1
|
Lubojański A, Zakrzewski W, Samól K, Bieszczad-Czaja M, Świtała M, Wiglusz R, Watras A, Mielan B, Dobrzyński M. Application of Nanohydroxyapatite in Medicine-A Narrative Review. Molecules 2024; 29:5628. [PMID: 39683785 PMCID: PMC11643452 DOI: 10.3390/molecules29235628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review is an extensive collection of the latest literature describing the current knowledge about nanohydroxyapatite in a comprehensive way. These are hydroxyapatite particles with a size below 100 nm. Due to their size, the surface area to mass ratio of the particles increases. They are widely used in medicine due to their high potential in regenerative medicine, as a carrier of various substances, e.g., in targeted therapy. The aim of this article is to present the biological and physicochemical properties as well as the use of nanohydroxyapatite in modern medicine. Due to the potential of nanohydroxyapatite in medicine, further research is needed.
Collapse
Affiliation(s)
- Adam Lubojański
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
| | - Wojciech Zakrzewski
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Kinga Samól
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Martyna Bieszczad-Czaja
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Mateusz Świtała
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Rafał Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853-1801, USA
| | - Adam Watras
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
| | - Bartosz Mielan
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland (K.S.); (M.B.-C.); (M.Ś.); (B.M.)
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
| |
Collapse
|
2
|
Zhao R, Meng X, Pan Z, Li Y, Qian H, Zhu X, Yang X, Zhang X. Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments. Regen Biomater 2024; 12:rbae129. [PMID: 39776858 PMCID: PMC11703556 DOI: 10.1093/rb/rbae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Nanohydroxyapatite (nHA) is distinguished by its exceptional biocompatibility, bioactivity and biodegradability, qualities attributed to its similarity to the mineral component of human bone. This review discusses the synthesis techniques of nHA, highlighting how these methods shape its physicochemical attributes and, in turn, its utility in biomedical applications. The versatility of nHA is further enhanced by doping with biologically significant ions like magnesium or zinc, which can improve its bioactivity and confer therapeutic properties. Notably, nHA-based composites, incorporating metal, polymeric and bioceramic scaffolds, exhibit enhanced osteoconductivity and osteoinductivity. In orthopedic field, nHA and its composites serve effectively as bone graft substitutes, showing exceptional osteointegration and vascularization capabilities. In dentistry, these materials contribute to enamel remineralization, mitigate tooth sensitivity and are employed in surface modification of dental implants. For cancer therapy, nHA composites offer a promising strategy to inhibit tumor growth while sparing healthy tissues. Furthermore, nHA-based composites are emerging as sophisticated platforms with high surface ratio for the delivery of drugs and bioactive substances, gradually releasing therapeutic agents for progressive treatment benefits. Overall, this review delineates the synthesis, modifications and applications of nHA in various biomedical fields, shed light on the future advancements in biomaterials research.
Collapse
Affiliation(s)
- Rui Zhao
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Meng
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Zixian Pan
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Yongjia Li
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Wang X, Zheng Z, Zhang Y, Sun J, Liu J, Liu Y, Ding G. Application of hydrogel-loaded dental stem cells in the field of tissue regeneration. Hum Cell 2024; 38:2. [PMID: 39436502 DOI: 10.1007/s13577-024-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Mesenchymal stem cells (MSCs) are highly favored in clinical trials due to their unique characteristics, which have isolated from various human tissues. Derived from dental tissues, dental stem cells (DSCs) are particularly notable for their applications in tissue repair and regenerative medicine, attributed to their readily available sources, absence of ethical controversies, and minimal immunogenicity. Hydrogel-loaded stem cell therapy is widespread across a variety of injuries and diseases, and has good repair capabilities for both soft and hard tissues. This review comprehensively summarizes the regenerative and differentiation potential of various DSCs encapsulated in hydrogels across different tissues. In addition, the existing problems and future direction are also addressed. The application of hydrogel-DSCs composite has gained substantial progress in the field of tissue regeneration and need in-depth study in the future.
Collapse
Affiliation(s)
- Xiaolan Wang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No.7166, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Baotong West Street No.7166, Weifang, Shandong Province, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No.7166, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Baotong West Street No.7166, Weifang, Shandong Province, China
| | - Jian Liu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No.7166, Weifang, Shandong Province, China
| | - Yunxia Liu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No.7166, Weifang, Shandong Province, China.
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Baotong West Street No.7166, Weifang, Shandong Province, China.
| |
Collapse
|
4
|
Manzarpour M, Mousavi MR, Mahdavinaderi Y, Najimi M, Ghalambor A, Hasannia S, Rajabi S, Pezeshki-Modaress M, Kamali A, Bakhtiar H. Surface Modification of Dentin Powder With Alginate and Evaluation of Its Effects on the Viability and Proliferation of Dental Pulp Stem Cells (In Vitro), Its Biocompatibility (In Vivo). J Endod 2024; 50:1429-1439. [PMID: 39147019 DOI: 10.1016/j.joen.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION This study aimed to synthesize dentin powder surface modified with alginate, a potential substance for dental pulp regeneration, and evaluate its effects on the viability and proliferation of human dental pulp stem cells in vitro and its biocompatibility in vivo. METHODS In the in vitro phase, dentin powder was synthesized in 3 size groups (150-250 μm, 250-500 μm, and 500-1000 μm) after demineralization and atelopeptidization which is used to remove dentin collagen telopeptides and eliminate host immune response. Surface modification with alginate was performed and followed by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and cell viability and proliferation testing for 14 days with human dental pulp stem cells studied. In the in vivo phase, dentin powders were implanted in rat calvarial defects for 8 weeks, and histologic analysis was conducted. All nonparametric data were analyzed with the Kruskal-Wallis test, and all the quantitative data were analyzed by 1-way analysis of variance using SPSS, and P < .05 was considered statistically significant. RESULTS Demineralization and atelopeptidization were successful in all groups. Cell viability was optimal and equal (P > .05) in all groups. The 500- to 1000-μm group exhibited significantly higher cell proliferation (P < .05). Histologic assessment shows acceptable biocompatibility in all groups; the angiogenesis score was significantly greater in both 250-500 and 500-1000, and minimal inflammatory response was noted in the 500- to 1000-μm group, and the amount of newly formed bone in this group was higher than other groups. CONCLUSIONS Surface modification of demineralized and atelopeptidized dentin powder with alginate enhanced surface physical properties and cell proliferation while showing great biocompatibility within tissue and reducing the host immune response. These findings hold promise for dentin-pulp complex regeneration.
Collapse
Affiliation(s)
- Melika Manzarpour
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Mousavi
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Yas Mahdavinaderi
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadali Najimi
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Amin Ghalambor
- Faculty of Dentistry, Centro Escolar University, Manila, Philippines
| | - Sadegh Hasannia
- Department of Clinical Biochemistry, Tarbiat Modarres University, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | - Hengameh Bakhtiar
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran; Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Lin CH, Srioudom JR, Sun W, Xing M, Yan S, Yu L, Yang J. The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration. BIOMATERIALS TRANSLATIONAL 2024; 5:236-256. [PMID: 39734701 PMCID: PMC11681182 DOI: 10.12336/biomatertransl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 12/31/2024]
Abstract
Bone, cartilage, and soft tissue regeneration is a complex process involving many cellular activities across various cell types. Autografts remain the "gold standard" for the regeneration of these tissues. However, the use of autografts is associated with many disadvantages, including donor scarcity, the requirement of multiple surgeries, and the risk of infection. The development of tissue engineering techniques opens new avenues for enhanced tissue regeneration. Nowadays, the expectations of tissue engineering scaffolds have gone beyond merely providing physical support for cell attachment. Ideal scaffolds should also provide biological cues to actively boost tissue regeneration. As a new type of injectable biomaterial, hydrogel microspheres have been increasingly recognised as promising therapeutic carriers for the local delivery of cells and drugs to enhance tissue regeneration. Compared to traditional tissue engineering scaffolds and bulk hydrogel, hydrogel microspheres possess distinct advantages, including less invasive delivery, larger surface area, higher transparency for visualisation, and greater flexibility for functionalisation. Herein, we review the materials characteristics of hydrogel microspheres and compare their fabrication approaches, including microfluidics, batch emulsion, electrohydrodynamic spraying, lithography, and mechanical fragmentation. Additionally, based on the different requirements for bone, cartilage, nerve, skin, and muscle tissue regeneration, we summarize the applications of hydrogel microspheres as cell and drug delivery carriers for the regeneration of these tissues. Overall, hydrogel microspheres are regarded as effective therapeutic delivery carriers to enhance tissue regeneration in regenerative medicine. However, significant effort is required before hydrogel microspheres become widely accepted as commercial products for clinical use.
