1
|
Lin Q, Hu S, Wu Z, Huang Y, Wang S, Shi W, Zhu B. Comparative chloroplast genomics provides insights into the phylogenetic relationships and evolutionary history for Actinidia species. Sci Rep 2025; 15:13291. [PMID: 40246989 PMCID: PMC12006428 DOI: 10.1038/s41598-025-95789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Actinidia species are fruit trees with various functions, such as providing edible fruit, serving as ornamental plants, and having medicinal benefits. However, the taxonomy of Actinidia species is controversial due to widespread hybridization, the history of divergence and polyploid speciation among Actinidia species also remains unclear. In this study, we conducted comparative analyses of the chloroplast genomes and ploidy among multiple Actinidia species. The genes clpP, infA, ndhD, ndhK, and rpl20 were absent from these chloroplast genomes. The ycf2 and rpl20 genes in the Actinidia species were under positive selection. Several regions (rps16-trnQ-UUG, trnS-GCU-trnR-UCU, ndhC-trnV-UAC, rbcL-accD, rps12-psbB, trnN-GUU-ndhF, ycf1-trnN-GUU, and trnH-GUG-psbA) and genes (ycf1, ycf2, accD, rpl20) exhibited high variability, which could potentially serve as molecular markers in species delineation and other phylogenetic studies. Through divergence time estimation, the Actinidia genus originated 23 million years ago (Ma), and experienced a tetraploidization event in ~ 20 Ma. Subsequently, Actinidia has undergone extensive diploidization. Our findings will provide valuable information in species identification, breeding programs, and conservation efforts for Actinidia species.
Collapse
Affiliation(s)
- Qianhui Lin
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Siqi Hu
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhenhua Wu
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yahui Huang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuo Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wenbo Shi
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bingyue Zhu
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
2
|
Chen Y, Zhao Y, Yan Q, Wu W, Lin Q, Chen G, Zheng Y, Huang M, Fan S, Lin Y. Characterization and Phylogenetic Analysis of the First Complete Chloroplast Genome of Shizhenia pinguicula (Orchidaceae: Orchideae). Genes (Basel) 2024; 15:1488. [PMID: 39596688 PMCID: PMC11593919 DOI: 10.3390/genes15111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Genomic analysis is crucial for better understanding the evolutionary history of species and for their conservation. Shizhenia pinguicula is a rare medicinal plant endemic to China. However, the complete chloroplast genome of this species has not been reported to date. Insufficient genomic research on S. pinguicula has hindered effective conservation efforts for this valuable plant. METHODS In this study, we sequenced and assembled the first complete chloroplast genome of S. pinguicula using Illumina sequencing technology. We conducted a comparative analysis of its chloroplast genome with related species and reconstructed phylogenetic relationships. RESULTS The chloroplast genome of S. pinguicula exhibited a typical quadripartite structure with a length of 158,658 bp. A total of 123 genes, 118 simple sequence repeats, and 51 dispersed repetitive sequences were identified. The inverted repeat boundaries were significantly expanded, along with the pseudogenization and loss of multiple NDH genes. Codon usage bias is primarily influenced by natural selection and other factors, with the ycf3 gene under positive selection. Additionally, 10 hypervariable regions were detected for species identification and evolutionary studies. Phylogenetic analysis indicated that Ponerorchis gracilis and Hemipilia yajiangensis form a clade, with S. pinguicula as their sister species, located at the basal position of the Ponerorchis-Hemipilia alliance. CONCLUSIONS The chloroplast genome structure and gene content of S. pinguicula exhibit certain degrees of variation compared to other species within the Orchidinae subtribe. This genome should be useful for further investigations into the biology of Shizhenia and the development of biodiversity conservation strategies.
Collapse
Affiliation(s)
- Yuan Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.C.); (Y.Z.); (W.W.); (Q.L.); (Y.Z.); (M.H.)
| | - Yanlin Zhao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.C.); (Y.Z.); (W.W.); (Q.L.); (Y.Z.); (M.H.)
| | - Quan Yan
- College of Computer, National University of Defense Technology, Changsha 410073, China;
| | - Wei Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.C.); (Y.Z.); (W.W.); (Q.L.); (Y.Z.); (M.H.)
| | - Qingqing Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.C.); (Y.Z.); (W.W.); (Q.L.); (Y.Z.); (M.H.)
| | - Guoqiang Chen
- College of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Yanfang Zheng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.C.); (Y.Z.); (W.W.); (Q.L.); (Y.Z.); (M.H.)
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.C.); (Y.Z.); (W.W.); (Q.L.); (Y.Z.); (M.H.)
| | - Shiming Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.C.); (Y.Z.); (W.W.); (Q.L.); (Y.Z.); (M.H.)
| | - Yanxiang Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.C.); (Y.Z.); (W.W.); (Q.L.); (Y.Z.); (M.H.)
- Department of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
3
|
Ermakova M, Woodford R, Fitzpatrick D, Nix SJ, Zwahlen SM, Farquhar GD, von Caemmerer S, Furbank RT. Chloroplast NADH dehydrogenase-like complex-mediated cyclic electron flow is the main electron transport route in C 4 bundle sheath cells. THE NEW PHYTOLOGIST 2024; 243:2187-2200. [PMID: 39036838 DOI: 10.1111/nph.19982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/23/2024] [Indexed: 07/23/2024]
Abstract
The superior productivity of C4 plants is achieved via a metabolic C4 cycle which acts as a CO2 pump across mesophyll and bundle sheath (BS) cells and requires an additional input of energy in the form of ATP. The importance of chloroplast NADH dehydrogenase-like complex (NDH) operating cyclic electron flow (CEF) around Photosystem I (PSI) for C4 photosynthesis has been shown in reverse genetics studies but the contribution of CEF and NDH to cell-level electron fluxes remained unknown. We have created gene-edited Setaria viridis with null ndhO alleles lacking functional NDH and developed methods for quantification of electron flow through NDH in BS and mesophyll cells. We show that CEF accounts for 84% of electrons reducing PSI in BS cells and most of those electrons are delivered through NDH while the contribution of the complex to electron transport in mesophyll cells is minimal. A decreased leaf CO2 assimilation rate and growth of plants lacking NDH cannot be rescued by supplying additional CO2. Our results indicate that NDH-mediated CEF is the primary electron transport route in BS chloroplasts highlighting the essential role of NDH in generating ATP required for CO2 fixation by the C3 cycle in BS cells.
Collapse
Affiliation(s)
- Maria Ermakova
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, 2600, Australia
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Russell Woodford
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, 2600, Australia
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Duncan Fitzpatrick
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, 2600, Australia
| | - Samuel J Nix
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, 2600, Australia
| | - Soraya M Zwahlen
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, 2600, Australia
- Division of Developmental Biology, European Molecular Biology Laboratory, 69126, Heidelberg, Germany
| | - Graham D Farquhar
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, 2600, Australia
| | - Susanne von Caemmerer
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, 2600, Australia
| | - Robert T Furbank
- Division of Plant Science, Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Acton, ACT, 2600, Australia
| |
Collapse
|
4
|
Park S, An B, Park S. Dynamic changes in the plastid and mitochondrial genomes of the angiosperm Corydalis pauciovulata (Papaveraceae). BMC PLANT BIOLOGY 2024; 24:303. [PMID: 38644497 PMCID: PMC11034061 DOI: 10.1186/s12870-024-05025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Corydalis DC., the largest genus in the family Papaveraceae, comprises > 465 species. Complete plastid genomes (plastomes) of Corydalis show evolutionary changes, including syntenic arrangements, gene losses and duplications, and IR boundary shifts. However, little is known about the evolution of the mitochondrial genome (mitogenome) in Corydalis. Both the organelle genomes and transcriptomes are needed to better understand the relationships between the patterns of evolution in mitochondrial and plastid genomes. RESULTS We obtained complete plastid and mitochondrial genomes from Corydalis pauciovulata using a hybrid assembly of Illumina and Oxford Nanopore Technologies reads to assess the evolutionary parallels between the organelle genomes. The mitogenome and plastome of C. pauciovulata had sizes of 675,483 bp and 185,814 bp, respectively. Three ancestral gene clusters were missing from the mitogenome, and expanded IR (46,060 bp) and miniaturized SSC (202 bp) regions were identified in the plastome. The mitogenome and plastome of C. pauciovulata contained 41 and 67 protein-coding genes, respectively; the loss of genes was a plastid-specific event. We also generated a draft genome and transcriptome for C. pauciovulata. A combination of genomic and transcriptomic data supported the functional replacement of acetyl-CoA carboxylase subunit β (accD) by intracellular transfer to the nucleus in C. pauciovulata. In contrast, our analyses suggested a concurrent loss of the NADH-plastoquinone oxidoreductase (ndh) complex in both the nuclear and plastid genomes. Finally, we performed genomic and transcriptomic analyses to characterize DNA replication, recombination, and repair (DNA-RRR) genes in C. pauciovulata as well as the transcriptomes of Liriodendron tulipifera and Nelumbo nuicifera. We obtained 25 DNA-RRR genes and identified their structure in C. pauciovulata. Pairwise comparisons of nonsynonymous (dN) and synonymous (dS) substitution rates revealed that several DNA-RRR genes in C. pauciovulata have higher dN and dS values than those in N. nuicifera. CONCLUSIONS The C. pauciovulata genomic data generated here provide a valuable resource for understanding the evolution of Corydalis organelle genomes. The first mitogenome of Papaveraceae provides an example that can be explored by other researchers sequencing the mitogenomes of related plants. Our results also provide fundamental information about DNA-RRR genes in Corydalis and their related rate variation, which elucidates the relationships between DNA-RRR genes and organelle genome stability.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
5
|
Fu CN, Wicke S, Zhu AD, Li DZ, Gao LM. Distinctive plastome evolution in carnivorous angiosperms. BMC PLANT BIOLOGY 2023; 23:660. [PMID: 38124058 PMCID: PMC10731798 DOI: 10.1186/s12870-023-04682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Susann Wicke
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
- Späth-Arboretum of the Humboldt-University Berlin, Berlin, Germany
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
6
|
Köhler M, Reginato M, Jin JJ, Majure LC. More than a spiny morphology: plastome variation in the prickly pear cacti (Opuntieae). ANNALS OF BOTANY 2023; 132:771-786. [PMID: 37467174 PMCID: PMC10799996 DOI: 10.1093/aob/mcad098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far. METHODS Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes. KEY RESULTS Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny. CONCLUSIONS Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.
Collapse
Affiliation(s)
- Matias Köhler
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos, Sorocaba, SP, Brazil
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Reginato
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jian-Jun Jin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Lucas C Majure
- University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, FL, USA
| |
Collapse
|
7
|
Moghaddam M, Wojciechowski MF, Kazempour-Osaloo S. Characterization and comparative analysis of the complete plastid genomes of four Astragalus species. PLoS One 2023; 18:e0286083. [PMID: 37220139 DOI: 10.1371/journal.pone.0286083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
Astragalus is the largest flowering plant genus. We assembled the plastid genomes of four Astragalus species (Astragalus iranicus, A. macropelmatus, A. mesoleios, A. odoratus) using next-generation sequencing and analyzed their plastomes including genome organization, codon usage, nucleotide diversity, prediction of RNA editing and etc. The total length of the newly sequenced Astragalus plastomes ranged from 121,050 bp to 123,622 bp, with 110 genes comprising 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes. Comparative analysis of the chloroplast genomes of Astragalus revealed several hypervariable regions comprising three non-coding sites (trnQ(UUG)-accD, rps7 -trnV(GAC) and trnR(ACG)-trnN(GUU)) and four protein-coding genes (ycf1, ycf2, accD and clpP), which have potential as molecular markers. Positive selection signatures were found in five genes in Astragalus species including rps11, rps15, accD, clpP and ycf1. The newly sequenced species, A. macropelmatus, has an approximately 13-kb inversion in IR region. Phylogenetic analysis based on 75 protein-coding gene sequences confirmed that Astragalus form a monophyletic clade within the tribe Galegeae and Oxytropis is sister group to the Coluteoid clade. The results of this study may helpful in elucidating the chloroplast genome structure, understanding the evolutionary dynamics at genus Astragalus and IRLC levels and investigating the phylogenetic relationships. Moreover, the newly plastid genomes sequenced have been increased the plastome data resources on Astragalus that can be useful in further phylogenomic studies.
