1
|
Yang M, Zhou X, Pearce SW, Yang Z, Chen Q, Niu K, Liu C, Luo J, Li D, Shao Y, Zhang C, Chen D, Wu Q, Cutillas PR, Zhao L, Xiao Q, Zhang L. Causal Role for Neutrophil Elastase in Thoracic Aortic Dissection in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1900-1920. [PMID: 37589142 PMCID: PMC10521802 DOI: 10.1161/atvbaha.123.319281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Thoracic aortic dissection (TAD) is a life-threatening aortic disease without effective medical treatment. Increasing evidence has suggested a role for NE (neutrophil elastase) in vascular diseases. In this study, we aimed at investigating a causal role for NE in TAD and exploring the molecular mechanisms involved. METHODS β-aminopropionitrile monofumarate was administrated in mice to induce TAD. NE deficiency mice, pharmacological inhibitor GW311616A, and adeno-associated virus-2-mediated in vivo gene transfer were applied to explore a causal role for NE and associated target gene in TAD formation. Multiple functional assays and biochemical analyses were conducted to unravel the underlying cellular and molecular mechanisms of NE in TAD. RESULTS NE aortic gene expression and plasma activity was significantly increased during β-aminopropionitrile monofumarate-induced TAD and in patients with acute TAD. NE deficiency prevents β-aminopropionitrile monofumarate-induced TAD onset/development, and GW311616A administration ameliorated TAD formation/progression. Decreased levels of neutrophil extracellular traps, inflammatory cells, and MMP (matrix metalloproteinase)-2/9 were observed in NE-deficient mice. TBL1x (F-box-like/WD repeat-containing protein TBL1x) has been identified as a novel substrate and functional downstream target of NE in TAD. Loss-of-function studies revealed that NE mediated inflammatory cell transendothelial migration by modulating TBL1x-LTA4H (leukotriene A4 hydrolase) signaling and that NE regulated smooth muscle cell phenotype modulation under TAD pathological condition by regulating TBL1x-MECP2 (methyl CpG-binding protein 2) signal axis. Further mechanistic studies showed that TBL1x inhibition decreased the binding of TBL1x and HDAC3 (histone deacetylase 3) to MECP2 and LTA4H gene promoters, respectively. Finally, adeno-associated virus-2-mediated Tbl1x gene knockdown in aortic smooth muscle cells confirmed a regulatory role for TBL1x in NE-mediated TAD formation. CONCLUSIONS We unravel a critical role of NE and its target TBL1x in regulating inflammatory cell migration and smooth muscle cell phenotype modulation in the context of TAD. Our findings suggest that the NE-TBL1x signal axis represents a valuable therapeutic for treating high-risk TAD patients.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Xinmiao Zhou
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China (X.Z.)
| | - Stuart W.A. Pearce
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Zhisheng Yang
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Qishan Chen
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
| | - Kaiyuan Niu
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Chenxin Liu
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Dan Li
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, China (D.L., L. Zhao)
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.S., C.Z., D.C., Q.W.)
| | - Pedro R. Cutillas
- Faculty of Medicine and Dentistry, Centre for Haemato-Oncology, Barts Cancer Institute (P.R.C.), Queen Mary University of London, United Kingdom
| | - Lin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, China (D.L., L. Zhao)
| | - Qingzhong Xiao
- Faculty of Medicine and Dentistry, William Harvey Research Institute (M.Y., X.Z., S.W.A.P., Z.Y., K.N., C.L., Q.X.), Queen Mary University of London, United Kingdom
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, China (Q.X.)
| | - Li Zhang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China (M.Y., Q.C., D.L., L. Zhang)
| |
Collapse
|
2
|
Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. MATERIALS 2021; 14:ma14123217. [PMID: 34200889 PMCID: PMC8230458 DOI: 10.3390/ma14123217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.
Collapse
|
3
|
Lai TM, Kuo PJ, Lin CY, Chin YT, Lin HL, Chiu HC, Fu MMJ, Fu E. CD147 self-regulates matrix metalloproteinase-2 release in gingival fibroblasts after coculturing with U937 monocytic cells. J Periodontol 2019; 91:651-660. [PMID: 31557319 DOI: 10.1002/jper.19-0278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cluster of differentiation 147 (CD147) is a multifunctional glycoprotein that functions as an inducer of matrix metalloproteinase (MMP) expression in fibroblasts. Synergistically enhanced MMP-2 expression was recently observed in the coculture of human gingival fibroblasts (HGFs) and U937 human monocytic cells; however, the responsible mechanisms have not yet been fully established. The aim of this study was to evaluate the release of soluble CD147 in HGFs after coculturing with U937 cells and its functional effect on the enhancement of MMP-2 expression in HGFs. METHODS Enzyme-linked immunosorbent assay was used to determine the amount of CD147 protein in media, whereas real-time polymerase chain reaction was performed to evaluate the mRNA levels of CD147 and MMP-2 in HGFs and U937 cells. The enzyme activities of MMP-2 released from cells were examined by zymography. Transwell coculturing and conditioned media treatments were selected to rule out the effect of direct contact of HGFs and U937 cells. RESULTS The protein and mRNA expression of CD147 in HGFs were enhanced after transwell coculturing with U937 cells and exposure to U937-conditioned medium. MMP-2 enzyme activities in HGFs were also significantly increased by the coculturing methods. Administration of exogenous CD147 enhanced MMP-2 expression in HGFs, whereas treatment with cyclosporine-A, which inhibited CD147 expression, reduced U937-enhanced MMP-2 expression in HGFs. CONCLUSIONS CD147 can interact with fibroblasts to stimulate the expression of MMPs associated with periodontal extracellular matrix degradation. This study has demonstrated that CD147 released from fibroblasts might play a role in monocyte-enhanced MMP-2 expression in HGFs.
Collapse
Affiliation(s)
- Tat-Ming Lai
- Dental Department, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Teeth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Lun Lin
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Martin M J Fu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Earl Fu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan.,Department of Dentistry, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| |
Collapse
|
4
|
Ianaro A, Cirino G, Wallace JL. Hydrogen sulfide-releasing anti-inflammatory drugs for chemoprevention and treatment of cancer. Pharmacol Res 2016; 111:652-658. [PMID: 27475881 DOI: 10.1016/j.phrs.2016.07.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
For many years it has been recognized that inhibition of cyclooxygenase enzymes is effective in reducing the incidence of many types of cancer, but the adverse effects of these drug, particularly in the gastrointestinal and cardiovascular systems, limits their utility. Recently developed hydrogen sulfide-releasing anti-inflammatory drugs may be a promising option for cancer chemoprevention. In this paper we review evidence suggesting that these novel compounds are effective in a range of animal models of various types of cancer, while exhibiting greatly reduced toxicity relative to currently marketed non-steroidal anti-inflammatory drugs. Some of the possible mechanisms of action of hydrogen sulfide-releasing anti-inflammatory drugs are also discussed.
