1
|
Sim J, Park CE, Cho I, Min K, Eom M, Han S, Jeon H, Cho ES, Lee Y, Yun YH, Lee S, Cheon DH, Kim J, Kim M, Cho HJ, Park JW, Kumar A, Chong Y, Kang JS, Piatkevich KD, Jung EE, Kang DS, Kwon SK, Kim J, Yoon KJ, Lee JS, Kim CH, Choi M, Kim JW, Song MR, Choi HJ, Boyden ES, Yoon YG, Chang JB. Nanoscale Resolution Imaging of Whole Mouse Embryos Using Expansion Microscopy. ACS NANO 2025; 19:7910-7927. [PMID: 39964913 DOI: 10.1021/acsnano.4c14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Nanoscale imaging of whole vertebrates is essential for the systematic understanding of human diseases, yet this goal has not yet been achieved. Expansion microscopy (ExM) is an attractive option for accomplishing this aim; however, the expansion of even mouse embryos at mid- and late-developmental stages, which have fewer calcified body parts than adult mice, is yet to be demonstrated due to the challenges of expanding calcified tissues. Here, we introduce a state-of-the-art ExM technique, termed whole-body ExM, that utilizes cyclic digestion. This technique allows for the super-resolution, volumetric imaging of anatomical structures, proteins, and endogenous fluorescent proteins (FPs) within embryonic and neonatal mice by expanding them 4-fold. The key feature of whole-body ExM is the alternating application of two enzyme compositions repeated multiple times. Through the simple repetition of this digestion process with an increasing number of cycles, mouse embryos of various stages up to E18.5, and even neonatal mice, which display a dramatic difference in the content of calcified tissues compared to embryos, are expanded without further laborious optimization. Furthermore, the whole-body ExM's ability to retain FP signals allows the visualization of various neuronal structures in transgenic mice. Whole-body ExM could facilitate studies of molecular changes in various vertebrates.
Collapse
Affiliation(s)
- Jueun Sim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chan E Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyeongbae Min
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 21102, Republic of Korea
| | - Minho Eom
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seungjae Han
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyungju Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Eun-Seo Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Hyun Yun
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Deok-Hyeon Cheon
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Museong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji-Won Park
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ajeet Kumar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yosep Chong
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Republic of Korea
| | - Jeong Seuk Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Erica E Jung
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Du-Seock Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seok-Kyu Kwon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyung Jin Choi
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Edward S Boyden
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, United States
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Young-Gyu Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Bioimaging Data Curation Center, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Li N, Duan X, Ding XF, Zhu N, Chen X. Characterization of hydrogel-scaffold mechanical properties and microstructure by using synchrotron propagation-based imaging. J Mech Behav Biomed Mater 2025; 163:106844. [PMID: 39637530 DOI: 10.1016/j.jmbbm.2024.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Hydrogel-based scaffolds have been widely used in soft tissue regeneration due to their biocompatible and tissue-like environment for maintaining cellular functions and tissue regeneration. Understanding the mechanical properties and internal microstructure of hydrogel-based scaffold, once implanted, is imperative in tissue engineering applications and longitudinal studies. Notably, this has been challenging to date as various conventional characterization methods by, for example, mechanical testing (for mechanical properties) and microscope (for internal microstructure) are destructive as they require removing scaffolds from the implantation site and processing samples for characterization. Synchrotron radiation propagation-based imaging-computed tomography (SR-PBI-CT) is feasible and promising for non-destructive visualizing of hydrogel scaffolds. As inspired, this study aimed to perform a study on the characterization of mechanical properties and microstructure of hydrogel scaffolds based on the SR-PBI-CT. In this study, hydrogel biomaterial inks composed of 3% w/v alginate and 1% w/v gelatin were printed to form scaffolds, with some scaffolds being degraded over 3 days. Both degraded and undegraded scaffolds underwent compressive testing, with the strains being controlled at the preset values; meanwhile stresses within scaffolds were measuring, resulting the stress-strain curves. Concurrently, the scaffolds were also imaged and examined by SR-PBI-CT at Canadian Light Source (CLS). During the imaging process, the scaffolds were mechanically loaded, respectively, with the strains same as the ones in the aforementioned compressive testing, and at each strain, the scaffold was scanned with a pixel size of 13 μm. From the stress-strain curves obtained in the compression testing, the Young's modulus was evaluated to characterize the elastic behavior of scaffolds: with the range between around 5-25 kPa. From the images captured by SR-PBI-CT, the scaffolds microstructures were examined in terms of the strand cross-section area, pore size, and hydrogel volume. Further, from the SR-PBI-CT images, the stress within hydrogel of scaffolds were evaluated, showing the agreement with those obtained from compression testing. These results have illustrated that the mechanical properties and microstructures of scaffolds, ether being degraded or not, can be examined and characterized by the SR-PBI-CT imaging, in a non-destructive manner. This would represent a significant advance for facilitating longitudinal studies on the scaffolds once implanted in-vivo.
Collapse
Affiliation(s)
- Naitao Li
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.
| | - Xiaoman Duan
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.
| | - Xiao Fan Ding
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.
| | - Ning Zhu
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada; Canadian Light Source, Saskatoon, S7N 2V3, SK, Canada; Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada; Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.
| |
Collapse
|
3
|
Roth K, Pallua JD, Degenhart G, De Zordo T, Kremser C, Reif C, Streif W, Schirmer M. Reduced Bone Quality of Sacrum and Lumbal Vertebrae Spongiosa in Toll-like Receptor 2- and Toll-like Receptor 4-Knockout Mice: A Blinded Micro-Computerized Analysis. Biomolecules 2025; 15:239. [PMID: 40001542 PMCID: PMC11853581 DOI: 10.3390/biom15020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Toll-like receptors (TLRs) are pivotal in modulating immune responses and have been implicated in bone remodeling. This in vivo study investigates the impact of TLR2 and TLR4 signaling on trabecular bone structure using micro-computed tomography in a murine model. Sacrum and lumbar vertebrae (L5, L6) from wildtype (WT), TLR2-knockout (TLR2-KO), and TLR4-knockout (TLR4-KO) mice were analyzed, with trabecular parameters such as connectivity density (Conn-Dens), trabecular thickness (DT-TbTh), and variability metrics (DT-Tb,(1/N),SD and DT-TbThSD) assessed. The results revealed significant differences among genotypes: TLR4-KO mice exhibited increased variability in trabecular distribution, indicating less stable bone structures, while TLR-KO mice showed lower variability in trabecular thickness, suggesting enhanced uniformity and robustness. BV/TV and 3D reconstructions highlighted lower bone volume fractions in the sacrum compared to lumbar vertebrae across genotypes, consistent with human observations of reduced sacral bone volume in spondyloarthritis (SpA). Interestingly, bone changes were independent of immunization-induced SpA, emphasizing a direct role in TLR signaling. These findings provide novel insights into the role of TLRs in bone microarchitecture and suggest implications for bone-related pathologies, particularly those involving inflammatory pathways. Future research may explore the translational relevance of TLR-mediated mechanisms in osteopenia and osteoporosis.
Collapse
Affiliation(s)
- Kilian Roth
- Department of Internal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Johannes Dominikus Pallua
- Core Facility of MicroCT, Clinic for Orthopedics and Traumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Gerald Degenhart
- Core Facility of MicroCT, University Clinic for Radiology, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Tobias De Zordo
- Department of Radiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.D.Z.); (C.K.)
- Radiology Department, Brixsana Private Clinic, 39042 Brixen-Bressanone, Italy
| | - Christian Kremser
- Department of Radiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.D.Z.); (C.K.)
| | - Christian Reif
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.R.); (W.S.)
| | - Werner Streif
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.R.); (W.S.)
| | - Michael Schirmer
- Department of Internal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Office for Internal Medicine/Rheumatology, 6060 Hall, Austria
| |
Collapse
|
4
|
van den Berg C, Khumalo NP, Ngoepe MN. Quantifying whole human hair scalp fibres of varying curl: A micro-computed tomographic study. J Microsc 2025; 297:227-251. [PMID: 39564786 PMCID: PMC11733847 DOI: 10.1111/jmi.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Scalp hair is a key feature of humans and its variability has been the subject of a broad range of studies. A small subset of these studies has focused on geometric quantification of human scalp hair fibres, however the use of race- and ethnicity-based classification systems makes it challenging to draw objective conclusions about fibre variability. Furthermore, sample preparation techniques for micro-imaging studies often alter the original form of hair fibres. This study sought to determine which of the commonly reported descriptors could be resolved using micro-computed tomography (micro-CT) for fibres of varying curl. Images obtained from micro-CT were used to reconstruct three-dimensional images that were then analysed. The study also explored the capabilities and limitations of micro-CT as an imaging modality by comparing and cross-validating findings with those obtained from scanning electron microscopy (SEM) and laser micrometry. The former deals with surface imaging while the latter deals with cross-sectional measurements. Micro-CT was found to be highly effective at resolving cross-sectional ellipsoidal parameters, but performed more poorly than SEM in reconstructing surface level details at a 2μ m $\umu\text{m}$ resolution. The technique was, however, able to reveal the presence of the medulla in type VI (high curl) hair fibres. When compared with high curl fibres, greater intra-fibre variability was observed for the low and medium curl fibres, highlighting the importance more objective classification systems.
Collapse
Affiliation(s)
- Claire van den Berg
- Hair and Skin Research LaboratoryDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla P. Khumalo
- Hair and Skin Research LaboratoryDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Malebogo N. Ngoepe
- Department of Mechanical EngineeringUniversity of Cape TownCape TownSouth Africa
- Centre for Research in Computational and Applied Mechanics (CERECAM)University of Cape TownCape TownSouth Africa
| |
Collapse
|
5
|
Wang S, Pandey PK, Lee G, van Bergen RJP, Sun L, Xu Y, Xiang L. X-ray-induced acoustic computed tomography: 3D X-ray absorption imaging from a single view. SCIENCE ADVANCES 2024; 10:eads1584. [PMID: 39642225 PMCID: PMC11627201 DOI: 10.1126/sciadv.ads1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Computed tomography (CT) scanners are essential for modern imaging but require around 600 projections from various angles. We present x-ray-induced acoustic computed tomography (XACT), a method that uses radiation-induced acoustic waves for three-dimensional (3D) x-ray imaging. These spherical acoustic waves travel through tissue at 1.5 × 103 meters per second, much slower than x-rays, allowing ultrasound detectors to capture them and generate 3D images without mechanical scanning. We validate this theory by performing 3D numerical reconstructions of a human breast from a single x-ray projection and experimentally determining 3D structures of objects at different depths. Achieving resolutions of 0.4 millimeters in the XZ plane and 3.5 millimeters in the XY plane at a depth of 16 millimeters, XACT demonstrates the ability to produce 3D images from one x-ray projection, reducing radiation exposure and enabling gantry-free imaging. XACT shows great promise for biomedical and nondestructive testing applications, potentially replacing conventional CT.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, Irvine, USA
| | - Gerald Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
| | | | - Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
| | - Yifei Xu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
| | - Liangzhong) Xiang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
- Department of Radiological Sciences, University of California, Irvine, Irvine, USA
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, USA
| |
Collapse
|
6
|
Iori G, Alzu’bi M, Abbadi A, Al Momani Y, Hasoneh AR, Van Vaerenbergh P, Cudin I, Marcos J, Ahmad A, Mohammad A, Matalgah S, Foudeh I, Al Najdawi M, Amro A, Ur Rehman A, Abugharbiyeh M, Khrais R, Aljadaa A, Nour M, Al Mohammad H, Al Omari F, Salama M, García Fusté MJ, Reyes-Herrera J, Morawe C, Attal M, Kasaei S, Chrysostomou C, Kołodziej T, Boruchowski M, Nowak P, Wiechecki J, Fatima A, Ghigo A, Wawrzyniak AI, Lorentz K, Paolucci G, Lehner F, Krisch M, Stampanoni M, Rack A, Kaprolat A, Lausi A. BEATS: BEAmline for synchrotron X-ray microTomography at SESAME. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1358-1372. [PMID: 39007825 PMCID: PMC11371053 DOI: 10.1107/s1600577524005277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100 keV. The photon source generated by a 2.9 T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13 µm down to 0.33 µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME.