Collapse
Affiliation(s)
- Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse R. Srioudom
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Wei Sun
- Leicester International Institute, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Division of Biological and Biomedical Systems, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang Province, China
- Research Centre for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Novotná R, Franková J. Materials Suitable for Osteochondral Regeneration. ACS OMEGA 2024; 9:30097-30108. [PMID: 39035913 PMCID: PMC11256084 DOI: 10.1021/acsomega.4c04789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Osteochondral defects affect articular cartilage, calcified cartilage, and subchondral bone. The main problem that they cause is a different behavior of cell tissue in the osteochondral and bone part. Articular cartilage is composed mainly of collagen II, glycosaminoglycan (GAG), and water, and has a low healing ability due to a lack of vascularization. However, bone tissue is composed of collagen I, proteoglycans, and inorganic composites such as hydroxyapatite. Due to the discrepancy between the characters of these two parts, it is difficult to find materials that will meet all the structural and other requirements for effective regeneration. When designing a scaffold for an osteochondral defect, a variety of materials are available, e.g., polymers (synthetic and natural), inorganic particles, and extracellular matrix (ECM) components. All of them require the accurate characterization of the prepared materials and a number of in vitro and in vivo tests before they are applied to patients. Taken in concert, the final material needs to mimic the structural, morphological, chemical, and cellular demands of the native tissue. In this review, we present an overview of the structure and composition of the osteochondral part, especially synthetic materials with additives appropriate for healing osteochondral defects. Finally, we summarize in vitro and in vivo methods suitable for evaluating materials for restoring osteochondral defects.
Collapse
Affiliation(s)
- Renáta Novotná
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Jana Franková
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| |
Collapse
|
7
|
Ferjaoui Z, López-Muñoz R, Akbari S, Chandad F, Mantovani D, Rouabhia M, D. Fanganiello R. Design of Alginate/Gelatin Hydrogels for Biomedical Applications: Fine-Tuning Osteogenesis in Dental Pulp Stem Cells While Preserving Other Cell Behaviors. Biomedicines 2024; 12:1510. [PMID: 39062083 PMCID: PMC11274465 DOI: 10.3390/biomedicines12071510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate/gelatin (Alg-Gel) hydrogels have been used experimentally, associated with mesenchymal stromal/stem cells (MSCs), to guide bone tissue formation. One of the main challenges for clinical application is optimizing Alg-Gel stiffness to guide osteogenesis. In this study, we investigated how Alg-Gel stiffness could modulate the dental pulp stem cell (DPSC) attachment, morphology, proliferation, and osteogenic differentiation, identifying the optimal conditions to uncouple osteogenesis from the other cell behaviors. An array of Alg-Gel hydrogels was prepared by casting different percentages of alginate and gelatin cross-linked with 2% CaCl2. We have selected two hydrogels: one with a stiffness of 11 ± 1 kPa, referred to as "low-stiffness hydrogel", formed by 2% alginate and 8% gelatin, and the other with a stiffness of 55 ± 3 kPa, referred to as "high-stiffness hydrogel", formed by 8% alginate and 12% gelatin. Hydrogel analyses showed that the average swelling rates were 20 ± 3% for the low-stiffness hydrogels and 35 ± 2% for the high-stiffness hydrogels. The degradation percentage was 47 ± 5% and 18 ± 2% for the low- and high-stiffness hydrogels, respectively. Both hydrogel types showed homogeneous surface shape and protein (Alg-Gel) interaction with CaCl2 as assessed by physicochemical characterization. Cell culture showed good adhesion of the DPSCs to the hydrogels and proliferation. Furthermore, better osteogenic activity, determined by ALP activity and ARS staining, was obtained with high-stiffness hydrogels (8% alginate and 12% gelatin). In summary, this study confirms the possibility of characterizing and optimizing the stiffness of Alg-Gel gel to guide osteogenesis in vitro without altering the other cellular properties of DPSCs.
Collapse
Affiliation(s)
- Zied Ferjaoui
- Oral Ecology Research Group (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada; (F.C.); (M.R.); (R.D.F.)
| | - Roberto López-Muñoz
- Laboratory for Biomaterials and Bioengineering, (CRC-Tier I), Department of Min-Met-Materials Eng and Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, QC G1V 0A6, Canada; (R.L.-M.); (D.M.)
| | - Soheil Akbari
- Département de Génie Chimique, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Fatiha Chandad
- Oral Ecology Research Group (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada; (F.C.); (M.R.); (R.D.F.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, (CRC-Tier I), Department of Min-Met-Materials Eng and Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, QC G1V 0A6, Canada; (R.L.-M.); (D.M.)
| | - Mahmoud Rouabhia
- Oral Ecology Research Group (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada; (F.C.); (M.R.); (R.D.F.)
| | - Roberto D. Fanganiello
- Oral Ecology Research Group (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada; (F.C.); (M.R.); (R.D.F.)
| |
Collapse
|
8
|
Huang S, Wang Z, Sun X, Li K. Bone Morphogenetic Protein 7-Loaded Gelatin Methacrylate/Oxidized Sodium Alginate/Nano-Hydroxyapatite Composite Hydrogel for Bone Tissue Engineering. Int J Nanomedicine 2024; 19:6359-6376. [PMID: 38946885 PMCID: PMC11214552 DOI: 10.2147/ijn.s461996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Background Bone tissue engineering (BTE) is a promising alternative to autologous bone grafting for the clinical treatment of bone defects, and inorganic/organic composite hydrogels as BTE scaffolds are a hot spot in current research. The construction of nano-hydroxyapatite/gelatin methacrylate/oxidized sodium alginate (nHAP/GelMA/OSA), abbreviated as HGO, composite hydrogels loaded with bone morphogenetic protein 7 (BMP7) will provide a suitable 3D microenvironment to promote cell aggregation, proliferation, and differentiation, thus facilitating bone repair and regeneration. Methods Dually-crosslinked hydrogels were fabricated by combining GelMA and OSA, while HGO hydrogels were formulated by incorporating varying amounts of nHAP. The hydrogels were physically and chemically characterized followed by the assessment of their biocompatibility. BMP7-HGO (BHGO) hydrogels were fabricated by incorporating suitable concentrations of BMP7 into HGO hydrogels. The osteogenic potential of BHGO hydrogels was then validated through in vitro experiments and using rat femoral defect models. Results The addition of nHAP significantly improved the physical properties of the hydrogel, and the composite hydrogel with 10% nHAP demonstrated the best overall performance among all groups. The selected concentration of HGO hydrogel served as a carrier for BMP7 loading and was evaluated for its osteogenic potential both in vivo and in vitro. The BHGO hydrogel demonstrated superior in vitro osteogenic induction and in vivo potential for repairing bone tissue compared to the outcomes observed in the blank control, BMP7, and HGO groups. Conclusion Using hydrogel containing 10% HGO appears promising for bone tissue engineering scaffolds, especially when loaded with BMP7 to boost its osteogenic potential. However, further investigation is needed to optimize the GelMA, OSA, and nHAP ratios, along with the BMP7 concentration, to maximize the osteogenic potential.
Collapse
Affiliation(s)
- Shiyuan Huang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| | - Zesen Wang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| | - Xudong Sun
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| | - Kuanxin Li
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| |
Collapse
|
9
|
Karaca MA, Kancagi DD, Ozbek U, Ovali E, Gok O. Betulin Stimulates Osteogenic Differentiation of Human Osteoblasts-Loaded Alginate-Gelatin Microbeads. Bioengineering (Basel) 2024; 11:553. [PMID: 38927789 PMCID: PMC11201098 DOI: 10.3390/bioengineering11060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis, a terminal illness, has emerged as a global public health problem in recent years. The long-term use of bone anabolic drugs to treat osteoporosis causes multi-morbidity in elderly patients. Alternative therapies, such as allogenic and autogenic tissue grafts, face important issues, such as a limited source of allogenic grafts and tissue rejection in autogenic grafts. However, stem cell therapy has been shown to increase bone regeneration and decrease osteoporotic bone formation. Stem cell therapy combined with betulin (BET) supplementation might be adequate for bone remodeling and new bone tissue generation. In this study, the effect of BET on the viability and osteogenic differentiation of hFOB 1.19 cells was investigated. The cells were encapsulated in alginate-gelatin (AlGel) microbeads. In vitro tests were conducted during the 12 d of incubation. While BET showed cytotoxic activity (>1 µM) toward non-encapsulated hFOB 1.19 cells, encapsulated cells retained their functionality for up to 12 days, even at 5 µM BET. Moreover, the expression of osteogenic markers indicates an enhanced osteo-inductive effect of betulin on encapsulated hFOB 1.19, compared to the non-encapsulated cell culture. The 3D micro-environment of the AlGel microcapsules successfully protects the hFOB 1.19 cells against BET cytotoxicity, allowing BET to improve the mineralization and differentiation of osteoblast cells.
