT1 (p < 0.05, 1.37 ± 0.46), PGC-1α (p < 0.001, 1.11 ± 0.1), TFAM (p < 0.01, 0.23 ± 0.02), Bcl2 (p < 0.05, 0.35 ± 0.05) and Bax genes (p < 0.01, 0.1 ± 0.03). CONCLUSIONS Overall, OLO protects the heart against D-GAL-induced aging via increasing antioxidant effects, and enhancing cardiac expression of SIRT1, PGC-1α, TFAM, Bcl2 and Bax genes.
Collapse
Affiliation(s)
- Siamak Shahidi
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Shiri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shiva Nosrati
- Department of Neuroscience, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mitra Bahrami
- Department of Islamic Studies, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Martins RX, Carvalho M, Maia ME, Flor B, Souza T, Rocha TL, Félix LM, Farias D. 2,4-D Herbicide-Induced Hepatotoxicity: Unveiling Disrupted Liver Functions and Associated Biomarkers. TOXICS 2024; 12:35. [PMID: 38250991 PMCID: PMC10818579 DOI: 10.3390/toxics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide and is frequently found in water samples. This knowledge has prompted studies on its effects on non-target organisms, revealing significant alterations to liver structure and function. In this review, we evaluated the literature on the hepatotoxicity of 2,4-D, focusing on morphological damages, toxicity biomarkers and affected liver functions. Searches were conducted on PubMed, Web of Science and Scopus and 83 articles were selected after curation. Among these studies, 72% used in vivo models and 30% used in vitro models. Additionally, 48% used the active ingredient, and 35% used commercial formulations in exposure experiments. The most affected biomarkers were related to a decrease in antioxidant capacity through alterations in the activities of catalase, superoxide dismutase and the levels of malondialdehyde. Changes in energy metabolism, lipids, liver function, and xenobiotic metabolism were also identified. Furthermore, studies about the effects of 2,4-D in mixtures with other pesticides were found, as well as hepatoprotection trials. The reviewed data indicate the essential role of reduction in antioxidant capacity and oxidative stress in 2,4-D-induced hepatotoxicity. However, the mechanism of action of the herbicide is still not fully understood and further research in this area is necessary.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Bruno Flor
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74055-110, Brazil;
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| |
Collapse
|
5
|
Bitencourt Brito P, Dalcin Teixeira M, Lehtonen Rodrigues de Souza R, Furtado-Alle L, Viater Tureck L. Olive oil increases the LIPC expression when associated with an Eastern pattern diet: An experimental study with Wistar rats. Gene 2023; 887:147738. [PMID: 37625559 DOI: 10.1016/j.gene.2023.147738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Some nutrigenomic effects of extra virgin olive oil (EVOO) are described in the literature; however, it is unknown whether its interaction with lipid-related genes is independent of the combined diet. In this sense, our objective was to investigate whether EVOO consumption associated with Western or Eastern human-based chow modulates the expression of APOE, APOB, and LIPC genes in rats. In view of this, the hypothesis is that the consumption of olive oil may not have the same nutrigenomic effects, depending on the diet consumed. For this study, 56 female rats were randomly divided into four groups: Western diet with EVOO (WS), Western-diet control (WC), Eastern-diet with EVOO (ES), and Eastern-diet control (EC). After 15 weeks, the animals were anesthetized with an intraperitoneal injection of chloral hydrate 15% (1.5 mL/kg) and euthanized by guillotining, and adipose tissue, liver, and blood were extracted. Triglycerides, cholesterol, and glucose levels were obtained following standard protocols, and relative gene expressions were calculated using the ΔΔCt method after quantitative PCR. The EVOO consumption was associated with LIPC gene expression increase in the liver only in animals fed the Eastern diet, compared to EC and WS animals. The EVOO consumption, combined with the Eastern diet, was associated with decreased triglyceride levels compared to WC. Although final weight and weight gain were similar between groups, WS animals had lower daily energy consumption. Conclusion: Given these results, the authors suggested that the EVOO nutrigenomic effects were restricted to an Eastern human-based diet.
Collapse
Affiliation(s)
- Priscila Bitencourt Brito
- Polymorphism and Linkage Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Paraná State, Brazil
| | - Mayza Dalcin Teixeira
- Polymorphism and Linkage Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Paraná State, Brazil
| | | | - Lupe Furtado-Alle
- Polymorphism and Linkage Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Paraná State, Brazil
| | - Luciane Viater Tureck
- Polymorphism and Linkage Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| |
Collapse
|
6
|
Romualdo GR, Valente LC, de Souza JLH, Rodrigues J, Barbisan LF. Modifying effects of 2,4-D and Glyphosate exposures on gut-liver-adipose tissue axis of diet-induced non-alcoholic fatty liver disease in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115688. [PMID: 37992649 DOI: 10.1016/j.ecoenv.2023.115688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is linked to western diet (WD) intake, affects 30% of the world's population and involves the crosstalk of liver steatosis, hypertrophy/inflammation of adipose tissue and deregulation of gut microbiome. Glyphosate and 2,4-D are some of the most applied herbicides worldwide, and their roles in NAFLD have not been investigated. Thus, the present study evaluated whether glyphosate and 2,4-D, in single or mixed exposure, alter WD-induced NAFLD in a mouse model. Male C57Bl/6 mice (n = 10/group) received a fat (30% lard, 0.02% cholesterol), and sucrose-rich diet (20%) and high sugar solution (23.1 and 18.9 g/L of fructose and glucose) for 6 months. Simultaneously, animals received glyphosate (0.05 or 5 mg/kg/day), 2,4-D (0.02 or 2 mg/kg/day), or their combination (0.05 +0.02 or 5 +2 mg/kg/day) by intragastrical administration (5 ×/week). Doses were based on the Acceptable Daily Intake (ADIs) or No Observed Adverse Effect Level (NOAEL) levels. Herbicide exposures featured differential responses. WD-induced obesity, hypercholesterolemia, and hyperglycemia remained unaltered. Compared to the group receiving only WD, only the concomitant exposure to WD and 2,4-D (2 mg) enhanced the percentage of mice with moderate/severe hepatic inflammation, CD68 macrophage infiltration, and malondialdehyde levels in the liver. In line, this herbicide modulated immune response- (including Cd4, C8b, Cd28, Cxcr3, Cxcr6) and oxidative stress-related (such as Gsta1, Gsta2, Gsta4, Gstm1, Gstm2, Gstm3, Gstm4, Nqo1, Gpx2) genes in the hepatic transcriptome analysis. This exposure also enriched pro-inflammatory Deferribacteres phylum in fecal microbiome. In general, the herbicide mixtures did not feature the same effects attributed to 2,4-D isolated exposure. Our findings indicate that 2,4-D, at a dose within the toxicological limits, was able to induce disturbances in mainly at the liver and gut axes involved in NAFLD development in male mice.
Collapse
Affiliation(s)
- Guilherme R Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform, Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| | - Letícia Cardoso Valente
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform, Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil; Federal University of Grande Dourados (UFGD), Faculty of Health Sciences, Dourados, MS, Brazil
| | - Jéssica Luri Hisano de Souza
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform, Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil
| | - Josias Rodrigues
- São Paulo State University (UNESP), Biosciences Institute, Department of Chemical and Biological Sciences, Botucatu, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform, Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Abd El-Aziz GS, Alturkistani HA, Alshali RA, Halawani MM, Hamdy RM, Aggad WS, Kamal NJ, Hindi EA. The potential protectivity of honey and olive oil in methotrexate induced renal damage in rats. Toxicon 2023; 234:107268. [PMID: 37673343 DOI: 10.1016/j.toxicon.2023.107268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Methotrexate (MTX) is an antimetabolite used to treat inflammatory diseases, autoimmune disorders and some malignancies. However, it has some life-threatening side effects such as nephrotoxicity which limit its clinical applications. That motivated the attention to seek for a defensive material to improve the outcomes of methotrexate while minimizing both renal and non-renal toxicity. Both honey (H) and olive oil (OO) are bioactive substances widely used as nutraceuticals that exhibited a potent therapeutic and antioxidant properties. This study aimed to assess the possible protective effect of H and OO intake either singly or together against the biochemical and structural Methotrexate-induced nephrotoxicity in rats. The study was conducted on 56 adult albino rats, they were divided into seven groups (n = 8): group 1 received only distelled water (negative control), group 2 received H (1.2 g/kg/day), group 3 received OO (1.25 ml/kg/day), group 4 received a single intraperitoneal injection of MTX (20 mg/kg), group 5 received MTX and H, group 6 received MTX and OO, group 7 received MTX, H and OO together. At the end of the experiment (2 weeks), all rats were sacrificed, and blood samples were assessed for kidney function tests. Kidney tissues were evaluated for several antioxidant parameters including Malondialdehyde (MDA), Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Tissues were also processed for histological and immunohistochemical assessments. Results revealed that both H and OO improved the kidney function markers, histopathological and immunohistological changes due to Methotrexate-induced renal damage. Additionally, both substances also redeemed the oxidative damage of the kidney by decreasing MDA and increasing anti-oxidant enzymatic activities. Such effects were more apparent when the two substances were given together. Ultimately, our results proof that H and OO amiolerate the Methotrexate-induced nephrotoxicity in rats, thus they can be used as an adjuvant supplements for patients requiring methotrexate therapy.