Collapse
Affiliation(s)
- Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; Faculty of Medicine, Universidade Camilo Castelo Branco, São Paulo, SP, Brazil
| | - John L Wallace
- Faculty of Medicine, Universidade Camilo Castelo Branco, São Paulo, SP, Brazil; Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Profound Chemopreventative Effects of a Hydrogen Sulfide-Releasing NSAID in the APCMin/+ Mouse Model of Intestinal Tumorigenesis. PLoS One 2016; 11:e0147289. [PMID: 26910063 PMCID: PMC4766010 DOI: 10.1371/journal.pone.0147289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/02/2016] [Indexed: 12/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs have been shown to reduce the incidence of gastrointestinal cancers, but the propensity of these drugs to cause ulcers and bleeding limits their use. H2S has been shown to be a powerful cytoprotective and anti-inflammatory substance in the digestive system. This study explored the possibility that a H2S-releasing nonsteroidal anti-inflammatory drug (ATB-346) would be effective in a murine model of hereditary intestinal cancer (APCMin+ mouse) and investigated potential mechanisms of action via transcriptomics analysis. Daily treatment with ATB-346 was significantly more effective at preventing intestinal polyp formation than naproxen. Significant beneficial effects were seen with a treatment period of only 3–7 days, and reversal of existing polyps was observed in the colon. ATB-346, but not naproxen, significantly decreased expression of intestinal cancer-associated signaling molecules (cMyc, β-catenin). Transcriptomic analysis identified 20 genes that were up-regulated in APCMin+ mice, 18 of which were reduced to wild-type levels by one week of treatment with ATB-346. ATB-346 is a novel, gastrointestinal-sparing anti-inflammatory drug that potently and rapidly prevents and reverses the development of pre-cancerous lesions in a mouse model of hereditary intestinal tumorigenesis. These effects may be related to the combined effects of suppression of cyclooxygenase and release of H2S, and correction of most of the APCMin+-associated alterations in the transcriptome. ATB-346 may represent a promising agent for chemoprevention of tumorigenesis in the GI tract and elsewhere.
Collapse
|
6
|
Lemańska-Perek A, Polańska B, Krzyżanowska-Gołąb D, Kątnik-Prastowska I. Occurrence of soluble supra-molecular FN–fibrin complexes in the plasma of children with recurrent respiratory infection. Ann Clin Biochem 2014; 52:441-7. [DOI: 10.1177/0004563214556650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2014] [Indexed: 11/16/2022]
Abstract
Objectives Fibronectin (FN) is able to bind fibrin and FN–fibrin complexes and is found in the plasma of some patients suffering from inflammatory disease. The present study was undertaken to determine whether soluble supra-molecular FN–fibrin complexes were present in the plasma of children with recurrent respiratory infections (RRI). Design and methods The frequency of occurrence and relative amounts of the supra-molecular FN–fibrin forms, concentrations of immunoglobulins and numbers of natural killer cells (NK) were determined in the plasma of children with recurrent respiratory infections. The frequencies of these parameters were compared with their frequencies in the plasma of children with acute respiratory infections and plasma from healthy children. Results SDS-agarose immunoblotting of patients’ plasma revealed the presence of several additional FN–fibrin bands, with decreasing electrophoretic mobilities and increasing molecular masses of 750 kDa, 1000 kDa, 1300 kDa, 1600 kDa and 1900 kDa. Such FN–fibrin complexes occurred with higher frequency and in larger amounts in the plasma of children with RRI and acute infection than they did in plasma from normal children. Moreover, bands above 1000 kDa were absent in most young healthy individuals. The occurrence of FN–fibrin complexes did not correlate with either immunoglobulin concentrations, or with the number of NK cells. Conclusions The occurrence of plasma supra-molecular FN–fibrin complexes is associated with acute and recurrent respiratory infections of children.
Collapse
Affiliation(s)
- Anna Lemańska-Perek
- Department of Chemistry and Immunochemistry, Wrocław University of Medicine, Wroclaw, Poland
| | - Bożena Polańska
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wrocław University of Medicine, Wroclaw, Poland
| | | | - Iwona Kątnik-Prastowska
- Department of Chemistry and Immunochemistry, Wrocław University of Medicine, Wroclaw, Poland
| |
Collapse
|
7
|
Abbott DS, Chin-Smith EC, Seed PT, Chandiramani M, Shennan AH, Tribe RM. Raised trappin2/elafin protein in cervico-vaginal fluid is a potential predictor of cervical shortening and spontaneous preterm birth. PLoS One 2014; 9:e100771. [PMID: 25075964 PMCID: PMC4116119 DOI: 10.1371/journal.pone.0100771] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022] Open
Abstract
Early spontaneous preterm birth is associated with inflammation/infection and shortening of the cervix. We hypothesised that cervico-vaginal production of trappin2/elafin (peptidase inhibitor 3) and cathelicidin antimicrobial peptide (cathelicidin), key components of the innate immune system, are altered in women who have a spontaneous preterm birth. The aim was to determine the relationship between cervico-vaginal fluid (CVF) trappin2/elafin and cathelicidin protein concentrations with cervical length in woman at risk of spontaneous preterm birth. Trappin2/elafin and cathelicidin were measured using ELISA in longitudinal CVF samples (taken between 13 to 30 weeks' gestation) from 74 asymptomatic high risk women (based on obstetric history) recruited prospectively. Thirty six women developed a short cervix (<25 mm) by 24 weeks' and 38 women did not. Women who developed a short cervix had 2.71 times higher concentrations of CVF trappin2/elafin from 14 weeks' versus those who did not (CI 1.94–3.79, p<0.0005). CVF trappin2/elafin before 24 weeks' was 1.79 times higher in women who had a spontaneous preterm birth <37 weeks' (CI: 1.05–3.05, p = 0.034). Trappin2/elafin (>200 ng/ml) measured between 14+0–14+6 weeks' of pregnancy predicted women who subsequently developed a short cervix (n = 11, ROC area = 1.00, p = 0.008) within 8 weeks. Cathelicidin was not predictive of spontaneous delivery. Vitamin D status did not correlate with CVF antimicrobial peptide concentrations. Raised CVF trappin2/elafin has potential as an early pregnancy test for prediction of cervical shortening and spontaneous preterm birth. This justifies validation in a larger cohort.