Collapse
Affiliation(s)
- Mehmet Ali Karaca
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Derya Dilek Kancagi
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ugur Ozbek
- Medical Genetics Department, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Ercument Ovali
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ozgul Gok
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
10
|
Pecci-Lloret MP, Gea-Alcocer S, Murcia-Flores L, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Use of Nanoparticles in Regenerative Dentistry: A Systematic Review. Biomimetics (Basel) 2024; 9:243. [PMID: 38667254 PMCID: PMC11048101 DOI: 10.3390/biomimetics9040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION nanoparticles are tiny-sized materials whose characteristics and properties mean that their association with dental materials is being investigated to ascertain their effects and possible benefits on tooth structures. This systematic review aimed to qualitatively collect in vitro studies that address the potential application of different nanoparticles in dental regeneration. Following an exhaustive search and article selection process, 16 in vitro studies that met our eligibility criteria were included. BG-NPs were analyzed across five studies, with three demonstrating their impact on the growth and differentiation of human hDPSCs. CS-NPs were examined in three studies, with findings from two indicating a significant effect on the differentiation of SCAPs. Nanoparticles' therapeutic potential and their stimulatory effect on promoting the regeneration of cells of the dentin-pulp complex have been proven. Their effect is altered according to the type of nanoparticle, concentration, and substances associated with them and, depending on these variables, they will affect the pulp, dentine, and dental cementum differently.
Collapse
Affiliation(s)
- María Pilar Pecci-Lloret
- Special Care in Dentistry and Gerodontology Unit, Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (M.P.P.-L.); (S.G.-A.); (R.E.O.-S.)
| | - Silvia Gea-Alcocer
- Special Care in Dentistry and Gerodontology Unit, Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (M.P.P.-L.); (S.G.-A.); (R.E.O.-S.)
| | - Laura Murcia-Flores
- Department of Health Sciences, Catholic Unisersity San Antonio of Murcia, 30107 Murcia, Spain;
| | - Francisco Javier Rodríguez-Lozano
- Special Care in Dentistry and Gerodontology Unit, Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (M.P.P.-L.); (S.G.-A.); (R.E.O.-S.)
| | - Ricardo Elías Oñate-Sánchez
- Special Care in Dentistry and Gerodontology Unit, Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (M.P.P.-L.); (S.G.-A.); (R.E.O.-S.)
| |
Collapse
|
11
|
Bar JK, Lis-Nawara A, Kowalczyk T, Grelewski PG, Stamnitz S, Gerber H, Klimczak A. Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11 TM) Scaffolds. Int J Mol Sci 2023; 24:16747. [PMID: 38069071 PMCID: PMC10705868 DOI: 10.3390/ijms242316747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Bone tissue engineering using different scaffolds is a new therapeutic approach in regenerative medicine. This study explored the osteogenic potential of human dental pulp stem cells (hDPSCs) grown on a hydrolytically modified poly(L-lactide-co-caprolactone) (PLCL) electrospun scaffold and a non-woven hyaluronic acid (HYAFF-11™) mesh. The adhesion, immunophenotype, and osteogenic differentiation of hDPSCs seeded on PLCL and HYAFF-11™ scaffolds were analyzed. The results showed that PLCL and HYAFF-11™ scaffolds significantly supported hDPSCs adhesion; however, hDPSCs' adhesion rate was significantly higher on PLCL than on HYAFF-11™. SEM analysis confirmed good adhesion of hDPSCs on both scaffolds before and after osteogenesis. Alizarin red S staining showed mineral deposits on both scaffolds after hDPSCs osteogenesis. The mRNA levels of runt-related transcription factor 2 (Runx2), collagen type I (Coll-I), osterix (Osx), osteocalcin (Ocn), osteopontin (Opn), bone sialoprotein (Bsp), and dentin sialophosphoprotein (Dspp) gene expression and their proteins were higher in hDPSCs after osteogenic differentiation on both scaffolds compared to undifferentiated hDPSCs on PLCL and HYAFF-11™. These results showed that PLCL scaffolds provide a better environment that supports hDPSCs attachment and osteogenic differentiation than HYAFF-11™. The high mRNA of early osteogenic gene expression and mineral deposits observed after hDPSCs osteogenesis on a PLCL mat indicated its better impact on hDPSCs' osteogenic potential than that of HYAFF-11™, and hDPSC/PLCL constructs might be considered in the future as an innovative approach to bone defect repair.
Collapse
Affiliation(s)
- Julia K. Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Anna Lis-Nawara
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Tomasz Kowalczyk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research (IPPT PAN), Polish Academy of Sciences, Adolfa Pawińskiego 5B St., 02-106 Warsaw, Poland;
| | - Piotr G. Grelewski
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Sandra Stamnitz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| | - Hanna Gerber
- Department of Maxillofacial Surgery, Wroclaw Medical University, Borowska 213, 50-556Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| |
Collapse
|
12
|
Li X, Wang Y, Huang D, Jiang Z, He Z, Luo M, Lei J, Xiao Y. Nanomaterials Modulating the Fate of Dental-Derived Mesenchymal Stem Cells Involved in Oral Tissue Reconstruction: A Systematic Review. Int J Nanomedicine 2023; 18:5377-5406. [PMID: 37753067 PMCID: PMC10519211 DOI: 10.2147/ijn.s418675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023] Open
Abstract
The critical challenges in repairing oral soft and hard tissue defects are infection control and the recovery of functions. Compared to conventional tissue regeneration methods, nano-bioactive materials have become the optimal materials with excellent physicochemical properties and biocompatibility. Dental-derived mesenchymal stem cells (DMSCs) are a particular type of mesenchymal stromal cells (MSCs) with great potential in tissue regeneration and differentiation. This paper presents a review of the application of various nano-bioactive materials for the induction of differentiation of DMSCs in oral and maxillofacial restorations in recent years, outlining the characteristics of DMSCs, detailing the biological regulatory effects of various nano-materials on stem cells and summarizing the material-induced differentiation of DMSCs into multiple types of tissue-induced regeneration strategies. Nanomaterials are different and complementary to each other. These studies are helpful for the development of new nanoscientific research technology and the clinical transformation of tissue reconstruction technology and provide a theoretical basis for the application of nanomaterial-modified dental implants. We extensively searched for papers related to tissue engineering bioactive constructs based on MSCs and nanomaterials in the databases of PubMed, Medline, and Google Scholar, using keywords such as "mesenchymal stem cells", "nanotechnology", "biomaterials", "dentistry" and "tissue regeneration". From 2013 to 2023, we selected approximately 150 articles that align with our philosophy.
Collapse
Affiliation(s)
- Xingrui Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yue Wang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Denghao Huang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Zhonghao Jiang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Zhiyu He
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Maoxuan Luo
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jie Lei
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yao Xiao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Department of Chengbei Outpatient, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
13
|
Stoilov B, Truong VK, Gronthos S, Vasilev K. Noninvasive and Microinvasive Nanoscale Drug Delivery Platforms for Hard Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:2925-2943. [PMID: 37565698 DOI: 10.1021/acsabm.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Bone tissue plays a crucial role in protecting internal organs and providing structural support and locomotion of the body. Treatment of hard tissue defects and medical conditions due to physical injuries, genetic disorders, aging, metabolic syndromes, and infections is more often a complex and drawn out process. Presently, dealing with hard-tissue-based clinical problems is still mostly conducted via surgical interventions. However, advances in nanotechnology over the last decades have led to shifting trends in clinical practice toward noninvasive and microinvasive methods. In this review article, recent advances in the development of nanoscale platforms for bone tissue engineering have been reviewed and critically discussed to provide a comprehensive understanding of the advantages and disadvantages of noninvasive and microinvasive methods for treating medical conditions related to hard tissue regeneration and repair.
Collapse
Affiliation(s)
- Borislav Stoilov
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide/SAHMRI, North Terrace, Adelaide, South Australia 5001, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
14
|
Kontogianni GI, Coelho C, Gauthier R, Fiorilli S, Quadros P, Vitale-Brovarone C, Chatzinikolaidou M. Osteogenic Potential of Nano-Hydroxyapatite and Strontium-Substituted Nano-Hydroxyapatite. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1881. [PMID: 37368310 DOI: 10.3390/nano13121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Nanohydroxyapatite (nanoHA) is the major mineral component of bone. It is highly biocompatible, osteoconductive, and forms strong bonds with native bone, making it an excellent material for bone regeneration. However, enhanced mechanical properties and biological activity for nanoHA can be achieved through enrichment with strontium ions. Here, nanoHA and nanoHA with a substitution degree of 50 and 100% of calcium with strontium ions (Sr-nanoHA_50 and Sr-nanoHA_100, respectively) were produced via wet chemical precipitation using calcium, strontium, and phosphorous salts as starting materials. The materials were evaluated for their cytotoxicity and osteogenic potential in direct contact with MC3T3-E1 pre-osteoblastic cells. All three nanoHA-based materials were cytocompatible, featured needle-shaped nanocrystals, and had enhanced osteogenic activity in vitro. The Sr-nanoHA_100 indicated a significant increase in the alkaline phosphatase activity at day 14 compared to the control. All three compositions revealed significantly higher calcium and collagen production up to 21 days in culture compared to the control. Gene expression analysis exhibited, for all three nanoHA compositions, a significant upregulation of osteonectin and osteocalcin on day 14 and of osteopontin on day 7 compared to the control. The highest osteocalcin levels were found for both Sr-substituted compounds on day 14. These results demonstrate the great osteoinductive potential of the produced compounds, which can be exploited to treat bone disease.
