1
|
Ingthorsson S, Traustadottir GA, Gudjonsson T. Breast Morphogenesis: From Normal Development to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:29-44. [PMID: 39821019 DOI: 10.1007/978-3-031-70875-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human breast gland is composed of branching epithelial ducts that culminate in milk-producing units known as terminal duct lobular units (TDLUs). The epithelial compartment comprises an inner layer of luminal epithelial cells (LEP) and an outer layer of contractile myoepithelial cells (MEP). Both LEP and MEP arise from a common stem cell population. The epithelial compartment undergoes dynamic branching morphogenesis and remodelling, which expands the surface area for milk production. The epithelial remodelling that starts at the onset of menarche is largely under hormonal control, first and foremost by estrogen and progesterone from ovaries, the production of which is stimulated by pituitary-derived hormones. Menopause leads to a significant decline in estrogen and progesterone levels, resulting in involution and senescence of the breast epithelium. The branching morphogenesis involves developmental events such as epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). EMT and MET confer plasticity to the epithelial compartment enabling the migration of epithelial cells through the stroma and restoration of the epithelial phenotype. In the normal breast, the stroma, including the basement membrane (BM), collagen-rich extracellular matrix, and various stromal cells, supports the correct histoarchitecture of the glandular tree. However, in cancer, the stroma can acquire tumour-promoting properties and is referred to as the tumour microenvironment. This chapter will explore the developmental processes including branching morphogenesis in the normal breast gland and discuss the lineage relationship between LEPS and MEPs and their interactions with the surrounding stroma in the normal and neoplastic breast gland. Finally, we will review various in vitro and in vivo models employed in mammary gland research.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Faculty of Nursing and Midwifery, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland.
| |
Collapse
|
2
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
3
|
Pal AK, Sharma P, Zia A, Siwan D, Nandave D, Nandave M, Gautam RK. Metabolomics and EMT Markers of Breast Cancer: A Crosstalk and Future Perspective. PATHOPHYSIOLOGY 2022; 29:200-222. [PMID: 35736645 PMCID: PMC9230911 DOI: 10.3390/pathophysiology29020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer cells undergo transient EMT and MET phenomena or vice versa, along with the parallel interplay of various markers, often correlated as the determining factor in decoding metabolic profiling of breast cancers. Moreover, various cancer signaling pathways and metabolic changes occurring in breast cancer cells modulate the expression of such markers to varying extents. The existing research completed so far considers the expression of such markers as determinants regulating the invasiveness and survival of breast cancer cells. Therefore, this manuscript is crosstalk among the expression levels of such markers and their correlation in regulating the aggressiveness and invasiveness of breast cancer. We also attempted to cover the possible EMT-based metabolic targets to retard migration and invasion of breast cancer.
Collapse
Affiliation(s)
- Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Prateek Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Alishan Zia
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Dipali Nandave
- Department of Dravyaguna, Karmavir V. T. Randhir Ayurved College, Boradi 425428, India;
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
- Correspondence: (M.N.); (R.K.G.)
| | - Rupesh K. Gautam
- Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Ambala 134007, India
- Correspondence: (M.N.); (R.K.G.)
| |
Collapse
|
4
|
Retinoid orphan nuclear receptor alpha (RORα) suppresses the epithelial-mesenchymal transition (EMT) by directly repressing Snail transcription. J Biol Chem 2022; 298:102059. [PMID: 35605663 PMCID: PMC9218514 DOI: 10.1016/j.jbc.2022.102059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoid orphan nuclear receptor alpha (RORα) is a member of the orphan nuclear factor family and regulates gene expression by binding to ROR response elements (ROREs). RORα has been identified as a potential tumor suppressor; however, how downregulation of RORα promotes cancer progression is not fully understood. Here, we showed that protein levels of RORα were downregulated during the Snail-, Twist-, or transforming growth factor-β–induced epithelial–mesenchymal transition (EMT). We found that silencing of RORα induced expression of mesenchymal markers in MCF10A cells, accompanied by enhanced cell invasion, migration, and mammosphere formation. Furthermore, ectopic expression of RORα suppressed transforming growth factor-β–induced EMT processes in MCF10A and HMLE cells. These results indicate that downregulation of RORα is crucial for the induction of EMT in mammary epithelial cells. By analyzing gene expression profiles in control and RORα-expressing cells, we also identified Snail, a key regulator of EMT, as a potential target of RORα. We show that RORα expression significantly inhibits Snail transcription in breast cancer cells. Chromatin immunoprecipitation analysis demonstrated that RORα bound to the ROREs in promoter region of SNAI1 gene, and using the luciferase reporter assay, we showed that binding to the ROREs was critical for RORα to repress Snail transcription. Finally, rescue experiments substantiated that Snail mediates RORα function in suppressing EMT and mammosphere formation. These results reveal a novel function of RORα in suppressing EMT and identify Snail as a direct target of RORα in mammary epithelial cells.
Collapse
|
5
|
Zhang M, Meng M, Liu Y, Qi J, Zhao Z, Qiao Y, Hu Y, Lu W, Zhou Z, Xu P, Zhou Q. Triptonide effectively inhibits triple-negative breast cancer metastasis through concurrent degradation of Twist1 and Notch1 oncoproteins. Breast Cancer Res 2021; 23:116. [PMID: 34922602 PMCID: PMC8684143 DOI: 10.1186/s13058-021-01488-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/13/2021] [Indexed: 01/19/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is highly metastatic and lethal. Due to a lack of druggable targets for this disease, there are no effective therapies in the clinic. Methods We used TNBC cells and xenografted mice as models to explore triptonide-mediated inhibition of TNBC metastasis and tumor growth. Colony formation assay was used to quantify the tumorigenesis of TNBC cells. Wound-healing and cell trans-well assays were utilized to measure cell migration and invasion. Tube formation assay was applied to access tumor cell-mediated vasculogenic mimicry. Western blot, quantitative-PCR, immunofluorescence imaging, and immunohistochemical staining were used to measure the expression levels of various tumorigenic genes in TNBC cells. Results Here, we showed that triptonide, a small molecule from the traditional Chinese medicinal herb Tripterygium wilfordii Hook F, potently inhibited TNBC cell migration, invasion, and vasculogenic mimicry, and effectively suppressed TNBC tumor growth and lung metastasis in xenografted mice with no observable toxicity. Molecular mechanistic studies revealed that triptonide strongly triggered the degradation of master epithelial-mesenchymal transition (EMT)-inducing protein Twist1 through the lysosomal system and reduced Notch1 expression and NF-κB phosphorylation, which consequently diminished the expression of pro-metastatic and angiogenic genes N-cadherin, VE-cadherin, and vascular endothelial cell growth factor receptor 2 (VEGFR2). Conclusions Triptonide effectively suppressed TNBC cell tumorigenesis, vasculogenic mimicry, and strongly inhibited the metastasis of TNBC via degradation of Twist1 and Notch1 oncoproteins, downregulation of metastatic and angiogenic gene expression, and reduction of NF-κB signaling pathway. Our findings provide a new strategy for treating highly lethal TNBC and offer a potential new drug candidate for combatting this aggressive disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01488-7.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yingnan Qiao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yanxing Hu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Wei Lu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Peng Xu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Gou X, Anurag M, Lei JT, Kim BJ, Singh P, Seker S, Fandino D, Han A, Rehman S, Hu J, Korchina V, Doddapaneni H, Dobrolecki LE, Mitsiades N, Lewis MT, Welm AL, Li S, Lee AV, Robinson DR, Foulds CE, Ellis MJ. Transcriptional reprogramming differentiates active from inactive ESR1 fusions in endocrine therapy-refractory metastatic breast cancer. Cancer Res 2021; 81:6259-6272. [PMID: 34711608 DOI: 10.1158/0008-5472.can-21-1256] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/01/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Genomic analysis has recently identified multiple ESR1 gene translocations in estrogen receptor-alpha positive (ERα+) metastatic breast cancer (MBC) that encode chimeric proteins whereby the ESR1 ligand binding domain (LBD) is replaced by C-terminal sequences from many different gene partners. Here we functionally screened 15 ESR1 fusions and identified 10 that promoted estradiol-independent cell growth, motility, invasion, EMT and resistance to fulvestrant. RNA sequencing identified a gene expression pattern specific to functionally active ESR1 gene fusions that was subsequently reduced to a diagnostic 24-gene signature. This signature was further examined in 20 ERα+ patient-derived xenografts (PDXs) and in 55 ERα+ MBC samples. The 24-gene signature successfully identified cases harboring ESR1 gene fusions and also accurately diagnosed the presence of activating ESR1 LBD point mutations. Therefore, the 24-gene signature represents an efficient approach to screening samples for the presence of diverse somatic ESR1 mutations and translocations that drive endocrine treatment failure in MBC.