Collapse
Affiliation(s)
- Danielle S. Abbott
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
| | - Evonne C. Chin-Smith
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
| | - Paul T. Seed
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
| | - Manju Chandiramani
- Parturition Research Group, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Andrew H. Shennan
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
| | - Rachel M. Tribe
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
- Division of Women's Health, King's College London Women's Health Academic Centre KHP, St. Thomas' Hospital Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Lourenço JD, Neves LP, Olivo CR, Duran A, Almeida FM, Arantes PMM, Prado CM, Leick EA, Tanaka AS, Martins MA, Sasaki SD, Lopes FDTQS. A treatment with a protease inhibitor recombinant from the cattle tick (Rhipicephalus Boophilus microplus) ameliorates emphysema in mice. PLoS One 2014; 9:e98216. [PMID: 24886716 PMCID: PMC4041648 DOI: 10.1371/journal.pone.0098216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/29/2014] [Indexed: 11/06/2022] Open
Abstract
Aims To determine whether a serine protease inhibitor treatment can prevent or minimize emphysema in mice. Methods C57BL/6 mice were subjected to porcine pancreatic elastase (PPE) nasal instillation to induce emphysema and were treated with a serine protease inhibitor (rBmTI-A) before (Protocol 1) and after (Protocol 2) emphysema development. In both protocols, we evaluated lung function to evaluate the airway resistance (Raw), tissue damping (Gtis) and tissue elastance (Htis). The inflammatory profile was analyzed in the bronchoalveolar lavage (BALF) and through the use of morphometry; we measured the mean linear intercept (Lm) (to verify alveolar enlargement), the volume proportion of collagen and elastic fibers, and the numbers of macrophages and metalloprotease 12 (MMP-12) positive cells in the parenchyma. We showed that at both time points, even after the emphysema was established, the rBmTI-A treatment was sufficient to reverse the loss of elastic recoil measured by Htis, the alveolar enlargement and the increase in the total number of cells in the BALF, with a primary decrease in the number of macrophages. Although, the treatment did not control the increase in macrophages in the lung parenchyma, it was sufficient to decrease the number of positive cells for MMP-12 and reduce the volume of collagen fibers, which was increased in PPE groups. These findings attest to the importance of MMP-12 in PPE-induced emphysema and suggest that this metalloprotease could be an effective therapeutic target.
Collapse
Affiliation(s)
| | - Luana P. Neves
- Centro de Ciências Naturais e Humanas, UFABC, Santo André, Sao Paulo, Brazil
| | - Clarice R. Olivo
- Department of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Duran
- Centro de Ciências Naturais e Humanas, UFABC, Santo André, Sao Paulo, Brazil
| | | | | | - Carla M. Prado
- Biological Science Department, UNIFESP, Sao Paulo, Brazil
| | | | | | | | - Sergio D. Sasaki
- Centro de Ciências Naturais e Humanas, UFABC, Santo André, Sao Paulo, Brazil
| | | |
Collapse
|
9
|
Li ZJ, Kim SM. The application of the starfish hatching enzyme for the improvement of scar and keloid based on the fibroblast-populated collagen lattice. Appl Biochem Biotechnol 2014; 173:989-1002. [PMID: 24752939 DOI: 10.1007/s12010-014-0901-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
Various bioactivities of the starfish hatching enzyme (HE) including collagen gel contraction, MMPs activity, hydroxyproline release, and gene regulation based on the fibroblast-populated collagen lattice (FPCL) in three-dimensional medium were investigated for the improvement of scar and keloid. The starfish HE significantly inhibited the collagen gel contraction over 2 days of culture. MMP-2 and MMP-9 activities were also identified by gelatin zymography and RT-PCR products with both HE and collagenase treatments, which resulted in the high amount of hydroxyproline release. The HE treatment on the FPCL significantly inhibited the fibroblast proliferation at 3 days of culture. The LPS-induced NO level and iNOS mRNA expression at low concentrations of HE presented a certain ability to inflammatory response. The COX-2 mRNA from the FPCL indicated no significant inflammation-mediated activity at 5 μg/mL of HE, whereas the cytokines of TNF-α and IL-1β were significantly higher than those of the control. Hence, the starfish hatching enzyme can regulate the fibroblast-populated collagen gel conditions by the contraction, MMP production, inflammatory gene expression, etc. Therefore, the starfish HE could be a potential cosmeceutical to heal the scar and keloid tissue.
Collapse
Affiliation(s)
- Zhi Jiang Li
- Department of Food and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163-319, People's Republic of China
| | | |
Collapse
|
10
|
Okunishi K, DeGraaf AJ, Zasłona Z, Peters-Golden M. Inhibition of protein translation as a novel mechanism for prostaglandin E2 regulation of cell functions. FASEB J 2013; 28:56-66. [PMID: 24072780 DOI: 10.1096/fj.13-231720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Prostaglandin E2 (PGE2) regulates numerous biological processes by modulating transcriptional activation, epigenetic control, proteolysis, and secretion of various proteins. Scar formation depends on fibroblast elaboration of matrix proteins such as collagen, and this process is strongly suppressed by PGE2 through activation of cAMP-dependent protein kinase A (PKA). However, the actual mechanism by which PGE2-PKA signaling inhibits collagen expression in fibroblasts has never been delineated, and that was the objective of this study. PGE2 unexpectedly induced a rapid reduction in procollagen I protein expression in adult lung fibroblasts, with a half-maximum effect at 1.5 h. This effect reflected its inhibition of translation rather than transcription. Global protein synthesis was also inhibited by PGE2. This action was mediated by PKA and involved both activation of ribosomal protein (rpS6) and suppression of mammalian target of rapamycin (mTOR). Similar effects of PGE2 were demonstrated in mouse peritoneal macrophages (PMs). These findings identify inhibition of translation as a new mechanism by which PGE2 regulates cellular function and a novel example of translational inhibition mediated by opposing actions on two distinct translational control pathways. Translational inhibition would be expected to contribute to dynamic alterations in cell function that accompany the changing PGE2 levels observed in disease states and with various pharmacotherapies.