Collapse
Affiliation(s)
- Gianluca Iori
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Mustafa Alzu’bi
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Anas Abbadi
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Yazeed Al Momani
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Abdel Rahman Hasoneh
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | | | - Ivan Cudin
- Elettra-Sincrotrone Trieste SCpA, Basovizza, Trieste, Italy
| | | | - Abdalla Ahmad
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Anas Mohammad
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Salman Matalgah
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Ibrahim Foudeh
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Mohammad Al Najdawi
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Adel Amro
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Abid Ur Rehman
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Mohammad Abugharbiyeh
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Rami Khrais
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Amro Aljadaa
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Mohammad Nour
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Hussam Al Mohammad
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Farouq Al Omari
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Majeda Salama
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | | | | | | | - Maher Attal
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | - Samira Kasaei
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| | | | - Tomasz Kołodziej
- Solaris National Synchrotron Radiation CentreJagiellonian UniversityKrakowPoland
| | - Mateusz Boruchowski
- Solaris National Synchrotron Radiation CentreJagiellonian UniversityKrakowPoland
| | - Paweł Nowak
- Solaris National Synchrotron Radiation CentreJagiellonian UniversityKrakowPoland
| | - Jarosław Wiechecki
- Solaris National Synchrotron Radiation CentreJagiellonian UniversityKrakowPoland
| | | | - Andrea Ghigo
- Laboratori Nazionali di Frascati dell’INFNINFNFrascatiRomeItaly
| | | | | | | | - Frank Lehner
- Deutsches Elektronen-Synchrotron DESYHamburgGermany
| | | | | | | | | | - Andrea Lausi
- SESAME – Synchrotron-light for Experimental Science and Applications in the Middle East, Allan, Jordan
| |
Collapse
|
7
|
Kim D, Gollihue J, Poovathingal SJ, DeBolt S. Detailed three-dimensional analyses of tyloses in oak used for bourbon and wine barrels through X-ray computed tomography. Sci Rep 2024; 14:17044. [PMID: 39048642 PMCID: PMC11269640 DOI: 10.1038/s41598-024-67298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
American white (Quercus alba L.) oak casks have been used for liquid storage for centuries. Their use in aged spirits is critical to imparting flavor and mouthfeel to the final product. The reason that barrels retain liquid has been hypothesized to be the result of abundant physiological structures called tyloses in parenchyma tissues and medullary rays in white oak. Using non-destructive X-ray computed tomography (XRCT) imaging, we reveal an unprecedented view of tylose structure and quantify the pore-filling capacity of tyloses in white oak that underscores the liquid retention we observe in casks. We show that pores of white oaks are filled with sevenfold higher tylose volume compared to northern red oak (Q. rubra), consistent with prior literature that casks made from white oak retain liquid while red oak fails to do so. We propose that XRCT represents a methodological standard for observing these complex structures and should be employed to understand the many questions related to liquid losses from casks, cultural treatment of casks, and the influence of climate change on oak tyloses in the future.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Jarrad Gollihue
- James B. Beam Institute for Kentucky Spirits, University of Kentucky, Lexington, KY, 40506, USA
| | - Savio J Poovathingal
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, 40506, USA.
| | - Seth DeBolt
- James B. Beam Institute for Kentucky Spirits, University of Kentucky, Lexington, KY, 40506, USA.
- Department of Horticulture, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
8
|
Rezaei B, Tay ZW, Mostufa S, Manzari ON, Azizi E, Ciannella S, Moni HEJ, Li C, Zeng M, Gómez-Pastora J, Wu K. Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications. NANOSCALE 2024; 16:11802-11824. [PMID: 38809214 DOI: 10.1039/d4nr01195c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Recent advancements in medical imaging have brought forth various techniques such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound, each contributing to improved diagnostic capabilities. Most recently, magnetic particle imaging (MPI) has become a rapidly advancing imaging modality with profound implications for medical diagnostics and therapeutics. By directly detecting the magnetization response of magnetic tracers, MPI surpasses conventional imaging modalities in sensitivity and quantifiability, particularly in stem cell tracking applications. Herein, this comprehensive review explores the fundamental principles, instrumentation, magnetic nanoparticle tracer design, and applications of MPI, offering insights into recent advancements and future directions. Novel tracer designs, such as zinc-doped iron oxide nanoparticles (Zn-IONPs), exhibit enhanced performance, broadening MPI's utility. Spatial encoding strategies, scanning trajectories, and instrumentation innovations are elucidated, illuminating the technical underpinnings of MPI's evolution. Moreover, integrating machine learning and deep learning methods enhances MPI's image processing capabilities, paving the way for more efficient segmentation, quantification, and reconstruction. The potential of superferromagnetic iron oxide nanoparticle chains (SFMIOs) as new MPI tracers further advanced the imaging quality and expanded clinical applications, underscoring the promising future of this emerging imaging modality.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Omid Nejati Manzari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Ebrahim Azizi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Hur-E-Jannat Moni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Changzhi Li
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
9
|
Gignac PM, Valdez D, Morhardt AC, Lynch LM. Buffered Lugol's Iodine Preserves DNA Fragment Lengths. Integr Org Biol 2024; 6:obae017. [PMID: 38887427 PMCID: PMC11182668 DOI: 10.1093/iob/obae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Museum collections play a pivotal role in the advancement of biological science by preserving phenotypic and genotypic history and variation. Recently, contrast-enhanced X-ray computed tomography (CT) has aided these advances by allowing improved visualization of internal soft tissues. However, vouchered specimens could be at risk if staining techniques are destructive. For instance, the pH of unbuffered Lugol's iodine (I2KI) may be low enough to damage deoxyribonucleic acid (DNA). The extent of this risk is unknown due to a lack of rigorous evaluation of DNA quality between control and experimental samples. Here, we used formalin-fixed mice to document DNA concentrations and fragment lengths in nonstained, ethanol-preserved controls and 3 iodine-based staining preparations: (1) 1.25% weight-by-volume (wt/vol.) alcoholic iodine (I2E); (2) 3.75% wt/vol. I2KI; and (3) 3.75% wt/vol. buffered I2KI. We tested a null hypothesis of no significant difference in DNA concentrations and fragment lengths between control and treatment samples. We found that DNA concentration decreases because of staining-potentially an effect of measuring intact double-stranded DNA only. Fragment lengths, however, were significantly higher for buffered I2KI and control samples, which were not, themselves, significantly different. Our results implicate buffered I2KI as the appropriate choice for contrast-enhanced CT imaging of museum wet collections to safely maximize their potential for understanding genetic and phenotypic diversity.
Collapse
Affiliation(s)
- P M Gignac
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - D Valdez
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| | - A C Morhardt
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - L M Lynch
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
10
|
Lin J, Cong Q, Zhang D. Magnetic Microrobots for In Vivo Cargo Delivery: A Review. MICROMACHINES 2024; 15:664. [PMID: 38793237 PMCID: PMC11123378 DOI: 10.3390/mi15050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Magnetic microrobots, with their small size and agile maneuverability, are well-suited for navigating the intricate and confined spaces within the human body. In vivo cargo delivery within the context of microrobotics involves the use of microrobots to transport and administer drugs and cells directly to the targeted regions within a living organism. The principal aim is to enhance the precision, efficiency, and safety of therapeutic interventions. Despite their potential, there is a shortage of comprehensive reviews on the use of magnetic microrobots for in vivo cargo delivery from both research and engineering perspectives, particularly those published after 2019. This review addresses this gap by disentangling recent advancements in magnetic microrobots for in vivo cargo delivery. It summarizes their actuation platforms, structural designs, cargo loading and release methods, tracking methods, navigation algorithms, and degradation and retrieval methods. Finally, it highlights potential research directions. This review aims to provide a comprehensive summary of the current landscape of magnetic microrobot technologies for in vivo cargo delivery. It highlights their present implementation methods, capabilities, and prospective research directions. The review also examines significant innovations and inherent challenges in biomedical applications.
Collapse
Affiliation(s)
| | | | - Dandan Zhang
- Department of Bioengineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK; (J.L.); (Q.C.)
| |
Collapse
|
11
|
Indore NS, Karunakaran C, Jayas DS, Stobbs J, Vu M, Tu K, Marinos O. Characterization of spring and durum wheat using non-destructive synchrotron phase contrast X-ray microtomography during storage. NPJ Sci Food 2024; 8:29. [PMID: 38762600 PMCID: PMC11102443 DOI: 10.1038/s41538-024-00271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
Post-harvest losses during cereal grain storage are a big concern in both developing and developed countries, where spring and durum wheat are staple food grains. Varieties under these classes behave differently under storage, which affects their end storage life. High resolution imaging data of dry as well as spoiled seed are not available for any class of wheat; therefore, an attempt was made to generate 3D data for better understanding of seed structure and changes due to spoilage. Six wheat varieties (3 varieties for each class of wheat) were stored for 5 week at 17% moisture content (wb) before scanning. Seeds were also stored in a freezer (-18 °C) for further scanning to determine if any changes occur in the structure of seeds due to freezing. Spring varieties of wheat performed better than durum varieties and freezing did not affect seed structure. Data could also help plant breeders to develop varieties that do not easily spoil, adjust grain processing techniques, and develop post-harvest recommendations for other wheat varieties.
Collapse
Affiliation(s)
- Navanth S Indore
- Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | | | - Digvir S Jayas
- Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada.