Collapse
Affiliation(s)
- Mahtab Moghaddam
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Martin F Wojciechowski
- School of Life Science, Arizona State University, Tempe, Arizona, United States of America
| | - Shahrokh Kazempour-Osaloo
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Ahmad W, Asaf S, Al-Rawahi A, Al-Harrasi A, Khan AL. Comparative plastome genomics, taxonomic delimitation and evolutionary divergences of Tetraena hamiensis var. qatarensis and Tetraena simplex (Zygophyllaceae). Sci Rep 2023; 13:7436. [PMID: 37156827 PMCID: PMC10167353 DOI: 10.1038/s41598-023-34477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
The Zygophyllum and Tetraena genera are intriguingly important ecologically and medicinally. Based on morphological characteristics, T. hamiensis var. qatarensis, and T. simplex were transferred from Zygophyllum to Tetraena with the least genomic datasets available. Hence, we sequenced the T. hamiensis and T. simplex and performed in-depth comparative genomics, phylogenetic analysis, and estimated time divergences. The complete plastomes ranged between 106,720 and 106,446 bp-typically smaller than angiosperms plastomes. The plastome circular genomes are divided into large single-copy regions (~ 80,964 bp), small single-copy regions (~ 17,416 bp), and two inverted repeats regions (~ 4170 bp) in both Tetraena species. An unusual shrinkage of IR regions 16-24 kb was identified. This resulted in the loss of 16 genes, including 11 ndh genes which encode the NADH dehydrogenase subunits, and a significant size reduction of Tetraena plastomes compared to other angiosperms. The inter-species variations and similarities were identified using genome-wide comparisons. Phylogenetic trees generated by analyzing the whole plastomes, protein-coding genes, matK, rbcL, and cssA genes exhibited identical topologies, indicating that both species are sisters to the genus Tetraena and may not belong to Zygophyllum. Similarly, based on the entire plastome and proteins coding genes datasets, the time divergence of Zygophyllum and Tetraena was 36.6 Ma and 34.4 Ma, respectively. Tetraena stem ages were 31.7 and 18.2 Ma based on full plastome and protein-coding genes. The current study presents the plastome as a distinguishing and identification feature among the closely related Tetraena and Zygophyllum species. It can be potentially used as a universal super-barcode for identifying plants.
Collapse
Affiliation(s)
- Waqar Ahmad
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman.
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, USA.
| |
Collapse
|
9
|
Silva SR, Miranda VFO, Michael TP, Płachno BJ, Matos RG, Adamec L, Pond SLK, Lucaci AG, Pinheiro DG, Varani AM. The phylogenomics and evolutionary dynamics of the organellar genomes in carnivorous Utricularia and Genlisea species (Lentibulariaceae). Mol Phylogenet Evol 2023; 181:107711. [PMID: 36693533 DOI: 10.1016/j.ympev.2023.107711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Utricularia and Genlisea are highly specialized carnivorous plants whose phylogenetic history has been poorly explored using phylogenomic methods. Additional sampling and genomic data are needed to advance our phylogenetic and taxonomic knowledge of this group of plants. Within a comparative framework, we present a characterization of plastome (PT) and mitochondrial (MT) genes of 26 Utricularia and six Genlisea species, with representatives of all subgenera and growth habits. All PT genomes maintain similar gene content, showing minor variation across the genes located between the PT junctions. One exception is a major variation related to different patterns in the presence and absence of ndh genes in the small single copy region, which appears to follow the phylogenetic history of the species rather than their lifestyle. All MT genomes exhibit similar gene content, with most differences related to a lineage-specific pseudogenes. We find evidence for episodic positive diversifying selection in PT and for most of the Utricularia MT genes that may be related to the current hypothesis that bladderworts' nuclear DNA is under constant ROS oxidative DNA damage and unusual DNA repair mechanisms, or even low fidelity polymerase that bypass lesions which could also be affecting the organellar genomes. Finally, both PT and MT phylogenetic trees were well resolved and highly supported, providing a congruent phylogenomic hypothesis for Utricularia and Genlisea clade given the study sampling.
Collapse
Affiliation(s)
- Saura R Silva
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Vitor F O Miranda
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Cracow, Poland.
| | - Ramon G Matos
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Lubomir Adamec
- Department of Experimental and Functional Morphology, Institute of Botany CAS, Dukelská 135, CZ-379 01 Třeboň, Czech Republic.
| | - Sergei L K Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Daniel G Pinheiro
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Alessandro M Varani
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| |
Collapse
|
10
|
Banerjee A, Stefanović S. A comparative study across the parasitic plants of Cuscuta subgenus Grammica (Convolvulaceae) reveals a possible loss of the plastid genome in its section Subulatae. PLANTA 2023; 257:66. [PMID: 36826697 DOI: 10.1007/s00425-023-04099-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Most species in Cuscuta subgenus Grammica retain many photosynthesis-related plastid genes, generally under purifying selection. A group of holoparasitic species in section Subulatae may have lost their plastid genomes entirely. The c. 153 species of plants belonging to Cuscuta subgenus Grammica are all obligate stem parasites. However, some have completely lost the ability to conduct photosynthesis while others retain photosynthetic machinery and genes. The plastid genome that primarily encodes key photosynthesis genes functions as a bellwether for how reliant plants are on primary production. This research assembles and analyses 17 plastomes across Cuscuta subgenus Grammica with the aim of characterizing the state of the plastome in each of its sections. By comparing the structure and content of plastid genomes across the subgenus, as well as by quantifying the selection acting upon each gene, we reconstructed the patterns of plastome change within the phylogenetic context for this group. We found that species in 13 of the 15 sections that comprise Grammica retain the bulk of plastid photosynthesis genes and are thus hemiparasitic. The complete loss of photosynthesis can be traced to two clades: the entire section Subulatae and a complex of three species within section Ceratophorae. We were unable to recover any significant plastome sequences from section Subulatae, suggesting that plastomes in these species are either drastically reduced or lost entirely.
Collapse
Affiliation(s)
- Arjan Banerjee
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 2Z9, Canada.
| | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
11
|
Comparative Analyses of Chloroplast Genomes for Parasitic Species of Santalales in the Light of Two Newly Sequenced Species, Taxillus nigrans and Scurrula parasitica. Genes (Basel) 2023; 14:genes14030560. [PMID: 36980832 PMCID: PMC10048710 DOI: 10.3390/genes14030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
When a flowering plant species changes its life history from self-supply to parasite, its chloroplast genomes may have experienced functional physical reduction, and gene loss. Most species of Santalales are hemiparasitic and few studies focus on comparing the chloroplast genomes of the species from this order. In this study, we collected and compared chloroplast genomes of 12 species of Santalales and sequenced the chloroplast genomes of Taxillus nigrans and Scurrula parasitica for the first time. The chloroplast genomes for these species showed typical quadripartite structural organization. Phylogenetic analysis suggested that these 12 species of Santalales clustered into three clades: Viscum (4 spp.) and Osyris (1 sp.) in the Santalaceae and Champereia (1 sp.) in the Opiliaceae formed one clade, while Taxillus (3 spp.) and Scurrula (1 sp.) in the Loranthaceae and Schoepfia (1 sp.) in the Schoepfiaceae formed another clade. Erythropalum (1 sp.), in the Erythropalaceae, appeared as a third, most distant, clade within the Santalales. In addition, both Viscum and Taxillus are monophyletic, and Scurrula is sister to Taxillus. A comparative analysis of the chloroplast genome showed differences in genome size and the loss of genes, such as the ndh genes, infA genes, partial ribosomal genes, and tRNA genes. The 12 species were classified into six categories by the loss, order, and structure of genes in the chloroplast genome. Each of the five genera (Viscum, Osyris, Champereia, Schoepfia, and Erythropalum) represented an independent category, while the three Taxillus species and Scurrula were classified into a sixth category. Although we found that different genes were lost in various categories, most genes related to photosynthesis were retained in the 12 species. Hence, the genetic information accorded with observations that they are hemiparasitic species. Our comparative genomic analyses can provide a new case for the chloroplast genome evolution of parasitic species.
Collapse
|
12
|
Seiml-Buchinger V, Reifschneider E, Bittner A, Baier M. Ascorbate peroxidase postcold regulation of chloroplast NADPH dehydrogenase activity controls cold memory. PLANT PHYSIOLOGY 2022; 190:1997-2016. [PMID: 35946757 PMCID: PMC9614503 DOI: 10.1093/plphys/kiac355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Exposure of Arabidopsis (Arabidopsis thaliana) to 4°C imprints a cold memory that modulates gene expression in response to a second (triggering) stress stimulus applied several days later. Comparison of plastid transcriptomes of cold-primed and control plants directly before they were exposed to the triggering stimulus showed downregulation of several subunits of chloroplast NADPH dehydrogenase (NDH) and regulatory subunits of ATP synthase. NDH is, like proton gradient 5 (PGR5)-PGR5-like1 (PGRL1), a thylakoid-embedded, ferredoxin-dependent plastoquinone reductase that protects photosystem I and stabilizes ATP synthesis by cyclic electron transport (CET). Like PGRL1A and PGRL1B transcript levels, ndhA and ndhD transcript levels decreased during the 24-h long priming cold treatment. PGRL1 transcript levels were quickly reset in the postcold phase, but expression of ndhA remained low. The transcript abundances of other ndh genes decreased within the next days. Comparison of thylakoid-bound ascorbate peroxidase (tAPX)-free and transiently tAPX-overexpressing or tAPX-downregulating Arabidopsis lines demonstrated that ndh expression is suppressed by postcold induction of tAPX. Four days after cold priming, when tAPX protein accumulation was maximal, NDH activity was almost fully lost. Lack of the NdhH-folding chaperonin Crr27 (Cpn60β4), but not lack of the NDH activity modulating subunits NdhM, NdhO, or photosynthetic NDH subcomplex B2 (PnsB2), strengthened priming regulation of zinc finger of A. thaliana 10, which is a nuclear-localized target gene of the tAPX-dependent cold-priming pathway. We conclude that cold-priming modifies chloroplast-to-nucleus stress signaling by tAPX-mediated suppression of NDH-dependent CET and that plastid-encoded NdhH, which controls subcomplex A assembly, is of special importance for memory stabilization.
