1
|
Liu BY, Jhu JS, Syu ML, Hwang DF. Effects of Arsenic-induced Diabetic Vascular Diseases through Mitogen-activated Protein Kinase Signaling Pathway: In vitro and In vivo Studies. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:127-139. [PMID: 40298380 DOI: 10.4103/ejpi.ejpi-d-24-00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/02/2025] [Indexed: 04/30/2025]
Abstract
ABSTRACT Arsenic (As) is an environmental pollutant that causes endocrine disruption. Diabetes increases the risk of Blackfoot disease, which is a peripheral artery disease caused by chronic exposure to As through drinking water in Taiwan and Bangladesh; however, the mechanism underlying this increased risk remains unclear. Therefore, in this study, we aimed to investigate the mechanisms underlying vascular damage in hyperglycemic conditions caused by As exposure using in vivo and in vitro studies. We utilized an animal model of streptozotocin-induced diabetes that was exposed to As through drinking water for 8 weeks. Subsequently, blood and organ samples of the animals were collected for follow-up analysis. Further, we cultured endothelial cells that were treated with As treatment in glucose condition and detected their biomarkers. The findings revealed that both the diabetes and diabetes + As groups exhibited insulin resistance, weight gain, and increased plasma triglyceride and total cholesterol levels. The diabetes + As group had lower antioxidant activity, which caused the arteries to exhibit prominent luminal narrowing with increased thickness. In vivo study revealed that glucose + As group-induced cell cycle arrest, a 98.80% increase in reactive oxygen species (ROS) levels, and decreased cell viability and mitochondrial membrane potential (MMP). However, in glucose + As group, treatment with SP600125 and U10126 treatment decreased ROS production by 80.5% and 84%, respectively, and restored MMP and cell viability. The glucose-regulated protein 78 level increased in the As as well as glucose + As groups. Our findings demonstrate that As exacerbates vascular damage in individuals with diabetes and its associated complications through the activation of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Bi-Yu Liu
- Department of Nursing, University of Kang Ning, Taipei, Taiwan
| | - Jhih-Syuan Jhu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Man-Lun Syu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Deng-Fwu Hwang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
2
|
Lazar S, Reurean-Pintilei DV, Ionita I, Avram VF, Herascu A, Timar B. Glycemic Variability and Its Association with Traditional Glycemic Control Biomarkers in Patients with Type 1 Diabetes: A Cross-Sectional, Multicenter Study. J Clin Med 2025; 14:2434. [PMID: 40217883 PMCID: PMC11989622 DOI: 10.3390/jcm14072434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Glycemic variability (GV) is a novel concept in the assessment of the quality of glycemic control in patients with diabetes, with its importance emphasized in patients with type 1 diabetes. Its adoption in clinical practice emerged with the increased availability of continuous glycemic monitoring systems. The aim of this study is to evaluate the GV in patients with type 1 diabetes mellitus (T1DM) and to assess its associations with other parameters used to evaluate the glycemic control. Methods: GV indexes and classical glycemic control markers were analyzed for 147 adult patients with T1DM in a multicentric cross-sectional study. Results: Stable glycemia was associated with a higher time in range (TIR) (78% vs. 63%; p < 0.001) and a lower HbA1c (6.8% vs. 7.1%; p = 0.006). The coefficient of variation (CV) was reversely correlated with TIR (Spearman's r = -0.513; p < 0.001) and positively correlated with hemoglobin A1c (HbA1c) (Spearman's r = 0.349; p < 0.001), while TIR was reversely correlated with HbA1c (Spearman's r = -0.637; p < 0.001). The composite GV and metabolic outcome was achieved by 28.6% of the patients. Conclusions: Stable glycemia was associated with a lower HbA1c, average and SD of blood glucose, and a higher TIR. A TIR higher than 70% was associated with a lower HbA1c, and SD and average blood glucose. Only 28.6% of the patients with T1DM achieved the composite GV and metabolic outcome, despite 53.7% of them achieving the HbA1c target, emphasizing thus the role of GV in the assessment of the glycemic control.
Collapse
Affiliation(s)
- Sandra Lazar
- Doctoral School of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.L.); (A.H.)
- First Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Hematology, Emergency Municipal Hospital, 300254 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.-F.A.); (B.T.)
| | - Delia-Viola Reurean-Pintilei
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University, 720229 Suceava, Romania
- Consultmed Medical Centre, Department of Diabetes, Nutrition and Metabolic Diseases, 700544 Iasi, Romania
| | - Ioana Ionita
- First Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Department of Hematology, Emergency Municipal Hospital, 300254 Timisoara, Romania
- Multidisciplinary Research Center for Malignant Hematological Diseases (CCMHM), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad-Florian Avram
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.-F.A.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania
| | - Andreea Herascu
- Doctoral School of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.L.); (A.H.)