Collapse
Affiliation(s)
- Xuxu Gou
- Lester and Sue Smith Breast Center, Baylor College of Medicine
| | | | - Jonathan T Lei
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine
| | - Alana L Welm
- Oncological Sciences, University of Utah Huntsman Cancer Institute
| | - Shunqiang Li
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh
| | - Dan R Robinson
- Department of Pathology, University of Michigan–Ann Arbor
| | - Charles E Foulds
- Molecular and Cellular Biology and Breast Center, Baylor College of Medicine
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine
| |
Collapse
|
7
|
Mayo V, Bowles AC, Wubker LE, Ortiz I, Cordoves AM, Cote RJ, Correa D, Agarwal A. Human-derived osteoblast-like cells and pericyte-like cells induce distinct metastatic phenotypes in primary breast cancer cells. Exp Biol Med (Maywood) 2021; 246:971-985. [PMID: 33210551 PMCID: PMC8024509 DOI: 10.1177/1535370220971599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Approximately 70% of advanced breast cancer patients will develop bone metastases, which accounts for ∼90% of cancer-related mortality. Breast cancer circulating tumor cells (CTCs) establish metastatic tumors in the bone after a close interaction with local bone marrow cells including pericytes and osteoblasts, both related to resident mesenchymal stem/stromal cells (BM-MSCs) progenitors. In vitro recapitulation of the critical cellular players of the bone microenvironment and infiltrating CTCs could provide new insights into their cross-talk during the metastatic cascade, helping in the development of novel therapeutic strategies. Human BM-MSCs were isolated and fractionated according to CD146 presence. CD146+ cells were utilized as pericyte-like cells (PLCs) given the high expression of the marker in perivascular cells, while CD146- cells were induced into an osteogenic phenotype generating osteoblast-like cells (OLCs). Transwell migration assays were performed to establish whether primary breast cancer cells (3384T) were attracted to OLC. Furthermore, proliferation of 3384T breast cancer cells was assessed in the presence of PLC- and OLC-derived conditioned media. Additionally, conditioned media cultures as well as transwell co-cultures of each OLCs and PLCs were performed with 3384T breast cancer cells for gene expression interrogation assessing their induced transcriptional changes with an emphasis on metastatic potential. PLC as well as their conditioned media increased motility and invasion potential of 3384T breast cancer cells, while OLC induced a dormant phenotype, downregulating invasiveness markers related with migration and proliferation. Altogether, these results indicate that PLC distinctively drive 3384T cancer cells to an invasive and migratory phenotype, while OLC induce a quiescence state, thus recapitulating the different phases of the in vivo bone metastatic process. These data show that phenotypic responses from metastasizing cancer cells are influenced by neighboring cells at the bone metastatic niche during the establishment of secondary metastatic tumors.
Collapse
Affiliation(s)
- Vera Mayo
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Annie C Bowles
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Laura E Wubker
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Albert M Cordoves
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
| | - Richard J Cote
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St Louis, MO 63110, USA
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33146, USA
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Molani Gol R, Kheirouri S. The Effects of Quercetin on the Apoptosis of Human Breast Cancer Cell Lines MCF-7 and MDA-MB-231: A Systematic Review. Nutr Cancer 2021; 74:405-422. [PMID: 33682528 DOI: 10.1080/01635581.2021.1897631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This systematic review was performed with a focus on the effects of quercetin (QT) on the human breast cancer cell lines MCF-7 and MDA-MB-231. PubMed, Scopus, Science Direct, and Google Scholar databases were searched up to May 2020 using relevant keywords. All articles written in English evaluating the effects of QT on the human breast cancer cell lines MCF-7 and/or MDA-MB-231 were eligible for the review. Totally, 31 articles were included in this review. Out of them, 23 studies investigated the effects of QT on MCF-7 cells and indicated that QT induces apoptosis in the cells. Of 15 studies that examined the effects of QT on MDA-MB-231 cells, 14 reports showed successful apoptosis. It is concluded that QT might be beneficial in the eliminating of breast cancer cells. However, further clinical trials are warranted to further verify these outcomes.
Collapse
Affiliation(s)
- Roghayeh Molani Gol
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Role of the CXCR4-LASP1 Axis in the Stabilization of Snail1 in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092372. [PMID: 32825729 PMCID: PMC7563118 DOI: 10.3390/cancers12092372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCL12-CXCR4 axis plays a vital role in many steps of breast cancer metastasis, but the molecular mechanisms have not been fully elucidated. We previously reported that activation of CXCR4 by CXCL12 promotes the nuclear localization of LASP1 (LIM and SH3 protein 1). The nuclear LASP1 then interacts with Snail1 in triple-negative breast cancer (TNBC) cell lines. In this study, we report that the nuclear accumulation and retention of Snail1 was dependent on an increase in nuclear LASP1 levels driven by active CXCR4. The CXCR4-LASP1 axis may directly regulate the stabilization of nuclear Snail1, by upregulating nuclear levels of pS473-Akt, pS9-GSK-3β, A20, and LSD1. Furthermore, the activation of CXCR4 induced association of LASP1 with Snail1, A20, GSK-3β, and LSD1 endogenously. Thus, nuclear LASP1 may also regulate protein-protein interactions that facilitate the stability of Snail1. Genetic ablation of LASP1 resulted in the mislocalization of nuclear Snail1, loss of the ability of TNBC cells to invade Matrigel and a dysregulated expression of both epithelial and mesenchymal markers, including an increased expression of ALDH1A1, a marker for epithelial breast cancer stem-like cells. Our findings reveal a novel role for the CXCR4-LASP1 axis in facilitating the stability of nuclear localized Snail1.
Collapse
|
10
|
Zhang QB, Ye RF, Ye LY, Zhang QY, Dai NG. Isocorydine decrease gemcitabine-resistance by inhibiting epithelial-mesenchymal transition via STAT3 in pancreatic cancer cells. Am J Transl Res 2020; 12:3702-3714. [PMID: 32774728 PMCID: PMC7407734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Gemcitabine is widely used as an anticancer chemotherapy drug for a variety of solid tumors, and it has become the standard treatment option for locally advanced and metastatic pancreatic cancer. However, pancreatic cancer cells develop resistance to gemcitabine after a few weeks of treatment, resulting in poor therapeutic effects. Isocorydine (ICD) is a typical natural aporphine alkaloid, and ICD and its derivatives inhibit the proliferation of many types of cancer cells in vitro. In this study, ICD was found to synergistically inhibit cell viability with gemcitabine in pancreatic cancer cells. A microarray analysis showed that ICD can inhibit the upregulation of STAT3 and EMT in pancreatic cancer cells induced by gemcitabine. STAT3 is closely related to tumor EMT, migration and invasion. After knocking down the expression of STAT3 in pancreatic cancer cells, the combination index (CI) of ICD and gemcitabine decreased. ICD can reverse the increase in the expression of EMT-related transcription factors and proteins caused by gemcitabine, thereby inhibiting the enhanced cell migration and invasion ability caused by gemcitabine. Finally, the synergistic treatment effect of the combination treatment of ICD and gemcitabine in pancreatic cancer cells was confirmed in established xenograft models.
Collapse
Affiliation(s)
- Quan-Bo Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Rui-Fan Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Long-Yun Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Qi-Yu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Ning-Gao Dai
- Department of Traumatology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
11
|
Montagud A, Traynard P, Martignetti L, Bonnet E, Barillot E, Zinovyev A, Calzone L. Conceptual and computational framework for logical modelling of biological networks deregulated in diseases. Brief Bioinform 2020; 20:1238-1249. [PMID: 29237040 DOI: 10.1093/bib/bbx163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
Mathematical models can serve as a tool to formalize biological knowledge from diverse sources, to investigate biological questions in a formal way, to test experimental hypotheses, to predict the effect of perturbations and to identify underlying mechanisms. We present a pipeline of computational tools that performs a series of analyses to explore a logical model's properties. A logical model of initiation of the metastatic process in cancer is used as a transversal example. We start by analysing the structure of the interaction network constructed from the literature or existing databases. Next, we show how to translate this network into a mathematical object, specifically a logical model, and how robustness analyses can be applied to it. We explore the visualization of the stable states, defined as specific attractors of the model, and match them to cellular fates or biological read-outs. With the different tools we present here, we explain how to assign to each solution of the model a probability and how to identify genetic interactions using mutant phenotype probabilities. Finally, we connect the model to relevant experimental data: we present how some data analyses can direct the construction of the network, and how the solutions of a mathematical model can also be compared with experimental data, with a particular focus on high-throughput data in cancer biology. A step-by-step tutorial is provided as a Supplementary Material and all models, tools and scripts are provided on an accompanying website: https://github.com/sysbio-curie/Logical_modelling_pipeline.
Collapse
|
12
|
Mansoori B, Mohammadi A, Naghizadeh S, Gjerstorff M, Shanehbandi D, Shirjang S, Najafi S, Holmskov U, Khaze V, Duijf PHG, Baradaran B. miR-330 suppresses EMT and induces apoptosis by downregulating HMGA2 in human colorectal cancer. J Cell Physiol 2020; 235:920-931. [PMID: 31241772 DOI: 10.1002/jcp.29007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are important molecular regulatorsof cellular signaling and behavior. They alter gene expression by targeting messenger RNAs, including those encoding transcriptional regulators, such as HMGA2. While HMGA2 is oncogenic in various tumors, miRNAs may be oncogenic or tumor suppressive. Here, we investigate the expression of HMGA2 and the miRNA miR-330 in a patient with colorectal cancer (CRC) samples and their effects on oncogenic cellular phenotypes. We found that HMGA2 expression is increased and miR-330 expression is decreased in CRCs and each predicts poor long-term patient survival. Stably increased miR-330 expression in human colorectal cancer cells (HCT116) and SW480 CRC cell lines downregulate the oncogenic expression of HMGA2, a predicted miR-330 target. Additionally, this promotes apoptosis and decreases cell migration and viability. Consistently, it also decreases protein-level expression of markers for epithelial-to-mesenchymal-transition (Snail-1, E-cadherin, and Vascular endothelial growth factor receptors) and transforming growth factor β signaling (SMAD3), as well as phospho- Protein kinase B (AKT) and phospho-STAT3 levels. We conclude that miR-330 acts as a tumor suppressor miRNA in CRC by suppressing HMGA2 expression and reducing cell survival, proliferation, and migration. Thus, we identify miR-330 as a promising candidate for miRNA replacement therapy for patients with CRC.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morten Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Vahid Khaze
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Translational Research Institute, University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Hass R, von der Ohe J, Ungefroren H. Potential Role of MSC/Cancer Cell Fusion and EMT for Breast Cancer Stem Cell Formation. Cancers (Basel) 2019; 11:1432. [PMID: 31557960 PMCID: PMC6826868 DOI: 10.3390/cancers11101432] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Solid tumors comprise of maturated cancer cells and self-renewing cancer stem-like cells (CSCs), which are associated with various other nontumorigenic cell populations in the tumor microenvironment. In addition to immune cells, endothelial cells, fibroblasts, and further cell types, mesenchymal stroma/stem-like cells (MSC) represent an important cell population recruited to tumor sites and predominantly interacting with the different cancer cells. Breast cancer models were among the first to reveal distinct properties of CSCs, however, the cellular process(es) through which these cells are generated, maintained, and expanded within neoplastic tissues remains incompletely understood. Here, we discuss several possible scenarios that are not mutually exclusive but may even act synergistically: fusion of cancer cells with MSC to yield hybrid cells and/or the induction of epithelial-mesenchymal transition (EMT) in breast cancer cells by MSC, which can relay signals for retrodifferentiation and eventually, the generation of breast CSCs (BCSCs). In either case, the consequences may be promotion of self-renewal capacity, tumor cell plasticity and heterogeneity, an increase in the cancer cells' invasive and metastatic potential, and the acquisition of resistance mechanisms towards chemo- or radiotherapy. While specific signaling mechanisms involved in each of these properties remain to be elucidated, the present review article focusses on a potential involvement of cancer cell fusion and EMT in the development of breast cancer stem cells.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany.