- President's Office, A762 University Hall, University of Lethbridge, Lethbridge, AB, Canada.
| | | | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | - Omar Marinos
- Canadian Light Source Inc., Saskatoon, SK, Canada
| |
Collapse
|
12
|
Zekavat AR, Lioliou G, Roche I Morgó O, Maughan Jones C, Galea G, Maniou E, Doherty A, Endrizzi M, Astolfo A, Olivo A, Hagen C. Phase contrast micro-CT with adjustable in-slice spatial resolution at constant magnification. Phys Med Biol 2024; 69:105017. [PMID: 38631365 DOI: 10.1088/1361-6560/ad4000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Objective.To report on a micro computed tomography (micro-CT) system capable of x-ray phase contrast imaging and of increasing spatial resolution at constant magnification.Approach.The micro-CT system implements the edge illumination (EI) method, which relies on two absorbing masks with periodically spaced transmitting apertures in the beam path; these split the beam into an array of beamlets and provide sensitivity to the beamlets' directionality, i.e. refraction. In EI, spatial resolution depends on the width of the beamlets rather than on the source/detector point spread function (PSF), meaning that resolution can be increased by decreasing the mask apertures, without changing the source/detector PSF or the magnification.Main results.We have designed a dedicated mask featuring multiple bands with differently sized apertures and used this to demonstrate that resolution is a tuneable parameter in our system, by showing that increasingly small apertures deliver increasingly detailed images. Phase contrast images of a bar pattern-based resolution phantom and a biological sample (a mouse embryo) were obtained at multiple resolutions.Significance.The new micro-CT system could find application in areas where phase contrast is already known to provide superior image quality, while the added tuneable resolution functionality could enable more sophisticated analyses in these applications, e.g. by scanning samples at multiple scales.
Collapse
Affiliation(s)
- Amir Reza Zekavat
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Grammatiki Lioliou
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Oriol Roche I Morgó
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Charlotte Maughan Jones
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Gabriel Galea
- University College London, GOS Institute of Child Health, London, United Kingdom
| | - Eirini Maniou
- University College London, GOS Institute of Child Health, London, United Kingdom
| | - Adam Doherty
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Marco Endrizzi
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Alberto Astolfo
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Alessandro Olivo
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Charlotte Hagen
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
13
|
Pukaluk A, Sommer G, Holzapfel GA. Multimodal experimental studies of the passive mechanical behavior of human aortas: Current approaches and future directions. Acta Biomater 2024; 178:1-12. [PMID: 38401775 DOI: 10.1016/j.actbio.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Cardiovascular diseases are the leading cause of death worldwide and include, among others, critical conditions of the aortic wall. Importantly, such critical conditions require effective diagnosis and treatment, which are not yet accurate enough. However, they could be significantly strengthened with predictive material models of the aortic wall. In particular, such predictive models could support surgical decisions, preoperative planning, and estimation of postoperative tissue remodeling. However, developing a predictive model requires experimental data showing both structural parameters and mechanical behavior. Such experimental data can be obtained using multimodal experiments. This review therefore discusses the current approaches to multimodal experiments. Importantly, the strength of the aortic wall is determined primarily by its passive components, i.e., mainly collagen, elastin, and proteoglycans. Therefore, this review focuses on multimodal experiments that relate the passive mechanical behavior of the human aortic wall to the structure and organization of its passive components. In particular, the multimodal experiments are classified according to the expected results. Multiple examples are provided for each experimental class and summarized with highlighted advantages and disadvantages of the method. Finally, future directions of multimodal experiments are envisioned and evaluated. STATEMENT OF SIGNIFICANCE: Multimodal experiments are innovative approaches that have gained interest very quickly, but also recently. This review presents therefore a first clear summary of groundbreaking research in the field of multimodal experiments. The benefits and limitations of various types of multimodal experiments are thoroughly discussed, and a comprehensive overview of possible results is provided. Although this review focuses on multimodal experiments performed on human aortic tissues, the methods used and described are not limited to human aortic tissues but can be extended to other soft materials.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering (NTNU), Trondheim, Norway.
| |
Collapse
|
14
|
Cuau L, Akl P, Gautheron A, Houmeau A, Chaput F, Yaromina A, Dubois L, Lambin P, Karpati S, Parola S, Rezaeifar B, Langlois JB, Si-Mohamed SA, Montcel B, Douek P, Lerouge F. Surface modification effect on contrast agent efficiency for X-ray based spectral photon-counting scanner/luminescence imaging: from fundamental study to in vivo proof of concept. NANOSCALE 2024; 16:2931-2944. [PMID: 38230699 DOI: 10.1039/d3nr03710j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
X-Ray imaging techniques are among the most widely used modalities in medical imaging and their constant evolution has led to the emergence of new technologies. The new generation of computed tomography (CT) systems - spectral photonic counting CT (SPCCT) and X-ray luminescence optical imaging - are examples of such powerful techniques. With these new technologies the rising demand for new contrast agents has led to extensive research in the field of nanoparticles and the possibility to merge the modalities appears to be highly attractive. In this work, we propose the design of lanthanide-based nanocrystals as a multimodal contrast agent with the two aforementioned technologies, allowing SPCCT and optical imaging at the same time. We present a systematic study on the effect of the Tb3+ doping level and surface modification on the generation of contrast with SPCCT and the luminescence properties of GdF3:Tb3+ nanocrystals (NCs), comparing different surface grafting with organic ligands and coatings with silica to make these NCs bio-compatible. A comparison of the luminescence properties of these NCs with UV revealed that the best results were obtained for the Gd0.9Tb0.1F3 composition. This property was confirmed under X-ray excitation in microCT and with SPCCT. Moreover, we could demonstrate that the intensity of the luminescence and the excited state lifetime are strongly affected by the surface modification. Furthermore, whatever the chemical nature of the ligand, the contrast with SPCCT did not change. Finally, the successful proof of concept of multimodal imaging was performed in vivo with nude mice in the SPCCT taking advantage of the so-called color K-edge imaging method.
Collapse
Affiliation(s)
- Loic Cuau
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| | - Pia Akl
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - A Gautheron
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
- Université Jean Monnet Saint-Etienne, CNRS, Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, Saint-Etienne, France
| | - Angèle Houmeau
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Frédéric Chaput
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| | - Ala Yaromina
- Department of Precision Medicine, The M-Lab, GROW - School of Oncology, Maastricht University, Maastricht, 6200, MD, The Netherlands
| | - Ludwig Dubois
- Department of Precision Medicine, The M-Lab, GROW - School of Oncology, Maastricht University, Maastricht, 6200, MD, The Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, The M-Lab, GROW - School of Oncology, Maastricht University, Maastricht, 6200, MD, The Netherlands
| | - Szilvia Karpati
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| | - Stephane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| | - B Rezaeifar
- Department of Precision Medicine, The M-Lab, GROW - School of Oncology, Maastricht University, Maastricht, 6200, MD, The Netherlands
- Research group NuTeC, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Salim A Si-Mohamed
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - Bruno Montcel
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Philippe Douek
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - Frederic Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France.
| |
Collapse
|
15
|
Iwasaki N, Karali A, Roldo M, Blunn G. Full-Field Strain Measurements of the Muscle-Tendon Junction Using X-ray Computed Tomography and Digital Volume Correlation. Bioengineering (Basel) 2024; 11:162. [PMID: 38391648 PMCID: PMC10886230 DOI: 10.3390/bioengineering11020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
We report, for the first time, the full-field 3D strain distribution of the muscle-tendon junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume correlation (DVC) with the aim of understanding the mechanical behavior of the junction under tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT combined with DVC was used to image and compute strain distribution at the MTJ under a tensile load (2.4 N). High strain measuring 120,000 µε, 160,000 µε, and 120,000 µε for the first principal stain (εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ, which is at risk of being damaged in activities associated with excessive physical activity.
Collapse
Affiliation(s)
- Nodoka Iwasaki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
16
|
Indore NS, Chaudhry M, Jayas DS, Paliwal J, Karunakaran C. Non-Destructive Assessment of Microstructural Changes in Kabuli Chickpeas during Storage. Foods 2024; 13:433. [PMID: 38338568 PMCID: PMC10855213 DOI: 10.3390/foods13030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The potential of hyperspectral imaging (HSI) and synchrotron phase-contrast micro computed tomography (SR-µCT) was evaluated to determine changes in chickpea quality during storage. Chickpea samples were stored for 16 wk at different combinations of moisture contents (MC of 9%, 11%, 13%, and 15% wet basis) and temperatures (10 °C, 20 °C, and 30 °C). Hyperspectral imaging was utilized to investigate the overall quality deterioration, and SR-µCT was used to study the microstructural changes during storage. Principal component analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were used as multivariate data analysis approaches for HSI data. Principal component analysis successfully grouped the samples based on relative humidity (RH) and storage temperatures, and the PLS-DA classification also resulted in reliable accuracy (between 80 and 99%) for RH-based and temperature-based classification. The SR-µCT results revealed that microstructural changes in kernels (9% and 15% MC) were dominant at higher temperatures (above 20 °C) as compared to lower temperatures (10 °C) during storage due to accelerated spoilage at higher temperatures (above 20 °C). Chickpeas which had internal irregularities like cracked endosperm and air spaces before storage were spoiled at lower moisture from 8 wk of storage.
Collapse
Affiliation(s)
- Navnath S. Indore
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
| | - Mudassir Chaudhry
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
| | - Digvir S. Jayas
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
- President’s Office, A762 University Hall, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
| | - Chithra Karunakaran
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
17
|
Albers J, Nikolova M, Svetlove A, Darif N, Lawson MJ, Schneider TR, Schwab Y, Bourenkov G, Duke E. High Throughput Tomography (HiTT) on EMBL beamline P14 on PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:186-194. [PMID: 37971957 PMCID: PMC10833423 DOI: 10.1107/s160057752300944x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Here, high-throughput tomography (HiTT), a fast and versatile phase-contrast imaging platform for life-science samples on the EMBL beamline P14 at DESY in Hamburg, Germany, is presented. A high-photon-flux undulator beamline is used to perform tomographic phase-contrast acquisition in about two minutes which is linked to an automated data processing pipeline that delivers a 3D reconstructed data set less than a minute and a half after the completion of the X-ray scan. Combining this workflow with a sophisticated robotic sample changer enables the streamlined collection and reconstruction of X-ray imaging data from potentially hundreds of samples during a beam-time shift. HiTT permits optimal data collection for many different samples and makes possible the imaging of large sample cohorts thus allowing population studies to be attempted. The successful application of HiTT on various soft tissue samples in both liquid (hydrated and also dehydrated) and paraffin-embedded preparations is demonstrated. Furthermore, the feasibility of HiTT to be used as a targeting tool for volume electron microscopy, as well as using HiTT to study plant morphology, is demonstrated. It is also shown how the high-throughput nature of the work has allowed large numbers of `identical' samples to be imaged to enable statistically relevant sample volumes to be studied.