Collapse
Affiliation(s)
| | | | - Rémy Gauthier
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
- CNRS, INSA Lyon, Université Claude Bernard Lyon 1, UMR 5510, MATEIS, F-69621 Villeur-banne, France
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | | | | | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Foundation for Research and Technology Hellas (FORTH), Institute for Electronic Structure and Laser (IESL), 70013 Heraklion, Greece
| |
Collapse
|
15
|
Sharma A, Kaur I, Dheer D, Nagpal M, Kumar P, Venkatesh DN, Puri V, Singh I. A propitious role of marine sourced polysaccharides: Drug delivery and biomedical applications. Carbohydr Polym 2023; 308:120448. [PMID: 36813329 DOI: 10.1016/j.carbpol.2022.120448] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Numerous compounds, with extensive applications in biomedical and biotechnological fields, are present in the oceans, which serve as a prime renewable source of natural substances, further promoting the development of novel medical systems and devices. Polysaccharides are present in the marine ecosystem in abundance, promoting minimal extraction costs, in addition to their solubility in extraction media, and an aqueous solvent, along with their interactions with biological compounds. Certain algae-derived polysaccharides include fucoidan, alginate, and carrageenan, while animal-derived polysaccharides comprise hyaluronan, chitosan and many others. Furthermore, these compounds can be modified to facilitate their processing into multiple shapes and sizes, as well as exhibit response dependence to external conditions like temperature and pH. All these properties have promoted the use of these biomaterials as raw materials for the development of drug delivery carrier systems (hydrogels, particles, capsules). The present review enlightens marine polysaccharides providing its sources, structures, biological properties, and its biomedical applications. In addition to this, their role as nanomaterials is also portrayed by the authors, along with the methods employed to develop them and associated biological and physicochemical properties designed to develop suitable drug delivery systems.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom, G12 8QQ
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - D Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India.
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
16
|
The effects of encapsulation on NK cell differentiation potency of C-kit+ hematopoietic stem cells via identifying cytokine profiles. Transpl Immunol 2023; 77:101797. [PMID: 36720394 DOI: 10.1016/j.trim.2023.101797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Natural killer cells (NK cells) can kill cancerous cells without prior sensitization. This feature makes them appealing candidates for cellular therapy. Due to the degradation rate and controlled release of these matrices, hydrogels hold great promise in cell differentiation. The study aims to investigate the effect of encapsulated alginate-gelatin on the differentiation potential of C-kit+ cells toward NK cells which are mediated by cytokines detection. Under both encapsulated and unencapsulated conditions, C-kit+ cells can differentiate into NK cells. In the following, real-time PCR and western blotting were done to investigate the mRNA and protein expression, respectively. Determine cytokine profiles from the collected culture medium conducted a Cytokine antibody array. The differentiated cells were then co-cultured with Molt-4 cells to examine the expression levels of INF-γ, TNF-α, and IL-10 using real-time-PCR. There was a substantial change in protein expression of the Notch pathway. Also, the encapsulation increased the mRNA expression of INF-γ and TNF-α in Molt-4 cells. Based on these findings, the encapsulation effects on the differentiation of C-kit+ cells toward NK cells could be related to the secreted cytokines such as interleukin-10 and INF-γ and the Notch protein expression.
Collapse
|
17
|
Kara Özenler A, Distler T, Tihminlioglu F, Boccaccini AR. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Biofabrication 2023; 15. [PMID: 36706451 DOI: 10.1088/1758-5090/acb6b7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
The development of biomaterial inks suitable for biofabrication and mimicking the physicochemical properties of the extracellular matrix is essential for the application of bioprinting technology in tissue engineering (TE). The use of animal-derived proteinous materials, such as jellyfish collagen, or fish scale (FS) gelatin (GEL), has become an important pillar in biomaterial ink design to increase the bioactivity of hydrogels. However, besides the extraction of proteinous structures, the use of structurally intact FS as an additive could increase biocompatibility and bioactivity of hydrogels due to its organic (collagen) and inorganic (hydroxyapatite) contents, while simultaneously enhancing mechanical strength in three-dimensional (3D) printing applications. To test this hypothesis, we present here a composite biomaterial ink composed of FS and alginate dialdehyde (ADA)-GEL for 3D bioprinting applications. We fabricate 3D cell-laden hydrogels using mouse pre-osteoblast MC3T3-E1 cells. We evaluate the physicochemical and mechanical properties of FS incorporated ADA-GEL biomaterial inks as well as the bioactivity and cytocompatibility of cell-laden hydrogels. Due to the distinctive collagen orientation of the FS, the compressive strength of the hydrogels significantly increased with increasing FS particle content. Addition of FS also provided a tool to tune hydrogel stiffness. FS particles were homogeneously incorporated into the hydrogels. Particle-matrix integration was confirmed via scanning electron microscopy. FS incorporation in the ADA-GEL matrix increased the osteogenic differentiation of MC3T3-E1 cells in comparison to pristine ADA-GEL, as FS incorporation led to increased ALP activity and osteocalcin secretion of MC3T3-E1 cells. Due to the significantly increased stiffness and supported osteoinductivity of the hydrogels, FS structure as a natural collagen and hydroxyapatite source contributed to the biomaterial ink properties for bone engineering applications. Our findings indicate that ADA-GEL/FS represents a new biomaterial ink formulation with great potential for 3D bioprinting, and FS is confirmed as a promising additive for bone TE applications.
Collapse
Affiliation(s)
- Aylin Kara Özenler
- Department of Bioengineering, İzmir Institute of Technology, İzmir 35433, Turkey.,Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Thomas Distler
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Funda Tihminlioglu
- Department of Chemical Engineering, İzmir Institute of Technology, İzmir 35433, Turkey
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
18
|
Alipour M, Sharifi S, Samiei M, Shahi S, Aghazadeh M, Dizaj SM. Synthesis, characterization, and evaluation of Hesperetin nanocrystals for regenerative dentistry. Sci Rep 2023; 13:2076. [PMID: 36746996 PMCID: PMC9902453 DOI: 10.1038/s41598-023-28267-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Hesperetin (HS), a metabolite of hesperidin, is a polyphenolic component of citrus fruits. This ingredient has a potential role in bone strength and the osteogenic differentiation. The bone loss in the orofacial region may occur due to the inflammation response of host tissues. Nanotechnology applications have been harshly entered the field of regenerative medicine to improve the efficacy of the materials and substances. In the current study, the hesperetin nanocrystals were synthesized and characterized. Then, the anti-inflammatory and antioxidative effects of these nanocrystals were evaluated on inflamed human Dental Pulp Stem Cells (hDPSCs) and monocytes (U937). Moreover, the osteoinduction capacity of these nanocrystals was assessed by gene and protein expression levels of osteogenic specific markers including RUNX2, ALP, OCN, Col1a1, and BSP in hDPSCs. The deposition of calcium nodules in the presence of hesperetin and hesperetin nanocrystals was also assessed. The results revealed the successful fabrication of hesperetin nanocrystals with an average size of 100 nm. The levels of TNF, IL6, and reactive oxygen species (ROS) in inflamed hDPSCs and U937 significantly decreased in the presence of hesperetin nanocrystals. Furthermore, these nanocrystals induced osteogenic differentiation in hDPSCs. These results demonstrated the positive and effective role of fabricated nanocrystal forms of this natural ingredient for regenerative medicine purposes.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran.
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran.
| |
Collapse
|
19
|
A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering (Basel) 2023; 10:bioengineering10020204. [PMID: 36829698 PMCID: PMC9952306 DOI: 10.3390/bioengineering10020204] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol-gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.