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
14
|
Sousa B, Ribeiro AS, Paredes J. Heterogeneity and Plasticity of Breast Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:83-103. [PMID: 31134496 DOI: 10.1007/978-3-030-14366-4_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last 20 years, the conventional view of breast cancer as a homogeneous collection of highly proliferating malignant cells was totally replaced by a model of increased complexity, which points out that breast carcinomas are tissues composed of multiple populations of transformed cells. A large diversity of host cells and structural components of the extracellular matrix constitute the mammary tumour microenvironment, which supports its growth and progression, where individual cancer cells evolve with cumulative phenotypic and genetic heterogeneity. Moreover, contributing to this heterogeneity, it has been demonstrated that breast cancers can exhibit a hierarchical organization composed of tumour cells displaying divergent lineage biomarkers and where, at the apex of this hierarchy, some neoplastic cells are able to self-renew and to aberrantly differentiate. Breast cancer stem cells (BCSCs), as they were entitled, not only drive tumourigenesis, but also mediate metastasis and contribute to therapy resistance.Recently, adding more complexity to the system, it has been demonstrated that BCSCs maintain high levels of plasticity, being able to change between mesenchymal-like and epithelial-like states in a process regulated by the tumour microenvironment. These stem cell state transitions play a fundamental role in the process of tumour metastasis, as well as in the resistance to putative therapeutic strategies to target these cells. In this chapter, it will be mainly discussed the emerging knowledge regarding the contribution of BCSCs to tumour heterogeneity, their plasticity, and the role that this plasticity can play in the establishment of distant metastasis. A major focus will also be given to potential clinical implications of these discoveries in breast cancer recurrence and to possible BCSC targeted therapeutics by the use of specific biomarkers.
Collapse
Affiliation(s)
- Bárbara Sousa
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal
| | - Ana Sofia Ribeiro
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal
| | - Joana Paredes
- Institute of Pathology and Molecular Immunology of the University of Porto (Ipatimup), Porto, Portugal. .,Institute of Investigation and Innovation in Health (i3S), Porto, Portugal. .,Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|
15
|
Hong D, Fritz AJ, Zaidi SK, van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Epithelial-to-mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. J Cell Physiol 2018; 233:9136-9144. [PMID: 29968906 DOI: 10.1002/jcp.26847] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cancer in women, and accounts for ~30% of new cancer cases and 15% of cancer-related deaths. Tumor relapse and metastasis are primary factors contributing to breast cancer-related deaths. Therefore, the challenge for breast cancer treatment is to sustain remission. A driving force behind tumor relapse is breast cancer heterogeneity (both intertumor, between different patients, and intratumor, within the same tumor). Understanding breast cancer heterogeneity is necessary to develop preventive interventions and targeted therapies. A recently emerging concept is that intratumor heterogeneity is driven by cancer stem cells (CSCs) that are capable of giving rise to a multitude of different cells within a tumor. Studies have highlighted linkage of CSC formation with epithelial-to-mesenchymal transition (EMT). In this review, we summarize the current understanding of breast cancer heterogeneity, links between EMT and CSCs, regulation of EMT by Runx transcription factors, and potential therapeutic strategies targeting these processes.
Collapse
Affiliation(s)
- Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | | - Anthony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
16
|
Loubat-Casanovas J, Peña R, Gonzàlez N, Alba-Castellón L, Rosell S, Francí C, Navarro P, García de Herreros A. Snail1 is required for the maintenance of the pancreatic acinar phenotype. Oncotarget 2016; 7:4468-82. [PMID: 26735179 PMCID: PMC4826219 DOI: 10.18632/oncotarget.6785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
Abstract
The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions.
Collapse
Affiliation(s)
- Jordina Loubat-Casanovas
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Núria Gonzàlez
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.,Servei d'Oncologia Mèdica, Hospital del Mar, 08003 Barcelona, Spain
| | - Lorena Alba-Castellón
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Santi Rosell
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.,Escola Superior Infermeria del Mar, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Clara Francí
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Pilar Navarro
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
17
|
Qu B, Qiu Y, Zhen Z, Zhao F, Wang C, Cui Y, Li Q, Zhang L. Computational identification and characterization of novel microRNA in the mammary gland of dairy goat (Capra hircus). J Genet 2016; 95:625-37. [PMID: 27659334 DOI: 10.1007/s12041-016-0674-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many studies have indicated that microRNAs (miRNAs) influence the development of the mammary gland by posttranscriptionally affecting their target genes. The objective of this research was to identify novel miRNAs in the mammary gland of dairy goats with a bioinformatics approach that was based on expressed sequence tag (EST) and genome survey sequence (GSS) analyses. We applied all known major mammals, miRNAs to search against the goat EST and GSS databases for the first time to identify new miRNAs. We, then, validated these newly predicted miRNAs with stem-loop reverse transcription followed by a SYBR Green polymerase chain reaction assay. Finally, 29 mature miRNAs were identified and verified, and of these, 14 were grouped into 13 families based on seed sequence identity and 85 potential target genes of newly verified miRNAs were subsequently predicted, most of which seemed to encode the proteins participating in regulation of metabolism, signal transduction, growth and development. The predicting accuracy of the new miRNAs was 70.37%, which confirmed that the methods used in this study were efficient and reliable. Detailed analyses of the sequence characteristics of the novel miRNAs of the goat mammary gland were performed. In conclusion, these results provide a reference for further identification of miRNAs in animals without a complete genome and thus improve the understanding of miRNAs in the caprine mammary gland.
Collapse
Affiliation(s)
- Bo Qu
- Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zage PE, Whittle SB, Shohet JM. CD114: A New Member of the Neural Crest-Derived Cancer Stem Cell Marker Family. J Cell Biochem 2016; 118:221-231. [PMID: 27428599 DOI: 10.1002/jcb.25656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
The neural crest is a population of cells in the vertebrate embryo that gives rise to a wide range of tissues and cell types, including components of the peripheral nervous system and the craniofacial skeleton as well as melanocytes and the adrenal medulla. Aberrations in neural crest development can lead to numerous diseases, including cancers such as melanoma and neuroblastoma. Cancer stem cells (CSCs) have been identified in these neural crest-derived tumors, and these CSCs demonstrate resistance to treatment and are likely key contributors to disease relapse. Patients with neural crest-derived tumors often have poor outcomes due to frequent relapses, likely due to the continued presence of residual treatment-resistant CSCs, and therapies directed against these CSCs are likely to improve patient outcomes. CSCs share many of the same genetic and biologic features of primordial neural crest cells, and therefore a better understanding of neural crest development will likely lead to the development of effective therapies directed against these CSCs. Signaling through STAT3 has been shown to be required for neural crest development, and granulocyte colony stimulating factor (GCSF)-mediated activation of STAT3 has been shown to play a role in the pathogenesis of neural crest-derived tumors. Expression of the cell surface marker CD114 (the receptor for GCSF) has been identified as a potential marker for CSCs in neural crest-derived tumors, suggesting that CD114 expression and function may contribute to disease relapse and poor patient outcomes. Here we review the processes of neural crest development and tumorigenesis and we discuss the previously identified markers for CSC subpopulations identified in neural crest tumors and their role in neural crest tumor biology. We also discuss the potential for CD114 and downstream intracellular signaling pathways as potential targets for CSC-directed therapy. J. Cell. Biochem. 118: 221-231, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter E Zage
- Division of Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, California
| | - Sarah B Whittle
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
19
|
Shirai K, Hagiwara N, Horigome T, Hirose Y, Kadono N, Hirai Y. Extracellularly Extruded Syntaxin-4 Binds to Laminin and Syndecan-1 to Regulate Mammary Epithelial Morphogenesis. J Cell Biochem 2016; 118:686-698. [PMID: 27463539 DOI: 10.1002/jcb.25661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
Abstract
Epithelial morphogenesis in the mammary gland proceeds as a consequence of complex cell behaviors including apoptotic cell death and epithelial-mesenchymal transition (EMT); the extracellular matrix (ECM) protein laminin is crucially involved. Syntaxins mediate intracellular vesicular fusion, yet certain plasmalemmal members have been shown to possess latent extracellular functions. In this study, the extracellular subpopulation of syntaxin-4, extruded in response to the induction of differentiation or apoptosis in mammary epithelial cells, was detected. Using a tetracycline-repressive transcriptional system and clonal mammary epithelial cells, SCp2, we found that the expression of cell surface syntaxin-4 elicits EMT-like cell behaviors. Intriguingly, these cells did not up-regulate key transcription factors associated with the canonical EMT such as snail, slug, or twist, and repressed translation of E-cadherin. Concurrently, the cells completely evaded the cellular aggregation/rounding triggered by a potent EMT blocker laminin-111. We found that the recombinant form of syntaxin-4 not only bound to laminin but also latched onto the glycosaminoglycan (GAG) side chains of syndecan-1, a laminin receptor that mediates epithelial morphogenesis. Thus, temporal extracellular extrusion of syntaxin-4 emerged as a novel regulatory element for laminin-induced mammary epithelial cell behaviors. J. Cell. Biochem. 118: 686-698, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kota Shirai
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Natsumi Hagiwara
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Tomoatsu Horigome
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Yuina Hirose
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Nanako Kadono
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| |
Collapse
|
20
|
Chen X, Liu Y, Wu J, Huang H, Du Z, Zhang K, Zhou D, Hung K, Goodin S, Zheng X. Mechanistic Study of Inhibitory Effects of Atorvastatin and Docetaxel in Combination on Prostate Cancer. Cancer Genomics Proteomics 2016; 13:151-160. [PMID: 26912805 PMCID: PMC5203772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
AIM To investigate the effects and mechanisms of docetaxel and atorvastatin administered individually or in combination on prostate cancer cells. MATERIALS AND METHODS Cell growth and apoptosis were determined by the trypan blue exclusion assay and morphological assessment of cells was performed with propidium iodide. NF-κB activity was determined by luciferase reporter gene assay and the western blot assay was used to determine the levels of Bcl-2, phospho-Akt, VEGF, and phospho-Erk1/2. RESULTS Results showed that following pre-treatment with cholesterol, resistance of PC-3 prostate cancer cells to docetaxel was increased. The combination of docetaxel with atorvastatin potently inhibited growth and induced apoptosis in PC-3 cells. Mechanistic studies indicated that induction of apoptosis in PC-3 cells was associated with significant decreases in the levels of Bcl-2, VEGF, phosphor-Akt, and phosphor-Erk1/2. CONCLUSION Treatment with cholesterol decreased the sensitivity of prostate cancer cells to docetaxel. Docetaxel in combination with cholesterol-lowering drugs such as atorvastatin may be an effective strategy for inhibiting the growth of prostate cancer.