Collapse
Affiliation(s)
- Victoria Seiml-Buchinger
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Elena Reifschneider
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Andras Bittner
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| |
Collapse
|
13
|
Park YS, Kang JS, Park JY, Shim H, Yang HO, Kang JH, Yang TJ. Analysis of the complete plastomes and nuclear ribosomal DNAs from Euonymus hamiltonianus and its relatives sheds light on their diversity and evolution. PLoS One 2022; 17:e0275590. [PMID: 36197898 PMCID: PMC9534445 DOI: 10.1371/journal.pone.0275590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Euonymus hamiltonianus and its relatives (Celastraceae family) are used for ornamental and medicinal purposes. However, species identification in Euonymus is difficult due to their morphological diversity. Using plastid genome (plastome) data, we attempt to reveal phylogenetic relationship among Euonymus species and develop useful markers for molecular identification. We assembled the plastome and nuclear ribosomal DNA (nrDNA) sequences from five Euonymus lines collected from South Korea: three Euonymus hamiltonianus accessions, E. europaeus, and E. japonicus. We conducted an in-depth comparative analysis using ten plastomes, including other publicly available plastome data for this genus. The genome structures, gene contents, and gene orders were similar in all Euonymus plastomes in this study. Analysis of nucleotide diversity revealed six divergence hotspots in their plastomes. We identified 339 single nucleotide polymorphisms and 293 insertion or deletions among the four E. hamiltonianus plastomes, pointing to abundant diversity even within the same species. Among 77 commonly shared genes, 9 and 33 were identified as conserved genes in the genus Euonymus and E. hamiltonianus, respectively. Phylogenetic analysis based on plastome and nrDNA sequences revealed the overall consensus and relationships between plastomes and nrDNAs. Finally, we developed six barcoding markers and successfully applied them to 31 E. hamiltonianus lines collected from South Korea. Our findings provide the molecular basis for the classification and molecular taxonomic criteria for the genus Euonymus (at least in Korea), which should aid in more objective classification within this genus. Moreover, the newly developed markers will be useful for understanding the species delimitation of E. hamiltonianus and closely related species.
Collapse
Affiliation(s)
- Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | | | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
14
|
Vera-Paz SI, Díaz Contreras Díaz DD, Jost M, Wanke S, Rossado AJ, Hernández-Gutiérrez R, Salazar GA, Magallón S, Gouda EJ, Ramírez-Morillo IM, Donadío S, Granados Mendoza C. New plastome structural rearrangements discovered in core Tillandsioideae (Bromeliaceae) support recently adopted taxonomy. FRONTIERS IN PLANT SCIENCE 2022; 13:924922. [PMID: 35982706 PMCID: PMC9378858 DOI: 10.3389/fpls.2022.924922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Full plastome sequences for land plants have become readily accessible thanks to the development of Next Generation Sequencing (NGS) techniques and powerful bioinformatic tools. Despite this vast amount of genomic data, some lineages remain understudied. Full plastome sequences from the highly diverse (>1,500 spp.) subfamily Tillandsioideae (Bromeliaceae, Poales) have been published for only three (i.e., Guzmania, Tillandsia, and Vriesea) out of 22 currently recognized genera. Here, we focus on core Tillandsioideae, a clade within subfamily Tillandsioideae, and explore the contribution of individual plastid markers and data categories to inform deep divergences of a plastome phylogeny. We generated 37 high quality plastome assemblies and performed a comparative analysis in terms of plastome structure, size, gene content and order, GC content, as well as number and type of repeat motifs. Using the obtained phylogenetic context, we reconstructed the evolution of these plastome attributes and assessed if significant shifts on the evolutionary traits' rates have occurred in the evolution of the core Tillandsioideae. Our results agree with previously published phylogenetic hypotheses based on plastid data, providing stronger statistical support for some recalcitrant nodes. However, phylogenetic discordance with previously published nuclear marker-based hypotheses was found. Several plastid markers that have been consistently used to address phylogenetic relationships within Tillandsioideae were highly informative for the retrieved plastome phylogeny and further loci are here identified as promising additional markers for future studies. New lineage-specific plastome rearrangements were found to support recently adopted taxonomic groups, including large inversions, as well as expansions and contractions of the inverted repeats. Evolutionary trait rate shifts associated with changes in size and GC content of the plastome regions were found across the phylogeny of core Tillandsioideae.
Collapse
Affiliation(s)
- Sandra I. Vera-Paz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel D. Díaz Contreras Díaz
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wanke
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Andrés J. Rossado
- Laboratorio de Sistemática de Plantas Vasculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rebeca Hernández-Gutiérrez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Gerardo A. Salazar
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric J. Gouda
- Botanical Garden, Utrecht University, Utrecht, Netherlands
| | | | - Sabina Donadío
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Buenos Aires, Argentina
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Qu XJ, Zhang XJ, Cao DL, Guo XX, Mower JP, Fan SJ. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes. Mol Phylogenet Evol 2022; 174:107544. [PMID: 35690375 DOI: 10.1016/j.ympev.2022.107544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Koenigia, a genus proposed by Linnaeus, has a contentious taxonomic history. In particular, relationships among species and the circumscription of the genus relative to Aconogonon remain uncertain. To explore phylogenetic relationships of Koenigia with other members of tribe Persicarieae and to establish the timing of major evolutionary diversification events, genome skimming of organellar sequences was used to assemble plastomes and mitochondrial genes from 15 individuals representing 13 species. Most Persicarieae plastomes exhibit a conserved structure and content relative to other flowering plants. However, Koenigia delicatula has lost functional copies of all ndh genes and the intron from atpF. In addition, the rpl32 gene was relocated in the K. delicatula plastome, which likely occurred via overlapping inversions or differential expansion and contraction of the inverted repeat. The highly supported but conflicting relationships between plastome and mitochondrial trees and among gene trees complicates the circumscription of Koenigia, which could be caused by rapid diversification within a short period. Moreover, the plastome and mitochondrial trees revealed correlated variation in substitution rates among Persicarieae species, suggesting a shared underlying mechanism promoting evolutionary rate variation in both organellar genomes. The divergence of dwarf K. delicatula from other Koenigia species may be associated with the well-known Eocene Thermal Maximum 2 or Early Eocene Climatic Optimum event, while diversification of the core-Koenigia clade associates with the Mid-Miocene Climatic Optimum and the uplift of Qinghai-Tibetan Plateau and adjacent areas.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xiu-Xiu Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China.
| |
Collapse
|
16
|
Kim TH, Kim JH. Molecular Phylogeny and Historical Biogeography of Goodyera R. Br. (Orchidaceae): A Case of the Vicariance Between East Asia and North America. FRONTIERS IN PLANT SCIENCE 2022; 13:850170. [PMID: 35586214 PMCID: PMC9108766 DOI: 10.3389/fpls.2022.850170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Understanding of intercontinental distribution in the Northern Hemisphere has attracted a lot of attention from botanists. However, although Orchidaceae is the largest group of angiosperms, biogeographical studies on the disjunctive pattern have not been sufficient for this family. Goodyera R. Br. (tribe Cranichideae, subfamily Orchidoideae, family Orchidaceae) is widely distributed in temperate and tropical regions. Although the phylogenetic relationship of Goodyera inferred from both morphological and molecular data has been conducted, the sampled taxa were mainly distributed in Asia regions that resulted in non-monophyly of this genus. In this study, the complete plastid genomes of Goodyera, generated by next-generation sequencing (NGS) technique and sampled in East Asia and North America, were used to reconstruct phylogeny and explore the historical biogeography. A total of 18 Goodyera species including seven newly sequenced species were analyzed. Based on 79 protein-coding genes, the phylogenetic analysis revealed that Goodyera could be subdivided into four subclades with high support values. The polyphyletic relationships among Goodyera taxa were confirmed, and the unclear position of G. foliosa was also resolved. The datasets that are composed of the 14 coding sequences (CDS) (matK, atpF, ndhK, accD, cemA, clpP, rpoA, rpl22, ndhF, ccsA, ndhD, ndhI, ndhA, and ycf 1) showed the same topology derived from 79 protein-coding genes. Molecular dating analyses revealed the origin of Goodyera in the mid-Miocene (15.75 Mya). Nearctic clade of Goodyera was diverged at 10.88 Mya from their most recent common ancestor (MRCA). The biogeographical reconstruction suggests that subtropical or tropical Asia is the origin of Goodyera and it has subsequently spread to temperate Asia during the Miocene. In addition, Nearctic clade is derived from East Asian species through Bering Land Bridge (BLB) during the Miocene. The speciation of Goodyera is most likely to have occurred during Miocene, and climatic and geological changes are thought to have had a part in this diversification. Our findings propose both origin and vicariance events of Goodyera for the first time and add an example for the biogeographical history of the Northern Hemisphere.
Collapse
|
17
|
Zhe M, Zhang L, Liu F, Huang Y, Fan W, Yang J, Zhu A. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes. PLANT DIVERSITY 2022; 44:316-321. [PMID: 35769591 PMCID: PMC9209865 DOI: 10.1016/j.pld.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/15/2023]
Abstract
Recent sequencing efforts have broadly uncovered the evolutionary trajectory of plastid genomes (plastomes) of flowering plants in diverse habitats, yet our knowledge of the evolution of plastid posttranscriptional modifications is limited. In this study, we generated 11 complete plastomes and performed ultra-deep transcriptome sequencing to investigate the co-evolution of plastid RNA editing and genetic variation in Cymbidium, a genus with diverse trophic lifestyles. Genome size and gene content is reduced in terrestrial and green mycoheterotrophic orchids relative to their epiphytic relatives. This could be partly due to extensive losses and pseudogenization of ndh genes for the plastid NADH dehydrogenase-like complex, but independent pseudogenization of ndh genes has also occurred in the epiphyte C. mannii, which was reported to use strong crassulacean acid metabolism photosynthesis. RNA editing sites are abundant but variable in number among Cymbidium plastomes. The nearly twofold variation in editing abundance is mainly due to extensive reduction of ancestral editing sites in ndh transcripts of terrestrial, mycoheterotrophic, and C. mannii plastomes. The co-occurrence of editing reduction and pseudogenization in ndh genes suggests functional constraints on editing machinery may be relaxed, leading to nonrandom loss of ancestral edited sites via reduced editing efficiency. This study represents the first systematic examination of RNA editing evolution linked to plastid genome variation in a single genus. We also propose an explanation for how genomic and posttranscriptional variations might be affected by lifestyle-associated ecological adaptation strategies in Cymbidium.