Collapse
Affiliation(s)
- Gamal S Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani A Alturkistani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A Alshali
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mervat M Halawani
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raid M Hamdy
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nezar J Kamal
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad A Hindi
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Ince S, Demirel HH, Zemheri-Navruz F, Arslan-Acaroz D, Kucukkurt I, Acaroz U, Tureyen A, Demirkapi EN. Synergistic toxicity of ethanol and 2,4-dichlorophenoxyacetic acid enhances oxidant status, DNA damage, inflammation, and apoptosis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10710-10723. [PMID: 36085217 DOI: 10.1007/s11356-022-22964-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Clarifying the interactions between substances as a result of exposure to multiple xenobiotics and determining the impacts on health are important from the toxicological point of view. Therefore, the aim of the study was to investigate the synergistic toxic effects of ethanol and 2,4-dichlorophenoxyacetic acid (2,4-D) in male albino rats. A total number of 28 Wistar male rats were divided into 4 groups (7/each), and 2,4-D (5 mg/kg) and ethanol (3 g/kg) were administered orally to rats for 60 days, either alone or in combination. Co-administration of ethanol and 2,4-D increased liver functional enzyme levels and lipid peroxidation in blood and tissues while decreased glutathione and antioxidant enzyme activities when compared to individual applications. Furthermore, co-administration of ethanol and 2,4-D caused DNA damage as well as the increase in apoptotic and proinflammatory cytokine gene expressions. Furthermore, histopathological examination of the tissues especially liver and kidney revealed that these two substances induced more serious damage. In conclusion, co-administration of ethanol and 2,4-D resulted in strong toxic effects on tissues (especially liver) with a synergistic interaction and give rise to serious toxicological drawbacks.
Collapse
Affiliation(s)
- Sinan Ince
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, Afyonkarahisar, Turkey.
| | | | - Fahriye Zemheri-Navruz
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, Bartın, Turkey
| | - Damla Arslan-Acaroz
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ismail Kucukkurt
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ulas Acaroz
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ali Tureyen
- Department of Gastroenterology, Ministry of Health Eskisehir City Hospital, Eskisehir, Turkey
| | - Ezgi Nur Demirkapi
- Faculty of Veterinary Medicine, Department of Physiology, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
9
|
Sheashea M, Xiao J, Farag MA. MUFA in metabolic syndrome and associated risk factors: is MUFA the opposite side of the PUFA coin? Food Funct 2021; 12:12221-12234. [PMID: 34779464 DOI: 10.1039/d1fo00979f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Omega-9 fatty acids represent some of the main mono-unsaturated fatty acids (MUFA) found in plant and animal sources. They can be synthesized endogenously in the human body, but they do not fully provide all the body's requirements. Consequently, they are considered as partially essential fatty acids. MUFA represent a healthier alternative to saturated animal fats and have several health benefits, including the prevention of metabolic syndrome (MetS) and its complications. This review concentrates on the major MUFA pharmacological activities in the context of MetS management, including alleviating cardiovascular disease (CVD) and dyslipidemia, central obesity, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes mellitus (T2DM). The beneficial effects of MUFA for CVD were found to be consistent with those of polyunsaturated fatty acids (PUFA) for the alleviation of systolic and diastolic blood pressure and high low density lipoprotein cholesterol (LDLc) and triacylglcerol (TAG) levels, albeit MUFA had a more favorable effect on decreasing night systolic blood pressure (SBP). To reduce the obesity profile, the use of MUFA was found to induce a higher oxidation rate with a higher energy expenditure, compared with PUFA. For NAFLD, PUFA was found to be a better potential drug candidate for the improvement of liver steatosis in children than MUFA. Any advantageous outcomes from using MUFA for diabetes and insulin resistance (IR) compared to using PUFA were found to be either non-significant or resulted from a small number of meta-analyses. Such an increase in the number of studies of the mechanisms of action require more clinical and epidemiological studies to confirm the beneficial outcomes, especially over a long-term treatment period.
Collapse
Affiliation(s)
- Mohamed Sheashea
- Aromatic and Medicinal Plants Department, Desert Research Center, Cairo, Egypt
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
10
|
Khayyat LI. Extra Virgin Olive Oil Protects the Testis and Blood from the Toxicity of Paracetamol (Overdose) in Adult Male Rats. BIOLOGY 2021; 10:1042. [PMID: 34681141 PMCID: PMC8533145 DOI: 10.3390/biology10101042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 01/18/2023]
Abstract
Extra virgin olive oil (EVOO) is important in people's daily diets. Paracetamol is a widely used analgesic and antipyretic drug. The aim of this study is to investigate the protective effect of EVOO against hematotoxicity and testicular toxicity induced by paracetamol overdose in rats. Forty rats were divided into four groups. Group 1 rats were given water (control), Group 2 rats were given oral EVOO daily (2 mL/kg b.wt.), Group 3 rats were given oral paracetamol daily (650 mg/kg b.wt.), and Group 4 rats were given paracetamol and EVOO daily. After 15 days, blood and testis samples were collected for biochemical, histological, and ultrastructural studies. The results show that paracetamol decreased the PCV, Hb, and RBC counts relative to the control, and significantly increased the WBC counts and stab cells in Group 3. A significant decrease in blood testosterone was found in Group 3 compared to the control, while a significant increase in testosterone levels was observed in Group 4 compared to Group 3. Light and electron microscopy showed disorganized seminiferous tubules in Group 3. The testis in Group 4 appeared in normal shape. In conclusion, the results indicate that EVOO protects the testis and blood from paracetamol toxicity and may also increase fertility in male rats.
Collapse
Affiliation(s)
- Latifa Ishaq Khayyat
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
11
|
Davidović-Plavšić B, Kukavica B, Škondrić S, Jimenez-Gallardo C, Žabić M. Wild garlic extract reduces lipid peroxidation in terbuthylazine-treated human erythrocytes. Biomarkers 2021; 26:617-624. [PMID: 34253103 DOI: 10.1080/1354750x.2021.1953598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Among other negative effects, herbicides induce oxidative stress, leading to lipid peroxidation and protein oxidation. Therefore, there is a growing need to identify natural compounds with sufficient antioxidant capacity and mitigate the negative effects of herbicides without side effects.Objective: Our study aimed to examine the protective effect of the phenolic extract of wild garlic (WG) leaves on terbuthylazine-treated erythrocytes.Material and methods: In human erythrocytes treated with the herbicide terbuthylazine (4.5 mg/L) alone and a combination of terbuthylazine and WG extract, we measured malondialdehyde (MDA) and haemoglobin (Hb) concentrations and the antioxidant activities of CuZn superoxide dismutase (SOD1; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) in vitro.Results: In comparison with terbuthylazine, WG extract reduced the concentrations of MDA and Hb from 59.69 to 43.45 nmol/gHb (27%, p < 0.001) and 165.08 to 128.64 g/L (22%, p < 0.05), respectively. Catalase activity was induced for samples treated with both WG extract and terbuthylazine compared with terbuthylazine alone (p < 0.05).Conclusions: The results demonstrated that WG may reduce the toxicity of terbuthylazine, and the erythrocyte membrane may be the primary site of phenolic action. Therefore, the lipid peroxidation intensity could be a biomarker of oxidative damage caused by terbuthylazine and the protective effect of WG.
Collapse
Affiliation(s)
- Biljana Davidović-Plavšić
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Biljana Kukavica
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Siniša Škondrić
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Mirjana Žabić
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
12
|
Eke R, Ejiofor E, Oyedemi S, Onoja S, Omeh N. Evaluation of nutritional composition of Citrullus lanatus Linn. (watermelon) seed and biochemical assessment of the seed oil in rats. J Food Biochem 2021; 45:e13763. [PMID: 34002399 DOI: 10.1111/jfbc.13763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 01/18/2023]
Abstract
The present study investigated the nutritional composition of watermelon seeds and the effect of extracted oil on the biochemical parameters in rats after 28 days of oral administration. The watermelon seeds showed considerable proximate values but with less moisture, crude fiber, ash, and phytochemical components. The maximal dose of 50 ml/kg of watermelon seed oil (WMSO) showed no sign of toxicity in rats. WMSO significantly decreased serum cholesterol, triglyceride, LDL, ALT, and MDA but enhanced the level of HDL, VLDL, SOD, and CAT without compromising the liver integrity. For glucose tolerance, a positive oral glucose-lowering was observed. The fatty acid analysis showed the presence of three major fatty acids; 9,12-octadecadienoic acid (52.32%), n-hexadecenoic acid (21.23%), and oleic acid (10.11%) with good oxidative stability and fatty acid ratio. The outcome of this study suggests that the seeds and oil from watermelon could have a beneficial effect on man. PRACTICAL APPLICATIONS: Plant-based oils have gained significant interest globally as a source of food, cosmetics, and compounds with therapeutic potential against certain human diseases. The watermelon seed oil is a rich source of oleic acid, linoleic, and palmitic acid. These prominent biologically active fatty acid components have contributed to the robust biochemical effects observed in this study. Based on the data obtained in this work on the nutritional analysis of the watermelon seed and potent antioxidative capacity, improved liver biomarkers, good oxidative stability, and the fatty acid ratio of WMSO, we proposed that consumption of the seed and its oil could offer a cheap and affordable nutraceutical for human benefits. However, we recommend further studies on the biological activity and safety aspect of watermelon seed oil for its long-term usage.
