1
|
Komina A, Krasnikov N, Simakova M, Rykova V, Zhukova E, Bulgakov A, Yuzhakov A. Distribution and phylogenetic analysis of porcine parvoviruses in the wild boar population of Russia. BMC Genomics 2025; 26:209. [PMID: 40033187 PMCID: PMC11874106 DOI: 10.1186/s12864-025-11371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Porcine parvoviruses (PPVs) are widespread worldwide in the swine population. PPV1 is a significant infectious agent in pig production, causing porcine reproductive failure. The pathogenic potential of novel PPVs has been poorly studied. Since wild boars are a reservoir for PPVs, the aim of this study was to investigate their prevalence and genetic diversity in the wild boar population. Tissue samples (spleen, lungs, and lymph nodes) collected from 108 wild boars from three regions of Russia during 2021-2024 were analyzed. RESULTS PPV1-7 were found in wild boar populations in Russia, and the most abundant species were PPV7 (59.3%) and PPV3 (49.1%). The research did not reveal any significant relationship between the gender and age of the animals and the prevalence of PPVs. A comparison between the detection rates of PPVs and PCV2/PCV3 revealed the random nature of coinfections. For phylogenetic analysis, complete VP1/VP2 gene sequences of 17 PPV1 isolates were obtained. Most of them belonged to the 27a-like group. Two isolates were in the same cluster as the highly virulent Kresse strain. Isolate BelWB57 had amino acid substitutions that were specific to both the Kresse and 27a-like strains, but it was not classified in either group. Additionally, three sequences for PPV2, PPV3, and PPV7, and one sequence for PPV5 and PPV6 VP1/VP2 genes were obtained. PPV2, PPV3, and PPV7 isolates demonstrated distribution across various clusters with strains from domestic pigs and wild boars from different countries. PPV6 isolate was included in the same clade as the Russian isolate from a domestic pig, whereas PPV5 did not enter any clade with representatives from our country. CONCLUSIONS This is the first work devoted to the study of the PPV1-7 prevalence, as well as the genetic characteristics of isolates circulating among wild boars in various regions of Russia. Our data showed that PPV1-7 is widespread in wild boar populations. Phylogenetic analysis of PPV1 demonstrates a significant prevalence of 27a-like isolates.
Collapse
Affiliation(s)
- Alina Komina
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia
| | - Nikita Krasnikov
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia.
| | - Maria Simakova
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia
| | - Valentina Rykova
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia
| | - Elena Zhukova
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia
| | - Alexander Bulgakov
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia
| | - Anton Yuzhakov
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia
| |
Collapse
|
2
|
Venkatachalapathi JK, Ravishankar C, Somashekara S, Ravindran R, George AJ, Kanjirakkuzhiyil S, Nallusamy M, Lakamana SR, John K. Detection of porcine parvovirus 2 in pigs in North Kerala, India. Virusdisease 2025; 36:114-118. [PMID: 40290775 PMCID: PMC12021747 DOI: 10.1007/s13337-025-00909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/23/2024] [Indexed: 04/30/2025] Open
Abstract
Porcine parvovirus 2 (PPV2) is one the viruses that has been reported to be associated with respiratory ailments in pigs. In North Kerala, there has been an increase in the cases of respiratory diseases in pigs. The prevalence of porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) that are associated with respiratory disease in pigs has been established in Kerala. However, no study has been carried out on PPV2 in the state. This paper reports the results of a pioneer study carried out to detect and characterize PPV2 associated with cases of respiratory ailments in pigs in North Kerala. A total of 54 samples were tested for the presence of PPV2 by NS1 and VP1 gene-based polymerase chain reaction (PCR). Of the samples tested, 3 (5.56%) were found to be positive for the virus. In two samples, coinfection of PPV2 and PCV2 was observed. On phylogenetic analysis of the VP1 gene of the virus, it was revealed that the virus was similar to PPV2 viruses detected in Croatia, Hungary and Romania. The results of the study indicate that PPV2 is present in pigs of North Kerala and that its prevalence is low. Since the virus is capable of inducing significant pathological changes in the lungs, and due to the possibility of coinfection with other viruses inducing respiratory ailments, measures are to be taken to control the spread of the virus in pigs in Kerala. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-025-00909-x.
Collapse
Affiliation(s)
- Jayanth Kolar Venkatachalapathi
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Chintu Ravishankar
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Shashank Somashekara
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Rajasekhar Ravindran
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Ajith Jacob George
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Sumod Kanjirakkuzhiyil
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Madhanraj Nallusamy
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Sri Ramya Lakamana
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Lakkidi P.O., Pookode, Kerala 673576 India
| | - Koshy John
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Lakkidi P.O., Pookode, Kerala 673576 India
| |
Collapse
|
3
|
Chen H, Qing Y, Xu L, Zhu L, Yin W, Li S, Kuang S, Zhou Y, Xu Z. Prevalence and Molecular Characterization of Porcine Parvovirus 2 in Southwest China During 2020-2023. Vet Sci 2025; 12:99. [PMID: 40005859 PMCID: PMC11861861 DOI: 10.3390/vetsci12020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine parvovirus (PPV) is a non-enveloped, single-stranded linear DNA virus that induces reproductive disorders in sows, particularly abortions in primiparous sows. This study investigated the prevalence of PPV in the southwestern region and conducted molecular characterization of PPV strains. An epidemiological survey was conducted on 1534 aborted fetuses from the southwestern region between 2020 and 2023, revealing an abortion rate of 3.00% due to PPV2, with the highest rate of 3.77% in Sichuan. Additionally, 2973 blood samples from sows were tested using ELISA, showing a PPV2 antibody positivity rate of 73.03% to 90%. Through shotgun metagenomics, PPV2 SC2020 was identified in aborted fetal samples from a pig farm in Pengzhou, Sichuan. PCR sequencing analysis yielded seven PPV2 genomic sequences, and the phylogenetic analysis of eight PPV2 strains with thirty reference strains showed distinct evolutionary branches. The virus was successfully isolated from PPV2-positive samples, and the phylogenetic analysis of PPV2 SC2020 revealed ORF1 gene homology of 94.9% to 99.3% and the ORF2 gene homology of 93.1% to 98.0%, with 34 reference strains. Homologous recombination analysis indicated that SC2020 is a recombinant strain of HeB03 and S1.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.C.); (L.Z.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Yi Qing
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu 610081, China;
| | - Lei Xu
- College of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 610000, China;
| | - Ling Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.C.); (L.Z.)
| | - Wenqi Yin
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China; (W.Y.); (S.L.); (S.K.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China
| | - Shuwei Li
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China; (W.Y.); (S.L.); (S.K.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China
| | - Shengyao Kuang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China; (W.Y.); (S.L.); (S.K.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China; (W.Y.); (S.L.); (S.K.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610000, China
| | - Zhiwen Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.C.); (L.Z.)