Collapse
|
11
|
Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA. Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal 2013; 11:29. [PMID: 23601247 PMCID: PMC3698164 DOI: 10.1186/1478-811x-11-29] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
Background Macrophages and fibroblasts are two major players in tissue repair and fibrosis. Despite the relevance of macrophages and fibroblasts in tissue homeostasis, remarkably little is known whether macrophages are able to influence the properties of fibroblasts. Here we investigated the role of paracrine factors secreted by classically activated (M1) and alternatively activated (M2) human macrophages on human dermal fibroblasts (HDFs). Results HDFs stimulated with paracrine factors from M1 macrophages showed a 10 to > 100-fold increase in the expression of the inflammatory cytokines IL6, CCL2 and CCL7 and the matrix metalloproteinases MMP1 and MMP3. This indicates that factors produced by M1 macrophages induce a fibroblast phenotype with pro-inflammatory and extracellular matrix (ECM) degrading properties. HDFs stimulated with paracrine factors secreted by M2 macrophages displayed an increased proliferation rate. Interestingly, the M1-activated pro-inflammatory fibroblasts downregulated, after exposure to paracrine factors produced by M2 macrophages or non-conditioned media, the inflammatory markers as well as MMPs and upregulated their collagen production. Conclusions Paracrine factors of M1 or M2 polarized macrophages induced different phenotypes of HDFs and the HDF phenotypes can in turn be reversed, pointing to a high dynamic plasticity of fibroblasts in the different phases of tissue repair.
Collapse
Affiliation(s)
- Diana Ta Ploeger
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Rowe RG, Keena D, Sabeh F, Willis AL, Weiss SJ. Pulmonary fibroblasts mobilize the membrane-tethered matrix metalloprotease, MT1-MMP, to destructively remodel and invade interstitial type I collagen barriers. Am J Physiol Lung Cell Mol Physiol 2011; 301:L683-92. [PMID: 21840960 DOI: 10.1152/ajplung.00187.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In acute and chronic lung disease, widespread disruption of tissue architecture underlies compromised pulmonary function. Pulmonary fibroblasts have been implicated as critical effectors of tissue-destructive extracellular matrix (ECM) remodeling by mobilizing a spectrum of proteolytic enzymes. Although efforts to date have focused on the catabolism of type I collagen, the predominant component of the lung interstitial matrix, the key collagenolytic enzymes employed by pulmonary fibroblasts remain unidentified. Herein, membrane type-1 matrix metalloprotease (MT1-MMP) is identified as the dominant and direct-acting protease responsible for the type I collagenolytic activity mediated by both mouse and human pulmonary fibroblasts. Furthermore, MT1-MMP is shown to be essential for pulmonary fibroblast migration within three-dimensional (3-D) hydrogels of cross-linked type I collagen that recapitulate ECM barriers encountered in the in vivo environment. Together, these findings demonstrate that MT1-MMP serves as a key effector of type I collagenolytic activity in pulmonary fibroblasts and earmark this pericellular collagenase as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- R Grant Rowe
- Divisions of Molecular Medicine & Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
This article reviews the clinical background and significance of selected biomarkers that have been studied in relation to systemic sclerosis, or scleroderma, a devastating connective tissue disease whose morbidity and mortality are often related to pulmonary complications. Interstitial lung disease is the most common pulmonary manifestation in systemic sclerosis, and the search for a noninvasive biomarker to assess and monitor patients and their lung disease is a nascent and expending field of study. In this article, we examine the background and significance of a variety of selected biomarkers and assess their role in relation to systemic sclerosis–related interstitial lung disease.
Collapse
|
14
|
Wysocka M, Lesner A, Majkowska G, Łęgowska A, Guzow K, Rolka K, Wiczk W. The new fluorogenic substrates of neutrophil proteinase 3 optimized in prime site region. Anal Biochem 2010; 399:196-201. [DOI: 10.1016/j.ab.2010.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 02/02/2023]
|
15
|
Coussens A, Timms PM, Boucher BJ, Venton TR, Ashcroft AT, Skolimowska KH, Newton SM, Wilkinson KA, Davidson RN, Griffiths CJ, Wilkinson RJ, Martineau AR. 1alpha,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology 2009; 127:539-48. [PMID: 19178594 PMCID: PMC2729531 DOI: 10.1111/j.1365-2567.2008.03024.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 11/09/2008] [Accepted: 11/14/2008] [Indexed: 01/16/2023] Open
Abstract
Matrix metalloproteinases (MMP) can degrade all components of pulmonary extracellular matrix. Mycobacterium tuberculosis induces production of a number of these enzymes by human macrophages, and these are implicated in the pathogenesis of pulmonary cavitation in tuberculosis. The active metabolite of vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], has previously been reported to inhibit secretion of MMP-9 in human monocytes (MN), but its influence on the secretion and gene expression of MMP and tissue inhibitors of MMP (TIMP) in M. tuberculosis-infected cells has not previously been investigated. We therefore determined the effects of 1alpha,25(OH)(2)D(3) on expression, secretion and activity of a number of MMP and TIMP in M. tuberculosis-infected human leucocytes; we also investigated the effect of 1alpha,25(OH)(2)D(3) on the secretion of interleukin-10 (IL-10) and prostaglandin E(2) (PGE(2)), both transcriptional regulators of MMP expression. We found that M. tuberculosis induced expression of MMP-1, MMP-7 and MMP-10 in MN and MMP-1 and MMP-10 in peripheral blood mononuclear cells (PBMC). 1alpha,25(OH)(2)D(3) significantly attenuated M. tuberculosis-induced increases in expression of MMP-7 and MMP-10, and suppressed secretion of MMP-7 by M. tuberculosis-infected PBMC. MMP-9 gene expression, secretion and activity were significantly inhibited by 1alpha,25(OH)(2)D(3) irrespective of infection. In contrast, the effects of 1alpha,25(OH)(2)D(3) on the expression of TIMP-1, TIMP-2 and TIMP-3 and secretion of TIMP-1 and TIMP-2 were small and variable. 1alpha,25(OH)(2)D(3) also induced secretion of IL-10 and PGE(2) from M. tuberculosis-infected PBMC. These findings represent a novel immunomodulatory role for 1alpha,25(OH)(2)D(3) in M. tuberculosis infection.