Collapse
Affiliation(s)
- Mengqing Zhe
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Huang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
18
|
Wang X, Dorjee T, Chen Y, Gao F, Zhou Y. The complete chloroplast genome sequencing analysis revealed an unusual IRs reduction in three species of subfamily Zygophylloideae. PLoS One 2022; 17:e0263253. [PMID: 35108324 PMCID: PMC8809528 DOI: 10.1371/journal.pone.0263253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
Tetraena mongolica, Zygophyllum xanthoxylon, and Z. fabago are three typical dryland plants with important ecological values in subfamily Zygophylloideae of Zygophyllaceae. Studies on the chloroplast genomes of them are favorable for understanding the diversity and phylogeny of Zygophyllaceae. Here, we sequenced and assembled the whole chloroplast genomes of T. mongolica, Z. xanthoxylon, and Z. fabago, and performed comparative genomic and phylogenetic analysis. The total size, structure, gene content and orders of these three chloroplast genomes were similar, and the three chloroplast genomes exhibited a typical quadripartite structure with a large single-copy region (LSC; 79,696–80,291 bp), a small single-copy region (SSC; 16,462–17,162 bp), and two inverted repeats (IRs; 4,288–4,413 bp). A total of 107 unique genes were identified from the three chloroplast genomes, including 70 protein-coding genes, 33 tRNAs, and 4 rRNAs. Compared with other angiosperms, the three chloroplast genomes were significantly reduced in overall length due to an unusual 16–24 kb shrinkage of IR regions and loss of the 11 genes which encoded subunits of NADH dehydrogenase. Genome-wide comparisons revealed similarities and variations between the three species and others. Phylogenetic analysis based on the three chloroplast genomes supported the opinion that Zygophyllaceae belonged to Zygophyllales in Fabids, and Z. xanthoxylon and Z. fabago belonged to Zygophyllum. The genome-wide comparisons revealed the similarity and variations between the chloroplast genomes of the three Zygophylloideae species and other plant species. This study provides a valuable molecular biology evidence for further studies of phylogenetic status of Zygophyllaceae.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Tashi Dorjee
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yiru Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fei Gao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- * E-mail: (FG); (YZ)
| | - Yijun Zhou
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- * E-mail: (FG); (YZ)
| |
Collapse
|
19
|
Moghaddam M, Ohta A, Shimizu M, Terauchi R, Kazempour-Osaloo S. The complete chloroplast genome of Onobrychis gaubae (Fabaceae-Papilionoideae): comparative analysis with related IR-lacking clade species. BMC PLANT BIOLOGY 2022; 22:75. [PMID: 35183127 PMCID: PMC8858513 DOI: 10.1186/s12870-022-03465-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/14/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plastome (Plastid genome) sequences provide valuable markers for surveying evolutionary relationships and population genetics of plant species. Papilionoideae (papilionoids) has different nucleotide and structural variations in plastomes, which makes it an ideal model for genome evolution studies. Therefore, by sequencing the complete chloroplast genome of Onobrychis gaubae in this study, the characteristics and evolutionary patterns of plastome variations in IR-loss clade were compared. RESULTS In the present study, the complete plastid genome of O. gaubae, endemic to Iran, was sequenced using Illumina paired-end sequencing and was compared with previously known genomes of the IRLC species of legumes. The O. gaubae plastid genome was 122,688 bp in length and included a large single-copy (LSC) region of 81,486 bp, a small single-copy (SSC) region of 13,805 bp and one copy of the inverted repeat (IRb) of 29,100 bp. The genome encoded 110 genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes and possessed 83 simple sequence repeats (SSRs) and 50 repeated structures with the highest proportion in the LSC. Comparative analysis of the chloroplast genomes across IRLC revealed three hotspot genes (ycf1, ycf2, clpP) which could be used as DNA barcode regions. Moreover, seven hypervariable regions [trnL(UAA)-trnT(UGU), trnT(GGU)-trnE(UUC), ycf1, ycf2, ycf4, accD and clpP] were identified within Onobrychis, which could be used to distinguish the Onobrychis species. Phylogenetic analyses revealed that O. gaubae is closely related to Hedysarum. The complete O. gaubae genome is a valuable resource for investigating evolution of Onobrychis species and can be used to identify related species. CONCLUSIONS Our results reveal that the plastomes of the IRLC are dynamic molecules and show multiple gene losses and inversions. The identified hypervariable regions could be used as molecular markers for resolving phylogenetic relationships and species identification and also provide new insights into plastome evolution across IRLC.
Collapse
Affiliation(s)
- Mahtab Moghaddam
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Atsushi Ohta
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003, Japan
| | - Ryohei Terauchi
- Graduate School of Agriculture, Kyoto University, Kyoto, 617-0001, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003, Japan
| | - Shahrokh Kazempour-Osaloo
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| |
Collapse
|
20
|
Yang T, Sahu SK, Yang L, Liu Y, Mu W, Liu X, Strube ML, Liu H, Zhong B. Comparative Analyses of 3,654 Plastid Genomes Unravel Insights Into Evolutionary Dynamics and Phylogenetic Discordance of Green Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:808156. [PMID: 35498716 PMCID: PMC9038950 DOI: 10.3389/fpls.2022.808156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The plastid organelle is essential for many vital cellular processes and the growth and development of plants. The availability of a large number of complete plastid genomes could be effectively utilized to understand the evolution of the plastid genomes and phylogenetic relationships among plants. We comprehensively analyzed the plastid genomes of Viridiplantae comprising 3,654 taxa from 298 families and 111 orders and compared the genomic organizations in their plastid genomic DNA among major clades, which include gene gain/loss, gene copy number, GC content, and gene blocks. We discovered that some important genes that exhibit similar functions likely formed gene blocks, such as the psb family presumably showing co-occurrence and forming gene blocks in Viridiplantae. The inverted repeats (IRs) in plastid genomes have doubled in size across land plants, and their GC content is substantially higher than non-IR genes. By employing three different data sets [all nucleotide positions (nt123), only the first and second codon positions (nt12), and amino acids (AA)], our phylogenomic analyses revealed Chlorokybales + Mesostigmatales as the earliest-branching lineage of streptophytes. Hornworts, mosses, and liverworts forming a monophylum were identified as the sister lineage of tracheophytes. Based on nt12 and AA data sets, monocots, Chloranthales and magnoliids are successive sister lineages to the eudicots + Ceratophyllales clade. The comprehensive taxon sampling and analysis of different data sets from plastid genomes recovered well-supported relationships of green plants, thereby contributing to resolving some long-standing uncertainties in the plant phylogeny.
Collapse
Affiliation(s)
- Ting Yang
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sunil Kumar Sahu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- *Correspondence: Sunil Kumar Sahu,
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yang Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Weixue Mu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Xin Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Huan Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Bojian Zhong,
| |
Collapse
|
21
|
Sabater B. On the Edge of Dispensability, the Chloroplast ndh Genes. Int J Mol Sci 2021; 22:12505. [PMID: 34830386 PMCID: PMC8621559 DOI: 10.3390/ijms222212505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.
Collapse
Affiliation(s)
- Bartolomé Sabater
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
22
|
Lee C, Ruhlman TA, Jansen RK. Unprecedented Intraindividual Structural Heteroplasmy in Eleocharis (Cyperaceae, Poales) Plastomes. Genome Biol Evol 2021; 12:641-655. [PMID: 32282915 PMCID: PMC7426004 DOI: 10.1093/gbe/evaa076] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Plastid genomes (plastomes) of land plants have a conserved quadripartite structure in a gene-dense unit genome consisting of a large inverted repeat that separates two single copy regions. Recently, alternative plastome structures were suggested in Geraniaceae and in some conifers and Medicago the coexistence of inversion isomers has been noted. In this study, plastome sequences of two Cyperaceae, Eleocharis dulcis (water chestnut) and Eleocharis cellulosa (gulf coast spikerush), were completed. Unlike the conserved plastomes in basal groups of Poales, these Eleocharis plastomes have remarkably divergent features, including large plastome sizes, high rates of sequence rearrangements, low GC content and gene density, gene duplications and losses, and increased repetitive DNA sequences. A novel finding among these features was the unprecedented level of heteroplasmy with the presence of multiple plastome structural types within a single individual. Illumina paired-end assemblies combined with PacBio single-molecule real-time sequencing, long-range polymerase chain reaction, and Sanger sequencing data identified at least four different plastome structural types in both Eleocharis species. PacBio long read data suggested that one of the four E. dulcis plastome types predominates.
Collapse
Affiliation(s)
- Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin.,Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Mower JP, Guo W, Partha R, Fan W, Levsen N, Wolff K, Nugent JM, Pabón-Mora N, González F. Plastomes from tribe Plantagineae (Plantaginaceae) reveal infrageneric structural synapormorphies and localized hypermutation for Plantago and functional loss of ndh genes from Littorella. Mol Phylogenet Evol 2021; 162:107217. [PMID: 34082129 DOI: 10.1016/j.ympev.2021.107217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Tribe Plantagineae (Plantaginaceae) comprises ~ 270 species in three currently recognized genera (Aragoa, Littorella, Plantago), of which Plantago is most speciose. Plantago plastomes exhibit several atypical features including large inversions, expansions of the inverted repeat, increased repetitiveness, intron losses, and gene-specific increases in substitution rate, but the prevalence of these plastid features among species and subgenera is unknown. To assess phylogenetic relationships and plastomic evolutionary dynamics among Plantagineae genera and Plantago subgenera, we generated 25 complete plastome sequences and compared them with existing plastome sequences from Plantaginaceae. Using whole plastome and partitioned alignments, our phylogenomic analyses provided strong support for relationships among major Plantagineae lineages. General plastid features-including size, GC content, intron content, and indels-provided additional support that reinforced major Plantagineae subdivisions. Plastomes from Plantago subgenera Plantago and Coronopus have synapomorphic expansions and inversions affecting the size and gene order of the inverted repeats, and particular genes near the inversion breakpoints exhibit accelerated nucleotide substitution rates, suggesting localized hypermutation associated with rearrangements. The Littorella plastome lacks functional copies of ndh genes, which may be related to an amphibious lifestyle and partial reliance on CAM photosynthesis.
Collapse
Affiliation(s)
- Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Wenhu Guo
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Raghavendran Partha
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Weishu Fan
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Nick Levsen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Kirsten Wolff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Jacqueline M Nugent
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Apartado 1226, Medellín, Colombia
| | - Favio González
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Instituto de Ciencias Naturales, Apartado 7495, Colombia
| |
Collapse
|
24
|
Ren F, Wang L, Li Y, Zhuo W, Xu Z, Guo H, Liu Y, Gao R, Song J. Highly variable chloroplast genome from two endangered Papaveraceae lithophytes Corydalis tomentella and Corydalis saxicola. Ecol Evol 2021; 11:4158-4171. [PMID: 33976800 PMCID: PMC8093665 DOI: 10.1002/ece3.7312] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/27/2023] Open
Abstract
The increasingly wide application of chloroplast (cp) genome super-barcode in taxonomy and the recent breakthrough in cp genetic engineering make the development of new cp gene resources urgent and significant. Corydalis is recognized as the most genotypes complicated and taxonomically challenging plant taxa in Papaveraceae. However, there currently are few reports about cp genomes of the genus Corydalis. In this study, we sequenced four complete cp genomes of two endangered lithophytes Corydalis saxicola and Corydalis tomentella in Corydalis, conducted a comparison of these cp genomes among each other as well as with others of Papaveraceae. The cp genomes have a large genome size of 189,029-190,247 bp, possessing a quadripartite structure and with two highly expanded inverted repeat (IR) regions (length: 41,955-42,350 bp). Comparison between the cp genomes of C. tomentella, C. saxicola, and Papaveraceae species, five NADH dehydrogenase-like genes (ndhF, ndhD, ndhL, ndhG, and ndhE) with psaC, rpl32, ccsA, and trnL-UAG normally located in the SSC region have migrated to IRs, resulting in IR expansion and gene duplication. An up to 9 kb inversion involving five genes (rpl23, ycf2, ycf15, trnI-CAU, and trnL-CAA) was found within IR regions. The accD gene was found to be absent and the ycf1 gene has shifted from the IR/SSC border to the SSC region as a single copy. Phylogenetic analysis based on the sequences of common CDS showed that the genus Corydalis is quite distantly related to the other genera of Papaveraceae, it provided a new clue for recent advocacy to establish a separate Fumariaceae family. Our results revealed one special cp genome structure in Papaveraceae, provided a useful resources for classification of the genus Corydalis, and will be valuable for understanding Papaveraceae evolutionary relationships.