| |
Collapse
|
4
|
Igriczi B, Dénes L, Schönhardt K, Woźniak A, Stadejek T, Balka G. Comparative Prevalence Estimation and Phylogenetic Analysis of Novel Porcine Parvoviruses (PPV2-7) in Hungarian Pig Herds. Transbound Emerg Dis 2024; 2024:5117884. [PMID: 40303128 PMCID: PMC12016726 DOI: 10.1155/2024/5117884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/25/2024] [Indexed: 05/02/2025]
Abstract
To date, seven novel parvoviruses have been identified in pigs and designated as porcine parvovirus 2-7 (PPV2-7). The presence of these emerging viruses has been reported in several countries around the world, although their pathogenic role and clinical and economical relevance are largely unknown. Here, we report the estimated prevalence and genetic diversity of novel PPV2-7 in Hungarian pig herds and the detection of these viruses in two Slovakian pig farms. For the comparative prevalence estimation, 2505 serum samples from different age groups, 218 oral fluid samples, and 111 processing fluid samples were collected from 26 large-scale Hungarian farms according to a systematic, cross-sectional sampling protocol. All samples were tested by real-time quantitative polymerase chain reaction (qPCR), and the presence of at least one PPV was detected in 24 of the 26 (92%) Hungarian and both Slovakian farms, suggesting high levels of subclinical circulation in most herds. The estimated PPV2-7 prevalence in Hungary varied from 50% to 89%, with PPV4 being the least and PPV2 being the most prevalent virus. The highest detection rates were observed in oral fluid samples, indicating that this sample type is most suitable for screening PPVs, but all viruses were also detected in serum samples and processing fluids. All novel PPVs were most frequently detected in the serum samples of weaned pigs and fatteners, with slightly higher viral burden in the younger age groups. These results may suggest an age-related susceptibility, which could play a significant role in the epidemiology of these viruses, impacting herd health and productivity.
Collapse
Affiliation(s)
- Barbara Igriczi
- Department of Pathology, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
| | - Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
| | - Kitti Schönhardt
- Department of Pathology, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C 02-776, Warsaw, Poland
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159C 02-776, Warsaw, Poland
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, 1078, István Str. 2., Budapest, Hungary
| |
Collapse
|
5
|
Vargas-Bermudez DS, Prandi BA, de Souza UJB, Durães-Carvalho R, Mogollón JD, Campos FS, Roehe PM, Jaime J. Molecular Epidemiology and Phyloevolutionary Analysis of Porcine Parvoviruses (PPV1 through PPV7) Detected in Replacement Gilts from Colombia. Int J Mol Sci 2024; 25:10354. [PMID: 39408680 PMCID: PMC11476972 DOI: 10.3390/ijms251910354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Eight porcine parvovirus (PPV) species, designated as PPV1 through PPV8, have been identified in swine. Despite their similarities, knowledge about their distribution and genetic differences remains limited, resulting in a gap in the genetic classification of these viruses. In this study, we conducted a comprehensive analysis using PPV1 to PPV7 genome sequences from Colombia and others available in the GenBank database to propose a classification scheme for all PPVs. Sera from 234 gilts aged 180 to 200 days were collected from 40 herds in Colombia. Individual detection of each PPV (PPV1 through PPV7) was performed using end-point PCR. Complete nucleotide (nt) sequencing was performed on the PPV1 viral protein (VP), and near-complete genome (NCG) sequencing was carried out for novel porcine parvoviruses (nPPVs) (PPV2 through PPV7). Phylogenetic analyses were conducted by comparing PPV1-VP sequences to 94 available sequences and nPPVs with 565 NCG, 846 nPPV-VP, and 667 nPPV-nonstructural protein (NS) sequences. Bayesian phylogenetic analysis was used to estimate substitution rates and the time to the most recent common ancestor for each PPV. The highest prevalence was detected for PPV3 (40.1%), followed by PPV5 (20.5%), PPV6 (17%), PPV1 (14.5%), PPV2 (9.8%), PPV4 (4.2%), and PPV7 (1.3%). Notably, all tested sera were negative for PPV8 genomes. An analysis of the PPV1-VP sequences revealed two main clades (PPV1-I and PPV1-II), with the sequences recovered in this study grouped in the PPV1-II clade. Comparative analysis showed significant genetic distances for PPV2 to PPV7 at the NCG (>6.5%), NS (>6.3%), and VP (>7.5%) regions, particularly when compared to equivalent regions of PPV genomes recovered worldwide. This study highlights the endemic circulation of nPPVs in Colombian pig herds, specifically among gilts. Additionally, it contributes to the phylogenetic classification and evolutionary studies of these viruses. The proposed method aims to categorize and divide subtypes based on current knowledge and the genomes available in databanks.
Collapse
Affiliation(s)
- Diana S. Vargas-Bermudez
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria–CI3V, Carrera 30 No. 45-03, Bogotá DC 111321, Colombia; (D.S.V.-B.); (J.D.M.)
| | - Bruno Aschidamini Prandi
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (B.A.P.); (F.S.C.); (P.M.R.)
| | - Ueric José Borges de Souza
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil;
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil;
- Post-Graduate Program in Structural and Functional Biology, Department of Morphology and Genetics, UNIFESP, São Paulo 04039-032, Brazil
| | - José Darío Mogollón
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria–CI3V, Carrera 30 No. 45-03, Bogotá DC 111321, Colombia; (D.S.V.-B.); (J.D.M.)
| | - Fabrício Souza Campos
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (B.A.P.); (F.S.C.); (P.M.R.)
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil;
| | - Paulo Michel Roehe
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (B.A.P.); (F.S.C.); (P.M.R.)
| | - Jairo Jaime
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria–CI3V, Carrera 30 No. 45-03, Bogotá DC 111321, Colombia; (D.S.V.-B.); (J.D.M.)
| |
Collapse
|
6
|
Vargas-Bermudez DS, Jaime J. The first report of porcine parvovirus 8 (PPV8) on the American continent is associated with pigs in Colombia with porcine respiratory disease. Arch Virol 2024; 169:179. [PMID: 39150476 PMCID: PMC11329616 DOI: 10.1007/s00705-024-06099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 08/17/2024]
Abstract
Seven novel porcine parvoviruses (PPV2 to PPV8) have been discovered in the last two decades. The last one reported was PPV8 in China in 2022, which was proposed to be a member of the genus Protoparvovirus. Here, we report the first detection of PPV8 outside China - in two provinces from Colombia. Six out of 146 (4.1%) pigs showing porcine respiratory disease (PRD) tested positive for PPV8. Sequencing and phylogenetic analysis of two Colombian PPV8 isolates (GenBank database accession numbers PP335559 and PP335560) showed them to be members of the genus Protoparvovirus. Furthermore, PPV8 was detected in coinfections with porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV), which are associated with PRD.