Collapse
|
20
|
Amirazad H, Baradar Khoshfetrat A, Zarghami N. A dual synergistic effect of titanium and curcumin co-embedded on extracellular matrix hydrogels of decellularized bone: Potential application in osteoblastic differentiation of adipose-derived mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:372-397. [PMID: 36071650 DOI: 10.1080/09205063.2022.2123216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This research aims to design and fabricate a novel hydrogel-based composite as a functional biomimetic and biocompatible scaffold for amended osteoblastic differentiation of adipose-derived mesenchymal stem cells (ADMSCs). The extracellular matrix (ECM) hydrogel is an ideal scaffold in tissue engineering in terms of its structure mimics natural tissue. In this study, the fresh bovine femur was demineralized and decellularized; next, ECM hydrogel was obtained by digesting these matrices. Then, TiO2 and curcumin-loaded hydrogel (Hy/Ti/Cur) was fabricated besides TiO2-loaded hydrogel (Hy/Ti) and curcumin-loaded hydrogel (Hy/Cur). Comparing the scanning electron microscopy (SEM) images of the pure network hydrogel and the rough morphology of Hy/Ti/Cur revealed that curcumin and titanium dioxide were successfully loaded into the hydrogel. In addition, FTIR spectroscopy and X-ray diffraction (XRD) validated these findings. The findings of the hydrogels' swelling test indicated the favourable impact of curcumin and titanium dioxide in hydrogels, which enhances water absorption capacity. Our results showed that the hydrogels were cytocompatible, and the cell viability on the hydrogels was elevated compared to the control. The synergistic effect of TiO2 and Cur co-embedded on ECM hydrogel (Hy/Ti/Cur) stimulates bone differentiation markers, such as Runt-related transcription factor 2 (RUNX-2) and osteocalcin (OCN) in ADMSCs cultured in normal and osteogenic medium. Moreover, Alkaline Phosphatase (ALP) activity and calcium deposition of ADMSCs cultured on engineered hydrogels were increased. These experiments showed that newly fabricated hydrogel has the potential to induce osteogenesis, which is recommended as an attractive scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Yazdian-Robati R, Tarhriz V, Ranjbaran H, Karimi N, Abasi M. Efficient Neural Differentiation of Mouse Embryonic Stem Cells by Mastic Gum. Biopreserv Biobank 2023; 21:38-45. [PMID: 35446125 DOI: 10.1089/bio.2021.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: Promoting neurogenesis is a promising strategy to treat neurodegenerative disorders. In the present study, we aimed to evaluate the effect of mastic gum resin from the Pistacia lentiscus var. Chia (Anacardiaceae family) in proliferation capacity and differentiation of embryonic mesenchymal stem cells into a neural lineage. Methods: For this purpose, mastic gum was applied as a neural inducer for stem cell differentiation into the neuronal lineage. Following treatment of embryonic stem cells (ESCs) with mastic gum, verification differentiation of the ESCs into the neuronal lineage, gene expression analysis, and immunocytochemistry staining approach were performed. Results: Gene expression analysis demonstrated that mastic gum increased the expression level of neuron markers in the ESCs-derived neuron-like cells. Moreover, our immunocytochemistry staining results of two important neural stem cell markers, including Nestin and microtubule-associated protein-2 (Map2) expression confirmed that mastic gum has the potential to promote neuronal differentiation in ESCs. Conclusion: In summary, the use of mastic gum to stimulate the differentiation of ESCs into a neural lineage can be considered as a good candidate in stem cell therapy.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ranjbaran
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narges Karimi
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
A novel injectable hydrogel containing polyetheretherketone for bone regeneration in the craniofacial region. Sci Rep 2023; 13:864. [PMID: 36650203 PMCID: PMC9845302 DOI: 10.1038/s41598-022-23708-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023] Open
Abstract
Polyetheretherketone (PEEK) is an organic material introduced as an alternative for titanium implants. Injectable hydrogels are the most promising approach for bone regeneration in the oral cavity to fill the defects with irregular shapes and contours conservatively. In the current study, injectable Aldehyde-cellulose nanocrystalline/silk fibroin (ADCNCs/SF) hydrogels containing PEEK were synthesized, and their bone regeneration capacity was evaluated. Structure, intermolecular interaction, and the reaction between the components were assessed in hydrogel structure. The cytocompatibility of the fabricated scaffolds was evaluated on human dental pulp stem cells (hDPSCs). Moreover, the osteoinduction capacity of ADCNCs/SF/PEEK hydrogels on hDPSCs was evaluated using Real-time PCR, Western blot, Alizarin red staining and ALP activity. Bone formation in critical-size defects in rats' cranial was assessed histologically and radiographically. The results confirmed the successful fabrication of the hydrogel and its osteogenic induction ability on hDPSCs. Furthermore, in in vivo phase, bone formation was significantly higher in ADCNCs/SF/PEEK group. Hence, the enhanced bone regeneration in response to PEEK-loaded hydrogels suggested its potential for regenerating bone loss in the craniofacial region, explicitly surrounding the dental implants.
Collapse
|
23
|
Sheela S, AlGhalban FM, Khalil KA, Laoui T, Gopinath VK. Synthesis and Biocompatibility Evaluation of PCL Electrospun Membranes Coated with MTA/HA for Potential Application in Dental Pulp Capping. Polymers (Basel) 2022; 14:polym14224862. [PMID: 36432990 PMCID: PMC9695879 DOI: 10.3390/polym14224862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop polycaprolactone (PCL) electrospun membranes coated with mineral trioxide aggregate/hydroxyapatite (MTA/HA) as a potential material for dental pulp capping. Initially, the PCL membrane was prepared by an electrospinning process, which was further surface coated with MTA (labeled as PCLMTA) and HA (labeled as PCLHA). The physico-chemical characterization of the fabricated membranes was carried out using field emission scanning electron microscopy (FE-SEM)/Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, and contact angle analysis. The biocompatibility of the human dental pulp stem cells (hDPSCs) on the fabricated membranes was checked by XTT assay, and the hDPSCs adhesion and spreading were assessed by FE-SEM and confocal microscopy. The wound healing ability of hDPSCs in response to different electrospun membrane extracts was examined by scratch assay. The surface morphology analysis of the membranes by FE-SEM demonstrated a uniform nanofibrous texture with an average fiber diameter of 594 ± 124 nm for PCL, 517 ± 159 nm for PCLHA, and 490 ± 162 nm for PCLMTA. The elemental analysis of the PCLHA membrane indicated the presence of calcium and phosphorous elements related to HA, whereas the PCLMTA membrane showed the presence of calcium and silicate, related to MTA. The presence of MTA and HA in the PCL membranes was also confirmed by Raman spectroscopy. The water contact analysis demonstrated the hydrophobic nature of the membranes. The results indicated that PCL, PCLHA, and PCLMTA membranes were biocompatible, while PCLMTA exhibited better cell adhesion, spreading, and migration.
Collapse
Affiliation(s)
- Soumya Sheela
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatma Mousa AlGhalban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalil Abdelrazek Khalil
- Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tahar Laoui
- Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vellore Kannan Gopinath
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: or
| |
Collapse
|
24
|
Dalir Abdolahinia E, Safari Z, Sadat Kachouei SS, Zabeti Jahromi R, Atashkar N, Karbalaeihasanesfahani A, Alipour M, Hashemzadeh N, Sharifi S, Maleki Dizaj S. Cell homing strategy as a promising approach to the vitality of pulp-dentin complexes in endodontic therapy: focus on potential biomaterials. Expert Opin Biol Ther 2022; 22:1405-1416. [PMID: 36345819 DOI: 10.1080/14712598.2022.2142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Safari
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Nastaran Atashkar
- Department of Orthodontics, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahdieh Alipour
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Zhao DW, Fan XC, Zhao YX, Zhao W, Zhang YQ, Zhang RH, Cheng L. Biocompatible Nano-Hydroxyapatites Regulate Macrophage Polarization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196986. [PMID: 36234325 PMCID: PMC9573195 DOI: 10.3390/ma15196986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 10/05/2022] [Indexed: 05/27/2023]
Abstract
Research on regulation of the immune microenvironment based on bioactive materials is important to osteogenic regeneration. Hydroxyapatite (HAP) is believed to be a promising scaffold material for dental and orthopedic implantation due to its ideal biocompatibility and high osteoconductivity. However, any severe inflammation response can lead to loosening and fall of implantation, which cause implant failures in the clinic. Morphology modification has been widely studied to regulate the host immune environment and to further promote bone regeneration. Here, we report the preparation of nHAPs, which have uniform rod-like shape and different size (200 nm and 400 nm in length). The morphology, biocompatibility, and anti-inflammatory properties were evaluated. The results showed that the 400 nm nHAPs exhibited excellent biocompatibility and osteoimmunomodulation, which can not only induce M2-phenotype macrophages (M2) polarization to decrease the production of inflammatory cytokines, but also promote the production of osteogenic factor. The reported 400 nm nHAPs are promising for osteoimmunomodulation in bone regeneration, which is beneficial for clinical application of bone defects.