Collapse
Affiliation(s)
- Rita Eke
- Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| | - Emmanuel Ejiofor
- Biochemistry Programme, Department of Chemical sciences, Faculty of Science, Clifford University, Owerrinta, Abia State, Nigeria
| | - Sunday Oyedemi
- School of Science and Technology, Department of Pharmacology, Nottingham Trent University, Nottingham, UK
| | - Samuel Onoja
- Department of Pharmacology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| | - Ndukaku Omeh
- Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| |
Collapse
|
13
|
Shafeeq S, Mahboob T. 2,4-Dichlorophenoxyacetic acid induced hepatic and renal toxicological perturbations in rat model: Attenuation by selenium supplementation. Toxicol Ind Health 2021; 37:152-163. [PMID: 33689533 DOI: 10.1177/0748233720983167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a commercially used herbicide to manage broadleaf weeds that have various toxicological and ecological effects. In view of ever-escalating use of 2,4-D, risk assessment becomes mandatory to ensure the safety of both human health and the ecosystem. Oxidative injury has been expected as a possible mechanism implicated in 2,4-D toxicity. The present study was planned and conducted to explore the antioxidant potential of selenium (Se) supplementation to moderate the 2,4-D hepatic and renal toxicity in a rat model. The rats were randomly assigned to four equal groups and treated via oral gavage for a period of 4 weeks. Group I: received deionized water as a vehicle, group II: received 2,4-D (150 mg-1 kg-1 day-1), group III: received Se supplement (1 mg-1 kg-1 day-1), and group IV: received 2,4-D (150 mg-1 kg-1 day-1) and Se supplement (1 mg-1 kg-1 day-1) simultaneously. After 4 weeks of administration, 2,4-D induced toxicity was observed, as manifested by disrupted levels of plasma urea, creatinine, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Further, 2,4-D caused a considerable increase in tissue malondialdehyde (MDA) levels and decreased activity of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione reductase. Se supplementation exhibited its antioxidant properties by significantly improving urea, creatinine, ALP, AST, and ALT, and MDA levels and antioxidant enzyme activities. In conclusion, the results suggest that 2,4-D induced hepatic and renal toxicities were attenuated by Se supplementation probably owing to its antioxidant properties.
Collapse
Affiliation(s)
- Sehrish Shafeeq
- Department of Biochemistry, 63596University of Karachi, Karachi 75270, Pakistan
| | - Tabassum Mahboob
- Department of Biochemistry, 63596University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
14
|
Tichati L, Trea F, Ouali K. The antioxidant study proprieties of Thymus munbyanus aqueous extract and its beneficial effect on 2, 4-Dichlorophenoxyacetic acid -induced hepatic oxidative stress in albino Wistar rats. Toxicol Mech Methods 2021; 31:212-223. [PMID: 33371761 DOI: 10.1080/15376516.2020.1870183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Herein, we investigated the antioxidant and hepatoprotective effects of thyme (Thymus munbyanus: AETM) on 2,4-dichlorophenoxyacetic acid (2,4 -D) - induced liver oxidative damage in rats. The phytochemical study of AETM revealed potent antioxidant properties owed to its richness in phenolic compounds including flavonoids, tannins, and phenolic acids. Further, in vivo animal study was conducted on 24 Wistar rats divided equally into control group and three treated groups, receiving orally AETM (10 ml/kg body weight (b.w), 2,4-D (5 mg/kg (b.w) and AETM + 2,4 - D (combined treatment) for 30 consecutive days. The results showed a significant increase in the enzymatic activity of transaminases (AST, ALT), alkaline phosphatase (ALP), gamma-glutamyltransferase (γ-GT), lactate dehydrogenase (LDH), and the levels of malondialdehyde (MDA) and carbonyl proteins (CPO), along with a significant decrease in plasma total protein, albumin, hepatic glutathione (GSH) contents, and the enzymatic activity of the hepatic antioxidant markers (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione- S- transferase (GST)) in 2,4- D treatment compared with control. Moreover, no significant changes in these parameters were noticed in AETM treated animals as compared to control, and hence the combined treatment (AETM + 2,4- D) showed a marked enhancement in the above altered hepatic functional and antioxidant parameters and liver histopathology. In conclusion, AETM, owing to its richness with phenolic compounds proved to be an efficient antioxidant against 2,4-D - induced liver oxidative damage, and hence complementary studies would be needed to appear the use of these compounds as supplements in treating liver impairment.
Collapse
Affiliation(s)
- Lazhari Tichati
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Fouzia Trea
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
15
|
Ambreen G, Siddiq A, Hussain K. Association of long-term consumption of repeatedly heated mix vegetable oils in different doses and hepatic toxicity through fat accumulation. Lipids Health Dis 2020; 19:69. [PMID: 32284066 PMCID: PMC7155260 DOI: 10.1186/s12944-020-01256-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/06/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Hepatic diseases are one of the chief reasons for worldwide morbidity and mortality. The increased incidence in Asian countries is driving researchers to explore preventive ways from nature. It is more practical to go with healthy routine edibles like vegetable oils to avoid environmental and chemical hepatic injuries. With the use of thermally oxidized oils overproduction of reactive oxygen species (ROS) with overwhelmed cellular antioxidants defense system results in oxidative stress, the known cause of cardiovascular diseases (CVDs), cancers and neurodegenerative disorders. Little is investigated about the effect of daily used oxidized cooking oils on hepatic function changes with oxidative stress especially in the animal model that mimics the human situation. METHODS In this study, healthy adult male rabbits of local strain were divided into 4 groups (n = 12). First, two sets of rabbits were treated with 1 and 2 ml/kg/day of repeatedly heated mix vegetable oils (RHMVO) respectively. The third set of rabbits was given 1 ml/kg/day of single time heated mix vegetable oils (STHMVO) and the fourth set of rabbits served as controls and fed with normal rabbit diet to for 16 weeks. Serum liver function markers including total-protein, albumin, serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic-pyruvic transaminase (SGPT) and alkaline phosphatase (ALP) along with the activity of hepatic antioxidant-enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) for lipid peroxidation were compared among different groups of rabbits. Histopathological examination was performed for all four groups. RESULTS Significantly (p < 0.05) elevated hepatic enzymes and MDA levels, with lower total protein, serum albumin, GPx, SOD and CAT levels were found in high and low doses RHMVO treated groups, in comparison to control. In the STHMVO group, all mentioned markers were insignificantly changed. Accumulation of liver fat in low and high dose oil-treated groups was further confirmed under the microscopic examination of liver tissues, presented significant fat accumulation in liver tissues, in addition, 40-60% increased oxidative stress compared to control, in a dose-dependent manner. CONCLUSIONS These results conclude that consumption of thermally oxidized mix vegetable oils for longer duration can impair the liver function and destroy its histological structure significantly through fat accumulation and oxidative stress both in high as well as low doses.
Collapse
Affiliation(s)
- Gul Ambreen
- Department of Pharmacy, Aga Khan University Hospital, Stadium Road (Main Pharmacy), P.O Box 3500, Karachi, 74800, Pakistan.
| | - Afshan Siddiq
- Department of Pharmacology, University of Karachi, Karachi, Pakistan
| | - Kashif Hussain
- Department of Pharmacy, Aga Khan University Hospital, Stadium Road (Main Pharmacy), P.O Box 3500, Karachi, 74800, Pakistan
| |
Collapse
|
16
|
Tichati L, Trea F, Ouali K. Potential Role of Selenium Against Hepatotoxicity Induced by 2,4-Dichlorophenoxyacetic Acid in Albino Wistar Rats. Biol Trace Elem Res 2020; 194:228-236. [PMID: 31190189 DOI: 10.1007/s12011-019-01773-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/05/2019] [Indexed: 01/18/2023]
Abstract
The present study aims to investigate the hepatoprotective effects of selenium on toxicity induced by 'Désormone Lourd' based on 2,4-dichlorophenoxyacetic acid in Wistar rats. Male Wistar rats were divided into four groups and were treated orally. The (C) group was used as a control, while the test groups were treated with Se (0.2 mg/kg b.w.), 2,4-D (5 mg/kg b.w.) or both (2,4-D + Se) for 4 weeks. Our results showed that chronic treatment with 2,4-D resulted in hepatotoxicity, as revealed by an increase in liver function markers Aminotransferases (ALT, AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and total bilirubin (TB), along with reduced total protein content and albumin. An overall pro-oxidant effect was associated with a decrease in the reduced glutathione (GSH) content and the enzymatic activity of glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), and an increase in malondialdehyde (MDA) and protein carbonyl levels (PCO). Microscopic observation of liver in 2,4-D-treated rats reveals lesions, which results in perivascular inflammatory infiltration around the vessel, sinusoidal dilatation and vacuolization of hepatocytes. However, selenium supplementation in 2,4-D-treated rats elicited a reduction in the toxic effects of the pesticide by improving the studied parameters, which was confirmed by the histological study of the liver. Selenium appears to have a promising prophylactic effect through its effective anti-radical action against the hepatotoxic effects of 2,4-D.
Collapse
Affiliation(s)
- Lazhari Tichati
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, 23000, Annaba, Algeria
| | - Fouzia Trea
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, 23000, Annaba, Algeria
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, 23000, Annaba, Algeria.
| |
Collapse
|
17
|
Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells 2020; 9:cells9020478. [PMID: 32093046 PMCID: PMC7072812 DOI: 10.3390/cells9020478] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
The olive-oil-centered Mediterranean diet has been associated with extended life expectancy and a reduction in the risk of age-related degenerative diseases. Extra virgin olive oil (EVOO) itself has been proposed to promote a "successful aging", being able to virtually modulate all the features of the aging process, because of its great monounsaturated fatty acids content and its minor bioactive compounds, the polyphenols above all. Polyphenols are mostly antioxidant and anti-inflammatory compounds, able to modulate abnormal cellular signaling induced by pro-inflammatory stimuli and oxidative stress, as that related to NF-E2-related factor 2 (Nrf-2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which have been identified as important modulators of age-related disorders and aging itself. This review summarizes existing literature about the interaction between EVOO polyphenols and NF-κB and Nrf-2 signaling pathways. Reported studies show the ability of EVOO phenolics, mainly hydroxytyrosol and tyrosol, to activate Nrf-2 signaling, inducing a cellular defense response and to prevent NF-κB activation, thus suppressing the induction of a pro-inflammatory phenotype. Literature data, although not exhaustive, indicate as a whole that EVOO polyphenols may significantly help to modulate the aging process, so tightly connected to oxidative stress and chronic inflammation.