Collapse
Affiliation(s)
- Diana S Vargas-Bermudez
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Carrera 30 # 45-03, Bogotá, D.C, Colombia
| | - Jairo Jaime
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Carrera 30 # 45-03, Bogotá, D.C, Colombia.
| |
Collapse
|
7
|
Vargas-Bermudez DS, Mainenti M, Naranjo-Ortiz MF, Mogollon JD, Piñeyro P, Jaime J. First Report of Porcine Parvovirus 2 (PPV2) in Pigs from Colombia Associated with Porcine Reproductive Failure (PRF) and Porcine Respiratory Disease Complex (PRDC). Transbound Emerg Dis 2024; 2024:1471536. [PMID: 40303191 PMCID: PMC12017240 DOI: 10.1155/2024/1471536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/27/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2025]
Abstract
Pigs are affected by various parvoviruses (PPVs); eight have been reported to date (PPV1-PPV8). Porcine parvovirus 1 is considered a primary agent of porcine reproductive failure (PRF), while it is unknown whether other PPVs impact porcine health. Recently, the presence of PPV2 has been confirmed in the lung, either as a single agent or in the form of coinfection with other respiratory; therefore, it has been proposed as a potential participant in the porcine respiratory disease complex (PRDC). In the present study, the presence of PPV2 alone and coinfection with other viruses (PCV2, PCV3, and PRRSV) was evaluated in lung samples obtained from pigs with respiratory signs (respiratory group: RG) (n = 146) and stillborn lungs (stillborn group: SG) (n = 19) from 82 farms in the five regions with the highest swine production in Colombia. The overall PPV2 prevalence was 37.6% (62/165), with the highest proportion mainly detected in grow-finisher pigs (62.5%), while its herd prevalence was 51.2% (42/82). The most prevalent virus was PRRSV in both groups, while PPV2 alone was found only in the RG group. The most common dual coinfection in the RG and SG was PCV2/PRRSV (17.8% and 10.5%), while the most frequent coinfections involving PPV2 in the RG were PPV2/PCV2 (7.5%) and PPV2/PRRSV (4%) and PPV2/PCV2 (5.3%) in the SG. The most common triple coinfection was PPV2/PCV2/PRRSV at 15% in the RG and 21% in the SG, while quadruple coinfection PVV2/PCV2/PCV3/PRRSV was detected only in the RG (5.5%). Histopathological evaluation of 21 PPV2-positive lungs showed variable degrees of histiocytic or lymphohistiocytic interstitial pneumonia (9%) in the RG, while no significant changes were observed in SG; in addition, neutrophilic bronchopneumonia was observed in 73.7% if cases evaluated. In situ hybridization-RNAScope® confirmed the presence of PPV2 within pulmonary lesions in 2/19 RG pigs, while no in situ detection was observed in the SG pigs. The phylogenetic evaluation of seven PPV2 sequences detected in Colombia was compared with another 102 reported sequences, indicating that the Colombian strains are located in clade 2. Our results confirm the presence of PPV2 in pigs with PRDC alone and pigs coinfected with PCV2, PCV3, and PRRSV. Likewise, its presence alone or in coinfection in stillbirths suggests that PPV2 is also involved in PRF.
Collapse
Affiliation(s)
- Diana S. Vargas-Bermudez
- Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45–03, Bogotá, CP 111321, Colombia
| | - Marta Mainenti
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - María F. Naranjo-Ortiz
- Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45–03, Bogotá, CP 111321, Colombia
| | - José Darío Mogollon
- Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45–03, Bogotá, CP 111321, Colombia
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jairo Jaime
- Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45–03, Bogotá, CP 111321, Colombia
| |
Collapse
|
8
|
Vargas-Bermudez DS, Diaz A, Polo G, Mogollon JD, Jaime J. Infection and Coinfection of Porcine-Selected Viruses (PPV1 to PPV8, PCV2 to PCV4, and PRRSV) in Gilts and Their Associations with Reproductive Performance. Vet Sci 2024; 11:185. [PMID: 38787157 PMCID: PMC11125912 DOI: 10.3390/vetsci11050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Seven novel porcine parvoviruses (nPPVs) (PPV2 through PPV8) have been described, although their pathogenicity and possible effects on porcine reproductive failure (PRF) are undefined. In this study, these nPPVs were assessed in gilts from Colombia; their coinfections with PPV1, PCV2, PCV3, PCV4, and PRRSV and an association between the nPPVs and the reproductive performance parameters (RPPs) in sows were determined. For this, 234 serum samples were collected from healthy gilts from 40 herds in five Colombian regions, and the viruses were detected via real-time PCR. The results confirmed the circulation of PPV2 through PPV7 in Colombia, with PPV3 (40%), PPV5 (20%), and PPV6 (17%) being the most frequent. Additionally, no PCV4 or PPV8 was detected. PPV2 to PPV7 were detected in concurrence with each other and with the primary PRF viruses, and these coinfections varied from double to sextuple coinfections. Additionally, the association between nPPVs and PRF primary viruses was statistically significant for the presence of PPV6 in PCV3-positive (p < 0.01) and PPV5 in PPRSV-positive (p < 0.05) gilts; conversely, there was a significant presence of PPV3 in both PCV2-negative (p < 0.01) and PRRSV-negative (p < 0.05) gilts. Regarding the RPPs, the crude association between virus detection (positive or negative) and a high or low RPP was only statistically significant for PCV3 and the farrowing rate (FR), indicating that the crude odds of a low FR were 94% lower in herds with PCV3-positive gilts. This finding means that the detection of PCV3 in gilts (PCV3-positive by PCR) is associated with a higher FR in the farm or that these farms (with positive gilts) have lower odds (OR 0.06, p-value 0.0043) of a low FR. Additionally, a low FR tended to be associated with the detection of PPV4 and PPV5 (p-value < 0.20). This study is important for establishing the possible participation of nPPVs in PRF.
Collapse
Affiliation(s)
- Diana S. Vargas-Bermudez
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria—CI3V.Cra. 30 # 45-03, Bogotá 11001, Colombia; (D.S.V.-B.); (J.D.M.)
| | - Andres Diaz
- Pig Improvement Company, Hendersonville, TN 37075, USA;
| | - Gina Polo
- Instituto de Salud Pública, Pontificia Universidad Javeriana, Bogota 110231, Colombia;
| | - Jose Dario Mogollon
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria—CI3V.Cra. 30 # 45-03, Bogotá 11001, Colombia; (D.S.V.-B.); (J.D.M.)
| | - Jairo Jaime
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria—CI3V.Cra. 30 # 45-03, Bogotá 11001, Colombia; (D.S.V.-B.); (J.D.M.)