Collapse
Affiliation(s)
- Da-Wang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Stomatology, Shandong University, Jinan 250012, China
| | - Xin-Cheng Fan
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Orthopaedics, Taian City Central Hospital, Tai’an 271000, China
| | - Yi-Xiang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Stomatology, Shandong University, Jinan 250012, China
| | - Wei Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Stomatology, Shandong University, Jinan 250012, China
| | - Yuan-Qiang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ren-Hua Zhang
- Outpatient Department, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
26
|
Noroozi R, Shamekhi MA, Mahmoudi R, Zolfagharian A, Asgari F, Mousavizadeh A, Bodaghi M, Hadi A, Haghighipour N. In vitrostatic and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogel. Biomed Mater 2022; 17:045024. [PMID: 35609602 DOI: 10.1088/1748-605x/ac7308] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
The aim of this paper was to design and fabricate a novel composite scaffold based on the combination of 3D-printed polylactic acid-based triply periodic minimal surfaces (TPMSs) and cell-laden alginate hydrogel. This novel scaffold improves the low mechanical properties of alginate hydrogel and can also provide a scaffold with a suitable pore size, which can be used in bone regeneration applications. In this regard, an implicit function was used to generate some gyroid TPMS scaffolds. Then the fused deposition modeling process was employed to print the scaffolds. Moreover, the micro computed tomography technique was employed to assess the microstructure of 3D-printed TPMS scaffolds and obtain the real geometries of printed scaffolds. The mechanical properties of composite scaffolds were investigated under compression tests experimentally. It was shown that different mechanical behaviors could be obtained for different implicit function parameters. In this research, to assess the mechanical behavior of printed scaffolds in terms of the strain-stress curves on, two approaches were presented: equivalent volume and finite element-based volume. Results of strain-stress curves showed that the finite-element based approach predicts a higher level of stress. Moreover, the biological response of composite scaffolds in terms of cell viability, cell proliferation, and cell attachment was investigated. In this vein, a dynamic cell culture system was designed and fabricated, which improves mass transport through the composite scaffolds and applies mechanical loading to the cells, which helps cell proliferation. Moreover, the results of the novel composite scaffolds were compared to those without alginate, and it was shown that the composite scaffold could create more viability and cell proliferation in both dynamic and static cultures. Also, it was shown that scaffolds in dynamic cell culture have a better biological response than in static culture. In addition, scanning electron microscopy was employed to study the cell adhesion on the composite scaffolds, which showed excellent attachment between the scaffolds and cells.
Collapse
Affiliation(s)
- Reza Noroozi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Amin Shamekhi
- Department of Polymer Engineering, Islamic Azad University, Sarvestan Branch, Sarvestan, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Fatemeh Asgari
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Mousavizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | |
Collapse
|
27
|
Nanomaterials in Dentistry: Current Applications and Future Scope. NANOMATERIALS 2022; 12:nano12101676. [PMID: 35630898 PMCID: PMC9144694 DOI: 10.3390/nano12101676] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
Nanotechnology utilizes the mechanics to control the size and morphology of the particles in the required nano range for accomplishing the intended purposes. There was a time when it was predominantly applied only to the fields of matter physics or chemical engineering, but with time, biological scientists recognized its vast benefits and explored the advantages in their respective fields. This extension of nanotechnology in the field of dentistry is termed ‘Nanodentistry.’ It is revolutionizing every aspect of dentistry. It consists of therapeutic and diagnostic tools and supportive aids to maintain oral hygiene with the help of nanomaterials. Research in nanodentistry is evolving holistically but slowly with the advanced finding of symbiotic use of novel polymers, natural polymers, metals, minerals, and drugs. These materials, in association with nanotechnology, further assist in exploring the usage of nano dental adducts in prosthodontic, regeneration, orthodontic, etc. Moreover, drug release cargo abilities of the nano dental adduct provide an extra edge to dentistry over their conventional counterparts. Nano dentistry has expanded to every single branch of dentistry. In the present review, we will present a holistic view of the recent advances in the field of nanodentistry. The later part of the review compiled the ethical and regulatory challenges in the commercialization of the nanodentistry. This review tracks the advancement in nano dentistry in different but important domains of dentistry.
Collapse
|
28
|
Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide- co-caprolactone) Scaffold. MATERIALS 2022; 15:ma15051900. [PMID: 35269131 PMCID: PMC8911644 DOI: 10.3390/ma15051900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023]
Abstract
Poly(l-lactide-co-caprolactone) (PLCL) electrospun scaffolds with seeded stem cells have drawn great interest in tissue engineering. This study investigated the biological behavior of human dental pulp stem cells (hDPSCs) grown on a hydrolytically-modified PLCL nanofiber scaffold. The hDPSCs were seeded on PLCL, and their biological features such as viability, proliferation, adhesion, population doubling time, the immunophenotype of hDPSCs and osteogenic differentiation capacity were evaluated on scaffolds. The results showed that the PLCL scaffold significantly supported hDPSC viability/proliferation. The hDPSCs adhesion rate and spreading onto PLCL increased with time of culture. hDPSCs were able to migrate inside the PLCL electrospun scaffold after 7 days of seeding. No differences in morphology and immunophenotype of hDPSCs grown on PLCL and in flasks were observed. The mRNA levels of bone-related genes and their proteins were significantly higher in hDPSCs after osteogenic differentiation on PLCL compared with undifferentiated hDPSCs on PLCL. These results showed that the mechanical properties of a modified PLCL mat provide an appropriate environment that supports hDPSCs attachment, proliferation, migration and their osteogenic differentiation on the PLCL scaffold. The good PLCL biocompatibility with dental pulp stem cells indicates that this mat may be applied in designing a bioactive hDPSCs/PLCL construct for bone tissue engineering.
Collapse
|
29
|
Anitua E, Zalduendo M, Troya M, Erezuma I, Lukin I, Hernáez-Moya R, Orive G. Composite alginate-gelatin hydrogels incorporating PRGF enhance human dental pulp cell adhesion, chemotaxis and proliferation. Int J Pharm 2022; 617:121631. [PMID: 35247496 DOI: 10.1016/j.ijpharm.2022.121631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
Abstract
The increasing prevalence of tissue injuries is fueling the development of autologous biological treatments for regenerative medicine. Here, we investigated the potential of three different bioinks based on the combination of gelatin and alginate (GA), enriched in either hydroxyapatite (GAHA) or hydroxyapatite and PRGF (GAHAP), as a favorable microenvironment for human dental pulp stem cells (DPSCs). Swelling behaviour, in vitro degradation and mechanical properties of the matrices were evaluated. Morphological and elemental analysis of the scaffolds were also performed along with cytocompatibility studies. The in vitro cell response to the different scaffolds was also assessed. Results showed that all scaffolds presented high swelling capacity, and those that contained HA showed higher Young's modulus. GAHAP had the lowest degradation rate and the highest values of cytocompatibility. Cell adhesion and chemotaxis were significantly increased when PRGF was incorporated to the matrices. GAHA and GAHAP compositions promoted the highest proliferative rate as well as significantly stimulated osteogenic differentiation. In conclusion, the enrichment with PRGF improves the regenerative properties of the composites favouring the development of personalized constructs.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua). Vitoria-Gasteiz, Spain.
| | - Mar Zalduendo
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua). Vitoria-Gasteiz, Spain
| | - María Troya
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua). Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
| | - Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
| | - Raquel Hernáez-Moya
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
| | - Gorka Orive
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua). Vitoria-Gasteiz, Spain; NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
30
|
Alipour M, Aghazadeh Z, Hassanpour M, Ghorbani M, Salehi R, Aghazadeh M. MTA-Enriched Polymeric Scaffolds Enhanced the Expression of Angiogenic Markers in Human Dental Pulp Stem Cells. Stem Cells Int 2022; 2022:7583489. [PMID: 35237330 PMCID: PMC8885263 DOI: 10.1155/2022/7583489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Revascularization of the pulp tissue is one of the fundamental processes and challenges in regenerative endodontic procedures (REPs). In this regard, the current study is aimed at synthesizing the mineral trioxide aggregate- (MTA-) based scaffolds as a biomaterial for REPs. Poly (ε-caprolactone) (PCL)/chitosan (CS)/MTA scaffolds were constructed and evaluated by FTIR, SEM, XRD, and TGA analyses. Proliferation and adhesion of human dental pulp stem cells (hDPSCs) were assessed on these scaffolds by scanning electron microscopy (SEM) and MTT assays, respectively. The expression of angiogenic markers was investigated in gene and protein levels by real-time PCR and western blotting tests. Our results indicated that the obtained appropriate physicochemical characteristics of scaffolds could be suitable for REPs. The adhesion and proliferation level of hDPSCs were significantly increased after seeding on PCL/CS/MTA scaffolds. The expression levels of VEGFR-2, Tie2, and Angiopoietin-1 genes were statistically increased on the PCL/CS/MTA scaffold. In support of these findings, western blotting results showed the upregulation of these markers at protein levels in PCL/CS/MTA scaffold (P < 0.05). The current study results suggested that PCL/CS/MTA scaffolds provide appropriate structures for the adhesion and proliferation of hDPSCs besides induction of the angiogenesis process in these cells.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Divband B, Aghazadeh M, Al-Qaim ZH, Samiei M, Hussein FH, Shaabani A, Shahi S, Sedghi R. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells. Carbohydr Polym 2021; 273:118589. [PMID: 34560990 DOI: 10.1016/j.carbpol.2021.118589] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, vascularization and mineralization of bone defects is the main bottleneck in the bone regeneration field that is needed to be overcome and developed. Here, we prepared novel in-situ formed injectable hydrogels based on chitosan biguanidine and carboxymethylcellulose loaded with vascular endothelial growth factor (VEGF) and recombinant Bone morphogenetic protein 2 (BMP-2) and studied its influence on osteoblastic differentiation of dental pulp stem cells (DPSCs). The sequential release behavior of the VEGF and BMP-2 from hydrogels adjusted with the pattern of normal human bone growth. MTT assay exhibited that these hydrogels were non-toxic and significantly increased DPSCs proliferation. The Real-time PCR and Western blot analysis on CG11/BMP2-VEGF showed significantly higher gene and protein expression of ALP, COL1α1, and OCN. These results were confirmed by mineralization assay by Alizarin Red staining and Alkaline phosphatase enzyme activity. Based on these evaluations, these hydrogel holds potential as an injectable bone tissue engineering platform.