Collapse
Affiliation(s)
- Jonas Albers
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marina Nikolova
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Angelika Svetlove
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Nedal Darif
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between the European Molecular Biology Laboratory and the Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Matthew J. Lawson
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas R. Schneider
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Elizabeth Duke
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
18
|
Katsamenis OL, Basford PJ, Robinson SK, Boardman RP, Konstantinopoulou E, Lackie PM, Page A, Ratnayaka JA, Goggin PM, Thomas GJ, Cox SJ, Sinclair I, Schneider P. A high-throughput 3D X-ray histology facility for biomedical research and preclinical applications. Wellcome Open Res 2023; 8:366. [PMID: 37928208 PMCID: PMC10620852 DOI: 10.12688/wellcomeopenres.19666.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 11/07/2023] Open
Abstract
Background The University of Southampton, in collaboration with the University Hospital Southampton (UHS) NHS Foundation Trust and industrial partners, has been at the forefront of developing three-dimensional (3D) imaging workflows using X-ray microfocus computed tomography (μCT) -based technology. This article presents the outcomes of these endeavours and highlights the distinctive characteristics of a μCT facility tailored explicitly for 3D X-ray Histology, with a primary focus on applications in biomedical research and preclinical and clinical studies. Methods The UHS houses a unique 3D X-ray Histology (XRH) facility, offering a range of services to national and international clients. The facility employs specialised μCT equipment explicitly designed for histology applications, allowing whole-block XRH imaging of formalin-fixed and paraffin-embedded tissue specimens. It also enables correlative imaging by combining μCT imaging with other microscopy techniques, such as immunohistochemistry (IHC) and serial block-face scanning electron microscopy, as well as data visualisation, image quantification, and bespoke analysis. Results Over the past seven years, the XRH facility has successfully completed over 120 projects in collaboration with researchers from 60 affiliations, resulting in numerous published manuscripts and conference proceedings. The facility has streamlined the μCT imaging process, improving productivity and enabling efficient acquisition of 3D datasets. Discussion & Conclusions The 3D X-ray Histology (XRH) facility at UHS is a pioneering platform in the field of histology and biomedical imaging. To the best of our knowledge, it stands out as the world's first dedicated XRH facility, encompassing every aspect of the imaging process, from user support to data generation, analysis, training, archiving, and metadata generation. This article serves as a comprehensive guide for establishing similar XRH facilities, covering key aspects of facility setup and operation. Researchers and institutions interested in developing state-of-the-art histology and imaging facilities can utilise this resource to explore new frontiers in their research and discoveries.
Collapse
Affiliation(s)
- Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philip J. Basford
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Stephanie K. Robinson
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Richard P. Boardman
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Elena Konstantinopoulou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Peter M. Lackie
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Anton Page
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Patricia M. Goggin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Gareth J. Thomas
- Institute for Life Sciences, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Simon J. Cox
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Ian Sinclair
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philipp Schneider
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- High-Performance Vision Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
19
|
Katsamenis OL, Basford PJ, Robinson SK, Boardman RP, Konstantinopoulou E, Lackie PM, Page A, Ratnayaka JA, Goggin PM, Thomas GJ, Cox SJ, Sinclair I, Schneider P. A high-throughput 3D X-ray histology facility for biomedical research and preclinical applications. Wellcome Open Res 2023; 8:366. [PMID: 37928208 PMCID: PMC10620852 DOI: 10.12688/wellcomeopenres.19666.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The University of Southampton, in collaboration with the University Hospital Southampton (UHS) NHS Foundation Trust and industrial partners, has been at the forefront of developing three-dimensional (3D) imaging workflows using X-ray microfocus computed tomography (μCT) -based technology. This article presents the outcomes of these endeavours and highlights the distinctive characteristics of a μCT facility tailored explicitly for 3D X-ray Histology, with a primary focus on applications in biomedical research and preclinical and clinical studies. METHODS The UHS houses a unique 3D X-ray Histology (XRH) facility, offering a range of services to national and international clients. The facility employs specialised μCT equipment explicitly designed for histology applications, allowing whole-block XRH imaging of formalin-fixed and paraffin-embedded tissue specimens. It also enables correlative imaging by combining μCT imaging with other microscopy techniques, such as immunohistochemistry (IHC) and serial block-face scanning electron microscopy, as well as data visualisation, image quantification, and bespoke analysis. RESULTS Over the past seven years, the XRH facility has successfully completed over 120 projects in collaboration with researchers from 60 affiliations, resulting in numerous published manuscripts and conference proceedings. The facility has streamlined the μCT imaging process, improving productivity and enabling efficient acquisition of 3D datasets. DISCUSSION & CONCLUSIONS The 3D X-ray Histology (XRH) facility at UHS is a pioneering platform in the field of histology and biomedical imaging. To the best of our knowledge, it stands out as the world's first dedicated XRH facility, encompassing every aspect of the imaging process, from user support to data generation, analysis, training, archiving, and metadata generation. This article serves as a comprehensive guide for establishing similar XRH facilities, covering key aspects of facility setup and operation. Researchers and institutions interested in developing state-of-the-art histology and imaging facilities can utilise this resource to explore new frontiers in their research and discoveries.
Collapse
Affiliation(s)
- Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philip J. Basford
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Stephanie K. Robinson
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Richard P. Boardman
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Elena Konstantinopoulou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Peter M. Lackie
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Anton Page
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Patricia M. Goggin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Gareth J. Thomas
- Institute for Life Sciences, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Simon J. Cox
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Ian Sinclair
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philipp Schneider
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- High-Performance Vision Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
20
|
Balasubramanian H, Hobson CM, Chew TL, Aaron JS. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun Biol 2023; 6:1096. [PMID: 37898673 PMCID: PMC10613274 DOI: 10.1038/s42003-023-05468-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
The optical microscope has revolutionized biology since at least the 17th Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges. Here, we delve into the current state of live imaging to explore the barriers that must be overcome and the possibilities that lie ahead. We venture to envision a future where we can visualize and study everything, everywhere, all at once - from the intricate inner workings of a single cell to the dynamic interplay across entire organisms, and a world where scientists could access the necessary microscopy technologies anywhere.
Collapse
Affiliation(s)
| | - Chad M Hobson
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA.
| |
Collapse
|
21
|
Indore NS, Jayas DS, Karunakaran C, Stobbs J, Bondici VF, Vu M, Tu K, Marinos O. Study of Microstructural, Nutritional, and Biochemical Changes in Hulled and Hulless Barley during Storage Using X-ray and Infrared Techniques. Foods 2023; 12:3935. [PMID: 37959054 PMCID: PMC10650746 DOI: 10.3390/foods12213935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Four varieties of barley (Esma, AC Metacalf, Tradition, and AB Cattlelac), representing four Canadian barley classes, were stored at 17% moisture content (mc) for 8 week. Stored barely was characterized using synchrotron X-ray phase contrast microcomputed tomography, synchrotron X-ray fluorescence imaging, and mid-infrared spectroscopy at the Canadian Light Source, Saskatoon. The deterioration was observed in all the selected varieties of barley at the end of 8 week of storage. Changes due to spoilage over time were observed in the grain microstructure and its nutrient distribution and composition. This study underscores the critical importance of the initial condition of barley grain microstructure in determining its storage life, particularly under unfavorable conditions. The hulled barley varieties showed more deterioration in microstructure than the hulless varieties of barley, where a direct correlation between microstructural changes and alterations in nutritional content was found. All selected barley classes showed changes in the distribution of nutrients (Ca, Fe, K, Mn, Cu, and Zn), but the two-row AC Metcalf variety exhibited more substantial variations in their nutrient distribution (Zn and Mn) than the other three varieties during storage. The two-row class barley varieties showed more changes in biochemical components (protein, lipids, and carbohydrates) than the six-row class varieties.
Collapse
Affiliation(s)
- Navnath S. Indore
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (C.K.)
| | - Digvir S. Jayas
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (C.K.)
- President’s Office, A762 University Hall, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Chithra Karunakaran
- Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (C.K.)
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Jarvis Stobbs
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Viorica F. Bondici
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| | - Omar Marinos
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada; (J.S.); (V.F.B.); (M.V.); (K.T.); (O.M.)
| |
Collapse
|
22
|
Haberthür D, Law M, Ford K, Häsler M, Seehausen O, Hlushchuk R. Microtomographic investigation of a large corpus of cichlids. PLoS One 2023; 18:e0291003. [PMID: 37756267 PMCID: PMC10529598 DOI: 10.1371/journal.pone.0291003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
A large collection of cichlids (N = 133) from Lake Victoria in Africa, with total lengths ranging from 6 to 18 cm was nondestructively imaged using micro-computed tomography. We present a method to efficiently obtain three-dimensional tomographic datasets of the oral and pharyngeal jaws and the whole skull of these fishes to accurately describe their morphology. The tomographic data we acquired (9.8 TB of projection images) yielded 1.5 TB of three-dimensional image stacks used for extracting the relevant features of interest. Herein we present our method and outlooks on analyzing the acquired data; a morphological description of the oral and pharyngeal jaws, a three-dimensional geometric morphometrics analysis of landmarked skull features, and a robust method to automatically extract otoliths from the tomographic data.
Collapse
Affiliation(s)
| | - Mikki Law
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Kassandra Ford
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
- Department of Biological Sciences, George Washington University, Washington, DC, United States of America
| | - Marcel Häsler
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | | |
Collapse
|
23
|
Ishii R, Yoshida M, Suzuki N, Ogino H, Suzuki M. X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration. Dev Growth Differ 2023; 65:300-310. [PMID: 37477433 DOI: 10.1111/dgd.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.
Collapse
Affiliation(s)
- Riona Ishii
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Mana Yoshida
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Manser R, Narayan K, Parwani R. Using X-ray Microscopy and Machine Learning to Boost Image Quality in 3D Histology. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:990-991. [PMID: 37613794 DOI: 10.1093/micmic/ozad067.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | |
Collapse
|
25
|
Skovbjerg G, Roostalu U, Salinas CG, Skytte JL, Perens J, Clemmensen C, Elster L, Frich CK, Hansen HH, Hecksher-Sørensen J. Uncovering CNS access of lipidated exendin-4 analogues by quantitative whole-brain 3D light sheet imaging. Neuropharmacology 2023:109637. [PMID: 37391028 DOI: 10.1016/j.neuropharm.2023.109637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Peptide-based drug development for CNS disorders is challenged by poor blood-brain barrier (BBB) penetrability of peptides. While acylation protractions (lipidation) have been successfully applied to increase circulating half-life of therapeutic peptides, little is known about the CNS accessibility of lipidated peptide drugs. Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method to visualize whole-brain 3D distribution of fluorescently labelled therapeutic peptides at single-cell resolution. Here, we applied LSFM to map CNS distribution of the clinically relevant GLP-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) and lipidated analogues following peripheral administration. Mice received an intravenous dose (100 nmol/kg) of IR800 fluorophore-labelled Ex4 (Ex4), Ex4 acylated with a C16-monoacid (Ex4_C16MA) or C18-diacid (Ex4_C18DA). Other mice were administered C16MA-acylated exendin 9-39 (Ex9-39_C16MA), a selective GLP-1R antagonist, serving as negative control for GLP-1R mediated agonist internalization. Two hours post-dosing, brain distribution of Ex4 and analogues was predominantly restricted to the circumventricular organs, notably area postrema and nucleus of the solitary tract. Ex4_C16MA and Ex9-39_C16MA also distributed to the paraventricular hypothalamic nucleus and medial habenula. Notably, Ex4_C18DA was detected in deeper-lying brain structures such as dorsomedial/ventromedial hypothalamic nuclei and the dentate gyrus. Similar CNS distribution maps of Ex4-C16MA and Ex9-39_C16MA suggest that brain access of lipidated Ex4 analogues is independent on GLP-1 receptor internalization. The cerebrovasculature was devoid of specific labelling, hence not supporting a direct role of GLP-1 RAs in BBB function. In conclusion, peptide lipidation increases CNS accessibility of Ex4. Our fully automated LSFM pipeline is suitable for mapping whole-brain distribution of fluorescently labelled drugs.