Collapse
Affiliation(s)
- Anna Coussens
- Division of Mycobacterial Research, National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bazzichi L, Rossi A, Giannaccini G, Betti L, Cercignani G, Giuliano T, Mascia G, Lucacchini A, Bombardieri S. Decreased elastase activity in circulating granulocytes of systemic sclerosis patients: a possible pathogenetic role. Scand J Rheumatol 2009; 34:494-5. [PMID: 16393778 DOI: 10.1080/03009740510026670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Chung AS, Kao WJ. Fibroblasts regulate monocyte response to ECM-derived matrix: The effects on monocyte adhesion and the production of inflammatory, matrix remodeling, and growth factor proteins. J Biomed Mater Res A 2009; 89:841-53. [DOI: 10.1002/jbm.a.32431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Hara T, Ogawa F, Yanaba K, Iwata Y, Muroi E, Komura K, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Sato S. Elevated serum concentrations of polymorphonuclear neutrophilic leukocyte elastase in systemic sclerosis: association with pulmonary fibrosis. J Rheumatol 2009; 36:99-105. [PMID: 19208531 DOI: 10.3899/jrheum.080269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To determine the serum concentrations and clinical association of polymorphonuclear neutrophilic leukocyte (PMN) elastase in patients with systemic sclerosis (SSc). METHODS Serum PMN elastase levels from 21 patients with limited cutaneous SSc (lSSc) and 32 with diffuse cutaneous SSc (dSSc) were examined by ELISA. RESULTS Serum PMN elastase levels were elevated in patients with SSc, especially dSSc, compared to healthy controls. SSc patients with elevated serum PMN elastase levels had more frequent presence of pulmonary fibrosis, arthritis, contracture of phalanges, and diffuse pigmentation. Anticentromere antibody was detected less frequently in SSc patients with elevated serum PMN elastase levels than in controls. Consistently, serum PMN elastase levels also correlated positively with serum levels of KL-6 and surfactant protein-D, serological markers for pulmonary fibrosis. Serum PMN elastase levels were also associated with levels of serum 8-isoprostane, an oxidative stress marker in SSc. CONCLUSION Serum PMN elastase levels were elevated in patients with SSc, and it was more prominent in patients with pulmonary fibrosis, suggesting that serum PMN elastase is a novel serological marker for SSc-related pulmonary fibrosis.
Collapse
Affiliation(s)
- Toshihide Hara
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ecological function of myroilysin, a novel bacterial M12 metalloprotease with elastinolytic activity and a synergistic role in collagen hydrolysis, in biodegradation of deep-sea high-molecular-weight organic nitrogen. Appl Environ Microbiol 2009; 75:1838-44. [PMID: 19201976 DOI: 10.1128/aem.02285-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly all high-molecular-weight (HMW) dissolved organic nitrogen and part of the particulate organic nitrogen in the deep sea are present in hydrolysis-resistant amides, and so far the mechanisms of biodegradation of these types of nitrogen have not been resolved. The M12 family is the second largest family in subclan MA(M) of Zn-containing metalloproteases and includes most enzymes from animals and only one enzyme (flavastacin) from a human-pathogenic bacterium (Flavobacterium meningosepticum). Here, we characterized the novel M12 protease myroilysin with elastinolytic activity and collagen-swelling ability from the newly described deep-sea bacterium Myroides profundi D25. Myroilysin is a monomer enzyme with 205 amino acid residues and a molecular mass of 22,936 Da. It has the same conserved residues at the four zinc ligands as astacin and very low levels of identity (<or=40%) to other metalloproteases, indicating that it is a novel metalloprotease belonging to subfamily M12A. Myroilysin had broad specificity and much higher elastinolytic activity than the bacterial elastinase pseudolysin. To our knowledge, it is the first reported elastase in the M12 family. Although it displayed very low activity with collagen, myroilysin had strong collagen-swelling ability and played a synergistic role with collagenase in collagen hydrolysis. It can be speculated that myroilysin synergistically interacts with other enzymes in its in situ biotic assemblage and that it may play an important role in the degradation of deep-sea HMW organic nitrogen.
Collapse
|
20
|
Mikko M, Fredriksson K, Wahlström J, Eriksson P, Grunewald J, Sköld CM. Human T cells stimulate fibroblast-mediated degradation of extracellular matrix in vitro. Clin Exp Immunol 2007; 151:317-25. [PMID: 18062794 DOI: 10.1111/j.1365-2249.2007.03565.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Several chronic diseases are characterized by inflammation, T cell recruitment and tissue remodelling. We hypothesized that activated T cells may stimulate remodelling of extracellular matrix (ECM) in vitro. Total T cells (CD3+) as well as CD4+ and CD8+ subsets were isolated from peripheral blood and stimulated, after which conditioned media (CM) were obtained. CM was added to human lung fibroblasts in three-dimensional collagen gels and the area of gels was measured daily. Hydroxyproline was determined as a measure of collagen degradation in the gels. Matrix metalloproteinase (MMP) activity in the culture media was analysed by gelatine zymography. Cytokine secretion of stimulated CD4+ and CD8+ T cells was analysed. CD3+ CM augmented collagen gel contraction in a time- and dose-dependent manner (P < 0.0001). CD4+ T cell CM was more potent than CD8+ T cell CM (P < 0.001). CD3+ CM and CD4+ T cell CM, but not CD8+ T cell CM, stimulated fibroblast-mediated collagen degradation and MMP-9 activity. A broad-spectrum MMP-inhibitor added to the culture system inhibited both gel contraction and MMP activity. Activated CD4+ T cells secreted significantly more tumour necrosis factor (TNF) and interleukin (IL)-6 compared to CD8+ T cells. CD3+ CM from patients with chronic obstructive pulmonary disease stimulated fibroblast-mediated collagen gel contraction to the same magnitude as CD3+ CM from healthy controls. In conclusion, activated CD4+ T cells can stimulate fibroblast-mediated degradation of ECM in vitro. This could be a mechanism by which activated T cells stimulate degradation of lung tissue leading to pulmonary emphysema.