Collapse
|
18
|
Simoes IC, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:2871. [PMID: 31771244 PMCID: PMC6950566 DOI: 10.3390/nu11122871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Ines C.M. Simoes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Judith Bauer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
| | | | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Andrzej Wolski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Paweł Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| |
Collapse
|
19
|
Shafeeq S, Mahboob T. Magnesium supplementation ameliorates toxic effects of 2,4-dichlorophenoxyacetic acid in rat model. Hum Exp Toxicol 2019; 39:47-58. [DOI: 10.1177/0960327119874428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is an extensively used herbicide in the field of agriculture, its ever-escalating use induces toxicity, health effects, and environmental impact. Oxidative stress plays a key role in pathogenesis of 2,4-D-induced liver and kidney damage. Magnesium (Mg) is a highly effective antioxidant agent in restoring oxidative damage by directly influencing the metabolic and physiological processes. Therefore, the present study aimed to evaluate Mg role in ameliorating the oxidative damages provoked by 2,4-D in rat model. Male Wistar rats (180–220 g) were distributed into four groups and treated intragastrically for 4 weeks. Group 1: control, group 2: 2,4-D (150 mg/kg body weight/day), group 3: simultaneously treated with 2,4-D (150 mg/kg body weight/day) and Mg supplement (50 mg/kg body weight/day), and group 4: Mg supplement (50 mg/kg body weight/day). Under experimental conditions, plasma hepatic and renal biomarkers, tissue oxidative status, and antioxidant enzymes activities were investigated. Results demonstrated that 2,4-D intoxication caused hepatic and renal impairments as indicated by the significantly increased ( p < 0.001) alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, creatinine, and blood urea nitrogen levels. In addition, 2,4-D caused a significant enhancement ( p < 0.001) in the level of malondialdehyde as well as reduction ( p < 0.001) of the superoxide dismutase, catalase, and glutathione reductase activities in both hepatic and renal tissues. Mg treatment prevented and reversed the toxic variations induced by 2,4-D. In general, these outcomes suggest that Mg may have antioxidant potential and ameliorative effects against 2,4-D provoking hepatic and renal toxicity in rat model.
Collapse
Affiliation(s)
- S Shafeeq
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - T Mahboob
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
20
|
Mahmoudinia S, Niapour A, Ghasemi Hamidabadi H, Mazani M. 2,4-D causes oxidative stress induction and apoptosis in human dental pulp stem cells (hDPSCs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26170-26183. [PMID: 31280441 DOI: 10.1007/s11356-019-05837-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
2,4-Dicholorophenoxy acetic acid (2,4-D) is a worldwide used hormone herbicide. Human dental pulp stem cells (hDPSCs) as a potential source of mesenchymal stem cells provide a confident model system for the assessments of chemicals in vitro. The main objective of this study was to examine the biological effects and damages attributed to 2,4-D on hDPSCs. hDPSCs were isolated from third molar pulp tissues and their mesenchymal identity were evaluated. Then, hDPSCs were treated with increasing concentrations of 2,4-D (0.1 μM-10 mM). Cell viability assay and cumulative cell counting were carried out to address 2,4-D effects on biological parameters of hDPSCs. Cell cycle distribution, ROS level and ALP activity were measured before and after treatment. AO/EB staining and caspase 3/7 activity were investigated to detect the possible mechanisms of cell death. Flow-cytometric immunophenotyping and differentiation data confirmed the mesenchymal identity of cultivated hDPSCs. 2,4-D treatment caused a hormetic response in the viability and growth rate of hDPSCs. G0/G1 cell cycle arrest, enhanced ROS level, and reduced ALP activity were detected in hDPSCs treated with EC50 dose of 2,4-D. AO/EB staining showed a higher percentage of alive cells in lower concentrations of the herbicide. The increment in 2,4-D dose and the number of early and late apoptotic cells were increased. DAPI staining and caspase 3/7 assay validated the induction of apoptosis. 2,4-D concentrations up to 100 μM did not affect hDPSCs viability and proliferation. The intense cellular oxidative stress and apoptosis were observed at higher concentration.
Collapse
Affiliation(s)
- Samira Mahmoudinia
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hatef Ghasemi Hamidabadi
- Immunogenetic Research Center, Department of Anatomy and Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Mazani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
21
|
Khalil S, Awad A, Elewa Y. Antidotal impact of extra virgin olive oil against genotoxicity, cytotoxicity and immunotoxicity induced by hexavalent chromium in rat. Int J Vet Sci Med 2019. [DOI: 10.1016/j.ijvsm.2013.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Samah Khalil
- Forensic Medicine and Toxicology Dept., Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Ashraf Awad
- Animal Wealth Development Dept., Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Yasser Elewa
- Histology Dept., Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
22
|
Toxicological Effects of Traumatic Acid and Selected Herbicides on Human Breast Cancer Cells: In Vitro Cytotoxicity Assessment of Analyzed Compounds. Molecules 2019; 24:molecules24091710. [PMID: 31052542 PMCID: PMC6539929 DOI: 10.3390/molecules24091710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
The main consequence of herbicides use is the presence of their residues in food of plant origin. A growing body of evidence indicates that herbicides cause detrimental effects upon human health while demonstrating a direct link of pesticides exposure with the occurrence of human chronic diseases, including cancer. There is a pressing need to develop our knowledge regarding interactions of food contaminants and food components both in vitro and in vivo. Pesticides are highly undesirable food contaminants, and traumatic acid (TA) is a very beneficial food ingredient, therefore we decided to study if TA may act as a compound that delays the stimulatory effect of pesticides on breast cancer cells. To analyze the potential effects that selected herbicides (MCPA, mesotrione, bifenox and dichlobenil) may have upon cancerous cells, we conducted studies of the cytotoxicity of physiological concentrations of four pesticides and the mix of TA with tested herbicides in three different breast cancer cell lines (MCF-7, ZR-75-1 and MDA-MB-231) and one normal healthy breast cell line MCF-12A. Based on the obtained results we conclude that TA in a concentration-dependent manner might influence selected effects of the studied herbicides for particular cancer cells lines.
Collapse
|
23
|
Ismail MM, Ammar ETM, Khalil AEWE, Eid MZ. Effect of Honey & Olive Oil Supplemented Bio-Yoghurt Feeding on Lipid Profile, Blood Glucose and Hematological Parameters in Rats. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401313666170905160124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and Objective: Yoghurt, especially bio-yoghurt has long been recognized as a product with many health benefits for consumers. Also, honey and olive oil have considerable nutritional and health effects. So, the effect of administration of yoghurt made using ABT culture and fortified with honey (2 and 6%), olive oil (1 and 4%) or honey + olive oil (2+1 and 6+4% respectively) on some biological and hematological properties of rats was investigated.Methods:The body weight gain, serum lipid level, blood glucose level, serum creatinine level, Glutamic Oxaloacetic Transaminase (GOT) activity, Glutamic Pyruvic Transaminase (GPT) activity, leukocytes and lymphocytes counts of rats were evaluated.Results:Blending of bio-yoghurt with rats' diet improved body weight gain. Concentrations of Total plasma Cholesterol (TC), High-Density Lipoprotein cholesterol (HDL), Low-Density Lipoprotein cholesterol (LDL), Very Low-Density Lipoprotein cholesterol (VLDL) and Triglycerides (TG) significantly lowered in plasma of rats fed bio-yoghurt. Levels of TC, LDL, VLDL, and TG also decreased in rat groups feed bio-yoghurt supplemented with honey and olive oil. LDL concentrations were reduced by 10.32, 18.51, 34.17, 22.48, 43.30% in plasma of rats fed classic starter yoghurt, ABT yoghurt, ABT yoghurt contained 6% honey, ABT yoghurt contained 4% olive oil and ABT yoghurt contained 6% honey + 4% olive oil respectively. The blood glucose, serum creatinine, GOT and GPT values of rats decreased while white blood cells and lymphocytes counts increased by feeding bioyoghurt contained honey and olive oil.Conclusion:The findings enhanced the multiple therapeutic effects of bio-yoghurt supplemented with honey and olive oil.