Collapse
Affiliation(s)
- Xuan Chen
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Guangdong University of Technology, Guangzhou, P.R. China Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Yue Liu
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Jian Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Huarong Huang
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Guangdong University of Technology, Guangzhou, P.R. China
| | - Zhiyun Du
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Guangdong University of Technology, Guangzhou, P.R. China
| | - Kun Zhang
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Guangdong University of Technology, Guangzhou, P.R. China
| | - Daiying Zhou
- Guangdong Food and Drug Vocational College, Guangzhou, P.R. China
| | - Kaylyn Hung
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, U.S.A
| | - Xi Zheng
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Guangdong University of Technology, Guangzhou, P.R. China Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.
| |
Collapse
|
21
|
Voutsadakis IA. Epithelial-Mesenchymal Transition (EMT) and Regulation of EMT Factors by Steroid Nuclear Receptors in Breast Cancer: A Review and in Silico Investigation. J Clin Med 2016; 5:E11. [PMID: 26797644 PMCID: PMC4730136 DOI: 10.3390/jcm5010011] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Steroid Nuclear Receptors (SNRs) are transcription factors of the nuclear receptor super-family. Estrogen Receptor (ERα) is the best-studied and has a seminal role in the clinic both as a prognostic marker but also as a predictor of response to anti-estrogenic therapies. Progesterone Receptor (PR) is also used in the clinic but with a more debatable prognostic role and the role of the four other SNRs, ERβ, Androgen Receptor (AR), Glucocorticoid Receptor (GR) and Mineralocorticoid Receptor (MR), is starting only to be appreciated. ERα, but also to a certain degree the other SNRs, have been reported to be involved in virtually every cancer-enabling process, both promoting and impeding carcinogenesis. Epithelial-Mesenchymal Transition (EMT) and the reverse Mesenchymal Epithelial Transition (MET) are such carcinogenesis-enabling processes with important roles in invasion and metastasis initiation but also establishment of tumor in the metastatic site. EMT is governed by several signal transduction pathways culminating in core transcription factors of the process, such as Snail, Slug, ZEB1 and ZEB2, and Twist, among others. This paper will discuss direct regulation of these core transcription factors by SNRs in breast cancer. Interrogation of publicly available databases for binding sites of SNRs on promoters of core EMT factors will also be included in an attempt to fill gaps where other experimental data are not available.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste Marie, ON P6B 0A8, Canada.
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, QC P3E 2C6, Canada.
| |
Collapse
|
22
|
Ranganathan S, Halagowder D, Sivasithambaram ND. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells. PLoS One 2015; 10:e0141370. [PMID: 26491966 PMCID: PMC4619597 DOI: 10.1371/journal.pone.0141370] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022] Open
Abstract
Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231), which differed in hormone receptor. IC50 value (37μM) of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM) of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.
Collapse
|
23
|
Voutsadakis IA. The network of pluripotency, epithelial-mesenchymal transition, and prognosis of breast cancer. BREAST CANCER-TARGETS AND THERAPY 2015; 7:303-19. [PMID: 26379447 PMCID: PMC4567227 DOI: 10.2147/bctt.s71163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breast cancer is the leading female cancer in terms of prevalence. Progress in molecular biology has brought forward a better understanding of its pathogenesis that has led to better prognostication and treatment. Subtypes of breast cancer have been identified at the genomic level and guide therapeutic decisions based on their biology and the expected benefit from various interventions. Despite this progress, a significant percentage of patients die from their disease and further improvements are needed. The cancer stem cell theory and the epithelial-mesenchymal transition are two comparatively novel concepts that have been introduced in the area of cancer research and are actively investigated. Both processes have their physiologic roots in normal development and common mediators have begun to surface. This review discusses the associations of these networks as a prognostic framework in breast cancer.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste Marie, ON, Canada ; Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
24
|
Guo W, Zhang S, Chen Y, Zhang D, Yuan L, Cong H, Liu S. An important role of the hepcidin-ferroportin signaling in affecting tumor growth and metastasis. Acta Biochim Biophys Sin (Shanghai) 2015. [PMID: 26201356 DOI: 10.1093/abbs/gmv063] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epidemiological and experimental studies have suggested that deregulated hepcidin-ferroportin (FPN) signaling is associated with the increased risk of cancers. However, the effects of deregulated hepcidin-FPN signaling on tumor behaviors such as metastasis and epithelial to mesenchymal transition (EMT) have not been closely investigated. In this study, LL/2 cancer cells were found to exhibit an impaired propensity to home into lungs, and a reduced ability to develop tumors was also demonstrated in lungs of Hamp1(-/-) mice. Moreover, hepatic hepcidin deficiency was found to considerably favor tumor-free survival in Hamp1(-/-) mice, compared with wild-type mice. These data thus underscored a contributive role of hepatic hepcidin in promoting lung cancer cell homing and fostering tumor progression. To explore the role of FPN in regulating tumor progression, we genetically engineered 4T1 cells with FPN over-expression upon induction by doxycycline. With this cell line, it was discovered that increased FPN expression reduced cell division and colony formation in vitro, without eliciting significant cell death. Analogously, FPN over-expression impeded tumor growth and metastasis to lung and liver in mice. At the molecular level, FPN over-expression was identified to undermine DNA synthesis and cell cycle progression. Importantly, FPN over-expression inhibited EMT, as reflected by the significant decrease of representative EMT markers, such as Snail1, Twist1, ZEB2, and vimentin. Additionally, there was also a reduction of lactate production in cells upon induction of FPN over-expression. Together, our results highlighted a crucial role of the hepcidin-FPN signaling in modulating tumor growth and metastasis, providing new evidence to understand the contribution of this signaling in cancers.
Collapse
Affiliation(s)
- Wenli Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuping Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Daoqiang Zhang
- Weifang Medical College, Wendeng Central Hospital, Weihai 264400, China
| | - Lin Yuan
- Weifang Medical College, Wendeng Central Hospital, Weihai 264400, China
| | - Haibo Cong
- Weifang Medical College, Wendeng Central Hospital, Weihai 264400, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
25
|
Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci 2015; 72:3305-22. [PMID: 25990538 PMCID: PMC11113558 DOI: 10.1007/s00018-015-1929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.
Collapse
Affiliation(s)
- Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Sofia Giacosa
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Yann Wallez
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
26
|
Kuchnio A, Moens S, Bruning U, Kuchnio K, Cruys B, Thienpont B, Broux M, Ungureanu AA, Leite de Oliveira R, Bruyère F, Cuervo H, Manderveld A, Carton A, Hernandez-Fernaud JR, Zanivan S, Bartic C, Foidart JM, Noel A, Vinckier S, Lambrechts D, Dewerchin M, Mazzone M, Carmeliet P. The Cancer Cell Oxygen Sensor PHD2 Promotes Metastasis via Activation of Cancer-Associated Fibroblasts. Cell Rep 2015; 12:992-1005. [PMID: 26235614 DOI: 10.1016/j.celrep.2015.07.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/23/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Several questions about the role of the oxygen sensor prolyl-hydroxylase 2 (PHD2) in cancer have not been addressed. First, the role of PHD2 in metastasis has not been studied in a spontaneous tumor model. Here, we show that global PHD2 haplodeficiency reduced metastasis without affecting tumor growth. Second, it is unknown whether PHD2 regulates cancer by affecting cancer-associated fibroblasts (CAFs). We show that PHD2 haplodeficiency reduced metastasis via two mechanisms: (1) by decreasing CAF activation, matrix production, and contraction by CAFs, an effect that surprisingly relied on PHD2 deletion in cancer cells, but not in CAFs; and (2) by improving tumor vessel normalization. Third, the effect of concomitant PHD2 inhibition in malignant and stromal cells (mimicking PHD2 inhibitor treatment) is unknown. We show that global PHD2 haplodeficiency, induced not only before but also after tumor onset, impaired metastasis. These findings warrant investigation of PHD2's therapeutic potential.