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.-F.A.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania
| | - Bogdan Timar
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (V.-F.A.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes, “Pius Brinzeu” Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
3
|
Wang X, Cao Y. A Narrative Review: Relationship Between Glycemic Variability and Emerging Complications of Diabetes Mellitus. Biomolecules 2025; 15:188. [PMID: 40001491 PMCID: PMC11853042 DOI: 10.3390/biom15020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
A growing body of evidence emphasizes the role of glycemic variability (GV) in the development of conventional diabetes-related complications. Furthermore, advancements in diabetes management and increased life expectancy have led to the emergence of new complications, such as cancer, liver disease, fractures, infections, and cognitive dysfunction. GV is considered to exacerbate oxidative stress and inflammation, acting as a major mechanism underlying these complications. However, few reviews have synthesized the association between GV and these emerging complications or examined their underlying mechanisms. Hence, this narrative review provides a comprehensive discussion of the burden, risks, and mechanisms of GV in these complications, offering further evidence supporting GV as a potential therapeutic target for diabetes management.
Collapse
Affiliation(s)
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| |
Collapse
|
4
|
Ebrahimi M, Fonarow GC. Higher levels of glucose within the normal range and cardiovascular risk: A landscape beyond diabetes and prediabetes. Am Heart J 2025; 283:1-4. [PMID: 39863033 DOI: 10.1016/j.ahj.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gregg C Fonarow
- Division of Cardiology, Geffen School of Medicine at University of California, Los Angeles, CA.
| |
Collapse
|
5
|
Jing C, Wu Y, Zhang Y, Zhu Z, Zhang Y, Liu Z, Sun D. Epigenetic regulation and post-translational modifications of ferroptosis-related factors in cardiovascular diseases. Clin Epigenetics 2025; 17:4. [PMID: 39799367 PMCID: PMC11724467 DOI: 10.1186/s13148-024-01809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025] Open
Abstract
As an important element of the human body, iron participates in numerous physiological and biochemical reactions. In the past decade, ferroptosis (a form of iron-dependent regulated cell death) has been reported to contribute to the pathogenesis and progression of various diseases. The stability of iron in cardiomyocytes is crucial for the maintenance of normal physiological cardiac activity. Ferroptosis has been detected in many cardiovascular diseases (CVDs), including coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and chemotherapy-induced myocardial damage. In cardiomyocytes, epigenetic regulation and post-translational modifications regulate the expression of ferroptosis-related factors, maintain iron homeostasis, and participate in the progression of CVDs. Currently, there is no detailed mechanism to explain the relationship between epigenetic regulation and ferroptosis in CVDs. In this review, we provide an initial summary of the core mechanisms of ferroptosis in cardiomyocytes, with first focus on the epigenetic regulation and expression of ferroptosis-related factors in the context of common cardiovascular diseases. We anticipate that the new insights into the pathogenesis of CVDs provided here will inspire the development of clinical interventions to specifically target the active sites of these factors, reducing the harmfulness of ferroptosis to human health.
Collapse
Affiliation(s)
- Chunlu Jing
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
- Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yupeng Wu
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Yuzhu Zhang
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Zaihan Zhu
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Yong Zhang
- Department of Urology, The People's Hospital of Liaoning Province, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Zhen Liu
- Department of Urology, The People's Hospital of Liaoning Province, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China.
| | - Dandan Sun
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China.
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China.
| |
Collapse
|
6
|
Huang Q, Cui M, Yin Y, Hui C, Cheng Y, Wang S, Hu X, Yin X, Zhang X, Sun X, Tang T, Lang L, Sun Y. A correlation study between blood glucose fluctuation and chronic pain in the older people with type 2 diabetes mellitus. BMC Geriatr 2024; 24:1028. [PMID: 39709342 DOI: 10.1186/s12877-024-05616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVES To investigate the correlation between blood glucose fluctuation parameters and other clinical data with chronic pain in older patients ( ≧ 60 years) with type 2 diabetes mellitus (T2DM), as well as evaluating the predictive value of risk of these parameters for chronic pain. METHODS Clinical data were collected from 60 older patients with T2DM undergoing chronic pain who were hospitalized in the Department of Geriatric Endocrinology at the First Affiliated Hospital of Anhui Medical University. Pain scores using the numeric rating scale (NRS) were administered to all study participants by a dedicated person. Based on their pain scores, patients were categorized