Collapse
Affiliation(s)
- Magdy M. Ismail
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - El-Tahra M. Ammar
- Dairy Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
| | | | - Mohamed Z. Eid
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| |
Collapse
|
24
|
Atefi M, Pishdad GR, Faghih S. The effects of canola and olive oils on insulin resistance, inflammation and oxidative stress in women with type 2 diabetes: a randomized and controlled trial. J Diabetes Metab Disord 2018; 17:85-91. [PMID: 30918840 PMCID: PMC6405399 DOI: 10.1007/s40200-018-0343-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND A number of studies have shown that consumption of vegetable oils may improve diabetes complications including inflammatory response and oxidative stress, but no study has been done on the effects of canola oil (CO) and olive oil (OO) consumption in patients with type 2 diabetes. This clinical trial was done to compare the effects of CO and OO on insulin resistance, inflammation and oxidative stress in women with type 2 diabetes. METHODS This randomized controlled clinical trial was done on 77 type 2 diabetic women. 4 weeks before the intervention, lipid-lowering drugs intakes were cut under the supervision of an endocrinologist. The participants were randomly divided into 2 intervention groups (Balanced diet +30 g/day CO or OO) and one control group (Balanced diet +30 g/day of sunflower oil (SFO)). Dietary intakes were assessed using three 24-h food records at baseline and at weeks 4 and 8 of the interventions. At baseline and after 8 weeks, height, weight, waist circumference, fasting blood sugar (FBS), serum insulin, C-reactive protein (CRP) and malondialdehyde (MDA) were measured. RESULTS After the intervention in the inter-group analysis, CRP level was reduced significantly in CO and OO groups but no significant changes were observed in other factors. CRP reductions were also significant between all of the groups but not for other factors. CONCLUSIONS Replacing CO and OO with SFO as part of daily dietary fat in the diet of people with type 2 diabetes is recommended for reducing Inflammation and Oxidative Stress. Trial registration. This study is approved by the Ethics Committee of Shiraz University of Medical Sciences (IR.SUMS.REC.1394.27) and is recorded in the Iranian Registry of Clinical Trials (IRCT2015062722818N1).
Collapse
Affiliation(s)
- Masoumeh Atefi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Pishdad
- Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Al-Attar AM, Elnaggar MH, Almalki EA. Physiological study on the influence of some plant oils in rats exposed to a sublethal concentration of diazinon. Saudi J Biol Sci 2018; 25:786-796. [PMID: 29740245 PMCID: PMC5936871 DOI: 10.1016/j.sjbs.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 01/18/2023] Open
Abstract
The present study was aimed to evaluate the influence of olive, sesame and black seed oils on levels of some physiological parameters in male rats exposed to diazinon (DZN). Body weight changes, and levels of serum total protein, albumin, glucose, triglycerides, cholesterol, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C), atherogenic index (AI), atherogenic coefficient (AC), cardiac risk ratio (CRR), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MAD) were selected as physiological parameters. The experimental animals were distributed into nine groups. Rats group exposed to DZN and fed with normal diet resulted in pronounced severe changes including reduced body weight gain rate, significantly increase in levels of serum albumin, glucose, cholesterol, LDL-C, AI, AC, CRR and MDA while levels of HDL-C, GSH and SOD were decreased. In rats treated with DZN, the supplementation of the olive, sesame and black seed oils showed remarkable lowering influences of physiological alterations. Moreover, the present results confirmed that these oils possess antioxidative effects against DZN toxicity. Finally, the present findings suggest that these oils are safe and promising agents for the treatment of physiological disturbances induced by DZN and may be also by other pollutants, and toxic and pathogenic factors.
Collapse
Affiliation(s)
- Atef M. Al-Attar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia
| | | | | |
Collapse
|
26
|
Islam F, Wang J, Farooq MA, Khan MSS, Xu L, Zhu J, Zhao M, Muños S, Li QX, Zhou W. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. ENVIRONMENT INTERNATIONAL 2018; 111:332-351. [PMID: 29203058 DOI: 10.1016/j.envint.2017.10.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 05/03/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is applied directly to aquatic and conventional farming systems to control weeds, and is among the most widely distributed pollutants in the environment. Non-target organisms are exposed to 2,4-D via several ways, which could produce toxic effects depending on the dose, frequency of exposure, and the host factors that influence susceptibility and sensitivity. An increasing number of experimental evidences have shown concerns about its presence/detection in the environment, because several investigations have pointed out its potential lethal effects on non-target organisms. In this review, we critically evaluated the environmental fate and behavior of 2,4-D along with its eco-toxicological effects on aquatic, plants and human life to provide concise assessment in the light of recently published reports. The findings demonstrate that 2,4-D is present in a low concentration in surface water of regions where its usage is high. The highest concentrations of 2,4-D were detected in soil, air and surface water surrounded by crop fields, which suggest that mitigation strategies must be implanted locally to prevent the entry of 2,4-D into the environment. A general public may have frequent exposure to 2,4-D due to its wide applications at home lawns and public parks, etc. Various in vivo and in vitro investigations suggest that several species (or their organs) at different trophic levels are extremely sensitive to the 2,4-D exposure, which may explain variation in outcomes of reported investigations. However, implications for the prenatal exposure to 2,4-D remain unknown because 2,4-D-induced toxicity thresholds in organism have only been derived from juveniles or adults. In near future, introduction of 2,4-D resistant crops will increase its use in agriculture, which may cause relatively high and potentially unsafe residue levels in the environment. The recent findings indicate the urgent need to further explore fate, accumulation and its continuous low level exposure impacts on the environment to generate reliable database which is key in drafting new regulation and policies to protect the population from further exposure.
Collapse
Affiliation(s)
- Faisal Islam
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Jian Wang
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Muhammad A Farooq
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad S S Khan
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Ling Xu
- Zhejiang Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinwen Zhu
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Min Zhao
- Zhejiang Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Stéphane Muños
- Laboratoire des Interactions Plantes Micro-organismes, Université de Toulouse, CNRS-INRA, 441-2594, France
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu 96822, USA
| | - Weijun Zhou
- College of Agriculture and Biotechnology, Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Sharifi Pasandi M, Hosseini Shirazi F, Gholami MR, Salehi H, Najafzadeh N, Mazani M, Ghasemi Hamidabadi H, Niapour A. Epi/perineural and Schwann Cells as Well as Perineural Sheath Integrity are Affected Following 2,4-D Exposure. Neurotox Res 2017; 32:624-638. [PMID: 28699141 DOI: 10.1007/s12640-017-9777-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/24/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023]
Abstract
2,4-dicholorophenoxy acetic acid (2,4-D) is a worldwide-known hormone herbicide. However, there are increasing concerns about its exposure and risks of developing pathological conditions for the peripheral nervous system. The aim of this study was to investigate the mechanism(s) involved in the toxicity of 2,4-D on peripheral nerve's cellular components. The epi/perineural and Schwann cells and a total of three cell lines were treated with 2,4-D. The viability of cells at different doses of 2,4-D was measured by MTT assay. The cell cycle analyses, cumulative cell counting, fluorescent staining, antioxidant and caspase enzymes activity were examined on epi/perineural and Schwann cells. The epi/perineural cells were assessed as having biological macromolecular changes. Some tight junction-related genes and proteins were also tested on explants of 2,4-D treated epi/perineural tissue. The viability of 2,4-D treated cells was reduced in a dose-dependent manner. Reduced growth rate and G1 cell cycle arrest were verified in 2,4-D treated epi/perineural and Schwann cells. The use of staining methods (acridine orange/ethidium bromide and DAPI) and caspase 3/7 activity assay along with malondialdehyde, glutathione peroxidase, and superoxide dismutase activity assays indicated the apoptotic and oxidant effects of 2,4-D on epi/perineural and Schwann cells. Data obtained from FTIR revealed changes in epi/perineural proteins and cell membrane lipids. Additionally, claudin-1, occludin, and ZO-1 gene/protein expression profiles were significantly reduced in 2,4-D-treated epi/perineural pieces. Our data indicated that oxidative stress, apoptosis of epi/perineural and Schwann cell and impaired blood-nerve barrier may have contributed to nerve damage following 2,4-D exposure.
Collapse
Affiliation(s)
- Marzieh Sharifi Pasandi
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshad Hosseini Shirazi
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Gholami
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mazani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hatef Ghasemi Hamidabadi
- Immunogenetic Research Center, Department of Anatomy and Cell Biology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
28
|
Goyal AK, Middha SK, Usha T, Sen A. Analysis of toxic, antidiabetic and antioxidant potential of Bambusa balcooa Roxb. leaf extracts in alloxan-induced diabetic rats. 3 Biotech 2017; 7:120. [DOI: https:/doi.org/10.1007/s13205-017-0776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 02/14/2017] [Indexed: 09/01/2023] Open
Abstract
Abstract
Bambusa balcooa (Poaceae) is native to India and has been used traditionally by the tribes of Northeast India to treat diabetes. The present investigation was aimed to evaluate the toxicity, anti-diabetic activity along with in vitro antioxidant activity of the leaf of B. balcooa in alloxan-induced diabetic rats and also identify active compounds by using HPLC. The acute toxicity test of aqueous extract of B. balcooa leaf revealed that the median lethal dose (LD50) of B. balcooa aqueous extract (BAQE) was 5.18 g/kg body weight in mice. Administration of BAQE at 100 and 200 mg/kg in alloxan-induced diabetic rats showed significant reduction in fasting blood glucose and glycated hemoglobin while plasma insulin level was elevated compared to diabetic control. Both the doses were effective when compared to diabetic glibenclamide rats. The BAQE treated diabetic rats showed significant increase in the endogenous antioxidant enzymes superoxide dismutase, glutathione peroxidase and decrease in malondialdehyde levels. HPLC analysis of BAQE showed the presence of rutin, gallic acid and β sitosterol. Thus, it can be inferred from this study that BAQE possess antidiabetic and in vivo antioxidant activity. The overall activity might be possibly due to the presence of potential antioxidants.