Collapse
Affiliation(s)
- Anna Kuchnio
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Stijn Moens
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Ulrike Bruning
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Karol Kuchnio
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Bert Cruys
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Michaël Broux
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Andreea Alexandra Ungureanu
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium
| | - Rodrigo Leite de Oliveira
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Françoise Bruyère
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Henar Cuervo
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Ann Manderveld
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - An Carton
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Juan Ramon Hernandez-Fernaud
- Laboratory of Vascular Proteomics, Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sara Zanivan
- Laboratory of Vascular Proteomics, Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee, Belgium; IMEC, Kapeldreef 75, 3001 Heverlee, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Avenue de l'Hôpital 3, 4000 Liège, Belgium
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Avenue de l'Hôpital 3, 4000 Liège, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Stimulus-dependent differences in signalling regulate epithelial-mesenchymal plasticity and change the effects of drugs in breast cancer cell lines. Cell Commun Signal 2015; 13:26. [PMID: 25975820 PMCID: PMC4432969 DOI: 10.1186/s12964-015-0106-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction The normal process of epithelial mesenchymal transition (EMT) is subverted by carcinoma cells to facilitate metastatic spread. Cancer cells rarely undergo a full conversion to the mesenchymal phenotype, and instead adopt positions along the epithelial-mesenchymal axis, a propensity we refer to as epithelial mesenchymal plasticity (EMP). EMP is associated with increased risk of metastasis in breast cancer and consequent poor prognosis. Drivers towards the mesenchymal state in malignant cells include growth factor stimulation or exposure to hypoxic conditions. Methods We have examined EMP in two cell line models of breast cancer: the PMC42 system (PMC42-ET and PMC42-LA sublines) and MDA-MB-468 cells. Transition to a mesenchymal phenotype was induced across all three cell lines using epidermal growth factor (EGF) stimulation, and in MDA-MB-468 cells by hypoxia. We used RNA sequencing to identify gene expression changes that occur as cells transition to a more-mesenchymal phenotype, and identified the cell signalling pathways regulated across these experimental systems. We then used inhibitors to modulate signalling through these pathways, verifying the conclusions of our transcriptomic analysis. Results We found that EGF and hypoxia both drive MDA-MB-468 cells to phenotypically similar mesenchymal states. Comparing the transcriptional response to EGF and hypoxia, we have identified differences in the cellular signalling pathways that mediate, and are influenced by, EMT. Significant differences were observed for a number of important cellular signalling components previously implicated in EMT, such as HBEGF and VEGFA. We have shown that EGF- and hypoxia-induced transitions respond differently to treatment with chemical inhibitors (presented individually and in combinations) in these breast cancer cells. Unexpectedly, MDA-MB-468 cells grown under hypoxic growth conditions became even more mesenchymal following exposure to certain kinase inhibitors that prevent growth-factor induced EMT, including the mTOR inhibitor everolimus and the AKT1/2/3 inhibitor AZD5363. Conclusions While resulting in a common phenotype, EGF and hypoxia induced subtly different signalling systems in breast cancer cells. Our findings have important implications for the use of kinase inhibitor-based therapeutic interventions in breast cancers, where these heterogeneous signalling landscapes will influence the therapeutic response. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0106-x) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
GUO WENLI, ZHANG SHUPING, LIU SIJIN. Establishment of a novel orthotopic model of breast cancer metastasis to the lung. Oncol Rep 2015; 33:2992-8. [DOI: 10.3892/or.2015.3927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/23/2015] [Indexed: 11/05/2022] Open
|
29
|
Katz Y, Li F, Lambert NJ, Sokol ES, Tam WL, Cheng AW, Airoldi EM, Lengner CJ, Gupta PB, Yu Z, Jaenisch R, Burge CB. Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state. eLife 2014; 3:e03915. [PMID: 25380226 PMCID: PMC4381951 DOI: 10.7554/elife.03915] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022] Open
Abstract
The conserved Musashi (Msi) family of RNA binding proteins are expressed in stem/progenitor and cancer cells, but generally absent from differentiated cells, consistent with a role in cell state regulation. We found that Msi genes are rarely mutated but frequently overexpressed in human cancers and are associated with an epithelial-luminal cell state. Using ribosome profiling and RNA-seq analysis, we found that Msi proteins regulate translation of genes implicated in epithelial cell biology and epithelial-to-mesenchymal transition (EMT), and promote an epithelial splicing pattern. Overexpression of Msi proteins inhibited the translation of Jagged1, a factor required for EMT, and repressed EMT in cell culture and in mammary gland in vivo. Knockdown of Msis in epithelial cancer cells promoted loss of epithelial identity. Our results show that mammalian Msi proteins contribute to an epithelial gene expression program in neural and mammary cell types.
Collapse
Affiliation(s)
- Yarden Katz
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Feifei Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Nicole J Lambert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Ethan S Sokol
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Wai-Leong Tam
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Albert W Cheng
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Edoardo M Airoldi
- Department of Statistics, Harvard University, Cambridge, United States
| | - Christopher J Lengner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
30
|
He L, Lou W, Ji L, Liang W, Zhou M, Xu G, Zhao L, Huang C, Li R, Wang H, Chen X, Sun S. Serum response factor accelerates the high glucose-induced Epithelial-to-Mesenchymal Transition (EMT) via snail signaling in human peritoneal mesothelial cells. PLoS One 2014; 9:e108593. [PMID: 25303231 PMCID: PMC4193747 DOI: 10.1371/journal.pone.0108593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 09/01/2014] [Indexed: 01/06/2023] Open
Abstract
Background Epithelial-to-Mesenchymal Transition (EMT) induced by glucose in human peritoneal mesothelial cells (HPMCs) is a major cause of peritoneal membrane (PM) fibrosis and dysfunction. Methods To investigate serum response factor (SRF) impacts on EMT-derived fibrosis in PM, we isolated HPMCs from the effluents of patients with end-stage renal disease (ESRD) to analyze alterations during peritoneal dialysis (PD) and observe the response of PM to SRF in a rat model. Results Our results demonstrated the activation and translocation of SRF into the nuclei of HPMCs under extensive periods of PD. Accordingly, HPMCs lost their epithelial morphology with a decrease in E-cadherin expression and an increase in α-smooth muscle actin (α-SMA) expression, implying a transition in phenotype. PD with 4.25% glucose solution significantly induced SRF up-regulation and increased peritoneal thickness. In immortal HPMCs, high glucose (HG, 60 mmol/L) stimulated SRF overexpression in transformed fibroblastic HPMCs. SRF-siRNA preserved HPMC morphology, while transfection of SRF plasmid into HPMCs caused the opposite effects. Evidence from electrophoretic mobility shift, chromatin immunoprecipitation and reporter assays further supported that SRF transcriptionally regulated Snail, a potent inducer of EMT, by directly binding to its promoter. Conclusions Our data suggested that activation of SRF/Snail pathway might contribute to the progressive PM fibrosis during PD.
Collapse
Affiliation(s)
- Lijie He
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Weijuan Lou
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Lihua Ji
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- Department of Nephrology, Xingyuan Hospital, the Fourth Hospital of Yulin, Yulin, Shaan xi, China
| | - Wei Liang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- Department of Nephrology, the Ninth Hospital of Xi'an, Xi'an, Shaan xi, China
| | - Meilan Zhou
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Guoshang Xu
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Lijuan Zhao
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Rong Li
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Hanmin Wang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Xiangmei Chen
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital and Medical College, Beijing, China
- * E-mail: (SRS); (XMC)
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- * E-mail: (SRS); (XMC)
| |
Collapse
|
31
|
Rosso M, Lapyckyj L, Amiano N, Besso MJ, Sánchez M, Chuluyan E, Vazquez-Levin MH. Secretory Leukocyte Protease Inhibitor (SLPI) expression downregulates E-cadherin, induces β-catenin re-localisation and triggers apoptosis-related events in breast cancer cells. Biol Cell 2014; 106:308-22. [PMID: 25039920 DOI: 10.1111/boc.201300075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 07/01/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND INFORMATION Epithelial cadherin (E-cadherin) is involved in cell-cell adhesion through its extracellular domain, whereas the intracellular domain interacts with adaptor proteins, i.e. β-catenin, links E-cadherin to the actin cytoskeleton and participates in signal transduction events. E-cadherin protects mammary epithelial cells from apoptosis and its loss during tumour progression has been documented. Secretory Leukocyte Protease Inhibitor (SLPI) has anti- and pro-tumourigenic activities but its role in breast cancer has not been fully elucidated. Notwithstanding its relevance, how SLPI affects E-cadherin in breast cancer is still unknown. This study evaluated the effect of SLPI upon E-cadherin/β-catenin expression and apoptosis-related markers in murine (F3II) and human (MCF-7) breast tumour cells either treated with exogenous recombinant human SLPI (rhSLPI) or stably transfected with a plasmid encoding its sequence. RESULTS Addition of rhSLPI to F3II cells caused a decrease (P < 0.05) in E-cadherin transcript and protein levels. Similar results were observed in SLPI-stable F3II transfectants (2C1), and treatment of 2C1 cells with a siRNA toward SLPI restored E-cadherin to control levels. SLPI-expressing cells showed disruption of E-cadherin/β-catenin complex and increased (P < 0.05) percentage of cells depicting nuclear β-catenin localisation. Associated to these changes, 2C1 cells showed increased Bax/Bcl-2 ratio and p21 protein levels, decreased c-Myc protein levels and decreased Cyclin D1 and Claudin-1 transcript levels. No differences in N- and P-cadherin were observed between SLPI-transfected cells and controls. Addition of rhSLPI to MCF-7 cells or stable transfection with SLPI caused a decrease (P < 0.05) in E-cadherin expression (transcript/protein) and its redistribution to the cytoplasm, as well as β-catenin re-localisation to the cell nucleus. CONCLUSIONS Expression of SLPI was associated to a decrease in E-cadherin expression and re-localisation of E-cadherin to the cell cytoplasm and β-catenin to the cell cytoplasm and nucleus, and had pro-apoptotic and cell cycle-arrest effects.