into two groups: mild pain group (NRS ≤ 5, n = 28) and severe pain group (NRS > 5, n = 32). Blood glucose levels were continuously monitored using the Continuous Glucose Monitoring System (CGMS). Spearman correlation analysis was performed to investigate the correlation between pain scores and blood glucose fluctuation parameters, as well as other clinical data of concern. Comparing general clinical information and relevant data recorded by CGMS between the two groups. Binary logistic regression was used to identify factors influencing the severity of chronic pain in old patients with T2DM combined with chronic pain. Additionally, the predictive value of Mean Amplitude of Glycemic Excursions (MAGE), Coefficient of Variation (CV), and Time in Range (TIR) for chronic pain severity was assessed using Receiver Operating Characteristic (ROC) curve analysis. RESULTS Spearman correlation analysis revealed positive correlations between pain scores and the following variables: gender, age, duration of diabetes, duration of pain, MAGE, CV, mean blood glucose (MBG), standard deviation (SD), Mean of Daily Differences (MODD), and the highest glucose level. Conversely, pain scores were negatively correlated with red blood cell (RBC) count, hemoglobin (Hb), estimated glomerular filtration rate (eGFR). There were statistically significant differences in gender, age, disease duration, pain duration, Hb, eGFR, MAGE, CV, TIR, MBG, SD, MODD, and highest blood glucose values between the two groups. The gender, age, duration of diabetes, duration of pain, Hb, eGFR, MAGE, TIR, CV, MBG, SD, and MODD were identified as the risk factors for the severity of chronic pain in older T2DM patients by using binary logistic regression analysis. ROC curve analysis showed that the area under the curve for MAGE was 0.741 (sensitivity: 53.1%, specificity: 89.3%), for CV it was 0.668 (sensitivity: 40.6%, specificity: 89.3%), and for TIR it was 0.763 (sensitivity: 67.9%, specificity: 84%). CONCLUSION The chronic pain is strongly correlated with blood glucose fluctuation parameters in older patients with T2DM. This work shows that those indicators of blood glucose fluctuations can be used for predicting chronic pain level in older T2DM patients, providing a potential methodology for rapid evaluation of chronic pain. CLINICAL TRIAL NUMBER ChiCTR1800019107.
Collapse
Affiliation(s)
- Qinyi Huang
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Mengjie Cui
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Yangliu Yin
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cancan Hui
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Yuwei Cheng
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Shuqian Wang
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Xiujuan Hu
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Xiaorong Yin
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Xiaoxiang Zhang
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Xinyu Sun
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Tiantian Tang
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Lang Lang
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Yan Sun
- Geriatric Endocrinology, Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China.
| |
Collapse
|
7
|
An S, Ye Z, Che W, Gao Y, Ren J, Li J, Zheng J. Predictive value of stress hyperglycemia ratio on one-year mortality in chronic kidney disease patients admitted to intensive care unit. BMC Nephrol 2024; 25:358. [PMID: 39420295 PMCID: PMC11487764 DOI: 10.1186/s12882-024-03823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Stress Hyperglycemia Ratio (SHR) reflects the acute blood glucose variation in critically ill conditions. However, its prognostic value in chronic kidney disease (CKD) remains understudied. This study aimed to investigate the association between SHR and one-year mortality in CKD patients hospitalized in the Intensive Care Unit (ICU). METHODS Patients with diagnosis of CKD in the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were enrolled. Incidence of all-cause mortality within one-year follow-up was used as the primary endpoint. RESULTS 1825 CKD patients were included in the study. A "U-shaped" relationship between SHR and one-year mortality as identified using multivariate restricted cubic spline (RCS) analysis. Then study population were categorized into three groups: Group 1 (SHR < 0.70), Group 2 (0.70 ≤ SHR ≤ 0.95) and Group 3 (SHR > 0.95). Group 2 showed significantly better one-year outcomes compared to the other two groups (p = 0.0031). This survival benefit persisted across subgroup analyses stratified by age, sex, CKD stage, anemia and various clinical conditions. CONCLUSION SHR proved to be a meaningful biomarker for predicting one-year mortality in ICU-admitted CKD patients, with a "U-shaped" correlation. The identification of the optimal SHR range (0.70-0.95) provided clinicians with a valuable tool for detecting high-risk populations.
Collapse
Affiliation(s)
- Shuoyan An
- Department of Cardiology, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Zixiang Ye
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Wuqiang Che
- Department of Cardiology, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Jingyi Ren
- Department of Cardiology, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Jiahui Li
- Department of Cardiology, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China.