Collapse
Affiliation(s)
- M Mikko
- Karolinska Institutet, Department of Medicine, Unit of Respiratory Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
21
|
Pakozdi A, Amin MA, Haas CS, Martinez RJ, Haines GK, Santos LL, Morand EF, David JR, Koch AE. Macrophage migration inhibitory factor: a mediator of matrix metalloproteinase-2 production in rheumatoid arthritis. Arthritis Res Ther 2007; 8:R132. [PMID: 16872482 PMCID: PMC1779381 DOI: 10.1186/ar2021] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/19/2006] [Accepted: 07/26/2006] [Indexed: 01/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by destruction of bone and cartilage, which is mediated, in part, by synovial fibroblasts. Matrix metalloproteinases (MMPs) are a large family of proteolytic enzymes responsible for matrix degradation. Macrophage migration inhibitory factor (MIF) is a cytokine that induces the production of a large number of proinflammatory molecules and has an important role in the pathogenesis of RA by promoting inflammation and angiogenesis. In the present study, we determined the role of MIF in RA synovial fibroblast MMP production and the underlying signaling mechanisms. We found that MIF induces RA synovial fibroblast MMP-2 expression in a time-dependent and concentration-dependent manner. To elucidate the role of MIF in MMP-2 production, we produced zymosan-induced arthritis (ZIA) in MIF gene-deficient and wild-type mice. We found that MMP-2 protein levels were significantly decreased in MIF gene-deficient compared with wild-type mice joint homogenates. The expression of MMP-2 in ZIA was evaluated by immunohistochemistry (IHC). IHC revealed that MMP-2 is highly expressed in wild-type compared with MIF gene-deficient mice ZIA joints. Interestingly, synovial lining cells, endothelial cells, and sublining nonlymphoid mononuclear cells expressed MMP-2 in the ZIA synovium. Consistent with these results, in methylated BSA (mBSA) antigen-induced arthritis (AIA), a model of RA, enhanced MMP-2 expression was also observed in wild-type compared with MIF gene-deficient mice joints. To elucidate the signaling mechanisms in MIF-induced MMP-2 upregulation, RA synovial fibroblasts were stimulated with MIF in the presence of signaling inhibitors. We found that MIF-induced RA synovial fibroblast MMP-2 upregulation required the protein kinase C (PKC), c-jun N-terminal kinase (JNK), and Src signaling pathways. We studied the expression of MMP-2 in the presence of PKC isoform-specific inhibitors and found that the PKCdelta inhibitor rottlerin inhibits MIF-induced RA synovial fibroblast MMP-2 production. Consistent with these results, MIF induced phosphorylation of JNK, PKCdelta, and c-jun. These results indicate a potential novel role for MIF in tissue destruction in RA.
Collapse
Affiliation(s)
- Angela Pakozdi
- University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Mohammad A Amin
- University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Christian S Haas
- University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Rita J Martinez
- University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - G Kenneth Haines
- Northwestern University Feinberg School of Medicine, 251 E. Huron Street, Chicago, IL 60611, USA
| | - Lanie L Santos
- Monash University Department of Medicine, Monash Medical Centre, Locked Back No 29, Clayton VIC 3168, Australia
| | - Eric F Morand
- Monash University Department of Medicine, Monash Medical Centre, Locked Back No 29, Clayton VIC 3168, Australia
| | - John R David
- Harvard School of Public Health, Boston, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Alisa E Koch
- University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
- VA Medical Service, Department of Veterans Affairs, 2215 Fuller Road, Ann Arbor, MI 48105, USA
| |
Collapse
|
22
|
Marsolais D, Duchesne E, Côté CH, Frenette J. Inflammatory cells do not decrease the ultimate tensile strength of intact tendons in vivo and in vitro: protective role of mechanical loading. J Appl Physiol (1985) 2007; 102:11-7. [PMID: 16916923 DOI: 10.1152/japplphysiol.00162.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Although inflammatory cells and their products are involved in various pathological processes, a possible role in tendon dysfunction has never been convincingly confirmed and extensively investigated. The goal of this study was to determine whether or not an acute inflammatory process deprived of mechanical trauma can induce nonspecific damages to intact collagen fibers. To induce leukocyte accumulation, carrageenan was injected into rat Achilles tendons. We first tested the effect of leukocyte recruitment on the concentrations or activities of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Second, we analyzed at the biochemical, histological, and biomechanical levels the impact of leukocyte invasion on tendons. Finally, collagen bundles isolated from rat-tail tendons were exposed in vitro to mechanical stress and/or inflammatory cells to determine if mechanical loading could protect tendons from the leukocyte proteolytic activity. Carrageenan-induced leukocyte accumulation was associated with an increased matrix metalloproteinase activity and a decreased content of tissue inhibitors of matrix metalloproteinases. However, hydroxyproline content and load to failure did not change significantly in these tendons. Interestingly, mechanical stress, when applied in vitro, protected collagen bundles from inflammatory cell-induced deterioration. Together, our results suggest that acute inflammation does not induce damages to intact and mechanically stressed collagen fibers. This protective effect would not rely on increased tissue inhibitors of matrix metalloproteinases content but would rather be conferred to the intrinsic resistance of mechanically loaded collagen fibers to proteolytic degradation.
Collapse
Affiliation(s)
- David Marsolais
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Quebec, Canada
| | | | | | | |
Collapse
|
23
|
Fang Q, Liu X, Al-Mugotir M, Kobayashi T, Abe S, Kohyama T, Rennard SI. Thrombin and TNF-alpha/IL-1beta synergistically induce fibroblast-mediated collagen gel degradation. Am J Respir Cell Mol Biol 2006; 35:714-21. [PMID: 16858010 PMCID: PMC2643297 DOI: 10.1165/rcmb.2005-0026oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Degradation of preexisting and newly synthesized extracellular matrix is thought to play an important role in tissue remodeling. The current study evaluated whether thrombin and TNF-alpha/IL-1beta could collaboratively induce collagen degradation by human fetal lung fibroblasts (HFL-1) and adult bronchial fibroblasts cultured in three-dimensional collagen gels. TNF-alpha/IL-1beta alone induced production of matrix metalloproteinases (MMPs)-1, -3, and -9, which were released in latent form. With the addition of thrombin, the latent MMPs were converted into active forms and this resulted in collagen gel degradation. Part of the activation of MMPs by thrombin resulted from direct activation of MMP-1, MMP-2, MMP-3, and MMP-9 in the absence of cells. In addition, tissue inhibitor of metalloproteinase-1 production was inhibited by the combination of thrombin and TNF-alpha/IL-1beta. These results suggest that thrombin and TNF-alpha/IL-1beta synergize to induce degradation of three-dimensional collagen gels through increasing the production and activation of MMPs, and that this effect is mediated through both direct activation of MMPs by thrombin and indirectly by thrombin activation of fibroblasts. Through such mechanisms, thrombin could contribute to many chronic lung disorders characterized by tissue remodeling.
Collapse
Affiliation(s)
- Qiuhong Fang
- Pulmonary and Critical Care Department, First Hospital of Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Pemberton PA, Kobayashi D, Wilk BJ, Henstrand JM, Shapiro SD, Barr PJ. Inhaled recombinant alpha 1-antitrypsin ameliorates cigarette smoke-induced emphysema in the mouse. COPD 2006; 3:101-8. [PMID: 17175673 DOI: 10.1080/15412550600651248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In alpha 1-antitrypsin deficiency in humans, inadequately regulated activity of serine protease activity is responsible for the chronic lung tissue degeneration and irreversible loss of pulmonary function seen in those individuals with emphysema. Typically, disease symptoms in this patient population are exacerbated by cigarette smoke. Here we show that inhaled recombinant alpha 1-antitrypsin (rAAT) can provide significant protection against the development of emphysema in cigarette smoke-treated mice. As has been reported previously, cigarette smoke was seen to increase significantly the recruitment of neutrophils and macrophages into the lungs of these animals, leading to concomitant alveolar airspace enlargement and emphysema. In smoking animals treated for 6 months with inhaled rAAT, effects on lavage levels of neutrophils and macrophages were only moderate when compared with untreated animals. Furthermore, neutralizing antibodies to rAAT were generated in all rAAT-treated animals. Despite this, however, reductions in airspace enlargement of up to 73% were observed. These findings demonstrate that delivery of rAAT directly to the lungs of smoke-treated mice can inhibit lung tissue damage mediated by proteases, suggesting that rAAT inhalation therapy might represent a practical approach towards treating emphysema in humans, by modifying the course of the disease.