Collapse
Affiliation(s)
- Baharak Divband
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, Iran.
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Oral Medicine, Department of Tabriz, University of Medical Sciences, Iran.
| | - Zahraa Haleem Al-Qaim
- Almustaqbal University College, - Medical Laebroterise, Analytic, Babylon 51005, Iraq
| | - Mohammad Samiei
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Endodontics, Dental School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Falah H Hussein
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, GC 1983969411, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Endodontics, Dental School, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roya Sedghi
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, GC 1983969411, Iran.
| |
Collapse
|
32
|
Overexpression Effects of miR-424 and BMP2 on the Osteogenesis of Wharton's Jelly-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7031492. [PMID: 34790821 PMCID: PMC8592721 DOI: 10.1155/2021/7031492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
Recently, the translational application of noncoding RNAs is accelerated dramatically. In this regard, discovering therapeutic roles of microRNAs by developing synthetic RNA and vector-based RNA is attracting attention. Here, we studied the effect of BMP2 and miR-424 on the osteogenesis of Wharton's jelly-derived stem cells (WJSCs). For this purpose, human BMP2 and miR-424 DNA codes were cloned in the third generation of lentiviral vectors and then used for HEK-293T cell transfection. Lentiviral plasmids contained miR424, BMP-2, miR424-BMP2, green fluorescent protein (GFP) genes, and helper vectors. The recombinant lentiviral particles transduced the WJSCs, and the osteogenesis was evaluated by real-time PCR, Western blot, Alizarin Red staining, and alkaline phosphatase enzyme activity. According to the results, there was a significant increase in the expression of the BMP2 gene and secretion of Osteocalcin protein in the group of miR424-BMP2. Moreover, the amount of dye deposition in Alizarin Red staining and alkaline phosphatase activity was significantly higher in the mentioned group (p < 0.05). Thus, the current study results clarify the efficacy of gene therapy by miR424-BMP2 vectors for bone tissue engineering. These data could help guide the development of gene therapy-based protocols for bone tissue engineering.
Collapse
|
33
|
Zhang Y, Chen X, Li Y, Bai T, Li C, Jiang L, Liu Y, Sun C, Zhou W. Biomimetic Inorganic Nanoparticle-Loaded Silk Fibroin-Based Coating with Enhanced Antibacterial and Osteogenic Abilities. ACS OMEGA 2021; 6:30027-30039. [PMID: 34778674 PMCID: PMC8582041 DOI: 10.1021/acsomega.1c04734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Poor osseointegration and infection are the main reasons leading to the failure of hard tissue implants; especially, in recent years, the failure rate has been increasing every year owing to the continuously increasing conditions such as injury, trauma, diseases, or infections. Therefore, the development of a biomimetic surface coating of bone tissues with antibacterial function is an effective means to improve bone healing and inhibit bacterial infection. Mimicking the natural bone, in this study, we have designed a silk fibroin (collagen-like structure)-based coating inlaid with nanohydroxyapatite (nHA) and silver nanoparticles (AgNPs) for promoting antibacterial ability and osteogenesis, especially focusing on the bone mimetic structure for enhancing bone health. Observing the morphology and size of the composite nanoparticles by transmission electron microscope (TEM), nHA provided nucleation sites for the formation of AgNPs, forming an nHA/AgNP complex with a size of about 100-200 nm. Characterization of the nHA/Ag-loaded silk fibroin biomimetic coating showed an increased surface roughness with good density and compact performances. The silk fibroin-based coating loaded with uniformly distributed AgNPs and nHA could effectively inhibit the adhesion of Staphylococcus aureus on the surface and, at the same time, quickly kill planktonic bacteria, indicating their good antibacterial ability. In vitro cell experiments revealed that the biomimetic silk fibroin-based coating was beneficial to the adhesion, spreading, and proliferation of osteoblasts (MC3T3-E1). In addition, by characterizing LDH and ROS, it was found that the nHA/Ag complex could significantly reduce the cytotoxicity of AgNPs, and the osteoblasts on the coating surface maintained the structure intact.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Xiaorong Chen
- Changzhi
Medical College, Changzhi 046000, Shanxi, China
| | - Yuan Li
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Tian Bai
- Shaanxi
Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| | - Chen Li
- Changzhi
Medical College, Changzhi 046000, Shanxi, China
| | - Lingyan Jiang
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Yu Liu
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Changying Sun
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Wenhao Zhou
- Shaanxi
Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| |
Collapse
|
34
|
Kotova AV, Lobov AA, Dombrovskaya JA, Sannikova VY, Ryumina NA, Klausen P, Shavarda AL, Malashicheva AB, Enukashvily NI. Comparative Analysis of Dental Pulp and Periodontal Stem Cells: Differences in Morphology, Functionality, Osteogenic Differentiation and Proteome. Biomedicines 2021; 9:1606. [PMID: 34829835 PMCID: PMC8616025 DOI: 10.3390/biomedicines9111606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Dental stem cells are heterogeneous in their properties. Despite their common origin from neural crest stem cells, they have different functional capacities and biological functions due to niche influence. In this study, we assessed the differences between dental pulp stem cells (DPSC) and periodontal ligament stem cells (PDLSC) in their pluripotency and neuroepithelial markers transcription, morphological and functional features, osteoblast/odontoblast differentiation and proteomic profile during osteogenic differentiation. The data were collected in paired observations: two cell cultures, DPSC and PDLSC, were obtained from each donor. Both populations had the mesenchymal stem cells surface marker set exposed on their membranes but differed in Nestin (a marker of neuroectodermal origin) expression, morphology, and proliferation rate. OCT4 mRNA was revealed in DPSC and PDLSC, while OCT4 protein was present in the nuclei of DPSC only. However, transcription of OCT4 mRNA was 1000-10,000-fold lower in dental stem cells than in blastocysts. DPSC proliferated at a slower rate and have a shape closer to polygonal but they responded better to osteogenic stimuli as compared to PDLSC. RUNX2 mRNA was detected by qPCR in both types of dental stem cells but RUNX2 protein was detected by LC-MS/MS shotgun proteomics only in PDLSC suggesting the posttranscriptional regulation. DSPP and DMP1, marker genes of odontoblastic type of osteogenic differentiation, were transcribed in DPSC but not in PDLSC samples. Our results prove that DPSC and PDLSC are different in their biology and therapeutic potential: DPSC are a good candidate for osteogenic or odontogenic bone-replacement cell-seeded medicines, while fast proliferating PDLSC are a prospective candidate for other cell products.