Collapse
Affiliation(s)
- Grethe Skovbjerg
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Urmas Roostalu
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | | | - Jacob L Skytte
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Johanna Perens
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Lisbeth Elster
- Gubra ApS, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | | | | | | |
Collapse
|
26
|
Scherberich J, Windfelder AG, Krombach GA. Analysis of fixation materials in micro-CT: It doesn't always have to be styrofoam. PLoS One 2023; 18:e0286039. [PMID: 37315002 DOI: 10.1371/journal.pone.0286039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
Good fixation of filigree specimens for micro-CT examinations is often a challenge. Movement artefacts, over-radiation or even crushing of the specimen can easily occur. Since different specimens have different requirements, we scanned, analysed and compared 19 possible fixation materials under the same conditions in the micro-CT. We focused on radiodensity, porosity and reversibility of these fixation materials. Furthermore, we have made sure that all materials are cheap and easily available. The scans were performed with a SkyScan 1173 micro-CT. All dry fixation materials tested were punched into 5 mm diameter cylinders and clamped into 0.2 ml reaction vessels. A voxel size of 5.33 μm was achieved in a 180° scan in 0.3° steps. Ideally, fixation materials should not be visible in the reconstructed image, i.e., barely binarised. Besides common micro-CT fixation materials such as styrofoam (-935 Hounsfield Units) or Basotect foam (-943 Hounsfield Units), polyethylene air cushions (-944 Hounsfield Units), Micropor foam (-926 Hounsfield Units) and polyurethane foam, (-960 Hounsfield Units to -470 Hounsfield Units) have proved to be attractive alternatives. Furthermore, more radiopaque materials such as paraffin wax granulate (-640 Hounsfield Units) and epoxy resin (-190 Hounsfield Units) are also suitable as fixation materials. These materials often can be removed in the reconstructed image by segmentation. Sample fixations in the studies of recent years are almost all limited to fixation in Parafilm, Styrofoam, or Basotect foam if the fixation type is mentioned at all. However, these are not always useful, as styrofoam, for example, dissolves in some common media such as methylsalicylate. We show that micro-CT laboratories should be equipped with various fixation materials to achieve high-level image quality.
Collapse
Affiliation(s)
- Jan Scherberich
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, Giessen, Hesse, Germany
| | - Anton G Windfelder
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, Giessen, Hesse, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Hesse, Germany
| | - Gabriele A Krombach
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, Giessen, Hesse, Germany
| |
Collapse
|
27
|
Väänänen V, Christensen MM, Suhonen H, Jernvall J. Gene expression detection in developing mouse tissue using in situ hybridization and µCT imaging. Proc Natl Acad Sci U S A 2023; 120:e2301876120. [PMID: 37279266 PMCID: PMC10268296 DOI: 10.1073/pnas.2301876120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
High resolution and noninvasiveness have made soft-tissue X-ray microtomography (µCT) a widely applicable three-dimensional (3D) imaging method in studies of morphology and development. However, scarcity of molecular probes to visualize gene activity with µCT has remained a challenge. Here, we apply horseradish peroxidase-assisted reduction of silver and catalytic gold enhancement of the silver deposit to in situ hybridization in order to detect gene expression in developing tissues with µCT (here called GECT, gene expression CT). We show that GECT detects expression patterns of collagen type II alpha 1 and sonic hedgehog in developing mouse tissues comparably with an alkaline phosphatase-based detection method. After detection, expression patterns are visualized with laboratory µCT, demonstrating that GECT is compatible with varying levels of gene expression and varying sizes of expression regions. Additionally, we show that the method is compatible with prior phosphotungstic acid staining, a conventional contrast staining approach in µCT imaging of soft tissues. Overall, GECT is a method that can be integrated with existing laboratory routines to obtain spatially accurate 3D detection of gene expression.
Collapse
Affiliation(s)
- Vilma Väänänen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Mona M. Christensen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Heikki Suhonen
- Department of Physics, University of Helsinki, HelsinkiFI-00014, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
- Department of Geosciences and Geography, University of Helsinki, HelsinkiFI-00014, Finland
| |
Collapse
|
28
|
Polikarpov M, Vila-Comamala J, Wang Z, Pereira A, van Gogh S, Gasser C, Jefimovs K, Romano L, Varga Z, Lång K, Schmeltz M, Tessarini S, Rawlik M, Jermann E, Lewis S, Yun W, Stampanoni M. Towards virtual histology with X-ray grating interferometry. Sci Rep 2023; 13:9049. [PMID: 37270642 DOI: 10.1038/s41598-023-35854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Breast cancer is the most common type of cancer worldwide. Diagnosing breast cancer relies on clinical examination, imaging and biopsy. A core-needle biopsy enables a morphological and biochemical characterization of the cancer and is considered the gold standard for breast cancer diagnosis. A histopathological examination uses high-resolution microscopes with outstanding contrast in the 2D plane, but the spatial resolution in the third, Z-direction, is reduced. In the present paper, we propose two high-resolution table-top systems for phase-contrast X-ray tomography of soft-tissue samples. The first system implements a classical Talbot-Lau interferometer and allows to perform ex-vivo imaging of human breast samples with a voxel size of 5.57 μm. The second system with a comparable voxel size relies on a Sigray MAAST X-ray source with structured anode. For the first time, we demonstrate the applicability of the latter to perform X-ray imaging of human breast specimens with ductal carcinoma in-situ. We assessed image quality of both setups and compared it to histology. We showed that both setups made it possible to target internal features of breast specimens with better resolution and contrast than previously achieved, demonstrating that grating-based phase-contrast X-ray CT could be a complementary tool for clinical histopathology.
Collapse
Affiliation(s)
- M Polikarpov
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland.
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
| | - J Vila-Comamala
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Z Wang
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
- Department of Engineering Physics, Tsinghua University, Haidian District, Beijing, 100080, China
| | - A Pereira
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - S van Gogh
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - C Gasser
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - K Jefimovs
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - L Romano
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Z Varga
- Department of Pathology and Molecular Pathology, University Hospital Zürich, 8091, Zurich, Switzerland
| | - K Lång
- Department of Diagnostic Radiology, Translational Medicine, Lund University, Lund, Sweden
- Unilabs Mammography Unit, Skåne University Hospital, Malmö, Sweden
| | - M Schmeltz
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - S Tessarini
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - M Rawlik
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | | | - S Lewis
- Sigray Inc., Concord, CA, 94520, USA
| | - W Yun
- Sigray Inc., Concord, CA, 94520, USA
| | - M Stampanoni
- Swiss Light Source, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
29
|
Geier B, Gil-Mansilla E, Liutkevičiūtė Z, Hellinger R, Vanden Broeck J, Oetjen J, Liebeke M, Gruber CW. Multiplexed neuropeptide mapping in ant brains integrating microtomography and three-dimensional mass spectrometry imaging. PNAS NEXUS 2023; 2:pgad144. [PMID: 37215633 PMCID: PMC10194420 DOI: 10.1093/pnasnexus/pgad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, Atta sexdens and Lasius niger. For analyzing the spatial distribution of chemically diverse peptide molecules across the brain in each species, the acquisition of serial mass spectrometry images was essential. As a result, we have comparatively mapped the three-dimensional (3D) distributions of eight conserved neuropeptides throughout the brain microanatomy. We demonstrate that integrating the 3D MSI data into high-resolution anatomy models can be critical for studying organs with high plasticity such as brains of social insects. Several peptides, like the tachykinin-related peptides (TK) 1 and 4, were widely distributed in many brain areas of both ant species, whereas others, for instance myosuppressin, were restricted to specific regions only. Also, we detected differences at the species level; many peptides were identified in the optic lobe of L. niger, but only one peptide (ITG-like) was found in this region in A. sexdens. Building upon MS imaging studies on neuropeptides in invertebrate model systems, our approach leverages correlative MSI and computed microtomography for investigating fundamental neurobiological processes by visualizing the unbiased 3D neurochemistry in its complex anatomic environment.
Collapse
Affiliation(s)
- Benedikt Geier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Pediatrics and Infectious Diseases, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Esther Gil-Mansilla
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Zita Liutkevičiūtė
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Group, Zoological Institute, KU Leuven, Leuven 3000, Belgium
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Life Science Mass Spectrometry, Bremen 28359, Germany
- MALDI Imaging Lab, University of Bremen, Bremen 28359, Germany
| | - Manuel Liebeke
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Metabolomics, Institute of Human Nutrition and Food Science, Kiel University, 24118 Kiel, Germany
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
30
|
Pestiaux C, Pyka G, Quirynen L, De Azevedo D, Vanoverschelde JL, Lengelé B, Vancraeynest D, Beauloye C, Kerckhofs G. 3D histopathology of stenotic aortic valve cusps using ex vivo microfocus computed tomography. Front Cardiovasc Med 2023; 10:1129990. [PMID: 37180789 PMCID: PMC10167041 DOI: 10.3389/fcvm.2023.1129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Background Calcific aortic stenosis (AS) is the most prevalent heart valve disease in developed countries. The aortic valve cusps progressively thicken and the valve does not open fully due to the presence of calcifications. In vivo imaging, usually used for diagnosis, does not allow the visualization of the microstructural changes associated with AS. Methods Ex vivo high-resolution microfocus computed tomography (microCT) was used to quantitatively describe the microstructure of calcified aortic valve cusps in full 3D. As case study in our work, this quantitative analysis was applied to normal-flow low-gradient severe AS (NF-LG-SAS), for which the medical prognostic is still highly debated in the current literature, and high-gradient severe AS (HG-SAS). Results The volume proportion of calcification, the size and number of calcified particles and their density composition was quantified. A new size-based classification considering small-sized particles that are not detected with in vivo imaging was defined for macro-, meso- and microscale calcifications. Volume and thickness of aortic valve cusps, including the complete thickness distribution, were also determined. Moreover, changes in the cusp soft tissues were also visualized with microCT and confirmed by scanning electron microscopy images of the same sample. NF-LG-SAS cusps contained lower relative amount of calcifications than HG-SAS. Moreover, the number and size of calcified objects and the volume and thickness of the cusps were also lower in NF-LG-SAS cusps than in HG-SAS. Conclusions The application of high-resolution ex vivo microCT to stenotic aortic valve cusps provided a quantitative description of the general structure of the cusps and of the calcifications present in the cusp soft tissues. This detailed description could help in the future to better understand the mechanisms of AS.