| |
Collapse
|
9
|
Komina A, Anoyatbekova A, Krasnikov N, Yuzhakov A. Identification and in vitro characterization of a novel porcine parvovirus 6 in Russia. Vet Res Commun 2024; 48:417-425. [PMID: 37773486 DOI: 10.1007/s11259-023-10226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Porcine parvovirus 6 (PPV6) was first identified in aborted swine fetuses in China in 2014. Since its identification, an increased number of PPV6 cases have been reported in many countries with developed pig breeding. In this study, the first identification of porcine parvovirus 6 in Russia, its phylogenetic analysis, and its characterization in vitro are reported. During the investigation, 521 serum samples collected from pigs of different ages from seven regions of the Russian Federation were tested. In four regions, the DNA of the virus was detected. The overall prevalence of porcine parvovirus 6 in Russia was 9.4%. Fattening pigs were the group with the most frequent detection of the virus genome. Phylogenetic analysis of the Russian isolate detected in a domestic boar indicated high homology with strains from Spain. In vitro studies revealed that the most promising cell cultures for PPV6 isolation are SPEV and SK. Our results demonstrated that PPV6 induced typical apoptotic features in cells, including DNA fragmentation, chromatin margination, nuclear condensation, pyknosis of nuclei, symplast formation, and various pathological mitoses.
Collapse
Affiliation(s)
- Alina Komina
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, 109428, Russia.
| | - Afshona Anoyatbekova
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, 109428, Russia
| | - Nikita Krasnikov
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, 109428, Russia
| | - Anton Yuzhakov
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, 109428, Russia
| |
Collapse
|
10
|
Faustini G, Tucciarone CM, Franzo G, Donneschi A, Boniotti MB, Alborali GL, Drigo M. Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses 2024; 16:157. [PMID: 38275967 PMCID: PMC10818816 DOI: 10.3390/v16010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Successful reproductive performance is key to farm competitiveness in the global marketplace. Porcine parvovirus 1 (PPV1) has been identified as a major cause of reproductive failure, and since 2001 new species of porcine parvoviruses, namely PPV2-7, have been identified, although their role is not yet fully understood yet. The present study aimed to investigate PPVs' presence in reproductive failure outbreaks occurring in 124 farms of northern Italy. Fetuses were collected from 338 sows between 2019 and 2021 and tested for PPVs by real-time PCR-based assays and for other viruses responsible for reproductive disease. At least one PPV species was detected in 59.7% (74/124) of the tested farms. In order, PPV1, PPV5, PPV6, PPV7 and PPV4 were the most frequently detected species, whereas fewer detections were registered for PPV2 and PPV3. Overall, the new PPV2-7 species were detected in 26.6% (90/338) of the cases, both alone or in co-infections: PCV-2 (7.1%, 24/338), PCV-3 (8.2%, 28/338), and PRRSV-1 (6.2%, 21/338) were frequently identified in association with PPVs. Single PPVs detections or co-infections with other agents commonly responsible for reproductive failure should encourage future studies investigating their biological, clinical, and epidemiological role, for a better preparedness for potential emerging challenges in intensive pig production.
Collapse
Affiliation(s)
- Giulia Faustini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| | - Anna Donneschi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) “B. Ubertini”, Via Bianchi 9, 25124 Brescia, Italy; (A.D.); (M.B.B.); (G.L.A.)
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) “B. Ubertini”, Via Bianchi 9, 25124 Brescia, Italy; (A.D.); (M.B.B.); (G.L.A.)
| | - Giovanni Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER) “B. Ubertini”, Via Bianchi 9, 25124 Brescia, Italy; (A.D.); (M.B.B.); (G.L.A.)
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (G.F.); (G.F.); (M.D.)
| |
Collapse
|
11
|
Vargas-Bermudez DS, Mogollon JD, Franco-Rodriguez C, Jaime J. The Novel Porcine Parvoviruses: Current State of Knowledge and Their Possible Implications in Clinical Syndromes in Pigs. Viruses 2023; 15:2398. [PMID: 38140639 PMCID: PMC10747800 DOI: 10.3390/v15122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/24/2023] Open
Abstract
Parvoviruses (PVs) affect various animal species causing different diseases. To date, eight different porcine parvoviruses (PPV1 through PPV8) are recognized in the swine population, all of which are distributed among subfamilies and genera of the Parvoviridae family. PPV1 is the oldest and is recognized as the primary agent of SMEDI, while the rest of the PPVs (PPV2 through PPV8) are called novel PPVs (nPPVs). The pathogenesis of nPPVs is still undefined, and whether these viruses are putative disease agents is unknown. Structurally, the PPVs are very similar; the differences occur mainly at the level of their genomes (ssDNA), where there is variation in the number and location of the coding genes. Additionally, it is considered that the genome of PVs has mutation rates similar to those of ssRNA viruses, that is, in the order of 10-5-10-4 nucleotide/substitution/year. These mutations manifest mainly in the VP protein, constituting the viral capsid, affecting virulence, tropism, and viral antigenicity. For nPPVs, mutation rates have already been established that are similar to those already described; however, within this group of viruses, the highest mutation rate has been reported for PPV7. In addition to the mutations, recombinations are also reported, mainly in PPV2, PPV3, and PPV7; these have been found between strains of domestic pigs and wild boars and in a more significant proportion in VP sequences. Regarding affinity for cell types, nPPVs have been detected with variable prevalence in different types of organs and tissues; this has led to the suggestion that they have a broad tropism, although proportionally more have been found in lung and lymphoid tissue such as spleen, tonsils, and lymph nodes. Regarding their epidemiology, nPPVs are present on all continents (except PPV8, only in Asia), and within pig farms, the highest prevalences detecting viral genomes have been seen in the fattener and finishing groups. The relationship between nPPVs and clinical manifestations has been complicated to establish. However, there is already some evidence that establishes associations. One of them is PPV2 with porcine respiratory disease complex (PRDC), where causality tests (PCR, ISH, and histopathology) lead to proposing the PPV2 virus as a possible agent involved in this syndrome. With the other nPPVs, there is still no clear association with any pathology. These have been detected in different systems (respiratory, reproductive, gastrointestinal, urinary, and nervous), and there is still insufficient evidence to classify them as disease-causing agents. In this regard, nPPVs (except PPV8) have been found to cause porcine reproductive failure (PRF), with the most prevalent being PPV4, PPV6, and PPV7. In the case of PRDC, nPPVs have also been detected, with PPV2 having the highest viral loads in the lungs of affected pigs. Regarding coinfections, nPPVs have been detected in concurrence in healthy and sick pigs, with primary PRDC and PRF viruses such as PCV2, PCV3, and PRRSV. The effect of these coinfections is not apparent; it is unknown whether they favor the replication of the primary agents, the severity of the clinical manifestations, or have no effect. The most significant limitation in the study of nPPVs is that their isolation has been impossible; therefore, there are no studies on their pathogenesis both in vitro and in vivo. For all of the above, it is necessary to propose basic and applied research on nPPVs to establish if they are putative disease agents, establish their effect on coinfections, and measure their impact on swine production.