Collapse
|
29
|
Goyal AK, Middha SK, Usha T, Sen A. Analysis of toxic, antidiabetic and antioxidant potential of Bambusa balcooa Roxb. leaf extracts in alloxan-induced diabetic rats. 3 Biotech 2017; 7:120. [PMID: 28567632 PMCID: PMC5451367 DOI: 10.1007/s13205-017-0776-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 02/14/2017] [Indexed: 01/18/2023] Open
Abstract
Bambusa balcooa (Poaceae) is native to India and has been used traditionally by the tribes of Northeast India to treat diabetes. The present investigation was aimed to evaluate the toxicity, anti-diabetic activity along with in vitro antioxidant activity of the leaf of B. balcooa in alloxan-induced diabetic rats and also identify active compounds by using HPLC. The acute toxicity test of aqueous extract of B. balcooa leaf revealed that the median lethal dose (LD50) of B. balcooa aqueous extract (BAQE) was 5.18 g/kg body weight in mice. Administration of BAQE at 100 and 200 mg/kg in alloxan-induced diabetic rats showed significant reduction in fasting blood glucose and glycated hemoglobin while plasma insulin level was elevated compared to diabetic control. Both the doses were effective when compared to diabetic glibenclamide rats. The BAQE treated diabetic rats showed significant increase in the endogenous antioxidant enzymes superoxide dismutase, glutathione peroxidase and decrease in malondialdehyde levels. HPLC analysis of BAQE showed the presence of rutin, gallic acid and β sitosterol. Thus, it can be inferred from this study that BAQE possess antidiabetic and in vivo antioxidant activity. The overall activity might be possibly due to the presence of potential antioxidants.
Collapse
Affiliation(s)
- Arvind Kumar Goyal
- Bamboo Technology, Department of Biotechnology, Bodoland University, Kokrajhar, 783370, Assam, India.
| | - Sushil Kumar Middha
- Department of Biotechnology, PG (Science) Research Centre, Maharani Lakshmi Ammanni College for Women, Bengaluru, 560012, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru, 560012, Karnataka, India
| | - Arnab Sen
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri, 734013, West Bengal, India
| |
Collapse
|
30
|
Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells. Int J Mol Sci 2016; 17:ijms17121973. [PMID: 27897980 PMCID: PMC5187773 DOI: 10.3390/ijms17121973] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 01/18/2023] Open
Abstract
Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.
Collapse
|
31
|
Di Nunzio M, Valli V, Bordoni A. PUFA and oxidative stress. Differential modulation of the cell response by DHA. Int J Food Sci Nutr 2016; 67:834-43. [PMID: 27353954 DOI: 10.1080/09637486.2016.1201790] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although an increased dietary intake of long-chain n-3 PUFA is considered an effective preventive strategy, a theoretical concern related to the possible increase of lipid peroxidation induced by a PUFA-rich diet still remains a problem. In this study, the effects of different PUFA (linoleic, α-linolenic, arachidonic, eicosapentaenoic and docosahexaenoic acid) on cytotoxicity, lipid oxidation, and modulation of antioxidant defenses were evaluated in HepG2 cells submitted to an oxidative stress (H2O2). Results clearly evidenced that all supplemented PUFA, but DHA, enhanced cell susceptibility to H2O2. Overall, our results underline that PUFA cannot be considered as a single category but as individual compounds, and research on mechanisms of action and preventive effects should deal with the individual fatty acids, particularly in the case of DHA.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- a Interdepartmental Centre for Industrial Agri-Food Research , University of Bologna , Cesena (FC), Italy
| | - Veronica Valli
- b Department of Agri-Food Science and Technology , University of Bologna , Cesena (FC), Italy
| | - Alessandra Bordoni
- a Interdepartmental Centre for Industrial Agri-Food Research , University of Bologna , Cesena (FC), Italy ;,b Department of Agri-Food Science and Technology , University of Bologna , Cesena (FC), Italy
| |
Collapse
|
32
|
Gonçalves-de-Albuquerque CF, Medeiros-de-Moraes IM, Oliveira FMDJ, Burth P, Bozza PT, Castro Faria MV, Silva AR, de Castro-Faria-Neto HC. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis. PLoS One 2016; 11:e0153607. [PMID: 27078880 PMCID: PMC4831806 DOI: 10.1371/journal.pone.0153607] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/31/2016] [Indexed: 01/18/2023] Open
Abstract
Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA).
Collapse
Affiliation(s)
| | | | | | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24020–15 Niterói, RJ, Brazil
| | - Patrícia Torres Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, 21040–900 Rio de Janeiro, RJ, Brazil
| | - Mauro Velho Castro Faria
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, 20550–900 Rio de Janeiro, RJ, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, 21040–900 Rio de Janeiro, RJ, Brazil
- * E-mail: (ARS); (HCCFN)
| | - Hugo Caire de Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, 21040–900 Rio de Janeiro, RJ, Brazil
- Universidade Estácio de Sá, Programa de Produtividade Científica, Rio de Janeiro, RJ, Brazil
- * E-mail: (ARS); (HCCFN)
| |
Collapse
|
33
|
Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats. Journal of Food Science and Technology 2016; 53:1454-64. [PMID: 27570270 DOI: 10.1007/s13197-015-2150-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property.
Collapse
|
34
|
Gupta V, Mah XJ, Garcia MC, Antonypillai C, van der Poorten D. Oily fish, coffee and walnuts: Dietary treatment for nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21:10621-35. [PMID: 26457022 PMCID: PMC4588084 DOI: 10.3748/wjg.v21.i37.10621] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/28/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Rates of non-alcoholic fatty liver disease (NAFLD) are increasing worldwide in tandem with the metabolic syndrome, with the progressive form of disease, non-alcoholic steatohepatitis (NASH) likely to become the most common cause of end stage liver disease in the not too distant future. Lifestyle modification and weight loss remain the main focus of management in NAFLD and NASH, however, there has been growing interest in the benefit of specific foods and dietary components on disease progression, with some foods showing protective properties. This article provides an overview of the foods that show the most promise and their potential benefits in NAFLD/NASH, specifically; oily fish/ fish oil, coffee, nuts, tea, red wine, avocado and olive oil. Furthermore, it summarises results from animal and human trials and highlights potential areas for future research.
Collapse
|
35
|
Samarji R, Balbaa M. Anti-diabetic activity of different oils through their effect on arylsulfatases. J Diabetes Metab Disord 2014; 13:116. [PMID: 25516848 PMCID: PMC4267437 DOI: 10.1186/s40200-014-0116-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 11/22/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is characterized by the overproduction of the reactive oxygen species which affects the integrity of the lysosomal membrane affecting lysosomal enzymes. The effect of these species is blocked by some natural products as antioxidants. In the current study, groups of normal and streptozotocin (STZ)-induced diabetic rats were treated by Nigella sativa (NS), olive and canola oils and subjected to the study of arylsulfatases as a model of lysosomal enzymes. The aim of the present study is to investigate the effect of STZ-induced diabetes on arylsulfatases in presence and absence of NS, olive and canola oils. METHODS Different groups of rats were induced by STZ, treated with different oils and compared to their corresponding control group. All groups were subjected for the assays of blood glucose, insulin, catalase and arylsulfatases. A comparative kinetic study of arylsulfatses was performed to detect the alteration of catalytic characterization. RESULTS The results demonstrated that diabetes causes a significant elevation in the level of hepatic arylsulfatase B and a significant reduction of hepatic catalase as an antioxidant enzyme. NS and olive oils returned catalase and arylsulfatase B activities back near to normal by fixing their catalytic properties. Furthermore, the maximum velocity of arylsulfatases A and B was significantly elevated in the induced diabetes, whereas their Km values were significantly changed. The treatment of diabetic rats by NS and olive oils reduced the degree of significance. CONCLUSION Diabetes induces significant alterations of the catalytic characters of arylsulfatases and some oils decrease this alteration through an antioxidant-mediated effect.
Collapse
Affiliation(s)
- Rima Samarji
- />Department of Biological & Environmental Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mahmoud Balbaa
- />Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
36
|
El-Kholy TA, Abu Hilal M, Al-Abbadi HA, Serafi AS, Al-Ghamdi AK, Sobhy HM, Richardson JRC. The effect of extra virgin olive oil and soybean on DNA, cytogenicity and some antioxidant enzymes in rats. Nutrients 2014; 6:2376-86. [PMID: 24959949 PMCID: PMC4073157 DOI: 10.3390/nu6062376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 01/18/2023] Open
Abstract
We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents' organs and warrants further investigation in humans.
Collapse
Affiliation(s)
- Thanaa A El-Kholy
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia.
| | - Mohammad Abu Hilal
- School of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Hatim Ali Al-Abbadi
- Experimental Surgery Unit, KFMRC (King Fahd Medical Research Center), Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | | | - Ahmad K Al-Ghamdi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia.
| | - Hanan M Sobhy
- Pharmacology Unit, Biochemistry, Toxicology and Food deficiency Department, Animal Health Research Institute, Dokki, Gizza, Egypt.
| | - John R C Richardson
- Surgical Registrar, University Hospital Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
37
|
Nwozo SO, Osunmadewa DA, Oyinloye BE. Anti-fatty liver effects of oils from Zingiber officinale and Curcuma longa on ethanol-induced fatty liver in rats. JOURNAL OF INTEGRATIVE MEDICINE 2014; 12:59-65. [PMID: 24461596 DOI: 10.1016/s2095-4964(14)60006-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The present study is aimed at evaluating the protective effects of oils from Zingiber officinale (ginger) and Curcuma longa (turmeric) on acute ethanol-induced fatty liver in male Wistar rats. METHODS Ferric reducing antioxidant power activity and oxygen radical absorbance capacity of the oils were evaluated ex vivo. Rats were pretreated for 28 d with standard drug (Livolin Forte) and oils from Z. officinale and C. longa before they were exposed to 45% ethanol (4.8 g/kg) to induce acute fatty liver. Histological changes were observed and the degree of protection was measured by using biochemical parameters such as alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities. Serum triglyceride (TG) level, total cholesterol (TC) level and the effects of both oils on reduced gluthatione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and hepatic malondialdehyde (MDA) levels were estimated. RESULTS Oils from Z. officinale and C. longa at a dose of 200 mg/kg showed hepatoprotection by decreasing the activities of serum enzymes, serum TG, serum TC and hepatic MDA, while they significantly restored the level of GSH as well as GST and SOD activities. Histological examination of rats tissues was related to the obtained results. CONCLUSION From the results it may be concluded that oils from Z. officinale and C. longa (200 mg/kg) exhibited hepatoprotective activity in acute ethanol-induced fatty liver and Z. officinale oil was identified to have better effects than C. longa oil.