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Xu B, Xu Y, Ren W, Meng S, Hong T, Cao Z, Xiao X, Guo X, Yu L, Zhao J, Wang H. S-Methyl-L-cysteine targeting MsrA attenuates Ang II-induced oxidative stress and atrial remodeling via the p38 MAPK signaling pathway. Food Funct 2024; 15:9165-9175. [PMID: 39157962 DOI: 10.1039/d4fo03078h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained tachyarrhythmia in patients with cardiovascular diseases. Recently, it has been discovered that oxidative stress is an important contributor to AF. Therefore, antioxidant therapies for AF have great potential for clinical applications. Methionine, a sulfur-containing amino acid residue other than cysteine, is recognized as a functional redox switch, which could be rescued from the reversible oxidation of methionine sulfoxide by methionine sulfoxide reductase A (MsrA). S-Methyl-L-cysteine (SMLC), a natural analogue of Met, which is abundantly found in garlic and cabbage, could substitute for Met oxidations and mediate MsrA to scavenge free radicals. However, whether SMLC alleviates AF is unclear. This study aims to clarify the effects of SMLC on AF and elucidate the underlying pharmacological and molecular mechanisms. In vivo, SMLC (70, 140 and 280 mg kg-1 day-1) was orally administered to mice for 4 weeks with angiotensin II (Ang II) by subcutaneous infusion using osmotic pumps to induce AF. Ang II significantly prompted high AF susceptibility and atrial remodeling characterized by oxidative stress, conductive dysfunction and fibrosis. SMLC played a remarkable protective role in Ang II-induced atrial remodeling dose-dependently. Moreover, RNA sequencing was performed on atrial tissues to identify the differentially expressed mRNA, which was to screen out MSRA, CAMK2 and MAPK signaling pathways. Western blots confirmed that Ang II-induced downregulation of MsrA and upregulation of oxidized CaMKII (ox-CaMKII) and p38 MAPK could be reversed in a concentration-dependent manner by SMLC. To investigate the underlying mechanisms, HL-1 cells (mouse atria-derived cardiomyocytes) treated with Ang II were used for an in vitro model. SMLC alleviated Ang II-induced cytotoxicity, mitochondrial damage and oxidative stress. Additionally, knockdown MsrA could attenuate the protective effects of SMLC, which were eliminated by the p38 MAPK inhibitor SB203580. In summary, the present study demonstrates that SMLC protects against atrial remodeling in AF by inhibiting oxidative stress through the mediation of the MsrA/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Beibei Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theatre Command, Shenyang 110016, China.
- Postgraduate College, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinli Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theatre Command, Shenyang 110016, China.
| | - Wenpu Ren
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theatre Command, Shenyang 110016, China.
- Postgraduate College, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Shan Meng
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theatre Command, Shenyang 110016, China.
- Postgraduate College, Jinzhou Medical University, Jinzhou 121001, China
| | - Tao Hong
- Postgraduate College, Dalian Medical University, Dalian 116044, China
- Pediatric Surgery Ward, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518052, China
| | - Zijun Cao
- Postgraduate College, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xiong Xiao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theatre Command, Shenyang 110016, China.
- Postgraduate College, China Medical University, Shenyang 110122, China
| | - Xiaodong Guo
- Postgraduate College, Dalian Medical University, Dalian 116044, China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theatre Command, Shenyang 110016, China.
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theatre Command, Shenyang 110016, China.
| | - Huishan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theatre Command, Shenyang 110016, China.
| |
Collapse
|
9
|
Shi R, Xu W, Feng L, Ye D, Luo B, Liu Y, Cao H, Tang L. Value of Glycemic Dispersion Index in Predicting Major Adverse Cardiovascular Events in Diabetic Patients with Concomitant Acute Coronary Syndrome. Diabetes Metab Syndr Obes 2024; 17:3433-3445. [PMID: 39295645 PMCID: PMC11410034 DOI: 10.2147/dmso.s469436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Aim This investigation aims to assess the predictive value of the glycemic dispersion index (GDI), calculated by incorporating glycated hemoglobin, fasting plasma glucose, and 2-hour postprandial plasma glucose, in predicting major adverse cardiovascular events (MACE) within a 12-month timeframe for diabetic patients with concomitant acute coronary syndrome (ACS). Methods A retrospective study was conducted on 3261 diabetic patients with ACS who were hospitalized in the Department of Cardiology, the Sixth Affiliated Hospital of Kunming Medical University, from January 2016 to July 2022. Based on the inclusion and exclusion criteria, 512 patients were ultimately enrolled in the study. Their general information and laboratory test indicators were collected, and the occurrence of MACE within 12 months after admission was followed up and recorded for the enrolled patients, With the last follow-up having been concluded on July 31, 2023. The enrolled patients were stratified into four groups (Q1, Q2, Q3, Q4) based on their GDI values, from the lowest to the highest. Cox proportional hazards regression analysis and Kaplan-Meier survival analysis were employed to investigate the risk factors associated with MACE occurrence across these groups and to assess the cumulative risk of MACE over time within each group. Results The percentages of enrolled patients experiencing MACE in groups Q1 to Q4 were 10.16%, 12.50%, 15.63%, and 16.41%, respectively. GDI independently predicted the hazards for MACE in enrolled patients. The cumulative risk of MACE over time was considerably more significant in those with a GDI>4.21 than those with a GDI≤4.21. Conclusion The elevated GDI is correlated with an augmented risk of MACE in diabetic patients with concomitant ACS, thereby serving as an early indicator for assessing the unfavorable clinical prognosis of patients. This study offers novel insights into glycemic variability monitoring, enhancing prevention and treatment strategies for cardiovascular disease in people with diabetes.