Collapse
Affiliation(s)
- Anastasia V. Kotova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
- Cell Technologies Laboratory, General Dentistry Department, North-Western State Medical University, 191015 St. Petersburg, Russia;
| | - Arseniy A. Lobov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | - Julia A. Dombrovskaya
- Cell Technologies Laboratory, General Dentistry Department, North-Western State Medical University, 191015 St. Petersburg, Russia;
| | - Valentina Y. Sannikova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | | | - Polina Klausen
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | - Alexey L. Shavarda
- Research Resource Center Molecular and Cell Technologies, Saint-Petersburg State University, 199034 St. Petersburg, Russia;
| | - Anna B. Malashicheva
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | - Natella I. Enukashvily
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
- Cell Technologies Laboratory, General Dentistry Department, North-Western State Medical University, 191015 St. Petersburg, Russia;
| |
Collapse
|
35
|
Fathi E, Vandghanooni S, Montazersaheb S, Farahzadi R. Mesenchymal stem cells promote caspase-3 expression of SH-SY5Y neuroblastoma cells via reducing telomerase activity and telomere length. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1583-1589. [PMID: 35317118 PMCID: PMC8917842 DOI: 10.22038/ijbms.2021.59400.13187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The use of mesenchymal stem cells in malignancies has attracted much attention due to their ability to deliver anticancer agents to tumors, including cytokines, chemokines, etc. This study aimed to investigate the effect of MSCs on the neuroblastoma SH-SY5Y cells through proliferation/apoptosis, senescence assessment, telomere length, and telomerase activity in vitro. BAX and BCL2 were also examined as potential signaling pathways in this process. MATERIALS AND METHODS For this reason, two cell populations (MSCs and SH-SY5Y cells) were co-cultured on trans-well plates for 7 days. In a subsequent step, SH-SY5Y cells were harvested from both control and experimental groups and subjected to flow cytometry, ELISA, real-time PCR, PCR-ELISA TRAP assay, and Western blotting assay for Ki67/Caspase3 investigation, β-Galactosidase assessment, telomere length, and telomerase activity assay. Also, expression of genes and proteins through real-time PCR and Western blotting demonstrated the involvement of the aforementioned signaling pathways in this process. RESULTS It was found that MSCs contributed significantly to decrease and increase of Ki-67 and Caspase-3, respectively. Also, MSCs dramatically reduced the length of telomere and telomerase activity and increased the β-Galactosidase activity in a significant manner. In addition, significant increase and decrease were also seen in BAX and BCL2 gene and protein expressions, respectively. CONCLUSION These findings revealed that close interaction between MSCs and neuroblastoma cells causes inhibition of the SH-SY5Y cell proliferation and promotes cell senescence via BAX and caspase-3 cascade pathways.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Heidari HR, Fathi E, Montazersaheb S, Mamandi A, Farahzadi R, Zalavi S, Nozad Charoudeh H. Mesenchymal Stem Cells cause Telomere Length Reduction of Molt-4 Cells via Caspase-3, BAD and P53 Apoptotic Pathway. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:113-122. [PMID: 34703795 PMCID: PMC8496249 DOI: 10.22088/ijmcm.bums.10.2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) as undifferentiated cells are specially considered in cell-based cancer therapy due to unique features such as multi-potency, pluripotency, and self-renewal. A multitude of cytokines secreted from MSCs are known to give such multifunctional attributes, but details of their role are yet to be unknown. In the present study, MSCs were cultured, characterized and co-cultured with Molt-4 cells as acute lymphoblastic leukemia cell line in a trans-well plate. Then, cultured Molt-4 alone and Molt-4 co-cultured with MSCs (10:1) were collected on day 7 and subjected to real time-PCR and Western blotting for gene and protein expression assessment, respectively. Ki-67/caspase-3 as well as telomere length were investigated by flow cytometry and real time-PCR, respectively. The results showed that MSCs caused significant decrease in telomere length as well as hTERT gene expression of Molt-4 cells. Also, gene and protein expression of BAD and P53 were significantly increased. Furthermore, the flow cytometry analysis indicated the decrease and increase of the Ki-67 and caspaspase-3 expression, respectively. It was concluded that MSCs co-cultured with Molt-4 cells could be involved in the promotion of Molt-4 cell apoptosis via caspase-3, BAD, and P53 expression. In addition, the decrease of telomere length is another effect of MSCs on Molt-4 leukemic cells.
Collapse
Affiliation(s)
- Hamid Reza Heidari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayoub Mamandi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soran Zalavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
37
|
The Antimicrobial, Antioxidative, and Anti-Inflammatory Effects of Polycaprolactone/Gelatin Scaffolds Containing Chrysin for Regenerative Endodontic Purposes. Stem Cells Int 2021; 2021:3828777. [PMID: 34630572 PMCID: PMC8497129 DOI: 10.1155/2021/3828777] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/03/2023] Open
Abstract
The appropriate endodontic material should eliminate the infection and inflammation to provide a situation for regeneration and healing of pulp tissue besides biomineralization. Chrysin is one of the active ingredients of plant flavonoids, which has significant anti-inflammatory and antimicrobial properties. In the present study, this natural substance was evaluated for antioxidant, anti-inflammatory, and mineralization properties on dental pulp stem cells (DPSCs). SEM, FTIR, and TGA tests were used to determine the successful synthesize of chrysin-loaded scaffolds. The antimicrobial effects of the synthesized scaffold against Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis were assessed by the agar diffusion test and live/dead assay. The proliferation of DPSCs on these scaffolds was determined by the MTT assay, DAPI staining, and DNA extraction. Moreover, the antioxidant and anti-inflammation activity of chrysin-loaded scaffolds on inflamed DPSCs was evaluated. Alkaline phosphatase activity and Alizarin Red S Stain tests were done to evaluate the mineralization of DPSCs seeded on these scaffolds. The chrysin-loaded scaffolds reported antimicrobial effects against evaluated bacterial strains. The proliferation of DPSCs seeded on these scaffolds was increased significantly (p < 0.05). The TNFα and DCF levels in inflamed DPSCs showed a significant decrease in the presence of chrysin-loaded scaffolds (p < 0.05). The ALP activity and formation of mineralized nodules of DPSCs on these scaffolds were significantly increased compared with the control group (p < 0.05). These results indicated that chrysin as an ancient therapeutic agent can accelerate the healing and regeneration of damaged pulp tissue, and this active ingredient can be a potential natural substance for regenerative endodontic procedures.
Collapse
|
38
|
Polysaccharide-Based Micro- and Nanosized Drug Delivery Systems for Potential Application in the Pediatric Dentistry. Polymers (Basel) 2021; 13:polym13193342. [PMID: 34641160 PMCID: PMC8512615 DOI: 10.3390/polym13193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
The intensive development of micro- and nanotechnologies in recent years has offered a wide horizon of new possibilities for drug delivery in dentistry. The use of polymeric drug carriers turned out to be a very successful technique for formulating micro- and nanoparticles with controlled or targeted drug release in the oral cavity. Such innovative strategies have the potential to provide an improved therapeutic approach to prevention and treatment of various oral diseases not only for adults, but also in the pediatric dental practice. Due to their biocompatibility, biotolerance and biodegradability, naturally occurring polysaccharides like chitosan, alginate, pectin, dextran, starch, etc., are among the most preferred materials for preparation of micro- and nano-devices for drug delivery, offering simple particle-forming characteristics and easily tunable properties of the formulated structures. Their low immunogenicity and low toxicity provide an advantage over most synthetic polymers for the development of pediatric formulations. This review is focused on micro- and nanoscale polysaccharide biomaterials as dental drug carriers, with an emphasis on their potential application in pediatric dentistry.
Collapse
|
39
|
Djošić M, Janković A, Mišković-Stanković V. Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5391. [PMID: 34576615 PMCID: PMC8472014 DOI: 10.3390/ma14185391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023]
Abstract
Current trends in biomaterials science address the issue of integrating artificial materials as orthopedic or dental implants with biological materials, e.g., patients' bone tissue. Problems arise due to the simple fact that any surface that promotes biointegration and facilitates osteointegration may also provide a good platform for the rapid growth of bacterial colonies. Infected implant surfaces easily lead to biofilm formation that poses a major healthcare concern since it could have destructive effects and ultimately endanger the patients' life. As of late, research has centered on designing coatings that would eliminate possible infection but neglected to aid bone mineralization. Other strategies yielded surfaces that could promote osseointegration but failed to prevent microbial susceptibility. Needless to say, in order to assure prolonged implant functionality, both coating functions are indispensable and should be addressed simultaneously. This review summarizes progress in designing multifunctional implant coatings that serve as carriers of antibacterial agents with the primary intention of inhibiting bacterial growth on the implant-tissue interface, while still promoting osseointegration.
Collapse
Affiliation(s)
- Marija Djošić
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franš d’Eperea 86, 11000 Belgrade, Serbia;
| | - Ana Janković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Vesna Mišković-Stanković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| |
Collapse
|
40
|
Esmaeili A, Dini S, Pourveiseh A, Esmaeili A. Gene expression patterns of neurotrophin receptors during neuronal differentiation of human exfoliated deciduous teeth. Arch Oral Biol 2021; 127:105138. [PMID: 33940515 DOI: 10.1016/j.archoralbio.2021.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE In the current study, we aimed to investigate the expression profile of TrkA, TrkB, TrkC, and p75NTR neurotrophin receptors because of their roles in the functional differentiation of human exfoliated deciduous teeth (SHED) cells into neural-like cells before and after differentiation of SHED cells into neural-like cells. DESIGN Total RNAs isolated from dental pulp tissue, SHED cells, and neural-like cells were reverse transcribed into complementary DNA. Neurotrophin receptor expression at mRNA and protein levels were compared in these three cell types by means of real-time PCR and western blot methods. RESULTS TrkA mRNA increased (713.6 ± 251.5) significantly (p < 0.01) in neural-like cells difference from SHED and TrkB mRNA enhanced to 3618 times in these cells. The expression pattern of TrkC was very similar to the pattern of TrkA, and B. p75NTR mRNA increased 41.99 ± 21.61 fold in neural-like cells and 9.805 ± 4.06 fold in SHED cells. Almost the same pattern was observed for the expression of these receptors at the protein levels. Alterations with different grades and trends in neurotrophin receptors mRNA and protein expression levels were observed in these cells. CONCLUSION Neurotrophin receptors are important in the existence and differentiation of SHED cells into neuron cells. Therefore, because of the neurogenic potential and accessibility of SHED cells, derived cells from SHED cells can be distinguished as an ideal source for tissue engineering.
Collapse
Affiliation(s)
- Ali Esmaeili
- Dental School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Solmaz Dini
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran
| | - Azadeh Pourveiseh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, P.O. Box: 8174673441, Iran.
| |
Collapse
|