Collapse
Affiliation(s)
- Sarah Onyenibe Nwozo
- Nutritional and Industrial Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 200002, Nigeria E-mail:
| | - Damilola Adeola Osunmadewa
- Nutritional and Industrial Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 200002, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Nutritional and Industrial Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 200002, Nigeria
| |
Collapse
|
38
|
Goyal AK, Mishra T, Bhattacharya M, Kar P, Sen A. Evaluation of phytochemical constituents and antioxidant activity of selected actinorhizal fruits growing in the forests of Northeast India. J Biosci 2013; 38:797-803. [PMID: 24287659 DOI: 10.1007/s12038-013-9363-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hippophae salicifolia, Elaeagnus pyriformis, Myrica esculenta and M. nagi are actinorhizal plants growing in the sacred forests of Northeast India with multipurpose uses. The present investigation was undertaken to determine the phenol, flavonoid and flavonol contents of the fresh fruit juice of these plant species including the antioxidant potential by means of DPPH, H2O2 and NO scavenging activity and FRP. The total phenolic, flavonoid and flavonol contents of fruit juice ranged from 321.68+/-0.06 to 76.67+/-0.01 mg/g GAE, 272.92+/-0.07 to 20.12+/-0.02 mg/g QE and 258.92+/-0.08 to 18.72+/-0.02 mg/g QE, respectively. At 2.0 mg/mL concentration, DPPH scavenging activity was found to be the highest in M. esculenta (89.62 percent) and the lowest in E. pyriformis (17.58 percent). The reducing power activity was found significantly higher in H. salicifolia juice, which increased with increase in concentration. The H2O2 scavenging activity of H. salicifolia juice was found to be as high as 98.78 percent, while Elaeagnus juice was found to be less effective with just 48.90 percent. Juice of H. salicifolia showed the greatest NO scavenging effect of 75.24 percent as compared to juice of E. pyriformis, where only 37.54 percent scavenging was observed at the same concentration. Taking into account all the experimental data, it can be said that the fruits of H. salicifolia and both M. nagi and M. esculenta have good antioxidant activity compared to fruits of E. pyriformis.
Collapse
Affiliation(s)
- Arvind K Goyal
- Department of Botany, University of North Bengal; 2Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri 734 013, India,
| | | | | | | | | |
Collapse
|
39
|
Goyal AK, Mishra T, Bhattacharya M, Kar P, Sen A. Evaluation of phytochemical constituents and antioxidant activity of selected actinorhizal fruits growing in the forests of Northeast India. J Biosci 2013; 38:797-803. [DOI: https:/doi.org/10.1007/s12038-013-9363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
40
|
Chinnadurai K, Kanwal HK, Tyagi AK, Stanton C, Ross P. High conjugated linoleic acid enriched ghee (clarified butter) increases the antioxidant and antiatherogenic potency in female Wistar rats. Lipids Health Dis 2013; 12:121. [PMID: 23923985 PMCID: PMC3766171 DOI: 10.1186/1476-511x-12-121] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/26/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Hypercholesterolemia and oxidative stress are the main stimulating factors responsible for coronary artery disease and progression of atherosclerosis. Dairy food products are rich in conjugated linoleic acid (CLA) which is considered as an important component due to its potential health benefits such as anticarcinogenic, antiatherogenic, antidiabetic and antiadipogenic properties. In the present study, the effect of CLA enriched ghee on the antioxidant enzyme system and antiatherogenic properties in Wistar rats has been studied. METHODS Female Wistar rats of 21 days were taken for the study and fed with soybean diet (Control diet), low CLA diet and high CLA ghee diet (treatments) for thirty five days for studying antioxidative enzymes and sixteen weeks in case of antiatherogenic studies. RESULTS Feeding of high CLA enhanced ghee during pubescent period in rats lead to an increase in catalase (CAT) and superoxide dismutase (SOD) enzyme activities in blood and increased CAT, SOD and glutathione transferase (GST) enzymes activities in liver by 27, 130 and 168 percent, respectively. Plasma nitrate concentration and Haemoglobin levels remained the same in all the treatments. Feeding of high CLA ghee resulted in lower (P < 0.01) plasma cholesterol & triglyceride level (52.17 and 30.27%), and higher high density lipoproteins (33.26%) than feeding of soybean oil (control group) and thus manifested in decreased (P < 0.05) atherogenic index (from 0.472 to 0.244). Lesser cholesterol and triglyceride levels were observed in the liver and aorta of high CLA fed rats than in those of the other groups. Histopathological studies of liver showed normal hepatic cords with portal triad in the high CLA ghee fed rats whereas fatty degeneration of hepatocytes containing fat vacuoles was observed in the liver of the other groups. CONCLUSION This paper is the first report of the antioxidant and antiatherogenic properties of the high CLA enriched ghee suggesting that high CLA ghee can be used as a potential food for decreasing the risk of cardiovascular diseases, particularly in India, where, ghee is widely used for culinary and medicinal purposes.
Collapse
Affiliation(s)
- Kathirvelan Chinnadurai
- Department of Animal Nutrition, Veterinary College and Research Institute, Namakkal, TamilNadu, 637 002, India
| | - Harpreet Kaur Kanwal
- Dairy Cattle Nutrition (DCN) Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Amrish Kumar Tyagi
- Dairy Cattle Nutrition (DCN) Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Catherine Stanton
- Teagasc, Moorepark Food Research Centre, Fermoy, County Cork, Ireland
| | - Paul Ross
- Teagasc, Moorepark Food Research Centre, Fermoy, County Cork, Ireland
| |
Collapse
|
41
|
Comparison of the fatty acid composition of transitional and mature milk of mothers who delivered healthy full-term babies, preterm babies and full-term small for gestational age infants. Eur J Clin Nutr 2013; 67:966-71. [PMID: 23695208 DOI: 10.1038/ejcn.2013.96] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/16/2013] [Accepted: 04/01/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND/OBJECTIVES The fatty acid (FA) composition of breast milk throughout the period of lactation is fairly well understood. What is not known, however, is the FA composition of breast milk at the interface of physiology and pathology of pregnancy. We therefore decided to analyse and compare the differences in the FA composition of transitional and mature milk of mothers who delivered small for gestational age (SGA) neonates born at term; infants delivered at 35-37 weeks of gestation, that is 'late preterm'; and that of mothers who gave birth to appropriate for gestational age neonates (AGA). SUBJECT/METHODS The FAs were analysed by HPLC equipped with MS detector. RESULTS We found differences in the percentage share of the studied FA pool regarding levels of capric, lauric and gadoleic acids. Comparing transitional and mature milk, the greatest diversity was seen in the group of mothers of AGA neonates and the least was noted in the group of mothers of SGA neonates. CONCLUSIONS Both 'late prematurity' and reduced neonatal weight of children born at term affect the FA composition of breast milk. Even a small degree of fetal malformation alters the composition of breast milk, which is probably related to the child's needs and condition.
Collapse
|
42
|
Tayeb W, Nakbi A, Cheraief I, Miled A, Hammami M. Alteration of lipid status and lipid metabolism, induction of oxidative stress and lipid peroxidation by 2,4-dichlorophenoxyacetic herbicide in rat liver. Toxicol Mech Methods 2013; 23:449-58. [PMID: 23464821 DOI: 10.3109/15376516.2013.780275] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study aims to investigate the effects of the 2,4-dichlorophenoxyacetic herbicide (2,4-D) on plasma lipids, lipoproteins concentrations, hepatic lipid peroxidation, fatty acid composition and antioxidant enzyme activities in rats. Animals were randomly divided into four groups of 10 each: control group and three 2,4-D-treated groups G1, G2 and G3 were administered 15, 75 and 150 mg/kg/BW/d 2,4-D by gavage for 28 d, respectively. Results showed that 2,4-D caused significant negative changes in the biochemical parameters investigated. The malondialdehyde level was significantly increased in 2,4-D-treated groups. Fatty acid composition of the liver was also significantly changed with 2,4-D exposure. Furthermore, the hepatic antioxidant enzyme activities were significantly affected. Finally, 2,4-D at the studied doses modifies lipidic status, disrupt lipid metabolism and induce hepatic oxidative stress. In conclusion, at higher doses, 2,4-D may play an important role in the development of vascular disease via metabolic disorder of lipoproteins, lipid peroxidation and oxidative stress.