Collapse
Affiliation(s)
- Rui Shi
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Wenbo Xu
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Lei Feng
- Clinical Laboratory, Yan'an Hospital of Kunming City, Kunming City, Yunnan Province, People's Republic of China
| | - Dan Ye
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Beibei Luo
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Yanmei Liu
- Clinical Laboratory, Yan'an Hospital of Kunming City, Kunming City, Yunnan Province, People's Republic of China
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People's Republic of China
| | - Huiying Cao
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| | - Lingtong Tang
- Department of Laboratory, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, People's Republic of China
| |
Collapse
|
10
|
Hu SY, Xue CD, Li YJ, Li S, Gao ZN, Qin KR. Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage. MECHANOBIOLOGY IN MEDICINE 2024; 2:100069. [PMID: 40395495 PMCID: PMC12082321 DOI: 10.1016/j.mbm.2024.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 04/19/2024] [Indexed: 01/03/2025]
Abstract
Dysglycemia causes arterial endothelial damage, which is an early critical event in vascular complications for diabetes patients. Physiologically, moderate shear stress (SS) helps maintain endothelial cell health and normal function. Reactive oxygen species (ROS) and calcium ions (Ca2+) signals are involved in dysglycemia-induced endothelial dysfunction and are also implicated in SS-mediated regulation of endothelial cell function. Therefore, it is urgent to establish in vitro models for studying endothelial biomechanics and mechanobiology, aiming to seek interventions that utilize appropriate SS to delay or reverse endothelial dysfunction. Microfluidic technology, as a novel approach, makes it possible to replicate blood glucose environment and accurate pulsatile SS in vitro. Here, we reviewed the progress of microfluidic systems used for SS-mediated repair of dysglycemia-induced endothelial cell damage (ECD), revealing the crucial roles of ROS and Ca2+ during the processes. It holds significant implications for finding appropriate mechanical intervention methods, such as exercise training, to prevent and treat cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Si-Yu Hu
- School of Mechanical Engineering, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China
| | - Shen Li
- Central Hospital of Dalian University of Technology, No. 826, Xinan Rd., Dalian 116033, Liaoning Province, China
| | - Zheng-Nan Gao
- Central Hospital of Dalian University of Technology, No. 826, Xinan Rd., Dalian 116033, Liaoning Province, China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian 116024, Liaoning Province, China
- Central Hospital of Dalian University of Technology, No. 826, Xinan Rd., Dalian 116033, Liaoning Province, China
| |
Collapse
|
11
|
Liu Y, Zhang J, Chun X, Gao Y, Yao R, Liang Y, Zhu L, He Y, Huang W. Performance of Continuous Glucose Monitoring in Patients With Acute Respiratory Failure: A Prospective, Single-Center Observational Study. Endocr Pract 2024; 30:795-801. [PMID: 38876178 DOI: 10.1016/j.eprac.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE Continuous glucose monitoring (CGM) may have benefits in achieving glycemic control in critically ill patients. The aim of this study was to assess the accuracy of the Freestyle Libre H (professional version similar to the Libre Pro) in patients with acute respiratory failure (ARF) in the intensive care unit (ICU). METHODS Fifty-two adult patients with ARF were selected. The performance of CGM was evaluated using the arterial blood glucose (aBG) and point-of-care (POC) glucose levels as the reference values. Numerical accuracy was evaluated by the mean absolute relative difference, Bland-Altman analysis, %15/15 (the percentage of CGM values within 15 mg/dL or 15% of reference values <100 or >100 mg/dL, respectively), %20/20, and %30/30. Clinical accuracy was assessed using the Clarke error grid analysis. RESULTS A total of 519 and 1504 pairs of aBG/CGM and POC/CGM glucose values were analyzed. The mean absolute relative difference values were 13.8% and 14.7%, respectively. The mean deviations of the Bland-Altman analysis were 0.82 mmol/L and 0.81 mmol/L. The proportions of CGM values within %15/15, %20/20, and %30/30 of the aBG values were 62.6%, 75.5%, and 92.4%, respectively; those within %15/15, %20/20, and %30/30 of the POC values were 57.1%, 72.9%, and 88.7%, respectively. The Clarke error grid analysis showed that 97.8% and 99.3% of the values were located in zone A + B. Additionally, the accuracy of CGM was not affected by general patient factors. CONCLUSION This study demonstrated that the accuracy of CGM in patients with ARF is lower than that in most outpatients and it is not affected by general patient factors. Whether CGM is beneficial to glucose management in the intensive care unit needs further evaluation.