Collapse
Affiliation(s)
| | | | | | - Jairo Jaime
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal, Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V), Carrera 30 No. 45-03, Bogotá 111321, CP, Colombia; (D.S.V.-B.); (J.D.M.); (C.F.-R.)
| |
Collapse
|
12
|
Burrai GP, Hawko S, Dei Giudici S, Polinas M, Angioi PP, Mura L, Alberti A, Hosri C, Hassoun G, Oggiano A, Antuofermo E. The Synergic Role of Emerging and Endemic Swine Virus in the Porcine Respiratory Disease Complex: Pathological and Biomolecular Analysis. Vet Sci 2023; 10:595. [PMID: 37888547 PMCID: PMC10611356 DOI: 10.3390/vetsci10100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) represents a significant threat to the swine industry, causing economic losses in pigs worldwide. Recently, beyond the endemic viruses PRRSV and PCV2, emerging viruses such as TTSuV, PCV3, and PPV2, have been associated with PRDC, but their role remains unclear. This study investigates the presence of PCV2 and PRRSV and emerging viruses (PCV3, TTSuV, and PPV2) in the lungs of swine belonging to different age groups by histopathology and real-time PCR. The prevalent lung lesion was interstitial pneumonia with increased severity in post-weaning pigs. PRRSV was detected in 33% of piglets' lungs and in 20% of adults and post-weaning pigs with high Ct, while PCV2 was found in 100% of adult pigs, 33% of post-weaning pigs, and 22% of piglets, with low Ct in post-weaning pigs. PCV3 was present in all categories and coexisted with other viruses. TTSuV was detected in all swine in combination with other viruses, possibly influencing the disease dynamics, while PPV2 was detected in 100% of adults' and 90% of piglets' lungs. The detection of TTSuV, PCV3, and PPV2 in affected pigs prioritizes the need for comprehensive approaches in implementing appropriate control measures and minimizing economic losses associated with PRDC.
Collapse
Affiliation(s)
- Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Georges Hassoun
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| |
Collapse
|
13
|
A Plant-Produced Porcine Parvovirus 1-82 VP2 Subunit Vaccine Protects Pregnant Sows against Challenge with a Genetically Heterologous PPV1 Strain. Vaccines (Basel) 2022; 11:vaccines11010054. [PMID: 36679898 PMCID: PMC9867127 DOI: 10.3390/vaccines11010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Porcine parvovirus (PPV) causes reproductive failure in sows, and vaccination remains the most effective means of preventing infection. The NADL-2 strain has been used as a vaccine for ~50 years; however, it does not protect animals against genetically heterologous PPV strains. Thus, new effective and safe vaccines are needed. In this study, we aimed to identify novel PPV1 strains, and to develop PPV1 subunit vaccines. We isolated and sequenced PPV1 VP2 genes from 926 pigs and identified ten PPV1 strains (belonging to Groups C, D and E). We selected the Group D PPV1-82 strain as a vaccine candidate because it was close to the highly pathogenic 27a strain. The PPV1-82 VP2 protein was produced in Nicotiana benthamiana. It formed virus-like particles and exhibited a 211 agglutination value. The PPV1-190313 strain (Group E), isolated from an aborted fetus, was used as the challenging strain because it was pathogenic. The unvaccinated sow miscarried at 8 days postchallenge, and mummified fetuses were all PPV1-positive. By contrast, pregnant sows vaccinated with PPV1-82 VP2 had 9-11 Log2 antibody titers and produced normal fetuses after PPV1-190313 challenge. These results suggest the PPV1-82 VP2 subunit vaccine protects pregnant sows against a genetically heterologous PPV1 strain by inducing neutralizing antibodies.
Collapse
|
14
|
Gao Y, Wang H, Wang S, Sun M, Fang Z, Liu X, Cai X, Tu Y. Self-Assembly of Porcine Parvovirus Virus-like Particles and Their Application in Serological Assay. Viruses 2022; 14:v14081828. [PMID: 36016450 PMCID: PMC9413485 DOI: 10.3390/v14081828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine parvovirus (PPV) is widely prevalent in pig farms. PPV is closely related to porcine respiratory disease complex (PRDC) and porcine circovirus disease (PCVD), which seriously threatens the healthy development of the pig industry. Although commercial antibody detection kits are available, they are expensive and unsuitable for large-scale clinical practice. Here, a soluble VP2 protein of PPV is efficiently expressed in the E. coli expression system. The VP2 protein can be self-assembled into virus-like particles (VLPs) in vitro. After multiple steps of chromatography purification, PPV-VLPs with a purity of about 95% were obtained. An indirect, enzyme-linked immunosorbent assay (I-ELISA), comparable to a commercial PPV kit, was developed based on the purified PPV-VLPs and was used to detect 487 clinical pig serum samples. The results showed that the I-ELISA is a simple, cost-effective, and efficient method for the diagnosis of clinical pig serum and plasma samples. In summary, high-purity, tag-free PPV-VLPs were prepared, and the established VLP-based I-ELISA is of great significance for the sero-monitoring of antibodies against PPV.
Collapse
Affiliation(s)
- Yanfei Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shanghui Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Mingxia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zheng Fang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xinran Liu
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (X.C.); (Y.T.); Tel.: +86-451-51051768 (Y.T.); Fax: +86-451-51997166 (X.C. & Y.T.)
| | - Yabin Tu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (X.C.); (Y.T.); Tel.: +86-451-51051768 (Y.T.); Fax: +86-451-51997166 (X.C. & Y.T.)
| |
Collapse
|
15
|
Kim SC, Kim JH, Kim JY, Park GS, Jeong CG, Kim WI. Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC Vet Res 2022; 18:133. [PMID: 35395853 PMCID: PMC8994367 DOI: 10.1186/s12917-022-03236-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Classical porcine parvovirus (PPV1) and novel porcine parvoviruses designated porcine parvovirus 2 through 7 (PPV2-PPV7) are widespread in pig populations. The objective of this study was to investigate the prevalence rates of PPV1-PPV7 in Korea by detecting PPVs in serum, lung and fecal samples and to elucidate the association of PPVs with porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory virus (PRRSV), major pathogens involved in porcine respiratory disease complex (PRDC). A total of 286 serum, 481 lung, and 281 fecal samples collected from 2018 to 2020 were analyzed. Results The results showed that PPVs are widespread in Korea; the highest detection rates were found in lung samples and ranged from 7.9% (PPV1) to 32.6% (PPV2). Regarding age groups, fattening pigs had the highest detection rates of PPVs, ranging from 6.4% (PPV1) to 36.5% (PPV6); this finding suggests the chronic nature of PPV infections and the continual circulation of these viruses. When compared with PCV2- and PRRSV-negative lung samples, PCV2-positive samples with or without PRRSV positivity had significantly higher detection levels of PPV1 and PPV6. In contrast, the prevalence of PPV2 and PPV7 was significantly higher in PRRSV-infected lung samples regardless of PCV2 detection. PPV5 was detected significantly more frequently in samples with both PCV2 and PRRSV positivity. Conclusions This study could offer a better understanding of the role of PPVs in PCV2 and/or PRRSV infection though further studies are needed to experimentally assess the impact of PPVs in coinfections. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03236-1.