Collapse
Affiliation(s)
- Fengming Ren
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | | | - Ying Li
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | - Wei Zhuo
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Zhichao Xu
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | | | - Yan Liu
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Ranran Gao
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
| | - Jingyuan Song
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| |
Collapse
|
25
|
Fu P, Sun S, Twyford AD, Li B, Zhou R, Chen S, Gao Q, Favre A. Lineage-specific plastid degradation in subtribe Gentianinae (Gentianaceae). Ecol Evol 2021; 11:3286-3299. [PMID: 33841784 PMCID: PMC8019047 DOI: 10.1002/ece3.7281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
The structure and sequence of plastid genomes is highly conserved across most land plants, except for a minority of lineages that show gene loss and genome degradation. Understanding the early stages of plastome degradation may provide crucial insights into the repeatability and predictability of genomic evolutionary trends. We investigated these trends in subtribe Gentianinae of the Gentianaceae, which encompasses ca. 450 species distributed around the world, particularly in alpine and subalpine environments. We sequenced, assembled, and annotated the plastomes of 41 species, representing all six genera in subtribe Gentianinae and all main sections of the species-rich genus Gentiana L. We reconstructed the phylogeny, estimated divergence times, investigated the phylogenetic distribution of putative gene losses, and related these to substitution rate shifts and species' habitats. We obtained a strongly supported topology consistent with earlier studies, with all six genera in Gentianinae recovered as monophyletic and all main sections of Gentiana having full support. While closely related species have very similar plastomes in terms of size and structure, independent gene losses, particularly of the ndh complex, have occurred in multiple clades across the phylogeny. Gene loss was usually associated with a shift in the boundaries of the small single-copy and inverted repeat regions. Substitution rates were variable between clades, with evidence for both elevated and decelerated rate shifts. Independent lineage-specific loss of ndh genes occurred at a wide range of times, from Eocene to Pliocene. Our study illustrates that diverse degradation patterns shape the evolution of the plastid in this species-rich plant group.
Collapse
Affiliation(s)
- Peng‐Cheng Fu
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shan‐Shan Sun
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Alex D. Twyford
- Ashworth LaboratoriesInstitute of Evolutionary BiologyThe University of EdinburghEdinburghUK
- Royal Botanic Garden EdinburghEdinburghUK
| | - Bei‐Bei Li
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Rui‐Qi Zhou
- School of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Shi‐Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Qing‐Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Qinghai Provincial Key Laboratory of Crop Molecular BreedingXiningChina
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
| |
Collapse
|
26
|
Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers. Int J Mol Sci 2021; 22:ijms22020641. [PMID: 33440692 PMCID: PMC7827865 DOI: 10.3390/ijms22020641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginellaceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Selaginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly. Comparative analyses of 19 lycophytes, including two Huperzia and one Isoetes species, revealed unique phylogenetic relationships between Selaginella species and related lycophytes, reflected by structural rearrangements involving two rounds of large inversions that resulted in dynamic changes between IR and DR blocks in the plastome sequence. Furthermore, we present other uncommon characteristics, including a small genome size, drastic reductions in gene and intron numbers, a high GC content, and extensive RNA editing. Although the 16 Selaginella species examined may not fully represent the genus, our findings suggest that Selaginella plastomes have undergone unique evolutionary events yielding genomic features unparalleled in other lycophytes, ferns, or seed plants.
Collapse
|
27
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
28
|
Storti M, Segalla A, Mellon M, Alboresi A, Morosinotto T. Regulation of electron transport is essential for photosystem I stability and plant growth. THE NEW PHYTOLOGIST 2020; 228:1316-1326. [PMID: 32367526 DOI: 10.1111/nph.16643] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic electron transport is regulated by cyclic and pseudocyclic electron flow (CEF and PCEF) to maintain the balance between light availability and metabolic demands. CEF transfers electrons from photosystem I to the plastoquinone pool with two mechanisms, dependent either on PGR5/PGRL1 or on the type I NADH dehydrogenase-like (NDH) complex. PCEF uses electrons from photosystem I to reduce oxygen and in many groups of photosynthetic organisms, but remarkably not in angiosperms, it is catalyzed by flavodiiron proteins (FLVs). In this study, Physcomitrella patens plants depleted in PGRL1, NDH and FLVs in different combinations were generated and characterized, showing that all these mechanisms are active in this moss. Surprisingly, in contrast to flowering plants, Physcomitrella patens can cope with the simultaneous inactivation of PGR5- and NDH-dependent CEF but, when FLVs are also depleted, plants show strong growth reduction and photosynthetic activity is drastically reduced. The results demonstrate that mechanisms for modulation of photosynthetic electron transport have large functional overlap but are together indispensable to protect photosystem I from damage and they are an essential component for photosynthesis in any light regime.
Collapse
Affiliation(s)
- Mattia Storti
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Anna Segalla
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Marco Mellon
- Department of Biology, University of Padova, Padova, 35121, Italy
| | | | | |
Collapse
|
29
|
Choi K, Weng ML, Ruhlman TA, Jansen RK. Extensive variation in nucleotide substitution rate and gene/intron loss in mitochondrial genomes of Pelargonium. Mol Phylogenet Evol 2020; 155:106986. [PMID: 33059063 DOI: 10.1016/j.ympev.2020.106986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/16/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
Geraniaceae organelle genomes have been shown to exhibit several highly unusual features compared to most other photosynthetic angiosperms. This includes massively rearranged plastomes with considerable size variation, extensive gene and intron loss, accelerated rates of nucleotide substitutions in both mitogenomes and plastomes, and biparental inheritance and cytonuclear incompatibility of the plastome. Most previous studies have focused on plastome evolution with mitogenome comparisons limited to only a few taxa or genes. In this study, mitogenomes and transcriptomes were examined for 27 species of Geraniales, including 13 species of Pelargonium. Extensive gene and intron losses were detected across the Geraniales with Pelargonium representing the most gene depauperate lineage in the family. Plotting these events on the Geraniaceae phylogenetic tree showed that gene losses occurred multiple times, whereas intron losses more closely reflected the relationships among taxa. In addition, P. australe acquired an intron by horizontal transfer. Comparisons of nucleotide substitution rates in Pelargonium showed that synonymous changes in nuclear genes were much lower than in mitochondrial genes. This is in contrast to the previously published studies that indicated that nuclear genes have 16 fold higher rates than mitochondrial genes across angiosperms. Elevated synonymous substitutions occurred for each mitochondrial gene in Pelargonium with the highest values 783 and 324 times higher than outgroups and other Geraniaceae, respectively. Pelargonium is one of four unrelated genera of angiosperms (Ajuga, Plantago and Silene) that have experienced highly accelerated nucleotide substitutions in mitogenomes. It is distinct from most angiosperms in also having elevated substitution rates in plastid genes but the cause of rate accelerations in Pelargonium plastomes and mitogenomes may be different.
Collapse
Affiliation(s)
- KyoungSu Choi
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA; Center for Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| |
Collapse
|
30
|
Storti M, Puggioni MP, Segalla A, Morosinotto T, Alboresi A. The chloroplast NADH dehydrogenase-like complex influences the photosynthetic activity of the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5538-5548. [PMID: 32497206 DOI: 10.1093/jxb/eraa274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Alternative electron pathways contribute to regulation of photosynthetic light reactions to adjust to metabolic demands in dynamic environments. The chloroplast NADH dehydrogenase-like (NDH) complex mediates the cyclic electron transport pathway around PSI in different cyanobacteria, algae, and plant species, but it is not fully conserved in all photosynthetic organisms. In order to assess how the physiological role of this complex changed during plant evolution, we isolated Physcomitrella patens lines knocked out for the NDHM gene that encodes a subunit fundamental for the activity of the complex. ndhm knockout mosses indicated high PSI acceptor side limitation upon abrupt changes in illumination. In P. patens, pseudo-cyclic electron transport mediated by flavodiiron proteins (FLVs) was also shown to prevent PSI over-reduction in plants exposed to light fluctuations. flva ndhm double knockout mosses had altered photosynthetic performance and growth defects under fluctuating light compared with the wild type and single knockout mutants. The results showed that while the contribution of NDH to electron transport is minor compared with FLV, NDH still participates in modulating photosynthetic activity, and it is critical to avoid PSI photoinhibition, especially when FLVs are inactive. The functional overlap between NDH- and FLV-dependent electron transport supports PSI activity and prevents its photoinhibition under light variations.
Collapse
Affiliation(s)
- Mattia Storti
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | | - Anna Segalla
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Tomas Morosinotto
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | |
Collapse
|
31
|
The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics. Biochem J 2020; 476:2743-2756. [PMID: 31654059 DOI: 10.1042/bcj20190365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
Abstract
The thylakoid NAD(P)H dehydrogenase-like (NDH) complex is a large protein complex that reduces plastoquinone and pumps protons into the lumen generating protonmotive force. In plants, the complex consists of both nuclear and chloroplast-encoded subunits. Despite its perceived importance for stress tolerance and ATP generation, chloroplast-encoded NDH subunits have been lost numerous times during evolution in species occupying seemingly unrelated environmental niches. We have generated a phylogenetic tree that reveals independent losses in multiple phylogenetic lineages, and we use this tree as a reference to discuss possible evolutionary contexts that may have relaxed selective pressure for retention of ndh genes. While we are still yet unable to pinpoint a singular specific lifestyle that negates the need for NDH, we are able to rule out several long-standing explanations. In light of this, we discuss the biochemical changes that would be required for the chloroplast to dispense with NDH functionality with regards to known and proposed NDH-related reactions.
Collapse
|
32
|
Folk RA, Sewnath N, Xiang CL, Sinn BT, Guralnick RP. Degradation of key photosynthetic genes in the critically endangered semi-aquatic flowering plant Saniculiphyllum guangxiense (Saxifragaceae). BMC PLANT BIOLOGY 2020; 20:324. [PMID: 32640989 PMCID: PMC7346412 DOI: 10.1186/s12870-020-02533-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plastid gene loss and pseudogenization has been widely documented in parasitic and mycoheterotrophic plants, which have relaxed selective constraints on photosynthetic function. More enigmatic are sporadic reports of pseudogenization and loss of important photosynthesis genes in lineages thought to be fully photosynthetic. Here we report the complete plastid genome of Saniculiphyllum guangxiense, a critically endangered and phylogenetically isolated plant lineage, along with genomic evidence of reduced chloroplast function. We also report 22 additional plastid genomes representing the diversity of its containing clade Saxifragales, characterizing gene content and placing variation in a broader phylogenetic context. RESULTS We find that the plastid genome of Saniculiphyllum has experienced pseudogenization of five genes of the ndh complex (ndhA, ndhB, ndhD, ndhF, and ndhK), previously reported in flowering plants with an aquatic habit, as well as the surprising pseudogenization of two genes more central to photosynthesis (ccsA and cemA), contrasting with strong phylogenetic conservatism of plastid gene content in all other sampled Saxifragales. These genes participate in photooxidative protection, cytochrome synthesis, and carbon uptake. Nuclear paralogs exist for all seven plastid pseudogenes, yet these are also unlikely to be functional. CONCLUSIONS Saniculiphyllum appears to represent the greatest degree of plastid gene loss observed to date in any fully photosynthetic lineage, perhaps related to its extreme habitat specialization, yet plastid genome length, structure, and substitution rate are within the variation previously reported for photosynthetic plants. These results highlight the increasingly appreciated dynamism of plastid genomes, otherwise highly conserved across a billion years of green plant evolution, in plants with highly specialized life history traits.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi, Mississippi State, USA.