Collapse
Affiliation(s)
- Yanhua Liu
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing/Disaster Medicine Center, Sichuan University, Chengdu, China; Institute of Disaster Medicine, Sichuan University, Chengdu, China; Nursing Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jianna Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing/Disaster Medicine Center, Sichuan University, Chengdu, China; Institute of Disaster Medicine, Sichuan University, Chengdu, China; Nursing Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xueli Chun
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing/Disaster Medicine Center, Sichuan University, Chengdu, China; Institute of Disaster Medicine, Sichuan University, Chengdu, China; Nursing Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Rong Yao
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing/Disaster Medicine Center, Sichuan University, Chengdu, China; Institute of Disaster Medicine, Sichuan University, Chengdu, China; Nursing Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Yin Liang
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing/Disaster Medicine Center, Sichuan University, Chengdu, China; Institute of Disaster Medicine, Sichuan University, Chengdu, China; Nursing Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Ling Zhu
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing/Disaster Medicine Center, Sichuan University, Chengdu, China; Institute of Disaster Medicine, Sichuan University, Chengdu, China; Nursing Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Ying He
- Anesthesia & Operation Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wenxia Huang
- General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Kumar S, Mehan S, Khan Z, Das Gupta G, Narula AS. Guggulsterone Selectively Modulates STAT-3, mTOR, and PPAR-Gamma Signaling in a Methylmercury-Exposed Experimental Neurotoxicity: Evidence from CSF, Blood Plasma, and Brain Samples. Mol Neurobiol 2024; 61:5161-5193. [PMID: 38170440 DOI: 10.1007/s12035-023-03902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a paralytic disease that damages the brain and spinal cord motor neurons. Several clinical and preclinical studies have found that methylmercury (MeHg+) causes ALS. In ALS, MeHg+-induced neurotoxicity manifests as oligodendrocyte destruction; myelin basic protein (MBP) deficiency leads to axonal death. ALS development has been connected to an increase in signal transducer and activator of transcription-3 (STAT-3), a mammalian target of rapamycin (mTOR), and a decrease in peroxisome proliferator-activated receptor (PPAR)-gamma. Guggulsterone (GST), a plant-derived chemical produced from Commiphorawhighitii resin, has been found to protect against ALS by modulating these signaling pathways. Vitamin D3 (VitD3) deficiency has been related to oligodendrocyte precursor cells (OPC) damage, demyelination, and white matter deterioration, which results in motor neuron death. As a result, the primary goal of this work was to investigate the therapeutic potential of GST by altering STAT-3, mTOR, and PPAR-gamma levels in a MeHg+-exposed experimental model of ALS in adult rats. The GST30 and 60 mg/kg oral treatments significantly improved the behavioral, motor, and cognitive dysfunctions and increased remyelination, as proven by the Luxol Fast Blue stain (LFB), and reduced neuroinflammation as measured by histological examinations. Furthermore, the co-administration of VitD3 exhibits moderate efficacy when administered in combination with GST60. Our results show that GST protects neurons by decreasing STAT-3 and mTOR levels while increasing PPAR-gamma protein levels in ALS rats.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
13
|
Jia Y, Long D, Yang Y, Wang Q, Wu Q, Zhang Q. Diabetic peripheral neuropathy and glycemic variability assessed by continuous glucose monitoring: A systematic review and meta-analysis. Diabetes Res Clin Pract 2024; 213:111757. [PMID: 38944250 DOI: 10.1016/j.diabres.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Continuous glucose monitoring (CGM)-derived metrics have been used to accurately assess glycemic variability (GV) to facilitate management of diabetes mellitus, yet their relationship with diabetic peripheral neuropathy (DPN) is not fully understood. We performed a systematic review and meta-analysis to evaluate the association between GV metrics and the risk of developing DPN. Nine studies totaling 3,649 patients with type 1 and type 2 diabetes mellitus were included. A significant association was found between increased GV, as indicated by metrics including standard deviation (SD) with OR and 95% CI of 2.58 (1.45-4.57), mean amplitude of glycemic excursions (MAGE) with OR and 95% CI of 1.90 (1.01-3.58), mean of daily difference (MODD) with OR and 95% CI of 2.88 (2.17-3.81) and the incidence of DPN. Our findings support a link between higher GV and an increased risk of DPN in patients with diabetes. These findings highlight the potential of GV metrics as indicators for the development of DPN, advocating for their inclusion in diabetes management strategies to potentially mitigate neuropathy risk. Longitudinal studies with longer observation periods and larger sample sizes are necessary to validate these associations across diverse populations.