Collapse
Affiliation(s)
- Marina Rosso
- Instituto de Biología & Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | | | | | | | | | | | | |
Collapse
|
32
|
Wendt MK, Balanis N, Carlin CR, Schiemann WP. STAT3 and epithelial-mesenchymal transitions in carcinomas. JAKSTAT 2014; 3:e28975. [PMID: 24843831 PMCID: PMC4024059 DOI: 10.4161/jkst.28975] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
Cellular programs coupled to cycles of epithelial–mesenchymal transitions (EMTs) play critical roles during embryogenesis, as well as during tissue development, remodeling, and repair. Research over the last decade has established the importance of an ever-expanding list of master EMT transcription factors, whose activity is regulated by STAT3 and function to stimulate the rapid transition of cells between epithelial and mesenchymal phenotypes. Importantly, inappropriate reactivation of embryonic EMT programs in carcinoma cells underlies their metastasis to distant organ sites, as well as their acquisition of stem cell-like and chemoresistant phenotypes operant in eliciting disease recurrence. Thus, targeted inactivation of master EMT transcription factors may offer new inroads to alleviate metastatic disease. Here we review the molecular, cellular, and microenvironmental factors that contribute to the pathophysiological activities of STAT3 during its regulation of EMT programs in human carcinomas.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology; Purdue University; West Lafayette, IN USA
| | - Nikolas Balanis
- Department of Physiology and Biophysics; Case Western Reserve University; Cleveland, OH USA
| | - Cathleen R Carlin
- Department of Molecular Biology and Microbiology; Case Western Reserve University; Cleveland, OH USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University; Cleveland, OH USA
| |
Collapse
|
33
|
Grudzien-Nogalska E, Reed BC, Rhoads RE. CPEB1 promotes differentiation and suppresses EMT in mammary epithelial cells. J Cell Sci 2014; 127:2326-38. [PMID: 24634508 DOI: 10.1242/jcs.144956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Downregulation of CPEB1, a sequence-specific RNA-binding protein, in a mouse mammary epithelial cell line (CID-9) causes epithelial-to-mesenchymal transition (EMT), based on several criteria. First, CPEB1 knockdown decreases protein levels of E-cadherin and β-catenin but increases those of vimentin and Twist1. Second, the motility of CPEB1-depleted cells is increased. Third, CID-9 cells normally form growth-arrested, polarized and three-dimensional acini upon culture in extracellular matrix, but CPEB1-deficient CID-9 cells form nonpolarized proliferating colonies lacking a central cavity. CPEB1 downregulates Twist1 expression by binding to its mRNA, shortening its poly(A) tract and repressing its translation. CID-9 cultures contain both myoepithelial and luminal epithelial cells. CPEB1 increases during CID-9 cell differentiation, is predominantly expressed in myoepithelial cells, and its knockdown prevents expression of the myoepithelial marker p63. CPEB1 is present in proliferating subpopulations of pure luminal epithelial cells (SCp2) and myoepithelial cells (SCg6), but its depletion increases Twist1 only in SCg6 cells and fails to downregulate E-cadherin in SCp2 cells. We propose that myoepithelial cells prevent EMT by influencing the polarity and proliferation of luminal epithelial cells in a mechanism that requires translational silencing of myoepithelial Twist1 by CPEB1.
Collapse
Affiliation(s)
- Ewa Grudzien-Nogalska
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Brent C Reed
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
34
|
SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol Cancer 2014; 13:37. [PMID: 24565133 PMCID: PMC3937432 DOI: 10.1186/1476-4598-13-37] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/21/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A better molecular understanding of prostate carcinogenesis is warranted to devise novel targeted preventive and therapeutic strategies against prostate cancer (PCA), a major cause of mortality among men. Here, we examined the role of two epithelial-to-mesenchymal transition (EMT) regulators, the adherens junction protein E-cadherin and its transcriptional repressor SNAI1, in regulating the aggressiveness of PCA cells. METHODS The growth rate of human prostate carcinoma PC3 cells with stable knock-down of E-cadherin (ShEC-PC3) and respective control cells (Sh-PC3) was compared in MTT and clonogenic assays in cell culture and in nude mouse xenograft model in vivo. Stemness of ShEC-PC3 and Sh-PC3 cells was analyzed in prostasphere assay. Western blotting and immunohistochemistry (IHC) were used to study protein expression changes following E-cadherin and SNAI1 knock-down. Small interfering RNA (siRNA) technique was employed to knock- down SNAI1 protein expression in ShEC-PC3 cells. RESULTS ShEC-PC3 cells exerted higher proliferation rate both in cell culture and in athymic nude mice compared to Sh-PC3 cells. ShEC-PC3 cells also formed larger and a significantly higher number of prostaspheres suggesting an increase in the stem cell-like population with E-cadherin knock-down. Also, ShEC-PC3 prostaspheres disintegration, in the presence of serum and attachment, generated a bigger mass of proliferating cells as compared to Sh-PC3 prostaspheres. Immunoblotting/IHC analyses showed that E-cadherin knock-down increases the expression of regulators/biomarkers for stemness (CD44, cleaved Notch1 and Egr-1) and EMT (Vimentin, pSrc-tyr416, Integrin β3, β-catenin, and NF-κB) in cell culture and xenograft tissues. The expression of several bone metastasis related molecules namely CXCR4, uPA, RANKL and RunX2 was also increased in ShEC-PC3 cells. Importantly, we observed a remarkable increase in SNAI1 expression in cytoplasmic and nuclear fractions, prostaspheres and xenograft tissues of ShEC-PC3 cells. Furthermore, SNAI1 knock-down by specific siRNA strongly inhibited the prostasphere formation, clonogenicity and invasiveness, and decreased the level of pSrc-tyr416, total Src and CD44 in ShEC-PC3 cells. Characterization of RWPE-1, WPE1-NA22, WPE1-NB14 and DU-145 cells further confirmed that low E-cadherin is associated with higher SNAI1 expression and prostasphere formation. CONCLUSIONS Together, these results suggest that E-cadherin loss promotes SNAI1 expression that controls the aggressiveness of PCA cells.
Collapse
|
35
|
Lv Q, Hua F, Hu ZW. Use of the tumor repressor DEDD as a prognostic marker of cancer metastasis. Methods Mol Biol 2014; 1165:197-222. [PMID: 24839027 DOI: 10.1007/978-1-4939-0856-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
DEDD, a member of a family of death effector domain-containing proteins, plays crucial roles in mediating apoptosis, regulating cell cycle, and inhibiting cell mitosis. Our recent work demonstrates that DEDD is a novel tumor repressor, which impedes metastasis by reversing the epithelial-mesenchymal transition (EMT) process in breast and colon cancers. DEDD expression therefore may represent a prognostic marker and potential therapeutic target for the prevention and treatment of cancer metastasis. To reveal the anti-metastatic roles of DEDD in these cancer cells, a number of experiments, including immunohistochemistry, the establishment of stably overexpressing or silencing cancer cells, chemoinvasion assay, soft agar assay, protein degradation, and protein-protein interaction were used in our in vitro and in vivo studies. This chapter focuses on the details of these experiments to provide references for the researchers to investigate the function of a gene in the regulation of tumor metastasis.
Collapse
Affiliation(s)
- Qi Lv
- Molecular Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | | | | |
Collapse
|
36
|
Lu Y, Yu L, Yang M, Jin X, Liu Z, Zhang X, Wang L, Lin D, Liu Y, Wang M, Quan C. The effects of shRNA-mediated gene silencing of transcription factor SNAI1 on the biological phenotypes of breast cancer cell line MCF-7. Mol Cell Biochem 2013; 388:113-21. [PMID: 24293287 DOI: 10.1007/s11010-013-1903-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/15/2013] [Indexed: 12/11/2022]
Abstract
To research the effects of silencing transcription factor SNAI1 on the in vitro biological phenotypes of breast cancer cell line MCF-7, based on the gene sequence of SNAI1, we linked shRNA with the green fluorescent protein-expressing eukaryotic expression vector pGCsilencer™ U6/Neo/GFP, and transfected it into MCF-7 cells. The SNAI1 gene-silencing effect was authenticated by RT-PCR and immunofluorescence. We then examined the effect of gene silencing on the expression of epithelial and mesenchymal markers and on their biological phenotypes of the target cells. Finally, we explained that SNAI1 was bound to E-cadherin in MCF-7 cells by ChIP. Silencing SNAI1 upregulated the expression of epithelial markers claudin-4, claudin-7, and E-cadherin, while expression of the mesenchymal marker matrix metalloproteinase-2 was downregulated. The capacity for proliferation, migration, and invasion was diminished. SNAI1 binds to the E-cadherin gene promoter and inhibits its transcription. We can conclude that silencing gene SNAI1 inhibits expression of properties that are associated with the malignant phenotype of MCF-7 cells and reverses the epithelial-mesenchymal transition process by regulating relevant target gene E-cadherin.
Collapse
Affiliation(s)
- Yan Lu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, 130021, Changchun, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Miller RK, Hong JY, Muñoz WA, McCrea PD. Beta-catenin versus the other armadillo catenins: assessing our current view of canonical Wnt signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:387-407. [PMID: 23481204 DOI: 10.1016/b978-0-12-394311-8.00017-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevailing view of canonical Wnt signaling emphasizes the role of beta-catenin acting downstream of Wnt activation to regulate transcriptional activity. However, emerging evidence indicates that other armadillo catenins in vertebrates, such as members of the p120 subfamily, convey parallel signals to the nucleus downstream of canonical Wnt pathway activation. Their study is thus needed to appreciate the networked mechanisms of canonical Wnt pathway transduction, especially as they may assist in generating the diversity of Wnt effects observed in development and disease. In this chapter, we outline evidence of direct canonical Wnt effects on p120 subfamily members in vertebrates and speculate upon these catenins' roles in conjunction with or aside from beta-catenin.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
38
|
Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves. PLoS One 2013; 8:e77611. [PMID: 24204893 PMCID: PMC3812218 DOI: 10.1371/journal.pone.0077611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/11/2013] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3−/− mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3−/− compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3−/− mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1+ cells in the AV cushion were decreased in NOS3−/− compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3−/− compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.
Collapse
|
39
|
Zhang M, Peng L, Qiao ZB, He HT, Zhou Y, Xu Z. Inhibition of the PI3K/Akt signaling pathway inhibits cell proliferation and induces apoptosis in hepatocellular carcinoma cell line HepG2. Shijie Huaren Xiaohua Zazhi 2013; 21:2250-2257. [DOI: 10.11569/wcjd.v21.i23.2250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of the PI3K/Akt signaling pathway inhibitor wortmannin on cell proliferation, apoptosis and expression of pAkt, Skp2 and P27kip1 in human hepatocellular carcinoma cell line HepG2.