Collapse
|
25
|
Domeij H, Yucel-Lindberg T, Modéer T. Cell interactions between human gingival fibroblasts and monocytes stimulate the production of matrix metalloproteinase-1 in gingival fibroblasts. J Periodontal Res 2006; 41:108-17. [PMID: 16499713 DOI: 10.1111/j.1600-0765.2005.00840.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Matrix metalloproteinase-1 (MMP-1) plays an important role in inflammatory diseases including periodontitis, which is characterized by tissue destruction and dense infiltration of mononuclear cells. OBJECTIVES The aim of this study was to investigate the effect of cell interactions between human gingival fibroblasts and human monocytes on the production of MMP-1 in a coculture model. METHODS The fibroblasts were cultured in either cell-to-cell contact with monocytes or in separated cocultures using a microporous membrane to prevent cell-to-cell contact. The mRNA expression of MMP-1 was analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and the protein levels of MMP-1 in the cell medium were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Coculturing gingival fibroblasts with monocytes in cell-to-cell contact increased the mRNA expression of MMP-1 in both fibroblasts and monocytes. The protein levels of MMP-1 increased in the culture media of the cocultures and correlated to the number of fibroblasts as well as to the number of monocytes. When fibroblasts were cultured with monocytes in separated cocultures, the mRNA expression and protein level of MMP-1 increased in the fibroblasts. In addition, treatment of fibroblasts with conditioned medium from monocytes also stimulated the production of MMP-1 in the fibroblasts. Moreover, the levels of the MMP-1 inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), increased in cocultures with cell-to-cell contact, but not in fibroblasts of separated cocultures. The glucocorticoid dexamethasone and the tetracycline doxycycline reduced the enhanced level of MMP-1 in the cocultures with cell-to-cell contact. CONCLUSION The current study demonstrates that monocytes stimulate the production of MMP-1 in gingival fibroblasts by cell interactions, which may contribute to the maintenance of MMP-mediated tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Helena Domeij
- Department of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden.
| | | | | |
Collapse
|
26
|
Senni K, Gueniche F, Foucault-Bertaud A, Igondjo-Tchen S, Fioretti F, Colliec-Jouault S, Durand P, Guezennec J, Godeau G, Letourneur D. Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch Biochem Biophys 2006; 445:56-64. [PMID: 16364234 DOI: 10.1016/j.abb.2005.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/02/2005] [Accepted: 11/02/2005] [Indexed: 11/28/2022]
Abstract
Fucoidans are sulfated fucosylated polymers from brown algae cell wall that exhibit some heparin/heparan sulfate properties. We previously demonstrated that these polysaccharides were able in vitro to stimulate dermal fibroblast proliferation and extracellular matrix deposition. Here, we investigated the action of a 16kDa fucoidan fraction on parameters involved in connective tissue breakdown. This fucoidan is able to inhibit gelatinase A secretion and stromelysin 1 induction by interleukin-1beta on dermal fibroblasts in culture. Furthermore, we observed that fucoidan increases the rate of association of MMPs with their specific inhibitors namely TIMPs. Using tissue sections of human skin in ex vivo experiments, we evidenced that this polysaccharide was able to minimize human leukocyte elastase activity resulting in the protection of human skin elastic fiber network against the enzymatic proteolysis due to this serine proteinase. These results suggested that fucoidan could be used for treating some inflammatory pathologies in which uncontrolled extracellular matrix degradation takes place.
Collapse
Affiliation(s)
- Karim Senni
- Université Paris Descartes, Faculté de Chirurgie Dentaire, EA2496 Réparations et Remodelages Oro-faciaux, Montrouge, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Domeij H, Modéer T, Quezada HC, Yucel-Lindberg T. Cell expression of MMP-1 and TIMP-1 in co-cultures of human gingival fibroblasts and monocytes: the involvement of ICAM-1. Biochem Biophys Res Commun 2005; 338:1825-33. [PMID: 16288711 DOI: 10.1016/j.bbrc.2005.10.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 10/22/2005] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1) plays an important role in the degradation of collagen in inflammatory diseases. The aim of this study was to investigate the cellular expression of MMP-1 and its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), in gingival fibroblasts co-cultured with monocytes and the possible mediating role of intercellular adhesion molecule-1 (ICAM-1). In co-cultures, the expression of MMP-1 and TIMP-1 increased in fibroblasts, but not in monocytes, although the number of MMP-1+ and TIMP-1+ adhered monocytes increased. Moreover, ICAM-1 expression in both fibroblasts and adhered monocytes increased. In the presence of an anti-ICAM-1 antibody, the expression of MMP-1 in fibroblasts decreased whereas the number of TIMP-1+ adhered monocytes increased. The p38 MAPK inhibitor SB203580 reduced MMP-1 expression in fibroblasts, as well as ICAM-1 expression in both fibroblasts and adhered monocytes. The results suggest that co-culture with monocytes enhances cellular expression of MMP-1 and TIMP-1 in gingival fibroblasts, and that the increased MMP-1 expression, in contrast to TIMP-1, is partly mediated by the adhesion molecule ICAM-1 and the p38 MAPK signal pathway.
Collapse
Affiliation(s)
- Helena Domeij
- Department of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
28
|
Bramono DS, Richmond JC, Weitzel PP, Kaplan DL, Altman GH. Matrix metalloproteinases and their clinical applications in orthopaedics. Clin Orthop Relat Res 2004:272-85. [PMID: 15534553 DOI: 10.1097/01.blo.0000144166.66737.3a] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Imbalance in the expression of matrix metalloproteinases and their inhibitors contribute considerably to abnormal connective tissue degradation prevalent in various orthopaedic joint diseases such as rheumatoid arthritis and osteoarthritis. Matrix metalloproteinase expression has been detected in ligament, tendon, and cartilage tissues in the joint. They are known to contribute to the development, remodeling, and maintenance of healthy tissue through their ability to cleave a wide range of extracellular matrix substrates. Their role has been extended to cell growth, migration, differentiation, and apoptosis. In orthopaedics, their clinical applications constantly are being explored. The multiple steps in matrix metalloproteinase regulation offer potential targets for inhibition, useful in drug therapy. The correlation between matrix metalloproteinases and progression in joint erosion presents potential prognostic and diagnostic tools in rheumatoid arthritis. Matrix metalloproteinases also can be incorporated into scaffold design to control the degradation rate of engineered tissue constructs. This current review aims to summarize and emphasize the importance of matrix metalloproteinases and their natural inhibitors in the maturation of musculoskeletal tissue through matrix remodeling and, therefore, in the generation of a new clinical potential in orthopaedics.