Collapse
Affiliation(s)
- Camille Pestiaux
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Grzegorz Pyka
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Louise Quirynen
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - David De Azevedo
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Division of Cardiology, University Hospital Saint-Luc, Brussels, Belgium
| | - Jean-Louis Vanoverschelde
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Division of Cardiology, University Hospital Saint-Luc, Brussels, Belgium
| | - Benoît Lengelé
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - David Vancraeynest
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Division of Cardiology, University Hospital Saint-Luc, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Division of Cardiology, University Hospital Saint-Luc, Brussels, Belgium
| | - Greet Kerckhofs
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Leyssens L, Balcaen T, Pétréa M, Ayllón NB, Aazmani WE, de Pierpont A, Pyka G, Lacroix V, Kerckhofs G. Non-destructive 3D characterization of the blood vessel wall microstructure in different species and blood vessel types using contrast-enhanced microCT and comparison with synthetic vascular grafts. Acta Biomater 2023; 164:303-316. [PMID: 37072066 DOI: 10.1016/j.actbio.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
To improve the current treatment for vascular diseases, such as vascular grafts, intravascular stents, and balloon angioplasty intervention, the evaluation of the native blood vessel microstructure in full 3D could be beneficial. For this purpose, we used contrast-enhanced X-ray microfocus computed tomography (CECT): a combination of X-ray microfocus computed tomography (microCT) and contrast-enhancing staining agents (CESAs) containing high atomic number elements. In this work, we performed a comparative study based on staining time and contrast-enhancement of 2 CESAs: Monolacunary and 1:2 Hafnium-substituted Wells-Dawson polyoxometalate (Mono-WD POM and Hf-WD POM, respectively) for imaging of the porcine aorta. After showing the advantages of Hf-WD POM in terms of contrast enhancement, we expanded our imaging to other species (rat, porcine, and human) and other types of blood vessels (porcine aorta, femoral artery, and vena cava), clearly indicating microstructural differences between different types of blood vessels and different species. We then showed the possibility to extract useful 3D quantitative information from the rat and porcine aortic wall, potentially to be used for computational modeling or for future design optimization of graft materials. Finally, a structural comparison with existing synthetic vascular grafts was made. This information will allow to better understand the in vivo functioning of native blood vessels and to improve the current disease treatments. STATEMENT OF SIGNIFICANCE: Synthetic vascular grafts, used as treatment for some cardiovascular diseases, still often fail clinically, potentially because of a mismatch in mechanical behaviour between the native blood vessel and the graft. To better understand the causes of this mismatch, we studied the full 3D microstructure of blood vessels. For this, we identified Hafnium-substituted Wells-Dawson polyoxometalate as contrast-enhancing staining agent to perform contrast-enhanced X-ray microfocus computed tomography. This technique allowed to show important differences in the microstructure of different types of blood vessels and in different species, as well as with that of synthetic grafts. This information can lead to a better understanding of the functioning of blood vessels and will allow to improve current disease treatments, such as vascular grafts.
Collapse
Affiliation(s)
- Lisa Leyssens
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Tim Balcaen
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Maïté Pétréa
- Department BioMechanics, KU Leuven, 3001 Leuven, Belgium
| | - Natalia Béjar Ayllón
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Walid El Aazmani
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Alix de Pierpont
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Grzegorz Pyka
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Valérie Lacroix
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; Cliniques Universitaires Saint-Luc, Service de chirurgie cardiovasculaire et thoracique, 1200 Woluwe-Saint-Lambert, Belgium
| | - Greet Kerckhofs
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
32
|
Senarat S, Rojviriya C, Puyathorn N, Lertsuphotvanit N, Phaechamud T. Levofloxacin HCl-Incorporated Zein-Based Solvent Removal Phase Inversion In Situ Forming Gel for Periodontitis Treatment. Pharmaceutics 2023; 15:pharmaceutics15041199. [PMID: 37111684 PMCID: PMC10143341 DOI: 10.3390/pharmaceutics15041199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Zein is composed of nonpolar amino acids and is a water-insoluble protein used as the matrix-forming agent of localized in situ forming gel (ISG). Therefore, this study prepared solvent removal phase inversion zein-based ISG formulations to load levofloxacin HCl (Lv) for periodontitis treatment using dimethyl sulfoxide (DMSO) and glycerol formal (GF) as the solvents. Their physicochemical properties were determined, including viscosity, injectability, gel formation, and drug release. The topography of dried remnants after drug release was revealed using a scanning electron microscope and X-ray computed microtomography (μCT) to investigate their 3D structure and % porosity. The antimicrobial activities were tested against Staphylococcus aureus (ATCC 6538), Escherichia coli ATCC 8739, Candida albicans ATCC 10231, and Porphyromonas gingivalis ATCC 33277 with agar cup diffusion. Increasing zein concentration or using GF as the solvent notably enhanced the apparent viscosity and injection force of the zein ISG. However, its gel formation slowed due to the dense zein matrix barrier's solvent exchange: the higher loaded zein or utilization of GF as an ISG solvent prolonged Lv release. The SEM and μCT images revealed the scaffold of dried ISG in that their % porosity corresponded with their phase transformation and drug release behavior. In addition, the sustainability of drug diffusion promoted a smaller antimicrobial inhibition clear zone. Drug release from all formulations was attained with minimum inhibitory concentrations against pathogen microbes and exhibited a controlled release over 7 days. Lv-loaded 20% zein ISG using GF as a solvent exhibited appropriate viscosity, Newtonian flow, acceptable gel formation and injectability, and prolonged Lv release over 7 days with efficient antimicrobial activities against various test microbes; thus, it is the potential ISG formulation for periodontitis treatment. Consequently, the Lv-loaded solvent removal zein-based ISGs proposed in this investigation offer promising potential as an efficacious drug delivery system for periodontitis treatment by local injection.
Collapse
Affiliation(s)
- Setthapong Senarat
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Mueang District, Nakhon Ratchasima 30000, Thailand
| | - Napaphol Puyathorn
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nutdanai Lertsuphotvanit
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
33
|
Cremin K, Duxbury SJN, Rosko J, Soyer OS. Formation and emergent dynamics of spatially organized microbial systems. Interface Focus 2023; 13:20220062. [PMID: 36789239 PMCID: PMC9912014 DOI: 10.1098/rsfs.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Spatial organization is the norm rather than the exception in the microbial world. While the study of microbial physiology has been dominated by studies in well-mixed cultures, there is now increasing interest in understanding the role of spatial organization in microbial physiology, coexistence and evolution. Where studied, spatial organization has been shown to influence all three of these aspects. In this mini review and perspective article, we emphasize that the dynamics within spatially organized microbial systems (SOMS) are governed by feedbacks between local physico-chemical conditions, cell physiology and movement, and evolution. These feedbacks can give rise to emergent dynamics, which need to be studied through a combination of spatio-temporal measurements and mathematical models. We highlight the initial formation of SOMS and their emergent dynamics as two open areas of investigation for future studies. These studies will benefit from the development of model systems that can mimic natural ones in terms of species composition and spatial structure.
Collapse
Affiliation(s)
- Kelsey Cremin
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Jerko Rosko
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
34
|
Kolmann MA, Nagesan RS, Andrews JV, Borstein SR, Figueroa RT, Singer RA, Friedman M, López-Fernández H. DiceCT for fishes: recommendations for pairing iodine contrast agents with μCT to visualize soft tissues in fishes. JOURNAL OF FISH BIOLOGY 2023; 102:893-903. [PMID: 36647819 DOI: 10.1111/jfb.15320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Computed tomography (CT) scanning and other high-throughput three-dimensional (3D) visualization tools are transforming the ways we study morphology, ecology and evolutionary biology research beyond generating vast digital repositories of anatomical data. Contrast-enhanced chemical staining methods, which render soft tissues radio-opaque when coupled with CT scanning, encompass several approaches that are growing in popularity and versatility. Of these, the various diceCT techniques that use an iodine-based solution like Lugol's have provided access to an array of morphological data sets spanning extant vertebrate lineages. This contribution outlines straightforward means for applying diceCT techniques to preserved museum specimens of cartilaginous and bony fishes, collectively representing half of vertebrate species diversity. This study contrasts the benefits of using either aqueous or ethylic Lugol's solutions and reports few differences between these methods with respect to the time required to achieve optimal tissue contrast. It also explores differences in minimum stain duration required for different body sizes and shapes and provides recommendations for staining specimens individually or in small batches. As reported by earlier studies, the authors note a decrease in pH during staining with either aqueous or ethylic Lugol's. Nonetheless, they could not replicate the drastic declines in pH reported elsewhere. They provide recommendations for researchers and collections staff on how to incorporate diceCT into existing curatorial practices, while offsetting risk to specimens. Finally, they outline how diceCT with Lugol's can aid ichthyologists of all kinds in visualizing anatomical structures of interest: from brains and gizzards to gas bladders and pharyngeal jaw muscles.
Collapse
Affiliation(s)
- Matthew A Kolmann
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Ramon S Nagesan
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - James V Andrews
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel R Borstein
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rodrigo Tinoco Figueroa
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Randal A Singer
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matt Friedman
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Hernán López-Fernández
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Xue SS, Li Y, Pan W, Li N, Tang B. Multi-stimuli-responsive molecular fluorescent probes for bioapplications. Chem Commun (Camb) 2023; 59:3040-3049. [PMID: 36786045 DOI: 10.1039/d2cc07008a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimuli-responsive fluorescent probes have been widely utilized in detecting the physiological and pathological states of living systems. Numerous stimuli-responsive fluorescent probes have been developed due to their advantages of good sensitivity, high resolution, and high contrast fluorescent signals. In this feature article, the progress of multi-stimuli-responsive probes, including organic molecules and metal complexes, for the detection of various biomarkers for bio-applications is summarized. The feature article focuses on the applications of organic-molecule- and metal-complex-based molecular probes in biological systems for detecting different biomarkers of cancer or other diseases. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
36
|
Anohova V, Asyakina L, Babich O, Dikaya O, Goikhman A, Maksimova K, Grechkina M, Korobenkov M, Burkova D, Barannikov A, Narikovich A, Chupakhin E, Snigirev A, Antipov S. RETRACTED: The Dosidicus gigas Collagen for Scaffold Preparation and Cell Cultivation: Mechanical and Physicochemical Properties, Morphology, Composition and Cell Viability. Polymers (Basel) 2023; 15:1220. [PMID: 36904464 PMCID: PMC10006952 DOI: 10.3390/polym15051220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Directed formation of the structure of the culture of living cells is the most important task of tissue engineering. New materials for 3D scaffolds of living tissue are critical for the mass adoption of regenerative medicine protocols. In this manuscript, we demonstrate the results of the molecular structure study of collagen from Dosidicus gigas and reveal the possibility of obtaining a thin membrane material. The collagen membrane is characterized by high flexibility and plasticity as well as mechanical strength. The technology of obtaining collagen scaffolds, as well as the results of studies of its mechanical properties, surface morphology, protein composition, and the process of cell proliferation on its surface, are shown in the given manuscript. The investigation of living tissue culture grown on the surface of a collagen scaffold by X-ray tomography on a synchrotron source made it possible to remodel the structure of the extracellular matrix. It was found that the scaffolds obtained from squid collagen are characterized by a high degree of fibril ordering and high surface roughness and provide efficient directed growth of the cell culture. The resulting material provides the formation of the extracellular matrix and is characterized by a short time to living tissue sorption.