Collapse
Affiliation(s)
- Yifan Jia
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Long
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunshuang Yang
- Department of Preventive Medicine, Beijing Longfu Hospital, Beijing 100010, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
14
|
Li S, Jiang J, Zhu W, Wang D, Dong C, Bu Y, Zhang J, Gao D, Hu X, Wan C. Increased cell-free DNA is associated with oxidative damage in patients with schizophrenia. J Psychiatr Res 2024; 175:20-28. [PMID: 38701608 DOI: 10.1016/j.jpsychires.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Cell-free DNA (cfDNA) has been found to be elevated in patients with schizophrenia (SZ), potentially derived from activated apoptosis, but the underlying mechanisms remain unknown. Moreover, whether the concentrations of cfDNA are altered with disease stage has not been investigated, which limits its clinical application as an auxiliary diagnostic marker for SZ. Using an improved fluorescence correlation spectroscopy (FCS) method that does not require DNA extraction, we measured the molar concentrations of cfDNA in plasma samples of 191 patients with SZ, 78 patients with mood disorders (MD) and 65 healthy controls (HC). We also analyzed the cfDNA composition from either the nucleus or mitochondria, oxidation markers and biochemical indexes to explore the potential mechanistic associations of the increased cfDNA levels. We found that in SZ patients, the cfDNA levels were significantly increased (P = 0.003) regardless of the different disease stages or antipsychotic medication use. Furthermore, qPCR revealed that cell-free nuclear DNA (cf-nDNA) (P = 0.041) but not cell-free mitochondrial DNA (cf-mtDNA) was elevated in SZ patients. Moreover, decreased SOD activity in SZ patients (P = 0.005) was negatively correlated with cfDNA levels (P = 0.047), and fasting blood glucose was positively correlated with cfDNA levels in SZ patients (P = 0.013). Our study provides evidence to support that the elevated cfDNA may be a convenient, effective and stable trait indicator of SZ. Further analysis showed that it mainly came from nucleus, suggesting increased apoptosis, and potentially related to oxidative stress and high blood glucose levels in patients.
Collapse
Affiliation(s)
- Shuhui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenli Zhu
- The Fourth People's Hospital of Wuhu, Wuhu, 241003, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangying Bu
- The Fourth People's Hospital of Wuhu, Wuhu, 241003, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Daiyutong Gao
- Department of Mathematics, Nanjing University, Nanjing, 210093, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
15
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
16
|
Kaczara P, Czyzynska-Cichon I, Kus E, Kurpinska A, Olkowicz M, Wojnar-Lason K, Pacia MZ, Lytvynenko O, Baes M, Chlopicki S. Liver sinusoidal endothelial cells rely on oxidative phosphorylation but avoid processing long-chain fatty acids in their mitochondria. Cell Mol Biol Lett 2024; 29:67. [PMID: 38724891 PMCID: PMC11084093 DOI: 10.1186/s11658-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND It is generally accepted that endothelial cells (ECs), primarily rely on glycolysis for ATP production, despite having functional mitochondria. However, it is also known that ECs are heterogeneous, and their phenotypic features depend on the vascular bed. Emerging evidence suggests that liver sinusoidal ECs (LSECs), located in the metabolically rich environment of the liver, show high metabolic plasticity. However, the substrate preference for energy metabolism in LSECs remains unclear. METHODS Investigations were conducted in primary murine LSECs in vitro using the Seahorse XF technique for functional bioenergetic assays, untargeted mass spectrometry-based proteomics to analyse the LSEC proteome involved in energy metabolism pathways, liquid chromatography-tandem mass spectrometry-based analysis of acyl-carnitine species and Raman spectroscopy imaging to track intracellular palmitic acid. RESULTS This study comprehensively characterized the energy metabolism of LSECs, which were found to depend on oxidative phosphorylation, efficiently fuelled by glucose-derived pyruvate, short- and medium-chain fatty acids and glutamine. Furthermore, despite its high availability, palmitic acid was not directly oxidized in LSEC mitochondria, as evidenced by the acylcarnitine profile and etomoxir's lack of effect on oxygen consumption. However, together with L-carnitine, palmitic acid supported mitochondrial respiration, which is compatible with the chain-shortening role of peroxisomal β-oxidation of long-chain fatty acids before further degradation and energy generation in mitochondria. CONCLUSIONS LSECs show a unique bioenergetic profile of highly metabolically plastic ECs adapted to the liver environment. The functional reliance of LSECs on oxidative phosphorylation, which is not a typical feature of ECs, remains to be determined.