METHODS: After treatment with different concentrations of wortmannin (0, 10, 50, 100, 200 nmol/L) for different durations (3, 10, 24 h), proliferation of HepG2 cells was analyzed by MTT assay, cell cycle and apoptosis were detected by flow cytometry, expression of pAkt, Skp2 and P27kip1 proteins was detected by Western blot, and the mRNA expression of Skp2 and P27kip1 was detected by reverse transcription-polymerase chain reaction.
RESULTS: Wortmannin inhibited the proliferation of HepG2 cells in a dose- and time-dependent manner. The apoptosis rates of HepG2 cells significantly increased from 8.46% ± 1.17% to 28.03% ± 2.67% after treatment with wortmannin (P < 0.05). Wortmannin induced an increase in the percentage of cells in G0/G1 phase and a decrease in the percentage of cells in S phase cells (both P < 0.05). After treatment with wortmannin, the expression of pAkt and Skp2 proteins was down-regulated, while that of P27kip1 protein was up-regulated (all P < 0.05). In addition, Skp2 mRNA expression in HepG2 cells was significantly down-regulated (P < 0.05), although the expression of P27kip1 mRNA was not changed.
CONCLUSION: Wortmannin inhibits cell proliferation and induces apoptosis in human hepatocellular carcinoma cell line HepG2 possibly by regulating the expression of Skp2 and P27kip1.
Collapse
|
40
|
Zhao M, Hu HG, Huang J, Zou Q, Wang J, Liu MQ, Zhao Y, Li GZ, Xue S, Wu ZS. Expression and correlation of Twist and gelatinases in breast cancer. Exp Ther Med 2013; 6:97-100. [PMID: 23935727 PMCID: PMC3735531 DOI: 10.3892/etm.2013.1099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/17/2013] [Indexed: 01/10/2023] Open
Abstract
Altered expression of Twist, matrix metalloproteinase (MMP)-2 and MMP-9 proteins has been identified in various types of human cancers. However, the correlation between Twist and these gelatinases in breast cancer remains unclear. In this study, immunohistochemical analysis of Twist, MMP-2 and MMP-9 expression was performed on tissue microarrays from 200 breast cancer cases. The association of Twist and gelatinase expression with clinicopathological factors and patient survival was analyzed. Altered expression of Twist, MMP-2 and MMP-9 proteins was observed in breast cancer tissue. The positive rates of Twist, MMP-2 and MMP-9 protein expression were 75.5, 97.0 and 96.0%, respectively. Increased expression of Twist was positively correlated with the status of axillary lymph node metastasis and higher tumor-node-metastasis (TNM) stage (P<0.01). Moreover, increased expression of Twist was correlated with poor overall survival (OS) and post-operative relapse-free survival (RFS), compared with those for the patients with reduced expression levels of Twist (P<0.05, P<0.01). The expression of MMP-2 and MMP-9 was positively correlated with Twist expression (P<0.001). Our results indicate that Twist may play an important role in the invasion, metastasis and prognosis of breast cancer. Additionally, our results suggest that Twist may be a regulator of gelatinases (MMP-2 and MMP-9).
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, Anhui 230011
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Siletz A, Schnabel M, Kniazeva E, Schumacher AJ, Shin S, Jeruss JS, Shea LD. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models. PLoS One 2013; 8:e57180. [PMID: 23593114 PMCID: PMC3620167 DOI: 10.1371/journal.pone.0057180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 01/17/2013] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.
Collapse
Affiliation(s)
- Anaar Siletz
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael Schnabel
- Physical Sciences – Oncology Center, Northwestern Institute on Complex Systems, Departments of Applied Mathematics and Physics, Northwestern University, Evanston, Illinois, United States of America
| | - Ekaterina Kniazeva
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Andrew J. Schumacher
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Seungjin Shin
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Jacqueline S. Jeruss
- Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
42
|
Mak KK, Wu ATH, Lee WH, Chang TC, Chiou JF, Wang LS, Wu CH, Huang CYF, Shieh YS, Chao TY, Ho CT, Yen GC, Yeh CT. Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κB/microRNA 448 circuit. Mol Nutr Food Res 2013; 57:1123-34. [DOI: 10.1002/mnfr.201200549] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/16/2012] [Accepted: 01/10/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Ka-Kit Mak
- Graduate Institute of Clinical Medicine; Taipei Medical University; Taipei Taiwan
| | - Alexander T. H. Wu
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- Translational Research Laboratory, Cancer Center; Taipei Medical University Hospital; Taipei Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital; Taipei Medical University; Taipei Taiwan
| | - Tung-Cheng Chang
- Graduate Institute of Clinical Medicine; Taipei Medical University; Taipei Taiwan
- Department of Surgery; Taipei Medical University-Shuang Ho Hospital; Taipei Taiwan
| | - Jeng-Fong Chiou
- Translational Research Laboratory, Cancer Center; Taipei Medical University Hospital; Taipei Taiwan
- Department of Radiology, School of Medicine, College of Medicine; Taipei Medical University; Taiwan
| | - Liang-Shun Wang
- Graduate Institute of Clinical Medicine; Taipei Medical University; Taipei Taiwan
- Division of Thoracic Surgery, Department of Surgery; Taipei Medical University-Shuang Ho Hospital; Taipei Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery; Taipei Medical University-Shuang Ho Hospital; Taipei Taiwan
| | - Chi-Ying F. Huang
- Institute of Clinical Medicine; National Yang-Ming University; Taipei Taiwan
- Institute of Biopharmaceutical Sciences; National Yang-Ming University; Taipei Taiwan
| | - Yi-Shing Shieh
- Department of Oral Diagnosis, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Tsu-Yi Chao
- Graduate Institute of Clinical Medicine; Taipei Medical University; Taipei Taiwan
- Department of Surgery; Taipei Medical University-Shuang Ho Hospital; Taipei Taiwan
| | - Chi-Tang Ho
- Department of Food Science; Rutgers University; New Brunswick NJ USA
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology; National Chung Hsing University; Taichung Taiwan
- Agricultural Biotechnology Center; National Chung Hsing University; Taichung Taiwan
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine; Taipei Medical University; Taipei Taiwan
- Department of Surgery; Taipei Medical University-Shuang Ho Hospital; Taipei Taiwan
- Graduate Institute of Medical Sciences; National Defense Medical Center; Taipei Taiwan
| |
Collapse
|
43
|
Abstract
Epithelial to mesenchymal transition (EMT) is essential for driving plasticity during development, but is an unintentional behaviour of cells during cancer progression. The EMT-associated reprogramming of cells not only suggests that fundamental changes may occur to several regulatory networks but also that an intimate interplay exists between them. Disturbance of a controlled epithelial balance is triggered by altering several layers of regulation, including the transcriptional and translational machinery, expression of non-coding RNAs, alternative splicing and protein stability.
Collapse
Affiliation(s)
- Bram De Craene
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | | |
Collapse
|
44
|
Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa CL, Quiles JL, Ramirez-Tortosa M, Lorente JA. Transcriptional shift identifies a set of genes driving breast cancer chemoresistance. PLoS One 2013; 8:e53983. [PMID: 23326553 PMCID: PMC3542325 DOI: 10.1371/journal.pone.0053983] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022] Open
Abstract
Background Distant recurrences after antineoplastic treatment remain a serious problem for breast cancer clinical management, which threats patients’ life. Systemic therapy is administered to eradicate cancer cells from the organism, both at the site of the primary tumor and at any other potential location. Despite this intervention, a significant proportion of breast cancer patients relapse even many years after their primary tumor has been successfully treated according to current clinical standards, evidencing the existence of a chemoresistant cell subpopulation originating from the primary tumor. Methods/Findings To identify key molecules and signaling pathways which drive breast cancer chemoresistance we performed gene expression analysis before and after anthracycline and taxane-based chemotherapy and compared the results between different histopathological response groups (good-, mid- and bad-response), established according to the Miller & Payne grading system. Two cohorts of 33 and 73 breast cancer patients receiving neoadjuvant chemotherapy were recruited for whole-genome expression analysis and validation assay, respectively. Identified genes were subjected to a bioinformatic analysis in order to ascertain the molecular function of the proteins they encode and the signaling in which they participate. High throughput technologies identified 65 gene sequences which were over-expressed in all groups (P ≤ 0·05 Bonferroni test). Notably we found that, after chemotherapy, a significant proportion of these genes were over-expressed in the good responders group, making their tumors indistinguishable from those of the bad responders in their expression profile (P ≤ 0.05 Benjamini-Hochgerg`s method). Conclusions These data identify a set of key molecular pathways selectively up-regulated in post-chemotherapy cancer cells, which may become appropriate targets for the development of future directed therapies against breast cancer.
Collapse
|
45
|
Banerjee A, Qian P, Wu ZS, Ren X, Steiner M, Bougen NM, Liu S, Liu DX, Zhu T, Lobie PE. Artemin stimulates radio- and chemo-resistance by promoting TWIST1-BCL-2-dependent cancer stem cell-like behavior in mammary carcinoma cells. J Biol Chem 2012; 287:42502-15. [PMID: 23095743 DOI: 10.1074/jbc.m112.365163] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Artemin (ARTN) has been reported to promote a TWIST1-dependent epithelial to mesenchymal transition of estrogen receptor negative mammary carcinoma (ER-MC) cells associated with metastasis and poor survival outcome. We therefore examined a potential role of ARTN in the promotion of the cancer stem cell (CSC)-like phenotype in mammary carcinoma cells. Acquired resistance of ER-MC cells to either ionizing radiation (IR) or paclitaxel was accompanied by increased ARTN expression. Small interfering RNA (siRNA)-mediated depletion of ARTN in either IR- or paclitaxel-resistant ER-MC cells restored cell sensitivity to IR or paclitaxel. Expression of ARTN was enriched in ER-MC cells grown in mammospheric compared with monolayer culture and was also enriched along with BMI1, TWIST1, and DVL1 in mammospheric and ALDH1+ populations. ARTN promoted mammospheric growth and self-renewal of ER-MC cells and increased the ALDH1+ population, whereas siRNA-mediated depletion of ARTN diminished these CSC-like cell behaviors. Furthermore, increased ARTN expression was significantly correlated with ALDH1 expression in a cohort of ER-MC patients. Forced expression of ARTN also dramatically enhanced tumor initiating capacity of ER-MC cells in xenograft models at low inoculum. ARTN promotion of the CSC-like cell phenotype was mediated by TWIST1 regulation of BCL-2 expression. ARTN also enhanced mammosphere formation and the ALDH1+ population in estrogen receptor-positive mammary carcinoma (ER+MC) cells. Increased expression of ARTN and the functional consequences thereof may be one common adaptive mechanism used by mammary carcinoma cells to promote cell survival and renewal in hostile tumor microenvironments.