Collapse
Affiliation(s)
- Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Jae-Hong Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Jae-Yeob Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Gyeong-Seo Park
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, 54596, Korea.
| |
Collapse
|
16
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Nelsen A, Lin CM, Hause BM. Porcine Parvovirus 2 Is Predominantly Associated With Macrophages in Porcine Respiratory Disease Complex. Front Vet Sci 2021; 8:726884. [PMID: 34485445 PMCID: PMC8414833 DOI: 10.3389/fvets.2021.726884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022] Open
Abstract
Porcine respiratory disease complex (PRDC) is a significant source of morbidity and mortality, manifested by pneumonia of multiple etiologies, where a variety of pathogens and environment and management practices play a role in the disease. Porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus (IAV), and porcine circovirus 2 (PCV2) are well-established pathogens in PRDC. Porcine parvovirus 2 (PPV2) has been identified in both healthy and clinically diseased pigs at a high prevalence worldwide. Despite widespread circulation, the significance of PPV2 infection in PRDC and its association with other co-infections are unclear. Here, PPV2 was detected in the lung tissue in 39 of 100 (39%) PRDC-affected pigs by quantitative polymerase chain reaction (qPCR). Using in situ hybridization (ISH) in conjunction with tissue microarrays (TMA), PPV2 infection was localized in alveolar macrophages and other cells in the lungs with interstitial pneumonia in 28 of 99 (28.2%) samples. Viral load tended to correlate with the number of macrophages in the lungs. Assessment of the frequency, viral titers, and tissue distributions showed no association between infection of PPV2 and other major viral respiratory pathogens. In one-third of the PPV2-positive samples by qPCR, no other known viruses were identified by metagenomic sequencing. The genome sequences of PPV2 were 99.7% identical to the reference genomes. Although intensive intranuclear and intracytoplasmic signals of PPV2 were mainly detected in alveolar macrophages by ISH, no obvious virus replication was noted in in vitro cell culture. Together, these results suggest that PPV2 is associated, but may not be the sole causative agent, with PRDC, warranting the control and prevention of this underdiagnosed virus.
Collapse
Affiliation(s)
- April Nelsen
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Chun-Ming Lin
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Ben M Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
18
|
Thuy NTD, Trung NT, Dung TQ, Khoa DVA, Thuy DTN, Opriessnig T. First investigation of the prevalence of parvoviruses in slaughterhouse pigs and genomic characterization of ungulate copiparvovirus 2 in Vietnam. Arch Virol 2021; 166:779-788. [PMID: 33433693 DOI: 10.1007/s00705-020-04928-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 01/24/2023]
Abstract
Ungulate protoparvovirus 1, also known as porcine parvovirus 1 (PPV1), is considered to be one of the major causes of reproductive failure in pig breeding herds. Other parvoviruses have also been identified in pigs, including ungulate tetraparvovirus 3, or PPV2, ungulate tetraparvovirus 2, or PPV3, and ungulate copiparvovirus 2, or PPV4, but their significance for pigs is unknown. In the present study, the prevalence of PPV1-4 was investigated using a total of 231 lung and serum samples collected from slaughterhouses in 13 provinces throughout Vietnam. The overall prevalence was 54.5% (126/231) for PPV1, 28.0% (65/231) for PPV2, 17.7% (41/231) for PPV3, and 7.8% (18/231) for PPV4. While PPV1 and PPV2 were found in 11 provinces, PPV4 was detected in only three provinces. Co-circulation of PPV1, PPV2 and PPV3 was frequently observed, with PPV1/PPV2 coinfection predominating, with 20.8% (48/231). All four PPVs were detected together in only one sample from Thua Thien Hue. Three nearly complete PPV4 genome sequences of 5,453 nt were determined and deposited in the GenBank database. Alignment and comparison of the three genome sequences showed 99.5-99.6% nucleotide sequence identity, and the deduced amino acid sequences of open reading frames 1-3 were 99.6-99.9% identical to each other, 98.9-99.3% identical to those of other Vietnamese strains and 99.4-99.7% identical to those of Chinese strains). Phylogenetic analysis further confirmed a close relationship between Vietnamese and Chinese PPV4 strains. These results are the first to report the prevalence of PPV1, PPV2, PPV3, and PPV4 and nearly complete genomic sequences of PPV4 in pigs from slaughterhouses in Vietnam.
Collapse
Affiliation(s)
- Nguyen Thi Dieu Thuy
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam.
| | | | - Tran Quoc Dung
- Institute of Biotechnology, Hue University, Hue, Vietnam.,University of Education, Hue University, Hue, Vietnam
| | | | - Dinh Thi Ngoc Thuy
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
| | | |
Collapse
|
19
|
Lagan Tregaskis P, Staines A, Gordon A, Sheridan P, McMenamy M, Duffy C, Collins PJ, Mooney MH, Lemon K. Co-infection status of novel parvovirus's (PPV2 to 4) with porcine circovirus 2 in porcine respiratory disease complex and porcine circovirus-associated disease from 1997 to 2012. Transbound Emerg Dis 2020; 68:1979-1994. [PMID: 32969579 DOI: 10.1111/tbed.13846] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022]
Abstract
As global pig health diseases, porcine respiratory disease complex (PRDC) and porcine circovirus-associated disease (PCVAD) generate substantial economic losses despite pigs been vaccinated against the primary causative virus, highlighting the importance of understanding virome interactions and specifically co-factor infections. Established primary endemic pathogens for PRDC include porcine circovirus 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSv) and swine influenza virus (SIV), and PCV2 aetiology in interaction with other co-infecting viruses can result in PCVAD. Porcine parvovirus (PPV) 1 is a well-characterized virus with an available vaccine preventing reproductive failure in sows. However, whilst novel PPV 2 to 7 viruses have been identified since 2001, their viral pathogenic potential in clinical and subclinical disease remains to be determined. Therefore, this study has sought to develop a better understanding of their potential role as associated co-infections in PRDC and PCVAD by examining archival samples for the presence of PCV2 and the novel parvoviruses PPV2-4 from clinically diseased pigs across production age stages. Epidemiologically, the novel PPV2 was found to be the most prevalent within the fattener age group with PPV2-4 statistically associated with pig respiratory disease and enteric ulcers. Additionally, statistical modelling by latent class analysis (LCA) on veterinary pathology scored pigs found a clustering co-factor association between PPV2 and PCV2, suggesting the novel PPV may be involved in PRDC and PCVAD. Phylogenetic analysis of novel PPVs revealed the PPV2 capsid evolution to be diverged from the original strains with a low nucleotide homology of 88%-96% between two distinct clades. These findings determine that novel PPV 2-4 viruses are statistically associated as co-infectors in a diseased pig population, and significantly detected PPV2 clustering co-infection frequency with PCV2 in PRDC and PCVAD diseased pigs through LCA analysis.