| | - Neeka Sewnath
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
| | - Brandon T Sinn
- Department of Biology & Earth Science, Otterbein University, Westerville, OH, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Köhler M, Reginato M, Souza-Chies TT, Majure LC. Insights Into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies. FRONTIERS IN PLANT SCIENCE 2020; 11:729. [PMID: 32636853 PMCID: PMC7317007 DOI: 10.3389/fpls.2020.00729] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 05/22/2023]
Abstract
Chloroplast genomes (plastomes) are frequently treated as highly conserved among land plants. However, many lineages of vascular plants have experienced extensive structural rearrangements, including inversions and modifications to the size and content of genes. Cacti are one of these lineages, containing the smallest plastome known for an obligately photosynthetic angiosperm, including the loss of one copy of the inverted repeat (∼25 kb) and the ndh gene suite, but only a few cacti from the subfamily Cactoideae have been sufficiently characterized. Here, we investigated the variation of plastome sequences across the second-major lineage of the Cactaceae, the subfamily Opuntioideae, to address (1) how variable is the content and arrangement of chloroplast genome sequences across the subfamily, and (2) how phylogenetically informative are the plastome sequences for resolving major relationships among the clades of Opuntioideae. Our de novo assembly of the Opuntia quimilo plastome recovered an organelle of 150,347 bp in length with both copies of the inverted repeat and the presence of all the ndh gene suite. An expansion of the large single copy unit and a reduction of the small single copy unit was observed, including translocations and inversion of genes, as well as the putative pseudogenization of some loci. Comparative analyses among all clades within Opuntioideae suggested that plastome structure and content vary across taxa of this subfamily, with putative independent losses of the ndh gene suite and pseudogenization of genes across disparate lineages, further demonstrating the dynamic nature of plastomes in Cactaceae. Our plastome dataset was robust in resolving three tribes with high support within Opuntioideae: Cylindropuntieae, Tephrocacteae and Opuntieae. However, conflicting topologies were recovered among major clades when exploring different assemblies of markers. A plastome-wide survey for highly informative phylogenetic markers revealed previously unused regions for future use in Sanger-based studies, presenting a valuable dataset with primers designed for continued evolutionary studies across Cactaceae. These results bring new insights into the evolution of plastomes in cacti, suggesting that further analyses should be carried out to address how ecological drivers, physiological constraints and morphological traits of cacti may be related with the common rearrangements in plastomes that have been reported across the family.
Collapse
Affiliation(s)
- Matias Köhler
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Florida Museum of Natural History, University of Florida Herbarium (FLAS), Gainesville, FL, United States
| | - Marcelo Reginato
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Lucas C Majure
- Florida Museum of Natural History, University of Florida Herbarium (FLAS), Gainesville, FL, United States
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, United States
| |
Collapse
|
34
|
Tan Y, Zhang QS, Zhao W, Liu Z, Ma MY, Zhong MY, Wang MX. The highly efficient NDH-dependent photosystem I cyclic electron flow pathway in the marine angiosperm Zostera marina. PHOTOSYNTHESIS RESEARCH 2020; 144:49-62. [PMID: 32152819 DOI: 10.1007/s11120-020-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/03/2020] [Indexed: 05/13/2023]
Abstract
Zostera marina, a fully submerged marine angiosperm with a unique evolutionary history associated with its terrestrial origin, has distinct photochemical characteristics caused by its oxygen-evolving complex (OEC) being prone to deactivation in visible light. Based on the present phylogenetic analysis, the chloroplast NADPH dehydrogenase-like (NDH) complex was found to be completed in of Z. marina, unlike other marine plants, suggesting its crucial role. Thus, the responses of electron transport to irradiation were investigated through multiple chlorophyll fluorescence techniques and Western blot analysis. Moreover, the respective contribution of the two photosystem I cyclic electron flow (PSI-CEF) pathways to the generation of trans-thylakoid proton gradient (∆pH) was also examined using inhibitors. The contributions of the two PSI-CEF pathways to ∆pH were similar; furthermore, there was a trade-off between the two pathways under excess irradiation: the PGR5/L1-dependent PSI-CEF decreased gradually following its activation during the initial illumination, while NDH-dependent PSI-CEF was activated gradually with exposure duration. OEC inactivation was continuously under excess irradiation, which exhibits a positive linear correlation with the activation of NDH-dependent PSI-CEF. We suggest that PGR5/L1-dependent PSI-CEF was preferentially activated to handle the excess electron caused by the operation of OEC during the initial illumination. Subsequently, the increasing OEC inactivation with exposure duration resulted in a deficit of electrons. Limited electrons from PSI might preferentially synthesize NADPH, which could support the function of NDH-dependent PSI-CEF to generate ∆pH and ATP via reducing ferredoxin, thereby maintaining OEC stability.
Collapse
Affiliation(s)
- Ying Tan
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Quan Sheng Zhang
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China.
| | - Wei Zhao
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Zhe Liu
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Ming Yu Ma
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Ming Yu Zhong
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Meng Xin Wang
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| |
Collapse
|
35
|
Smidt EDC, Páez MZ, Vieira LDN, Viruel J, de Baura VA, Balsanelli E, de Souza EM, Chase MW. Characterization of sequence variability hotspots in Cranichideae plastomes (Orchidaceae, Orchidoideae). PLoS One 2020; 15:e0227991. [PMID: 31990943 PMCID: PMC6986716 DOI: 10.1371/journal.pone.0227991] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 11/26/2022] Open
Abstract
This study reports complete plastome sequences for six species of Neotropical Cranichideae and focuses on identification of the most variable regions (hotspots) in this group of orchids. These structure of these six plastomes is relatively conserved, exhibiting lengths ranging between 142,599 to 154,562 bp with 36.7% GC on average and exhibiting typical quadripartite arrangement (LSC, SSC and two IRs). Variation detected in the LSC/IR and SSC/IR junctions is explained by the loss of ndhF and ycf1 length variation. For the two genera of epiphytic clade in Spiranthinae, almost whole sets of the ndh-gene family were missing. Eight mutation hotspots were identified based on nucleotide diversity, sequence variability and parsimony-informative sites. Three of them (rps16-trnQ, trnT-trnL, rpl32-trnL) seem to be universal hotspots in the family, and the other five (trnG-trnR, trnR-atpA, trnP-psaJ, rpl32-infA, and rps15-ycf1) are described for the first time as orchid molecular hotspots. These regions have much more variation than all those used previously in phylogenetics of the group and offer useful plastid markers for phylogenetic, barcoding and population genetic studies. The use of whole plastomes or exclusive no-gap matrices also positioned with high support the holomycotrophic Rhizanthella among Orchidoideae plastomes in model-based analyses, showing the utility of plastomes for phylogenetic placement of this unusual genus.
Collapse
Affiliation(s)
| | - Michelle Zavala Páez
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Surrey, England, United Kingdom
| | - Valter Antônio de Baura
- Departamento de Bioquímica, Universidade Federal do Paraná, Núcleo de Fixação Biológica de Nitrogênio, Curitiba, Paraná, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica, Universidade Federal do Paraná, Núcleo de Fixação Biológica de Nitrogênio, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica, Universidade Federal do Paraná, Núcleo de Fixação Biológica de Nitrogênio, Curitiba, Paraná, Brazil
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond, Surrey, England, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
36
|
Silva SR, Pinheiro DG, Penha HA, Płachno BJ, Michael TP, Meer EJ, Miranda VFO, Varani AM. Intraspecific Variation within the Utricularia amethystina Species Morphotypes Based on Chloroplast Genomes. Int J Mol Sci 2019; 20:E6130. [PMID: 31817365 PMCID: PMC6940893 DOI: 10.3390/ijms20246130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023] Open
Abstract
Utricularia amethystina Salzm. ex A.St.-Hil. & Girard (Lentibulariaceae) is a highly polymorphic carnivorous plant taxonomically rearranged many times throughout history. Herein, the complete chloroplast genomes (cpDNA) of three U. amethystina morphotypes: purple-, white-, and yellow-flowered, were sequenced, compared, and putative markers for systematic, populations, and evolutionary studies were uncovered. In addition, RNA-Seq and RNA-editing analysis were employed for functional cpDNA evaluation. The cpDNA of three U. amethystina morphotypes exhibits typical quadripartite structure. Fine-grained sequence comparison revealed a high degree of intraspecific genetic variability in all morphotypes, including an exclusive inversion in the psbM and petN genes in U. amethystina yellow. Phylogenetic analyses indicate that U. amethystina morphotypes are monophyletic. Furthermore, in contrast to the terrestrial Utricularia reniformis cpDNA, the U. amethystina morphotypes retain all the plastid NAD(P)H-dehydrogenase (ndh) complex genes. This observation supports the hypothesis that the ndhs in terrestrial Utricularia were independently lost and regained, also suggesting that different habitats (aquatic and terrestrial) are not related to the absence of Utricularia ndhs gene repertoire as previously assumed. Moreover, RNA-Seq analyses recovered similar patterns, including nonsynonymous RNA-editing sites (e.g., rps14 and petB). Collectively, our results bring new insights into the chloroplast genome architecture and evolution of the photosynthesis machinery in the Lentibulariaceae.
Collapse
Affiliation(s)
- Saura R. Silva
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil; (D.G.P.); (H.A.P.)
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil; (D.G.P.); (H.A.P.)
| | - Helen A. Penha
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil; (D.G.P.); (H.A.P.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Krakow, Poland;
| | | | | | - Vitor F. O. Miranda
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Universidade Estadual Paulista (Unesp), Sao Paulo 14884-900, Brazil; (D.G.P.); (H.A.P.)
| |
Collapse
|
37
|
Gruzdev EV, Kadnikov VV, Beletsky AV, Kochieva EZ, Mardanov AV, Skryabin KG, Ravin NV. Plastid Genomes of Carnivorous Plants Drosera rotundifolia and Nepenthes × ventrata Reveal Evolutionary Patterns Resembling Those Observed in Parasitic Plants. Int J Mol Sci 2019; 20:E4107. [PMID: 31443555 PMCID: PMC6747624 DOI: 10.3390/ijms20174107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Carnivorous plants have the ability to capture and digest small animals as a source of additional nutrients, which allows them to grow in nutrient-poor habitats. Here we report the complete sequences of the plastid genomes of two carnivorous plants of the order Caryophyllales, Drosera rotundifolia and Nepenthes × ventrata. The plastome of D. rotundifolia is repeat-rich and highly rearranged. It lacks NAD(P)H dehydrogenase genes, as well as ycf1 and ycf2 genes, and three essential tRNA genes. Intron losses are observed in some protein-coding and tRNA genes along with a pronounced reduction of RNA editing sites. Only six editing sites were identified by RNA-seq in D. rotundifolia plastid genome and at most conserved editing sites the conserved amino acids are already encoded at the DNA level. In contrast, the N. × ventrata plastome has a typical structure and gene content, except for pseudogenization of the ccsA gene. N. × ventrata and D. rotundifolia could represent different stages of evolution of the plastid genomes of carnivorous plants, resembling events observed in parasitic plants in the course of the switch from autotrophy to a heterotrophic lifestyle.