Collapse
Affiliation(s)
- Wafa Tayeb
- Laboratory of Biochemistry, UR03/ES-08 'Human Nutrition and Metabolic Disorders', Faculty of Medicine, Monastir, Tunisia.
| | | | | | | | | |
Collapse
|
43
|
The ameliorative effects of L-2-oxothiazolidine-4-carboxylate on acetaminophen-induced hepatotoxicity in mice. Molecules 2013; 18:3467-78. [PMID: 23507776 PMCID: PMC6270228 DOI: 10.3390/molecules18033467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 01/31/2013] [Accepted: 03/14/2013] [Indexed: 02/05/2023] Open
Abstract
The aim of the study was to investigate the ameliorative effects and the mechanism of action of l-2-oxothiazolidine-4-carboxylate (OTC) on acetaminophen (APAP)-induced hepatotoxicity in mice. Mice were randomly divided into six groups: normal control group, APAP only treated group, APAP + 25 mg/kg OTC, APAP + 50 mg/kg OTC, APAP + 100 mg/kg OTC, and APAP + 100 mg/kg N-acetylcysteine (NAC) as a reference control group. OTC treatment significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels in a dose dependent manner. OTC treatment was markedly increased glutathione (GSH) production and glutathione peroxidase (GSH-px) activity in a dose dependent manner. The contents of malondialdehyde and 4-hydroxynonenal in liver tissues were significantly decreased by administration of OTC and the inhibitory effect of OTC was similar to that of NAC. Moreover, OTC treatment on APAP-induced hepatotoxicity significantly reduced the formation of nitrotyrosin and terminal deoxynucleotidyl transferase dUTP nick end labeling positive areas of liver tissues in a dose dependent manner. Furthermore, the activity of caspase-3 in liver tissues was reduced by administration of OTC in a dose dependent manner. The ameliorative effects of OTC on APAP-induced liver damage in mice was similar to that of NAC. These results suggest that OTC has ameliorative effects on APAP-induced hepatotoxicity in mice through anti-oxidative stress and anti-apoptotic processes.
Collapse
|
44
|
Estadella D, da Penha Oller do Nascimento CM, Oyama LM, Ribeiro EB, Dâmaso AR, de Piano A. Lipotoxicity: effects of dietary saturated and transfatty acids. Mediators Inflamm 2013; 2013:137579. [PMID: 23509418 PMCID: PMC3572653 DOI: 10.1155/2013/137579] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 01/18/2023] Open
Abstract
The ingestion of excessive amounts of saturated fatty acids (SFAs) and transfatty acids (TFAs) is considered to be a risk factor for cardiovascular diseases, insulin resistance, dyslipidemia, and obesity. The focus of this paper was to elucidate the influence of dietary SFA and TFA intake on the promotion of lipotoxicity to the liver and cardiovascular, endothelial, and gut microbiota systems, as well as on insulin resistance and endoplasmic reticulum stress. The saturated and transfatty acids favor a proinflammatory state leading to insulin resistance. These fatty acids can be involved in several inflammatory pathways, contributing to disease progression in chronic inflammation, autoimmunity, allergy, cancer, atherosclerosis, hypertension, and heart hypertrophy as well as other metabolic and degenerative diseases. As a consequence, lipotoxicity may occur in several target organs by direct effects, represented by inflammation pathways, and through indirect effects, including an important alteration in the gut microbiota associated with endotoxemia. Interactions between these pathways may perpetuate a feedback process that exacerbates an inflammatory state. The importance of lifestyle modification, including an improved diet, is recommended as a strategy for treatment of these diseases.
Collapse
Affiliation(s)
- Débora Estadella
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Claudia M. da Penha Oller do Nascimento
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Lila M. Oyama
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Eliane B. Ribeiro
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| | - Ana R. Dâmaso
- Departamento de Biociências, UNIFESP, Campus Baixada Santista, 11060-001 Santos, SP, Brazil
| | - Aline de Piano
- Programa de Pós-Graduação em Nutrição, Disciplina de Fisiologia da Nutrição, EPM, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 862 Edifício de Ciências Biomédicas, 2 andar, Vila Clementino, 04023-060 São Paulo, SP, Brazil
| |
Collapse
|
45
|
Fakurazi S, Sharifudin SA, Arulselvan P. Moringa oleifera hydroethanolic extracts effectively alleviate acetaminophen-induced hepatotoxicity in experimental rats through their antioxidant nature. Molecules 2012; 17:8334-50. [PMID: 22781444 PMCID: PMC6268890 DOI: 10.3390/molecules17078334] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 01/18/2023] Open
Abstract
The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)- induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.
Collapse
Affiliation(s)
- Sharida Fakurazi
- Faculty of Medicine and Health Sciences, Department of Human Anatomy, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Author to whom correspondence should be addressed; ; Tel.: +603-8947-2331; Fax: +603-8942-2341
| | - Syazana Akmal Sharifudin
- Faculty of Medicine and Health Sciences, Department of Human Anatomy, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
46
|
Nakbi A, Tayeb W, Dabbou S, Chargui I, Issaoui M, Ferih A, Ali ZB, Alsaif MA, Hammami M. Olive oil protects against 2,4‐dichlorophenoxyacetic acid‐induced oxidative renal dysfunction in adult rats. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Amel Nakbi
- Biochemistry Laboratory, UR03ES08 ‘Human Nutrition & Metabolic Disorders’, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Wafa Tayeb
- Biochemistry Laboratory, UR03ES08 ‘Human Nutrition & Metabolic Disorders’, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Samia Dabbou
- Biochemistry Laboratory, UR03ES08 ‘Human Nutrition & Metabolic Disorders’, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Issam Chargui
- Laboratory of Histology and Cytogenetic, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Manel Issaoui
- Biochemistry Laboratory, UR03ES08 ‘Human Nutrition & Metabolic Disorders’, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Ameur Ferih
- Biochemistry Laboratory, UR03ES08 ‘Human Nutrition & Metabolic Disorders’, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Zohra Ben Ali
- Laboratory of Histology and Cytogenetic, Faculty of Medicine of Monastir, Monastir, Tunisia
| | - Mohammed A. Alsaif
- College of Applied Medical Sciences, VPP Unit, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Hammami
- Biochemistry Laboratory, UR03ES08 ‘Human Nutrition & Metabolic Disorders’, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- College of Applied Medical Sciences, VPP Unit, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Dhibi M, Brahmi F, Mnari A, Houas Z, Chargui I, Bchir L, Gazzah N, Alsaif MA, Hammami M. The intake of high fat diet with different trans fatty acid levels differentially induces oxidative stress and non alcoholic fatty liver disease (NAFLD) in rats. Nutr Metab (Lond) 2011; 8:65. [PMID: 21943357 PMCID: PMC3192664 DOI: 10.1186/1743-7075-8-65] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/23/2011] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Trans-fatty acids (TFA) are known as a risk factor for coronary artery diseases, insulin resistance and obesity accompanied by systemic inflammation, the features of metabolic syndrome. Little is known about the effects on the liver induced by lipids and also few studies are focused on the effect of foods rich in TFAs on hepatic functions and oxidative stress. This study investigates whether high-fat diets with different TFA levels induce oxidative stress and liver dysfunction in rats. METHODS Male Wistar rats were divided randomly into four groups (n = 12/group): C receiving standard-chow; Experimental groups that were fed high-fat diet included 20% fresh soybean oil diet (FSO), 20% oxidized soybean oil diet (OSO) and 20% margarine diet (MG). Each group was kept on the treatment for 4 weeks. RESULTS A liver damage was observed in rats fed with high-fat diet via increase of liver lipid peroxidation and decreased hepatic antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase). The intake of oxidized oil led to higher levels of lipid peroxidation and a lower concentration of plasma antioxidants in comparison to rats fed with FSO. The higher inflammatory response in the liver was induced by MG diet. Liver histopathology from OSO and MG groups showed respectively moderate to severe cytoplasm vacuolation, hypatocyte hypertrophy, hepatocyte ballooning, and necroinflammation. CONCLUSION It seems that a strong relationship exists between the consumption of TFA in the oxidized oils and lipid peroxidation and non alcoholic fatty liver disease (NAFLD). The extent of the peroxidative events in liver was also different depending on the fat source suggesting that feeding margarine with higher TFA levels may represent a direct source of oxidative stress for the organism. The present study provides evidence for a direct effect of TFA on NAFLD.
Collapse
Affiliation(s)
- Madiha Dhibi
- Laboratory of Biochemistry, UR: "Human Nutrition and Metabolic Disorder" Faculty of Medicine of Monastir 5019, Tunisia
| | - Faten Brahmi
- Laboratory of Biochemistry, UR: "Human Nutrition and Metabolic Disorder" Faculty of Medicine of Monastir 5019, Tunisia
| | - Amira Mnari
- Laboratory of Biochemistry, UR: "Human Nutrition and Metabolic Disorder" Faculty of Medicine of Monastir 5019, Tunisia
| | - Zohra Houas
- Laboratory of Histology Cytology and Genetics, Faculty of Medicine, Monastir 5019, Tunisia
| | - Issam Chargui
- Laboratory of Histology Cytology and Genetics, Faculty of Medicine, Monastir 5019, Tunisia
| | - Linda Bchir
- Laboratory of Biochemistry, UR: "Human Nutrition and Metabolic Disorder" Faculty of Medicine of Monastir 5019, Tunisia
| | - Noureddine Gazzah
- Laboratory of Biochemistry, UR: "Human Nutrition and Metabolic Disorder" Faculty of Medicine of Monastir 5019, Tunisia
| | - Mohammed A Alsaif
- College of Applied Medical Sciences, VPP Unit, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Hammami
- Laboratory of Biochemistry, UR: "Human Nutrition and Metabolic Disorder" Faculty of Medicine of Monastir 5019, Tunisia
- College of Applied Medical Sciences, VPP Unit, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|