Collapse
Affiliation(s)
- Veronika Anohova
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Lyudmila Asyakina
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Olga Babich
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Olga Dikaya
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Aleksandr Goikhman
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Ksenia Maksimova
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | | | - Maxim Korobenkov
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Diana Burkova
- Voronezh State University, 1, University Square, Voronezh 394063, Russia
| | - Aleksandr Barannikov
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Anton Narikovich
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Evgeny Chupakhin
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Anatoly Snigirev
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
| | - Sergey Antipov
- Immanuel Kant Baltic Federal University, Nevskogo 14, Kaliningrad 236006, Russia
- Voronezh State University, 1, University Square, Voronezh 394063, Russia
| |
Collapse
|
37
|
Kislinger G, Niemann C, Rodriguez L, Jiang H, Fard MK, Snaidero N, Schumacher AM, Kerschensteiner M, Misgeld T, Schifferer M. Neurons on tape: Automated Tape Collecting Ultramicrotomy-mediated volume EM for targeting neuropathology. Methods Cell Biol 2023; 177:125-170. [PMID: 37451765 DOI: 10.1016/bs.mcb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In this chapter, we review Automated Tape Collecting Ultramicrotomy (ATUM), which, among other array tomography methods, substantially simplified large-scale volume electron microscopy (vEM) projects. vEM reveals biological structures at nanometer resolution in three dimensions and resolves ambiguities of two-dimensional representations. However, as the structures of interest-like disease hallmarks emerging from neuropathology-are often rare but the field of view is small, this can easily turn a vEM project into a needle in a haystack problem. One solution for this is correlated light and electron microscopy (CLEM), providing tissue context, dynamic and molecular features before switching to targeted vEM to hone in on the object's ultrastructure. This requires precise coordinate transfer between the two imaging modalities (e.g., by micro computed tomography), especially for block face vEM which relies on physical destruction of sections. With array tomography methods, serial ultrathin sections are collected into a tissue library, thus allowing storage of precious samples like human biopsies and enabling repetitive imaging at different resolution levels for an SEM-based search strategy. For this, ATUM has been developed to reliably collect serial ultrathin sections via a conveyor belt onto a plastic tape that is later mounted onto silicon wafers for serial scanning EM (SEM). The ATUM-SEM procedure is highly modular and can be divided into sample preparation, serial ultramicrotomy onto tape, mounting, serial image acquisition-after which the acquired image stacks can be used for analysis. Here, we describe the steps of this workflow and how ATUM-SEM enables targeting and high resolution imaging of specific structures. ATUM-SEM is widely applicable. To illustrate this, we exemplify the approach by reconstructions of focal pathology in an Alzheimer mouse model and CLEM of a specific cortical synapse.
Collapse
Affiliation(s)
- Georg Kislinger
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Cornelia Niemann
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lucia Rodriguez
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hanyi Jiang
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maryam K Fard
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Nicolas Snaidero
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; Hertie institute for Clinical Brain Research, Tuebingen University Hospital, Tuebingen, Germany
| | - Adrian-Minh Schumacher
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Kerschensteiner
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
38
|
Phillips AJ, Goetz FE. Comparative reproductive morphology of two species of Macrobdella (Hirudinea: Arhynchobdellida: Macrobdellidae). ZOOMORPHOLOGY 2023. [DOI: 10.1007/s00435-023-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
39
|
Disney CM, Vo NT, Bodey AJ, Bay BK, Lee PD. Image quality and scan time optimisation for in situ phase contrast x-ray tomography of the intervertebral disc. J Mech Behav Biomed Mater 2023; 138:105579. [PMID: 36463809 DOI: 10.1016/j.jmbbm.2022.105579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
In-line phase contrast synchrotron tomography combined with in situ mechanical loading enables the characterisation of soft tissue micromechanics via digital volume correlation (DVC) within whole organs. Optimising scan time is important for reducing radiation dose from multiple scans and to limit sample movement during acquisition. Also, although contrasted edges provided by in-line phase contrast tomography of soft tissues are useful for DVC, the effect of phase contrast imaging on its accuracy has yet to be investigated. Due to limited time at synchrotron facilities, scan parameters are often decided during imaging and their effect on DVC accuracy is not fully understood. Here, we used previously published data of intervertebral disc phase contrast tomography to evaluate the influence of i) fibrous image texture, ii) number of projections, iii) tomographic reconstruction method, and iv) phase contrast propagation distance on DVC results. A greater understanding of how image texture influences optimal DVC tracking was obtained by visualising objective function mapping, enabling tracking inaccuracies to be identified. When reducing the number of projections, DVC was minimally affected by image high frequency noise but with a compromise in accuracy. Iterative reconstruction methods improved image signal-to-noise and consequently significantly lowered DVC displacement uncertainty. Propagation distance was shown to affect DVC accuracy. Consistent DVC results were achieved within a propagation distance range which provided contrast to the smallest scale features, where; too short a distance provided insufficient features to track, whereas too long led to edge effect inconsistencies, particularly at greater deformations. Although limited to a single sample type and image setup, this study provides general guidelines for future investigations when optimising image quality and scan times for in situ phase contrast x-ray tomography of fibrous connective tissues.
Collapse
Affiliation(s)
- C M Disney
- Mechanical Engineering, University College London, UK; Diamond Light Source, UK.
| | - N T Vo
- Diamond Light Source, UK; National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | | | - B K Bay
- School of Mechanical, Industrial & Manufacturing Engineering, Oregon State University, USA
| | - P D Lee
- Mechanical Engineering, University College London, UK
| |
Collapse
|
40
|
Jonsson T. Micro-CT and deep learning: Modern techniques and applications in insect morphology and neuroscience. FRONTIERS IN INSECT SCIENCE 2023; 3:1016277. [PMID: 38469492 PMCID: PMC10926430 DOI: 10.3389/finsc.2023.1016277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 03/13/2024]
Abstract
Advances in modern imaging and computer technologies have led to a steady rise in the use of micro-computed tomography (µCT) in many biological areas. In zoological research, this fast and non-destructive method for producing high-resolution, two- and three-dimensional images is increasingly being used for the functional analysis of the external and internal anatomy of animals. µCT is hereby no longer limited to the analysis of specific biological tissues in a medical or preclinical context but can be combined with a variety of contrast agents to study form and function of all kinds of tissues and species, from mammals and reptiles to fish and microscopic invertebrates. Concurrently, advances in the field of artificial intelligence, especially in deep learning, have revolutionised computer vision and facilitated the automatic, fast and ever more accurate analysis of two- and three-dimensional image datasets. Here, I want to give a brief overview of both micro-computed tomography and deep learning and present their recent applications, especially within the field of insect science. Furthermore, the combination of both approaches to investigate neural tissues and the resulting potential for the analysis of insect sensory systems, from receptor structures via neuronal pathways to the brain, are discussed.
Collapse
Affiliation(s)
- Thorin Jonsson
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| |
Collapse
|
41
|
Affiliation(s)
- Qinxia Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qianyu Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
42
|
Balcaen T, Piens C, Mwema A, Chourrout M, Vandebroek L, Des Rieux A, Chauveau F, De Borggraeve WM, Hoffmann D, Kerckhofs G. Revealing the three-dimensional murine brain microstructure by contrast-enhanced computed tomography. Front Neurosci 2023; 17:1141615. [PMID: 37034159 PMCID: PMC10076597 DOI: 10.3389/fnins.2023.1141615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
To improve our understanding of the brain microstructure, high-resolution 3D imaging is used to complement classical 2D histological assessment techniques. X-ray computed tomography allows high-resolution 3D imaging, but requires methods for enhancing contrast of soft tissues. Applying contrast-enhancing staining agents (CESAs) ameliorates the X-ray attenuating properties of soft tissue constituents and is referred to as contrast-enhanced computed tomography (CECT). Despite the large number of chemical compounds that have successfully been applied as CESAs for imaging brain, they are often toxic for the researcher, destructive for the tissue and without proper characterization of affinity mechanisms. We evaluated two sets of chemically related CESAs (organic, iodinated: Hexabrix and CA4+ and inorganic polyoxometalates: 1:2 hafnium-substituted Wells-Dawson phosphotungstate and Preyssler anion), for CECT imaging of healthy murine hemispheres. We then selected the CESA (Hexabrix) that provided the highest contrast between gray and white matter and applied it to a cuprizone-induced demyelination model. Differences in the penetration rate, effect on tissue integrity and affinity for tissue constituents have been observed for the evaluated CESAs. Cuprizone-induced demyelination could be visualized and quantified after Hexabrix staining. Four new non-toxic and non-destructive CESAs to the field of brain CECT imaging were introduced. The added value of CECT was shown by successfully applying it to a cuprizone-induced demyelination model. This research will prove to be crucial for further development of CESAs for ex vivo brain CECT and 3D histopathology.
Collapse
Affiliation(s)
- Tim Balcaen
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
- ContrasT Team, Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Catherine Piens
- ContrasT Team, Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium
| | - Ariane Mwema
- Advanced Drug Delivery and Biomaterials, UCLouvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, UCLouvain, Brussels, Belgium
| | - Matthieu Chourrout
- Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche en Neurosciences de Lyon U1028 UMR 5292, Bron, France
| | - Laurens Vandebroek
- Laboratory of Biomolecular Modelling and Design (LBMD), Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Anne Des Rieux
- Advanced Drug Delivery and Biomaterials, UCLouvain, Brussels, Belgium
| | - Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche en Neurosciences de Lyon U1028 UMR 5292, Bron, France
| | - Wim M. De Borggraeve
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Delia Hoffmann
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- ContrasT Team, Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
- *Correspondence: Greet Kerckhofs,
| |
Collapse
|
43
|
Zhang Z, Bi X, Li P, Zhang C, Yang Y, Liu Y, Chen G, Dong Y, Liu G, Zhang Y. Automatic synchrotron tomographic alignment schemes based on genetic algorithms and human-in-the-loop software. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:169-178. [PMID: 36601935 PMCID: PMC9814067 DOI: 10.1107/s1600577522011067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Tomography imaging methods at synchrotron light sources keep evolving, pushing multi-modal characterization capabilities at high spatial and temporal resolutions. To achieve this goal, small probe size and multi-dimensional scanning schemes are utilized more often in the beamlines, leading to rising complexities and challenges in the experimental setup process. To avoid spending a significant amount of human effort and beam time on aligning the X-ray probe, sample and detector for data acquisition, most attention has been drawn to realigning the systems at the data processing stages. However, post-processing cannot correct everything, and is not time efficient. Here we present automatic alignment schemes of the rotational axis and sample pre- and during the data acquisition process using a software approach which combines the advantages of genetic algorithms and human intelligence. Our approach shows excellent sub-pixel alignment efficiency for both tasks in a short time, and therefore holds great potential for application in the data acquisition systems of future scanning tomography experiments.