Collapse
Affiliation(s)
- Arindam Banerjee
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kroepil F, Fluegen G, Totikov Z, Baldus SE, Vay C, Schauer M, Topp SA, Esch JSA, Knoefel WT, Stoecklein NH. Down-regulation of CDH1 is associated with expression of SNAI1 in colorectal adenomas. PLoS One 2012; 7:e46665. [PMID: 23029563 PMCID: PMC3460919 DOI: 10.1371/journal.pone.0046665] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 09/03/2012] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Down-regulation of E-cadherin (CDH1) and epithelial-mesenchymal transition (EMT) are considered critical events for invasion and metastasis of colorectal carcinoma. Here we tested whether the important regulators of E-cadherin expression SNAI1 and TWIST1 are already detectable in human colorectal adenomas. METHODS RNA was extracted from a set of randomly selected formalin-fixed and paraffin-embedded (FFPE) colorectal adenomas (n = 41) and normal colon mucosa (n = 10). Subsequently mRNA expression of CDH1, CDH2, SNAI1 and TWIST1 was analysed by quantitative RT-PCR analysis. CDH1 as well as SNAI1 protein expression were assessed by immunohistochemistry (IHC). RESULTS SNAI1 mRNA was expressed in 78% (n = 32/41), TWIST1 mRNA in 41% (n = 17/41) and CDH2 mRNA in 41% (n = 17/41) of the colorectal adenoma tissue, while normal colon mucosa was negative for these transcription factors. We found a significant correlation between reduced CDH1 and the presence of SNAI1 mRNA expression and for combined SNAI1 and TWIST1 mRNA expression, respectively. A correlation between CDH2 mRNA expression and reduced CDH1 expression was not observed. We confirmed the relationship between SNAI1 expression and reduced E-cadherin expression on the protein level via IHC. CONCLUSION Our data show that SNAI1 and Twist1 are already expressed in benign precursor lesions of colorectal cancer and that SNAI1 expression was significantly correlated with lower expression of CDH1. Whether these findings reflect true EMT and/or are a sign of a more aggressive biology need to be investigated in further studies.
Collapse
Affiliation(s)
- Feride Kroepil
- Department of General-, Visceral- and Pediatric Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oliveras-Ferraros C, Corominas-Faja B, Cufí S, Vazquez-Martin A, Martin-Castillo B, Iglesias JM, López-Bonet E, Martin ÁG, Menendez JA. Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin). Cell Cycle 2012; 11:4020-32. [PMID: 22992620 DOI: 10.4161/cc.22225] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The rate of inherent resistance to single-agent trastuzumab in HER2-overexpressing metastatic breast carcinomas is impressive at above 70%. Unfortunately, little is known regarding the distinctive genetic signatures that could predict trastuzumab refractoriness ab initio. The epithelial-to-mesenchymal transition (EMT) molecular features, HER2 expression status and primary responses to trastuzumab were explored in the public Lawrence Berkeley Laboratory (LBL) Breast Cancer Collection. Lentivirus-delivered small hairpin RNAs were employed to reduce specifically and stably the expression of EMT transcription factors in trastuzumab-refractory basal/HER2+ cells. Cell proliferation assays and pre-clinical nude mice xenograft-based studies were performed to assess the contribution of specific EMT transcription factors to inherent trastuzumab resistance. Primary sensitivity to trastuzumab was restricted to the SLUG/SNAIL2-negative subset of luminal/HER2+ cell lines, whereas all of the SLUG/SNAIL2-positive basal/HER2+ cell lines exhibited an inherent resistance to trastuzumab. The specific knockdown of SLUG/SNAIL2 suppressed the stem-related CD44+CD24(-/low) mesenchymal immunophenotype by transcriptionally upregulating the luminal epithelial marker CD24 in basal/HER2+ cells. Basal/HER2+ cells gained sensitivity to the growth-inhibitory effects of trastuzumab following SLUG/SNAIL2 gene depletion, which induced the expression of the mesenchymal-to-epithelial transition (MET) genes involved in promoting an epithelial phenotype. The isolation of CD44+CD24(-/low) mesenchymal cells by magnetic-activated cell sorting (MACS) confirmed their intrinsic unresponsiveness to trastuzumab. A reduction in tumor growth and dramatic gain in sensitivity to trastuzumab in vivo were confirmed when the SLUG/SNAIL2 knockdown basal/HER2+ cells were injected into nude mice. HER2 overexpression in a basal, rather than in a luminal molecular background, results in a basal/HER2+ breast cancer subtype that is intrinsically resistant to trastuzumab. EMT transcription factors might induce an enhanced phenotypic plasticity that would allow basal/HER2+ breast cancer cells to "enter" into and "exit" dynamically from trastuzumab-responsive stem cell-like states. The systematic determination of SLUG/SNAIL2 as a stem/CD44+CD24(-/low) cell-associated protein may improve the therapeutic management of HER2+ breast carcinomas.
Collapse
Affiliation(s)
- Cristina Oliveras-Ferraros
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The breast cancer susceptibility gene product fibroblast growth factor receptor 2 serves as a scaffold for regulation of NF-κB signaling. Mol Cell Biol 2012; 32:4662-73. [PMID: 22988296 DOI: 10.1128/mcb.00935-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fibroblast growth factor (FGF) receptor 2 (FGFR2) has been identified in genome-wide association studies to be associated with increased breast cancer risk; however, its mechanism of action remains unclear. Here we show that the two major FGFR2 alternatively spliced isoforms, FGFR2-IIIb and FGFR2-IIIc, interact with IκB kinase β and its downstream target, NF-κB. FGFR2 inhibits nuclear RelA/p65 NF-κB translocation and activity and reduces expression of dependent transcripts, including interleukin-6. These interactions result in diminished STAT3 phosphorylation and reduced breast cancer cell growth, motility, and invasiveness. FGFR2 also arrests the epithelial cell-to-mesenchymal cell transition (EMT), resulting in attenuated neoplastic growth in orthotopic xenografts of breast cancer cells. Our studies provide strong evidence for the protective effects of FGFR2 on tumor progression. We propose that FGFR2 serves as a scaffold for multiple components of the NF-κB signaling complex. Through these interactions, FGFR2 isoforms can respond to tissue-specific FGF signals to modulate epithelial cell-stromal cell communications in cancer progression.
Collapse
|
49
|
Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, Feng J, Zhang Y, Gao H, Liu DX, Lu J, Huang B. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res 2012; 72:4597-608. [PMID: 22787120 DOI: 10.1158/0008-5472.can-12-1045] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental program, which is associated with breast cancer progression and metastasis. Here, we report that ectopic overexpression of SOX4 in immortalized human mammary epithelial cells is sufficient for acquisition of mesenchymal traits, enhanced cell migration, and invasion, along with epithelial stem cell properties defined by the presence of a CD44(high)/CD24(low) cell subpopulation. SOX4 positively regulated expression of known EMT inducers, also activating the TGF-β pathway to contribute to EMT. SOX4 itself was induced by TGF-β in mammary epithelial cells and was required for TGF-β-induced EMT. Murine xenograft experiments showed that SOX4 cooperated with oncogenic Ras to promote tumorigenesis in vivo. Finally, in clinical specimens of human breast cancer, we found that SOX4 was abnormally overexpressed and correlated with the triple-negative breast cancer subtype (ER(-)/PR(-)/HER2(-)). Our findings define an important function for SOX4 in the progression of breast cancer by orchestrating EMT, and they implicate this gene product as a marker of poor prognosis in this disease.
Collapse
Affiliation(s)
- Jianchao Zhang
- The Institute of Genetics and Cytology, The Second Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lv Q, Wang W, Xue J, Hua F, Mu R, Lin H, Yan J, Lv X, Chen X, Hu ZW. DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial-mesenchymal transition in human breast cancer. Cancer Res 2012; 72:3238-50. [PMID: 22719072 DOI: 10.1158/0008-5472.can-11-3832] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a crucial developmental program, contributes to cancer invasion and metastasis. In this study, we show that death-effector domain-containing DNA-binding protein (DEDD) attenuates EMT and acts as an endogenous suppressor of tumor growth and metastasis. We found that expression levels of DEDD were conversely correlated with poor prognosis in patients with breast and colon cancer. Both in vitro and in vivo, overexpression of DEDD attenuated the invasive phenotype of highly metastatic cells, whereas silencing of DEDD promoted the invasion of nonmetastatic cells. Via direct interaction with the class III PI-3-kinase (PI3KC3)/Beclin1, DEDD activated autophagy and induced the degradation of Snail and Twist, two master regulators of EMT. The DEDD-PI3KC3 interaction led to stabilization of PI3KC3, which further contributed to autophagy and the degradation of Snail and Twist. Together, our findings highlight a novel mechanism in which the intracellular signaling protein DEDD functions as an endogenous tumor suppressor. DEDD expression therefore may represent a prognostic marker and potential therapeutic target for the prevention and treatment of cancer metastasis.
Collapse
Affiliation(s)
- Qi Lv
- Molecular Immunology and Cancer Pharmacology Groups, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|