Collapse
Affiliation(s)
- Paula Lagan Tregaskis
- Department of Virology, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Anthony Staines
- Department of Nursing and Human Sciences, Dublin City University, Dublin, Ireland
| | - Alan Gordon
- Statistical Services Branch, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Pauline Sheridan
- Department of Virology, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Michael McMenamy
- Department of Virology, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Catherine Duffy
- Department of Virology, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| | - P J Collins
- Department of Virology, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| | - Mark H Mooney
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Ken Lemon
- Department of Virology, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
| |
Collapse
|
20
|
Influence of the Fermented Feed and Vaccination and Their Interaction on Parameters of Large White/Norwegian Landrace Piglets. Animals (Basel) 2020; 10:ani10071201. [PMID: 32679752 PMCID: PMC7401620 DOI: 10.3390/ani10071201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate the influence of fermented with a newly isolated lactic acid bacteria (LAB) strains combination (Lactobacillus plantarum LUHS122, Lactobacillus casei LUHS210, Lactobacillus farraginis LUHS206, Pediococcus acidilactici LUHS29, Lactobacillus plantarum LUHS135 and Lactobacillus uvarum LUHS245) feed on non-vaccinated (NV) and vaccinated with Circovac porcine circovirus type 2 vaccine (QI09AA07, CEVA-PHYLAXIA Co. Ltd. Szállás u. 5. 1107 Budapest, Hungary) piglets' blood parameters, gut microbial composition, growth performance and ammonia emission. The 36-day experiment was conducted using 25-day-old Large White/Norwegian Landrace (LW/NL) piglets, which were randomly divided into four groups with 100 piglets each: SnonV-non-vaccinated piglets fed with control group compound feed; SV-vaccinated piglets fed with control group compound feed; RFnonV-non-vaccinated piglets fed with fermented compound feed; RFV-vaccinated piglets fed with fermented compound feed. Samples from 10 animals per group were collected at the beginning and end of the experiment. Metagenomic analysis showed that fermentation had a positive impact on the Lactobacillus prevalence during the post-weaning period of pigs, and vaccination had no negative impact on microbial communities. Although a higher amount of Lactobacillus was detected in vaccinated, compared with non-vaccinated groups. At the end of experiment, there was a significantly higher LAB count in the faeces of both vaccinated compared to non-vaccinated groups (26.6% for SV and 17.2% for RFV), with the highest LAB count in the SV group. At the end of experiment, the SV faeces also had the highest total bacteria count (TBC). The RFV group had a 13.2% increase in total enterobacteria count (TEC) at the end of experiment, and the SV group showed a 31.2% higher yeast/mould (Y/M) count. There were no significant differences in the average daily gain (ADG) among the groups; however, there were significant differences in the feed conversion ratios (FCR) between several groups: SV vs. SnonV (11.5% lower in the SV group), RFV vs. RFnonV (10.2% lower in the RFnonV group) and SV vs. RFV (21.6% lower in the SV group). Furthermore, there was a significant, very strong positive correlation between FCR and TEC in piglets' faeces (R = 0.919, p = 0.041). The lowest ammonia emission was in RFV group section (58.2, 23.8, and 47.33% lower compared with the SnonV, SV and RFnonV groups, respectively). Notably, there was lower ammonia emission in vaccinated groups (45.2% lower in SV vs. SnonV and 47.33% lower in RFV vs. RFnonV). There was also a significant, very strong positive correlation between ammonia emission and Y/M count in piglets' faeces at the end of the experiment (R = 0.974; p = 0.013). Vaccination as a separate factor did not significantly influence piglets' blood parameters. Overall, by changing from an extruded soya to cheaper rapeseed meal and applying the fermentation model with the selected LAB combination, it is possible to feed piglets without any undesirable changes in health and growth performance in a more sustainable manner. However, to evaluate the influence of vaccination and its interaction with other parameters (feed, piglets' age, breed, etc.) on piglets' parameters, additional studies should be performed and methods should be standardised to ensure the results may be compared.
Collapse
|
21
|
Garcia-Camacho LA, Vargas-Ruiz A, Marin-Flamand E, Ramírez-Álvarez H, Brown C. A retrospective study of DNA prevalence of porcine parvoviruses in Mexico and its relationship with porcine circovirus associated disease. Microbiol Immunol 2020; 64:366-376. [PMID: 32096557 DOI: 10.1111/1348-0421.12782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/05/2023]
Abstract
Worldwide, many emerging porcine parvoviruses (PPVs) have been linked to porcine circovirus-2 (PCV2) associated disease (PCVAD), which includes post-weaning multi-systemic wasting syndrome (PMWS), PCV2-related reproductive failure (PCV2-RF), as well as other syndromes. To determine the DNA prevalence of PPVs and their relationship with PMWS and PCV2-RF in Mexico, 170 formalin-fixed paraffin-embedded tissues were selected from archival collections to detect PPVs using a nested polymerase chain reaction. The tissues were composed of 50 PMWS cases, 20 age-matched tissues from healthy pigs, 56 PCV2-related reproductive failure (PCV2+ -RF) cases, and 44 PCV2- -RF cases. Overall, PPV2 and PPV6 were the most prevalent species (90.0% and 74.7%, respectively). In 8-11 week old pigs, the highest prevalence was for PPV6 and PPV3. Concerning reproductive failure, the PCV2-affected farms had a significantly higher prevalence for PPV6 (61.6%) and PPV5 (36.4%) than the PCV2-unaffected farms (35.0% and 5.0%, respectively). The concurrent infection rate was high, being significant for PPV2/PPV4 and PPV1/PPV5 within the PMWS cases and for PPV6/PPV5 among the PCV2+ -RF tissues. PPV5 showed a significant relationship with PMWS, whereas PPV5 and PPV6 were significant for PCVAD. The prevalence and coinfection rate of PPVs in Mexico were markedly higher than that described in other countries, denoting that PPV5 and PPV6 might have a potential role in PCVAD in Mexico. It is concluded that it is likely that the density population of pigs in Mexico is contributing to high PPV inter-species and PCV2 coinfections which might lead to a different pathogenic outcome.