Collapse
Affiliation(s)
- Diah S Bramono
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | |
Collapse
|
29
|
Marsolais D, Côté CH, Frenette J. Nonsteroidal anti-inflammatory drug reduces neutrophil and macrophage accumulation but does not improve tendon regeneration. J Transl Med 2003; 83:991-9. [PMID: 12861039 DOI: 10.1097/01.lab.0000078688.07696.ac] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Whether nonsteroidal anti-inflammatory drugs have a beneficial effect on tendon regeneration is still a matter of debate. Given that inflammatory cells are thought to induce nonspecific damage following an injury, we tested the hypothesis that a 3-day treatment with diclofenac would protect tendons from inflammatory cell injury and would promote healing. Neutrophil and ED1(+) macrophage concentrations were determined in the paratenon and the core of the rat Achilles tendon following collagenase-induced injury. Hydroxyproline content, edema, and mechanical properties were also evaluated at 1, 3, 7, 14, and 28 days post-trauma. Collagenase injections induced a 70% decrease in the ultimate rupture point at Day 3. Diclofenac treatments (1 mg/kg bid) selectively decreased the accumulation of neutrophils and ED1(+) macrophages by 59% and 35%, respectively, in the paratenon, where blood vessels are numerous, but did not reduce the accumulation of neutrophils and ED1(+) macrophages in the core of the tendon. Edema was significantly reduced on Day 3 but persisted during the remodeling phase in the diclofenac-treated group only. The inhibition of leukocyte accumulation by diclofenac did not translate into a reduction of tissue damage or a promotion of tissue healing, because the mechanical properties of injured Achilles tendons were identical in placebo and diclofenac-treated groups. These results indicate that diclofenac reduced both edema and the accumulation of inflammatory cells within the paratenon but provided no biochemical or functional benefits for the Achilles tendon.
Collapse
Affiliation(s)
- David Marsolais
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec, Canada
| | | | | |
Collapse
|
30
|
Kohyama T, Liu X, Zhu YK, Wen FQ, Wang HJ, Fang Q, Kobayashi T, Rennard SI. Phosphodiesterase 4 inhibitor cilomilast inhibits fibroblast-mediated collagen gel degradation induced by tumor necrosis factor-alpha and neutrophil elastase. Am J Respir Cell Mol Biol 2002; 27:487-94. [PMID: 12356583 DOI: 10.1165/rcmb.4818] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tissue destruction, resulting in emphysema, can be a consequence of several pathologic processes. The current study evaluated the effects of the phosphodiesterase (PDE)4 inhibitor, cilomilast, and other PDE inhibitors on the ability of fibroblasts to degrade extracellular matrix. Using the three-dimensional collagen gel culture system, fibroblasts (HFL-1) were cultured with tumor necrosis factor (TNF)-alpha, known to induce matrix metalloproteinase (MMP) release, and/or neutrophil elastase (NE), which can induce MMP activation. On Day 4, gels containing TNF-alpha and NE were significantly degraded (20.8 +/- 2.9% of original collagen content). Cilomilast (10 micro M) inhibited this degradation (84.4 +/- 8.4%). Amrinone, a PDE3 inhibitor, and zaprinast, a PDE5 inhibitor, had no effect. Gelatin zymography and immunoblotting revealed that fibroblasts cultured with TNF-alpha released increased amounts of latent MMP-1 and -9. The addition of NE resulted in the conversion of MMP-1 and -9 to their active forms, indicative of collagen degradation. Cilomilast inhibited the release of MMP-1 and -9, as well as conversion of MMP-1 to its active form. Using real-time PCR analysis, cilomilast's effect on MMP-1 release was not associated with the proteinase's mRNA expression, suggesting that the inhibition of release is regulated at the post-transcriptional level. These results suggest that cilomilast may be a potentially effective therapeutic agent in diseases characterized by excessive tissue destruction, such as emphysema.
Collapse
Affiliation(s)
- Tadashi Kohyama
- Department of Respiratory Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
This review summarizes articles written about psoriatic arthritis in the past year. It concentrates on clinical and epidemiologic issues, pathogenesis and treatment, and updates the reader regarding new concepts in psoriatic arthritis.
Collapse
|
32
|
Zhu Y, Sköld CM, Liu X, Wang H, Kohyama T, Wen FQ, Ertl RF, Rennard SI. Fibroblasts and monocyte macrophages contract and degrade three-dimensional collagen gels in extended co-culture. Respir Res 2002; 2:295-9. [PMID: 11686899 PMCID: PMC59519 DOI: 10.1186/rr72] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Revised: 07/13/2001] [Accepted: 08/08/2001] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inflammatory cells are believed to play a prominent role during tissue repair and remodeling. Since repair processes develop and mature over extended time frames, the present study was designed to evaluate the effect of monocytes and fibroblasts in prolonged culture in three-dimensional collagen gels. METHODS Blood monocytes from healthy donors and human fetal lung fibroblasts were cast into type I collagen gels and maintained in floating cultures for three weeks. RESULTS Fibroblast-mediated gel contraction was initially inhibited by the presence of monocytes (P < 0.01). However, with extended co-culture, contraction of the collagen gels was greatly augmented (P < 0.01). In addition, with extended co-culture, degradation of collagen in the gels occurred. The addition of neutrophil elastase to the medium augmented both contraction and degradation (P < 0.01). Prostaglandin E2 production was significantly increased by co-culture and its presence attenuated collagen degradation. CONCLUSION The current study, therefore, demonstrates that interaction between monocytes and fibroblasts can contract and degrade extracellular matrix in extended culture.
Collapse
Affiliation(s)
- Yunkui Zhu
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Xiangde Liu
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hangjun Wang
- Mount Sinai Hospital, Pathology and Laboratory Medicine, Toronto, Ontario, Canada
| | | | - Fu-Qiang Wen
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ronald F Ertl
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|