Collapse
Affiliation(s)
- Eugeny V Gruzdev
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elena Z Kochieva
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Konstantin G Skryabin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
- Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
38
|
Grebe S, Trotta A, Bajwa AA, Suorsa M, Gollan PJ, Jansson S, Tikkanen M, Aro EM. The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3211-3225. [PMID: 30938447 PMCID: PMC6598058 DOI: 10.1093/jxb/erz127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 05/07/2023]
Abstract
Pinaceae are the predominant photosynthetic species in boreal forests, but so far no detailed description of the protein components of the photosynthetic apparatus of these gymnosperms has been available. In this study we report a detailed characterization of the thylakoid photosynthetic machinery of Norway spruce (Picea abies (L.) Karst). We first customized a spruce thylakoid protein database from translated transcript sequences combined with existing protein sequences derived from gene models, which enabled reliable tandem mass spectrometry identification of P. abies thylakoid proteins from two-dimensional large pore blue-native/SDS-PAGE. This allowed a direct comparison of the two-dimensional protein map of thylakoid protein complexes from P. abies with the model angiosperm Arabidopsis thaliana. Although the subunit composition of P. abies core PSI and PSII complexes is largely similar to that of Arabidopsis, there was a high abundance of a smaller PSI subcomplex, closely resembling the assembly intermediate PSI* complex. In addition, the evolutionary distribution of light-harvesting complex (LHC) family members of Pinaceae was compared in silico with other land plants, revealing that P. abies and other Pinaceae (also Gnetaceae and Welwitschiaceae) have lost LHCB4, but retained LHCB8 (formerly called LHCB4.3). The findings reported here show the composition of the photosynthetic apparatus of P. abies and other Pinaceae members to be unique among land plants.
Collapse
Affiliation(s)
- Steffen Grebe
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Azfar A Bajwa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Stefan Jansson
- Umeå University, Faculty of Science and Technology, Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå, Sweden
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Zhang HR, Xiang QP, Zhang XC. The Unique Evolutionary Trajectory and Dynamic Conformations of DR and IR/DR-Coexisting Plastomes of the Early Vascular Plant Selaginellaceae (Lycophyte). Genome Biol Evol 2019; 11:1258-1274. [PMID: 30937434 PMCID: PMC6486807 DOI: 10.1093/gbe/evz073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2019] [Indexed: 12/23/2022] Open
Abstract
Both direct repeats (DR) and inverted repeats (IR) are documented in the published plastomes of Selaginella species indicating the unusual and diverse plastome structure in the family Selaginellaceae. In this study, we newly sequenced complete plastomes of seven species from five main lineages of Selaginellaceae and also resequenced three species (Selaginella tamariscina, Selaginella uncinata, and Selaginella moellendorffii) to explore the evolutionary trajectory of Selaginellaceae plastomes. Our results showed that the plastomes of Selaginellaceae vary remarkably in size, gene contents, gene order, and GC contents. Notably, both DR and IR structures existed in the plastomes of Selaginellaceae with DR structure being an ancestral state. The occurrence of DR structure was at ∼257 Ma and remained in most subgenera of Selaginellaceae, whereas IR structure only reoccurred in Selaginella sect. Lepidophyllae (∼143 Ma) and Selaginella subg. Heterostachys (∼19 Ma). The presence of a pair of large repeats psbK-trnQ, together with DR/IR region in Selaginella bisulcata, Selaginella pennata, S. uncinata, and Selaginella hainanensis, could frequently mediate diverse homologous recombination and create approximately equal stoichiometric isomers (IR/DR-coexisting) and subgenomes. High proportion of repeats is presumably responsible for the dynamic IR/DR-coexisting plastomes, which possess a lower synonymous substitution rate (dS) compared with DR-possessing and IR-possessing plastomes. We propose that the occurrence of DR structure, together with few repeats, is possibly selected to keep the stability of plastomes and the IR/DR-coexisting plastomes also reached an equilibrium in plastome organization through highly efficient homologous recombination to maintain stability.
Collapse
Affiliation(s)
- Hong-Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Mower JP, Ma P, Grewe F, Taylor A, Michael TP, VanBuren R, Qiu Y. Lycophyte plastid genomics: extreme variation in GC, gene and intron content and multiple inversions between a direct and inverted orientation of the rRNA repeat. THE NEW PHYTOLOGIST 2019; 222:1061-1075. [PMID: 30556907 PMCID: PMC6590440 DOI: 10.1111/nph.15650] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Lycophytes are a key group for understanding vascular plant evolution. Lycophyte plastomes are highly distinct, indicating a dynamic evolutionary history, but detailed evaluation is hindered by the limited availability of sequences. Eight diverse plastomes were sequenced to assess variation in structure and functional content across lycophytes. Lycopodiaceae plastomes have remained largely unchanged compared with the common ancestor of land plants, whereas plastome evolution in Isoetes and especially Selaginella is highly dynamic. Selaginella plastomes have the highest GC content and fewest genes and introns of any photosynthetic land plant. Uniquely, the canonical inverted repeat was converted into a direct repeat (DR) via large-scale inversion in some Selaginella species. Ancestral reconstruction identified additional putative transitions between an inverted and DR orientation in Selaginella and Isoetes plastomes. A DR orientation does not disrupt the activity of copy-dependent repair to suppress substitution rates within repeats. Lycophyte plastomes include the most archaic examples among vascular plants and the most reconfigured among land plants. These evolutionary trends correlate with the mitochondrial genome, suggesting shared underlying mechanisms. Copy-dependent repair for DR-localized genes indicates that recombination and gene conversion are not inhibited by the DR orientation. Gene relocation in lycophyte plastomes occurs via overlapping inversions rather than transposase/recombinase-mediated processes.
Collapse
Affiliation(s)
- Jeffrey P. Mower
- Center for Plant Science InnovationUniversity of NebraskaLincolnNE68588USA
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNE68583USA
| | - Peng‐Fei Ma
- Center for Plant Science InnovationUniversity of NebraskaLincolnNE68588USA
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingYunnan650201China
| | - Felix Grewe
- Grainger Bioinformatics Center, Science and EducationField Museum of Natural HistoryChicagoIL60605USA
| | - Alex Taylor
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| | | | - Robert VanBuren
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Yin‐Long Qiu
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
41
|
Nevill PG, Howell KA, Cross AT, Williams AV, Zhong X, Tonti-Filippini J, Boykin LM, Dixon KW, Small I. Plastome-Wide Rearrangements and Gene Losses in Carnivorous Droseraceae. Genome Biol Evol 2019; 11:472-485. [PMID: 30629170 PMCID: PMC6380313 DOI: 10.1093/gbe/evz005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2019] [Indexed: 12/22/2022] Open
Abstract
The plastid genomes of four related carnivorous plants (Drosera regia, Drosera erythrorhiza, Aldrovanda vesiculosa, and Dionaea muscipula) were sequenced to examine changes potentially induced by the transition to carnivory. The plastid genomes of the Droseraceae show multiple rearrangements, gene losses, and large expansions or contractions of the inverted repeat. All the ndh genes are lost or nonfunctional, as well as in some of the species, clpP1, ycf1, ycf2 and some tRNA genes. Uniquely, among land plants, the trnK gene has no intron. Carnivory in the Droseraceae coincides with changes in plastid gene content similar to those induced by parasitism and mycoheterotrophy, suggesting parallel changes in chloroplast function due to the similar switch from autotrophy to (mixo-) heterotrophy. A molecular phylogeny of the taxa based on all shared plastid genes indicates that the "snap-traps" of Aldrovanda and Dionaea have a common origin.
Collapse
Affiliation(s)
- Paul G Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Adam T Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Anna V Williams
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Xiao Zhong
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Julian Tonti-Filippini
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura M Boykin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kingsley W Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
42
|
Alboresi A, Storti M, Morosinotto T. Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution. THE NEW PHYTOLOGIST 2019; 221:105-109. [PMID: 30084195 DOI: 10.1111/nph.15372] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/26/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 105 I. Introduction 105 II. Diversity of molecular mechanisms for regulation of photosynthetic electron transport 106 III. Role of FLVs in the regulation of photosynthesis in eukaryotes 107 IV. Why were FLVs lost in angiosperms? 108 V. Conclusions 108 Acknowledgements 109 References 109 SUMMARY: Photosynthetic electron transport requires continuous modulation to maintain the balance between light availability and metabolic demands. Multiple mechanisms for the regulation of electron transport have been identified and are unevenly distributed among photosynthetic organisms. Flavodiiron proteins (FLVs) influence photosynthetic electron transport by accepting electrons downstream of photosystem I to reduce oxygen to water. FLV activity has been demonstrated in cyanobacteria, green algae and mosses to be important in avoiding photosystem I overreduction upon changes in light intensity. FLV-encoding sequences were nevertheless lost during evolution by angiosperms, suggesting that these plants increased the efficiency of other mechanisms capable of accepting electrons from photosystem I, making the FLV activity for protection from overreduction superfluous or even detrimental for photosynthetic efficiency.
Collapse
Affiliation(s)
- Alessandro Alboresi
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padua, Italy
| | - Mattia Storti
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padua, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padua, Italy
| |
Collapse
|
43
|
Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol Phylogenet Evol 2018; 129:106-116. [DOI: 10.1016/j.ympev.2018.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
|
44
|
Lee H, Golicz AA, Bayer PE, Severn-Ellis AA, Chan CKK, Batley J, Kendrick GA, Edwards D. Genomic comparison of two independent seagrass lineages reveals habitat-driven convergent evolution. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3689-3702. [PMID: 29912443 PMCID: PMC6022596 DOI: 10.1093/jxb/ery147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/12/2018] [Indexed: 05/06/2023]
Abstract
Seagrasses are marine angiosperms that live fully submerged in the sea. They evolved from land plant ancestors, with multiple species representing at least three independent return-to-the-sea events. This raises the question of whether these marine angiosperms followed the same adaptation pathway to allow them to live and reproduce under the hostile marine conditions. To compare the basis of marine adaptation between seagrass lineages, we generated genomic data for Halophila ovalis and compared this with recently published genomes for two members of Zosteraceae, as well as genomes of five non-marine plant species (Arabidopsis, Oryza sativa, Phoenix dactylifera, Musa acuminata, and Spirodela polyrhiza). Halophila and Zosteraceae represent two independent seagrass lineages separated by around 30 million years. Genes that were lost or conserved in both lineages were identified. All three species lost genes associated with ethylene and terpenoid biosynthesis, and retained genes related to salinity adaptation, such as those for osmoregulation. In contrast, the loss of the NADH dehydrogenase-like complex is unique to H. ovalis. Through comparison of two independent return-to-the-sea events, this study further describes marine adaptation characteristics common to seagrass families, identifies species-specific gene loss, and provides molecular evidence for convergent evolution in seagrass lineages.