Collapse
Affiliation(s)
- Lucia Angélica Garcia-Camacho
- Department of Biological Sciences, College of Superior Studies Cuautitlan, The National Autonomous University of Mexico, Cuautitlan Izcalli, Mexico
| | - Alejandro Vargas-Ruiz
- Department of Biological Sciences, College of Superior Studies Cuautitlan, The National Autonomous University of Mexico, Cuautitlan Izcalli, Mexico
| | - Ernesto Marin-Flamand
- Department of Biological Sciences, College of Superior Studies Cuautitlan, The National Autonomous University of Mexico, Cuautitlan Izcalli, Mexico
| | - Hugo Ramírez-Álvarez
- Department of Biological Sciences, College of Superior Studies Cuautitlan, The National Autonomous University of Mexico, Cuautitlan Izcalli, Mexico
| | - Corrie Brown
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, Georgia
| |
Collapse
|
22
|
Miłek D, Woźniak A, Podgórska K, Stadejek T. Do porcine parvoviruses 1 through 7 (PPV1-PPV7) have an impact on porcine circovirus type 2 (PCV2) viremia in pigs? Vet Microbiol 2020; 242:108613. [PMID: 32122579 DOI: 10.1016/j.vetmic.2020.108613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Abstract
Infections with porcine parvoviruses 1 through 7 (PPV1-PPV7) and porcine circovirus type 2 (PCV2) are widespread in pig population. PCV2 is involved in a number of disease syndromes collectively called PCV2-associated diseases (PCVD). It is well elucidated, that PPV1 may act as a triggering factor of PCVD through supporting PCV2 replication. Less is known about the PPV2-PPV7 impact on PCV2 viremia, but several authors suggested an association between these viruses. In order to provide a better understanding of PCV2 and PPVs co-infections, 519 serum samples from eight Polish swine farms were tested by real-time PCR to assess the possible impact of PPV1-PPV7 on PCV2 viremia. Among all 519 serum samples, 30.6 % were positive for PCV2 and PPVs detection rates ranged from 2.9 % (PPV1) to 26.6 % (PPV2). Within 159 serum samples categorized as PCV2-positive, the prevalence rates of PPVs ranged from 7.5 % (PPV1) to 37.1 % (PPV6). The level of PCV2 viremia was significantly higher only in serum samples positive for PPV1 and PPV7 compared to samples negative for these PPVs. Moreover, the correlation between Ct values for PPV7 and PCV2 was observed. Thus, our results suggested that apart from PPV1, also PPV7 stimulate the replication of PCV2.
Collapse
Affiliation(s)
- Dagmara Miłek
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| |
Collapse
|
23
|
Resende TP, Marshall Lund L, Rossow S, Vannucci FA. Next-Generation Sequencing Coupled With in situ Hybridization: A Novel Diagnostic Platform to Investigate Swine Emerging Pathogens and New Variants of Endemic Viruses. Front Vet Sci 2019; 6:403. [PMID: 31803766 PMCID: PMC6873589 DOI: 10.3389/fvets.2019.00403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 10/28/2019] [Indexed: 01/07/2023] Open
Abstract
Next generation sequencing (NGS) can be applied to identify and characterize the entire set of microbes within a sample. However, this platform does not provide a morphological context or specific association between the viral or bacterial sequences detected and the histological lesions. This limitation has generated uncertainty whether the sequences identified by NGS are actually contributing or not for the clinical outcome. Although in situ hybridization (ISH) and immunohistochemistry (IHC) can be used to detect pathogens in tissue samples, only ISH has the advantage of being rapidly developed in a context of an emerging disease, especially because it does not require development of specific primary antibodies against the target pathogen. Based on the sequence information provided by NGS, ISH is able to check the presence of a certain pathogen within histological lesions, by targeting its specific messenger RNA, helping to build the relationship between the pathogen and the clinical outcome. In this mini review we have compiled results of the application of NGS-ISH to the investigation of challenging diagnostic cases or emerging pathogens in pigs, that resulted in the detection of porcine circovirus type 3, porcine parvovirus type 2, Senecavirus A, and Mycoplasma hyorhinis.
Collapse
Affiliation(s)
- Talita P Resende
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Lacey Marshall Lund
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Stephanie Rossow
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Fabio A Vannucci
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
24
|
Evidence of CPV2c introgression into Croatia and novel insights into phylogeny and cell tropism. Sci Rep 2019; 9:16909. [PMID: 31729462 PMCID: PMC6858334 DOI: 10.1038/s41598-019-53422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Canine parvovirus type 2 (CPV2) emerged for the first time in 1978 and evolved into two antigenic variants CPV2a and CPV2b and the third new antigenic variant CPV2c reported in 2000 in Italy. During 2014 unexplained outbreaks of gastroenteritis were observed in kennels where an extensive vaccination program was ongoing and where vaccinated animals showed pathologic lesions consistent with typical parvovirosis. The aim of this study was to investigate whether CPV2 could have played a role in the emergence of these cases and to evaluate genetic or pathological specificities of the virus and the disease. Using PCR and phylogenetic analysis we showed that the CPV2c variant is circulating in Croatia and is in close relationships with isolates from North and South America. Histopathological lesions and cell tropism that are known for CPV2 we are reporting the identification of the virus in glial cells and ovaries. It seems that evolution of CPV and CPV2a-c and adaptation to dogs are two independent events. Croatian isolates had specific and some unique amino acid mutations under positive selection. The effect of the alterations on the immunoglobulin binding cannot be excluded.
Collapse
|
25
|
Miłek D, Woźniak A, Guzowska M, Stadejek T. Detection Patterns of Porcine Parvovirus (PPV) and Novel Porcine Parvoviruses 2 through 6 (PPV2-PPV6) in Polish Swine Farms. Viruses 2019; 11:v11050474. [PMID: 31137628 PMCID: PMC6563502 DOI: 10.3390/v11050474] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine parvovirus (PPV) is a major causative agent in reproductive failure, but in the last two decades many novel porcine parvoviruses were described and designated as porcine parvovirus 2 through 6 (PPV2–PPV6). However, their role for pig health is largely unknown. The aim of this study was to better understand the on-farm prevalence of PPVs in different age groups of pigs, and to assess the diagnostic applicability of testing different diagnostic materials. In total, 271 oral fluids, 1244 serum samples, and 1238 fecal samples were collected from 3–21-week-old pigs from 19 farms, and after pooling by 4–6, tested by real-time PCR. The results showed that PPVs are widely spread in Poland and that the highest detection rates were obtained for oral fluids (ranging from 10.7% (PPV1) to 48.7% (PPV2)). Fattening pigs were the age group with the most frequent detection of PPVs (ranging from 8.6% (PPV1) to 49.1% (PPV2)). Porcine parvoviruses were detected mostly in growing-finishing pigs and the infection persisted until the late fattening period, which may suggest the chronic character of the infection (especially for PPV2, which was found to commonly infect animals of all ages). Particularly low Ct values detected for PPV2, PPV3, PPV5, and PPV6 in serum pools from some farms suggested that these viruses may cause high levels of viremia in one or more individuals included in these pools. Further studies are needed to quantify the levels of PPVs viremia and to assess the impact in co-infections with other, often endemic pig viruses, such as porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV).
Collapse
Affiliation(s)
- Dagmara Miłek
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Magdalena Guzowska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| |
Collapse
|