Collapse
Affiliation(s)
- Zhen Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaoxue Bi
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Pengcheng Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Chenglong Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yiming Yang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yu Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Gang Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Gongfa Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
| | - Yi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
44
|
Warr R, Handschuh S, Glösmann M, Cernik RJ, Withers PJ. Quantifying multiple stain distributions in bioimaging by hyperspectral X-ray tomography. Sci Rep 2022; 12:21945. [PMID: 36535963 PMCID: PMC9763266 DOI: 10.1038/s41598-022-23592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Chemical staining of biological specimens is commonly utilised to boost contrast in soft tissue structures, but unambiguous identification of staining location and distribution is difficult without confirmation of the elemental signature, especially for chemicals of similar density contrast. Hyperspectral X-ray computed tomography (XCT) enables the non-destructive identification, segmentation and mapping of elemental composition within a sample. With the availability of hundreds of narrow, high resolution (~ 1 keV) energy channels, the technique allows the simultaneous detection of multiple contrast agents across different tissue structures. Here we describe a hyperspectral imaging routine for distinguishing multiple chemical agents, regardless of contrast similarity. Using a set of elemental calibration phantoms, we perform a first instance of direct stain concentration measurement using spectral absorption edge markers. Applied to a set of double- and triple-stained biological specimens, the study analyses the extent of stain overlap and uptake regions for commonly used contrast markers. An improved understanding of stain concentration as a function of position, and the interaction between multiple stains, would help inform future studies on multi-staining procedures, as well as enable future exploration of heavy metal uptake across medical, agricultural and ecological fields.
Collapse
Affiliation(s)
- Ryan Warr
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| | - Stephan Handschuh
- grid.6583.80000 0000 9686 6466VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Glösmann
- grid.6583.80000 0000 9686 6466VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Robert J. Cernik
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| | - Philip J. Withers
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| |
Collapse
|
45
|
Chen D, Yin S, Zhang X, Lyu J, Zhang Y, Zhu Y, Yan J. A high-resolution study of PM 2.5 accumulation inside leaves in leaf stomata compared with non-stomatal areas using three-dimensional X-ray microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158543. [PMID: 36067857 DOI: 10.1016/j.scitotenv.2022.158543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/06/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Plant leaves retain atmospheric particulate matter (PM) on their surfaces, helping PM removal and risk reduction of respiratory tract infection. Several processes (deposition, resuspension, rainfall removal) can influence the PM accumulation on leaves and different leaf microstructures (e.g., trichomes, epicuticular waxes) can also be involved in retaining PM. However, the accumulation and distribution of PM on leaves, particularly at the stomata, are unclear, and the lack of characterization methods limits our understanding of this process. Thus, in this study, we aimed to explore the pathway through which PM2.5 (aerodynamic diameter ≤ 2.5 μm) enters plant leaves, and the penetration depth of PM2.5 along the entry route. Here, an indoor experiment using diamond powder as a tracer to simulate PM2.5 deposition on leaves was carried out. Then, the treated and non-treated leaves were scanned by using three-dimensional (3D) X-ray microscopy. Next, the grayscale value of the scanned images was used to compare PM2.5 accumulation in stomatal and non-stomatal areas of the treated and non-treated leaves, respectively. Finally, a total PM2.5 volume from the abaxial epidermis was calculated. The results showed that, first, a large amount of PM2.5 accumulates within leaf stomata, whereas PM2.5 does not accumulate at non-stomatal areas. Then, the penetration depth of PM2.5 in stomata of most tree species was 5-14 μm from the abaxial epidermis. For the first time, 3D X-ray microscope scanning was used to confirm that a pathway by which PM2.5 enters the leaves is through the stomata, which is fundamental for further research on how PM2.5 translocates and interacts with tissues and cells in leaves.
Collapse
Affiliation(s)
- Dele Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Xuyi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Junyao Lyu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yiran Zhang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yanhua Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jingli Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| |
Collapse
|
46
|
Wang M, Wang WX. Meeting Zn Needs during Medaka Eye Development: Nanoscale Visualization of Retina by Expansion Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15780-15790. [PMID: 36266765 DOI: 10.1021/acs.est.2c06479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fish eyes require high Zn levels to support their early development. Although numerous studies have been conducted on the nutritional and toxic effects of Zn on the eye, the Zn requirement for retinal cell development is still debatable. Moreover, due to the complexity of the retinal structure, it is difficult to clearly visualize each retinal layer and accurately separate cell morphology in vivo by conventional methods. In the present study, we for the first time have achieved nanoscale imaging of retinal anatomy affected by dietary and waterborne Zn exposure by novel expansion microscopy. We demonstrated that the fish retina showed different developmental strategies in response to dietary and aqueous Zn exposures. Excess dietary Zn produced toxicity to retinal photoreceptor cells, resulting in a reduction in cell number and cell area, and this toxicity became severe with biological development. In contrast, waterborne Zn in the natural environment probably failed to meet the Zn requirements of retinal development. Overall, our results indicated that during early development, the Zn requirement of the fish eyes was sensitive, and oversupplementation led to impaired photoreceptor cell development. Our study has provided new perspectives using the powerful and novel expansion microscopy technique in toxicity assessment, enabling ultra-clear visualization of small but complex organ development.
Collapse
Affiliation(s)
- Mengyu Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
47
|
Li Y, Han S, Zhao Y, Li F, Ji D, Zhao X, Liu D, Jian J, Hu C. Synchrotron microtomography image restoration via regularization representation and deep CNN prior. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107181. [PMID: 36257200 DOI: 10.1016/j.cmpb.2022.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Synchrotron-based X-ray microtomography (S-µCT) is a promising imaging technique that plays an important role in modern medical science. S-µCT systems often cause various artifacts and noises in the reconstructed CT images, such as ring artifacts, quantum noise, and electronic noise. In most situations, such noise and artifacts occur simultaneously, which results in a deterioration in the image quality and affects subsequent research. Due to the complexity of the distribution of these mixed artifacts and noise, it is difficult to restore the corrupted images. To address this issue, we propose a novel algorithm to remove mixed artifacts and noise from S-µCT images simultaneously. METHODS There are two important aspects of our method. Regarding ring artifacts, because of their specific structural characteristics, regularization-based methods are more suitable; thus, low-rank tensor decomposition and total variation are utilized to represent their directional and locally piecewise smoothness properties. Moreover, to determine the implicit prior of the random noise, a convolutional neural network (CNN) based method is used. The advantages of traditional regularization and the deep CNN are then combined and embedded in a plug-and-play framework. Hence, an efficient image restoration algorithm is proposed to address the problem of mixed artifacts and noise in S-µCT images. RESULTS Our proposed method was assessed by utilizing simulations and real data experiments. The qualitative results showed that the proposed method could effectively remove ring artifacts as well as random noise. The quantitative results demonstrated that the proposed method achieved almost the best results in terms of PSNR, SSIM and MAE compared to other methods. CONCLUSIONS The proposed method can serve as an effective tool for restoring corrupted S-µCT images, and it has the potential to promote the application of S-µCT.
Collapse
Affiliation(s)
- Yimin Li
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Shuo Han
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yuqing Zhao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Fangzhi Li
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Dongjiang Ji
- School of Science, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing 100050, China
| | - Dayong Liu
- Tianjin Medical University school of stomatology, Tianjin 300070, China
| | - Jianbo Jian
- Department of Radiation Oncology, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Chunhong Hu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
48
|
Maes A, Pestiaux C, Marino A, Balcaen T, Leyssens L, Vangrunderbeeck S, Pyka G, De Borggraeve WM, Bertrand L, Beauloye C, Horman S, Wevers M, Kerckhofs G. Cryogenic contrast-enhanced microCT enables nondestructive 3D quantitative histopathology of soft biological tissues. Nat Commun 2022; 13:6207. [PMID: 36266273 PMCID: PMC9584947 DOI: 10.1038/s41467-022-34048-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
Biological tissues comprise a spatially complex structure, composition and organization at the microscale, named the microstructure. Given the close structure-function relationships in tissues, structural characterization is essential to fully understand the functioning of healthy and pathological tissues, as well as the impact of possible treatments. Here, we present a nondestructive imaging approach to perform quantitative 3D histo(patho)logy of biological tissues, termed Cryogenic Contrast-Enhanced MicroCT (cryo-CECT). By combining sample staining, using an X-ray contrast-enhancing staining agent, with freezing the sample at the optimal freezing rate, cryo-CECT enables 3D visualization and structural analysis of individual tissue constituents, such as muscle and collagen fibers. We applied cryo-CECT on murine hearts subjected to pressure overload following transverse aortic constriction surgery. Cryo-CECT allowed to analyze, in an unprecedented manner, the orientation and diameter of the individual muscle fibers in the entire heart, as well as the 3D localization of fibrotic regions within the myocardial layers. We foresee further applications of cryo-CECT in the optimization of tissue/food preservation and donor banking, showing that cryo-CECT also has clinical and industrial potential.
Collapse
Affiliation(s)
- Arne Maes
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Camille Pestiaux
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Alice Marino
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Tim Balcaen
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Lisa Leyssens
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Sarah Vangrunderbeeck
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Grzegorz Pyka
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | | | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Martine Wevers
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium
| | - Greet Kerckhofs
- Department of Materials Engineering, KU Leuven, Heverlee, Belgium.
- Biomechanics lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium.
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium.
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
49
|
Handschuh S, Glösmann M. Mouse embryo phenotyping using X-ray microCT. Front Cell Dev Biol 2022; 10:949184. [PMID: 36187491 PMCID: PMC9523164 DOI: 10.3389/fcell.2022.949184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Microscopic X-ray computed tomography (microCT) is a structural ex vivo imaging technique providing genuine isotropic 3D images from biological samples at micron resolution. MicroCT imaging is non-destructive and combines well with other modalities such as light and electron microscopy in correlative imaging workflows. Protocols for staining embryos with X-ray dense contrast agents enable the acquisition of high-contrast and high-resolution datasets of whole embryos and specific organ systems. High sample throughput is achieved with dedicated setups. Consequently, microCT has gained enormous importance for both qualitative and quantitative phenotyping of mouse development. We here summarize state-of-the-art protocols of sample preparation and imaging procedures, showcase contemporary applications, and discuss possible pitfalls and sources for artefacts. In addition, we give an outlook on phenotyping workflows using microscopic dual energy CT (microDECT) and tissue-specific contrast agents.
Collapse
|
50
|
Xue SS, Pan Y, Pan W, Liu S, Li N, Tang B. Bioimaging agents based on redox-active transition metal complexes. Chem Sci 2022; 13:9468-9484. [PMID: 36091899 PMCID: PMC9400682 DOI: 10.1039/d2sc02587f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Detecting the fluctuation and distribution of various bioactive species in biological systems is of great importance in determining diseases at their early stages. Metal complex-based probes have attracted considerable attention in bioimaging applications owing to their unique advantages, such as high luminescence, good photostability, large Stokes shifts, low toxicity, and good biocompatibility. In this review, we summarized the development of redox-active transition metal complex-based probes in recent five years with the metal ions of iron, manganese, and copper, which play essential roles in life and can avoid the introduction of exogenous metals into biological systems. The designing principles that afford these complexes with optical or magnetic resonance (MR) imaging properties are elucidated. The applications of the complexes for bioimaging applications of different bioactive species are demonstrated. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yingbo Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Shujie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|