Collapse
Affiliation(s)
- HueyTyng Lee
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
- School of Biological Sciences, University of Western Australia, WA, Australia
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, WA, Australia
| | | | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, WA, Australia
| | - Gary A Kendrick
- School of Biological Sciences, University of Western Australia, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, WA, Australia
| |
Collapse
|
45
|
Silva SR, Michael TP, Meer EJ, Pinheiro DG, Varani AM, Miranda VFO. Comparative genomic analysis of Genlisea (corkscrew plants-Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes. PLoS One 2018; 13:e0190321. [PMID: 29293597 PMCID: PMC5749785 DOI: 10.1371/journal.pone.0190321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
In the carnivorous plant family Lentibulariaceae, all three genome compartments (nuclear, chloroplast, and mitochondria) have some of the highest rates of nucleotide substitutions across angiosperms. While the genera Genlisea and Utricularia have the smallest known flowering plant nuclear genomes, the chloroplast genomes (cpDNA) are mostly structurally conserved except for deletion and/or pseudogenization of the NAD(P)H-dehydrogenase complex (ndh) genes known to be involved in stress conditions of low light or CO2 concentrations. In order to determine how the cpDNA are changing, and to better understand the evolutionary history within the Genlisea genus, we sequenced, assembled and analyzed complete cpDNA from six species (G. aurea, G. filiformis, G. pygmaea, G. repens, G. tuberosa and G. violacea) together with the publicly available G. margaretae cpDNA. In general, the cpDNA structure among the analyzed Genlisea species is highly similar. However, we found that the plastidial ndh genes underwent a progressive process of degradation similar to the other terrestrial Lentibulariaceae cpDNA analyzed to date, but in contrast to the aquatic species. Contrary to current thinking that the terrestrial environment is a more stressful environment and thus requiring the ndh genes, we provide evidence that in the Lentibulariaceae the terrestrial forms have progressive loss while the aquatic forms have the eleven plastidial ndh genes intact. Therefore, the Lentibulariaceae system provides an important opportunity to understand the evolutionary forces that govern the transition to an aquatic environment and may provide insight into how plants manage water stress at a genome scale.
Collapse
Affiliation(s)
- Saura R. Silva
- Universidade Estadual Paulista (Unesp), Botucatu, Instituto de Biociências, São Paulo, Brazil
| | - Todd P. Michael
- J. Craig Venter Institute, La Jolla, CA, United States of America
| | - Elliott J. Meer
- 10X Genomics, Pleasanton, California, United States of America
| | - Daniel G. Pinheiro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Tecnologia, São Paulo, Brazil
| | - Alessandro M. Varani
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Tecnologia, São Paulo, Brazil
| | - Vitor F. O. Miranda
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Departamento de Biologia Aplicada à Agropecuária, São Paulo, Brazil
| |
Collapse
|
46
|
Sun SS, Fu PC, Zhou XJ, Cheng YW, Zhang FQ, Chen SL, Gao QB. The Complete Plastome Sequences of Seven Species in Gentiana sect. Kudoa (Gentianaceae): Insights Into Plastid Gene Loss and Molecular Evolution. FRONTIERS IN PLANT SCIENCE 2018; 9:493. [PMID: 29765380 PMCID: PMC5938401 DOI: 10.3389/fpls.2018.00493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/03/2018] [Indexed: 05/15/2023]
Abstract
The chloroplast (cp) genome is useful in the study of phylogenomics, molecular dating, and molecular evolution. Gentiana sect. Kudoa is a predominantly alpine flowering plant that is valued for its contributions to medicine, ecology, and horticulture. Previous evolutionary studies showed that the plastid gene loss pattern and intra-sectional phylogenetics in sect. Kudoa are still unclear. In this study, we compared 11 Gentiana plastomes, including 7 newly sequenced plastomes from sect. Kudoa, to represent its three serious: ser. Ornatae, ser. Verticillatae, and ser. Monanthae. The cp genome sizes of the seven species ranged from 137,278 to 147,156 bp. The plastome size variation mainly occurred in the small single-copy and long single-copy regions rather than the inverted repeat regions. Compared with sect. Cruciata, the plastomes in ser. Ornatae and ser. Verticillatae had lost approximately 11 kb of sequences containing 11 ndh genes. Conversely, far fewer losses were observed in ser. Monanthae. The phylogenetic tree revealed that sect. Kudoa was not monophyletic and that ser. Monanthae was more closely related to other sections rather than sect. Kudoa. The molecular dating analysis indicated that ser. Monanthae and sect. Kudoa diverged around 8.23 Ma. In ser. Ornatae and ser. Verticillatae, the divergence occurred at around 0.07-1.78 Ma. The nucleotide diversity analysis indicated that the intergenic regions trnH-psbA, trnK-trnQ, ycf3-trnS and rpl32-trnL constituted divergence hotspots in both sect. Kudoa and Gentiana, and would be useful for future phylogenetic and population genetic studies.
Collapse
Affiliation(s)
- Shan-Shan Sun
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Peng-Cheng Fu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Xiao-Jun Zhou
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Yan-Wei Cheng
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Fa-Qi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qing-Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
- *Correspondence: Qing-Bo Gao,
| |
Collapse
|
47
|
Li Z, De La Torre AR, Sterck L, Cánovas FM, Avila C, Merino I, Cabezas JA, Cervera MT, Ingvarsson PK, Van de Peer Y. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biol Evol 2017; 9:1130-1147. [PMID: 28460034 PMCID: PMC5414570 DOI: 10.1093/gbe/evx070] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 01/02/2023] Open
Abstract
Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny.
Collapse
Affiliation(s)
- Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Amanda R De La Torre
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Sciences, University of California-Davis, Davis, CA
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Irene Merino
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
48
|
Wu CS, Wang TJ, Wu CW, Wang YN, Chaw SM. Plastome Evolution in the Sole Hemiparasitic Genus Laurel Dodder (Cassytha) and Insights into the Plastid Phylogenomics of Lauraceae. Genome Biol Evol 2017; 9:2604-2614. [PMID: 28985306 PMCID: PMC5737380 DOI: 10.1093/gbe/evx177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 12/29/2022] Open
Abstract
To date, little is known about the evolution of plastid genomes (plastomes) in Lauraceae. As one of the top five largest families in tropical forests, the Lauraceae contain many species that are important ecologically and economically. Lauraceous species also provide wonderful materials to study the evolutionary trajectory in response to parasitism because they contain both nonparasitic and parasitic species. This study compared the plastomes of nine Lauraceous species, including the sole hemiparasitic and herbaceous genus Cassytha (laurel dodder; here represented by Cassytha filiformis). We found differential contractions of the canonical inverted repeat (IR), resulting in two IR types present in Lauraceae. These two IR types reinforce Cryptocaryeae and Neocinnamomum-Perseeae-Laureae as two separate clades. Our data reveal several traits unique to Cas. filiformis, including loss of IRs, loss or pseudogenization of 11 ndh and rpl23 genes, richness of repeats, and accelerated rates of nucleotide substitutions in protein-coding genes. Although Cas. filiformis is low in chlorophyll content, our analysis based on dN/dS ratios suggests that both its plastid house-keeping and photosynthetic genes are under strong selective constraints. Hence, we propose that short generation time and herbaceous lifestyle rather than reduced photosynthetic ability drive the accelerated rates of nucleotide substitutions in Cas. filiformis.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Jen Wang
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Wen Wu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Nan Wang
- School of Forestry and Resource Conservation, Nation Taiwan University, Taipei 10617, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
49
|
Sun Y, Moore MJ, Lin N, Adelalu KF, Meng A, Jian S, Yang L, Li J, Wang H. Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family. BMC Genomics 2017; 18:592. [PMID: 28793854 PMCID: PMC5551029 DOI: 10.1186/s12864-017-3956-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among the 13 families of early-diverging eudicots, only Circaeasteraceae (Ranunculales), which consists of the two monotypic genera Circaeaster and Kingdonia, lacks a published complete plastome sequence. In addition, the phylogenetic position of Circaeasteraceae as sister to Lardizabalaceae has only been weakly or moderately supported in previous studies using smaller data sets. Moreover, previous plastome studies have documented a number of novel structural rearrangements among early-divergent eudicots. Hence it is important to sequence plastomes from Circaeasteraceae to better understand plastome evolution in early-diverging eudicots and to further investigate the phylogenetic position of Circaeasteraceae. RESULTS Using an Illumina HiSeq 2000, complete plastomes were sequenced from both living members of Circaeasteraceae: Circaeaster agrestis and Kingdonia uniflora . Plastome structure and gene content were compared between these two plastomes, and with those of other early-diverging eudicot plastomes. Phylogenetic analysis of a 79-gene, 99-taxon data set including exemplars of all families of early-diverging eudicots was conducted to resolve the phylogenetic position of Circaeasteraceae. Both plastomes possess the typical quadripartite structure of land plant plastomes. However, a large ~49 kb inversion and a small ~3.5 kb inversion were found in the large single-copy regions of both plastomes, while Circaeaster possesses a number of other rearrangements, particularly in the Inverted Repeat. In addition, infA was found to be a pseudogene and accD was found to be absent within Circaeaster, whereas all ndh genes, except for ndhE and ndhJ, were found to be either pseudogenized (ΨndhA, ΨndhB, ΨndhD, ΨndhH and ΨndhK) or absent (ndhC, ndhF, ndhI and ndhG) in Kingdonia. Circaeasteraceae was strongly supported as sister to Lardizabalaceae in phylogenetic analyses. CONCLUSION The first plastome sequencing of Circaeasteraceae resulted in the discovery of several unusual rearrangements and the loss of ndh genes, and confirms the sister relationship between Circaeasteraceae and Lardizabalaceae. This research provides new insight to characterize plastome structural evolution in early-diverging eudicots and to better understand relationships within Ranunculales .
Collapse
Affiliation(s)
- Yanxia Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | | | - Nan Lin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kole F Adelalu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Aiping Meng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shuguang Jian
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Linsen Yang
- Hubei Key Laboratory of Shennongjia Golden Monkey Conservation Biology, Administration of Shennongjia National Park, Shennongjia, Hubei, China
| | - Jianqiang Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Hengchang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
50
|
Lin CS, Chen JJW, Chiu CC, Hsiao HCW, Yang CJ, Jin XH, Leebens-Mack J, de Pamphilis CW, Huang YT, Yang LH, Chang WJ, Kui L, Wong GKS, Hu JM, Wang W, Shih MC. Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:994-1006. [PMID: 28258650 DOI: 10.1111/tpj.13525] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 05/23/2023]
Abstract
The chloroplast NAD(P)H dehydrogenase-like (NDH) complex consists of about 30 subunits from both the nuclear and chloroplast genomes and is ubiquitous across most land plants. In some orchids, such as Phalaenopsis equestris, Dendrobium officinale and Dendrobium catenatum, most of the 11 chloroplast genome-encoded ndh genes (cp-ndh) have been lost. Here we investigated whether functional cp-ndh genes have been completely lost in these orchids or whether they have been transferred and retained in the nuclear genome. Further, we assessed whether both cp-ndh genes and nucleus-encoded NDH-related genes can be lost, resulting in the absence of the NDH complex. Comparative analyses of the genome of Apostasia odorata, an orchid species with a complete complement of cp-ndh genes which represents the sister lineage to all other orchids, and three published orchid genome sequences for P. equestris, D. officinale and D. catenatum, which are all missing cp-ndh genes, indicated that copies of cp-ndh genes are not present in any of these four nuclear genomes. This observation suggests that the NDH complex is not necessary for some plants. Comparative genomic/transcriptomic analyses of currently available plastid genome sequences and nuclear transcriptome data showed that 47 out of 660 photoautotrophic plants and all the heterotrophic plants are missing plastid-encoded cp-ndh genes and exhibit no evidence for maintenance of a functional NDH complex. Our data indicate that the NDH complex can be lost in photoautotrophic plant species. Further, the loss of the NDH complex may increase the probability of transition from a photoautotrophic to a heterotrophic life history.
Collapse
Affiliation(s)
- Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Chi-Chou Chiu
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Han C W Hsiao
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| | - Chen-Jui Yang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Xiao-Hua Jin
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Ling-Hung Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ling Kui
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Wen Wang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|