Collapse
Affiliation(s)
- Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Edyta Kus
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Mariola Olkowicz
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Marta Z Pacia
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Olena Lytvynenko
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Myriam Baes
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, 3000, Leuven, Belgium
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| |
Collapse
|
17
|
Wang J, Wang LL, Yang YM, Tan HQ, Zhu J. Impact of acute glycemic variability on short-term outcomes in patients with ST-segment elevation myocardial infarction: a multicenter population-based study. Cardiovasc Diabetol 2024; 23:155. [PMID: 38715023 PMCID: PMC11077764 DOI: 10.1186/s12933-024-02250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Given the increasing attention to glycemic variability (GV) and its potential implications for cardiovascular outcomes. This study aimed to explore the impact of acute GV on short-term outcomes in Chinese patients with ST-segment elevation myocardial infarction (STEMI). METHODS This study enrolled 7510 consecutive patients diagnosed with acute STEMI from 274 centers in China. GV was assessed using the coefficient of variation of blood glucose levels. Patients were categorized into three groups according to GV tertiles (GV1, GV2, and GV3). The primary outcome was 30-day all-cause death, and the secondary outcome was major adverse cardiovascular events (MACEs). Cox regression analyses were conducted to determine the independent correlation between GV and the outcomes. RESULTS A total of 7136 patients with STEMI were included. During 30-days follow-up, there was a significant increase in the incidence of all-cause death and MACEs with higher GV tertiles. The 30-days mortality rates were 7.4% for GV1, 8.7% for GV2 and 9.4% for GV3 (p = 0.004), while the MACEs incidence rates was 11.3%, 13.8% and 15.8% for the GV1, GV2 and GV3 groups respectively (p < 0.001). High GV levels during hospitalization were significantly associated with an increased risk of 30-day all-cause mortality and MACEs. When analyzed as a continuous variable, GV was independently associated with a higher risk of all-cause mortality (hazard ratio [HR] 1.679, 95% confidence Interval [CI] 1.005-2.804) and MACEs (HR 2.064, 95% CI 1.386-3.074). Additionally, when analyzed as categorical variables, the GV3 group was found to predict an increased risk of MACEs, irrespective of the presence of diabetes mellitus (DM). CONCLUSION Our study findings indicate that a high GV during hospitalization was significantly associated with an increased risk of 30-day all-cause mortality and MACE in Chinese patients with STEMI. Moreover, acute GV emerged as an independent predictor of increased MACEs risk, regardless of DM status.
Collapse
Affiliation(s)
- Juan Wang
- Emergency Center, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, 100037, Beijing, China
| | - Lu-Lu Wang
- Emergency Center, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, 100037, Beijing, China
| | - Yan-Min Yang
- Emergency Center, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, 100037, Beijing, China.
| | - Hui-Qiong Tan
- Intensive Care Center, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 100037, Beijing, China.
- , No.167 Beilishi Road, Xicheng District, 100037, Beijing, China.
| | - Jun Zhu
- Emergency Center, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, 100037, Beijing, China
| |
Collapse
|
18
|
Liu H, Yao Q, Wang X, Xie H, Yang C, Gao H, Xie C. The research progress of crosstalk mechanism of autophagy and apoptosis in diabetic vascular endothelial injury. Biomed Pharmacother 2024; 170:116072. [PMID: 38147739 DOI: 10.1016/j.biopha.2023.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
In recent years, the widespread prevalence of diabetes has become a major killer that threatens the health of people worldwide. Of particular concern is hyperglycemia-induced vascular endothelial injury, which is one of the factors that aggravate diabetic vascular disease. During the process of diabetic vascular endothelial injury, apoptosis is an important pathological manifestation and autophagy is a key regulatory mechanism. Autophagy and apoptosis interact with each other. Hence, the crosstalk mechanism between the two processes is an important means of regulating diabetic vascular endothelial injury. This article reviews the research progress in apoptosis in the context of diabetic vascular endothelial injury and discusses the crosstalk mechanism of autophagy and apoptosis and its role in this injury. The purpose is to guide the prevention and treatment of diabetic vascular endothelial injury in the future.
Collapse
Affiliation(s)
- Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Qiyuan Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China.
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| |
Collapse
|
19
|
Vieira AFC, Xatse MA, Murray SY, Olsen CP. Oleic Acid Metabolism in Response to Glucose in C. elegans. Metabolites 2023; 13:1185. [PMID: 38132867 PMCID: PMC10744850 DOI: 10.3390/metabo13121185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
A key response to glucose stress is an increased production of unsaturated fatty acids to balance the increase in saturated fatty acids in the membrane. The C. elegans homolog of stearoyl-CoA desaturase, FAT-7, introduces the first double bond into saturated C18 fatty acids yielding oleic acid, and is a critical regulatory point for surviving cold and glucose stress. Here, we incorporated 13C stable isotopes into the diet of nematodes and quantified the 13C-labelled fatty acid using GC-MS and HPLC/MS-MS to track its metabolic response to various concentrations of glucose. Previous work has analyzed the membrane composition of C. elegans when responding to mild glucose stress and showed few alterations in the overall fatty acid composition in the membrane. Here, in nematodes exposed to higher concentrations of glucose, a specific reduction in oleic acid and linoleic acid was observed. Using time courses and stable isotope tracing, the response of fatty acid metabolism to increasing levels of glucose stress is characterized, revealing the funneling of monounsaturated fatty acids to preserve the abundance of polyunsaturated fatty acids. Taken together, higher levels of glucose unveil a specific reduction in oleic and linolenic acid in the metabolic rewiring required to survive glucose stress.
Collapse
Affiliation(s)
| | | | | | - Carissa Perez Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (A.F.C.V.); (M.A.X.)
| |
Collapse
|
20
|
Manosroi W, Phimphilai M, Waisayanand N, Buranapin S, Deerochanawong C, Gunaparn S, Phrommintikul A, Wongcharoen W, for the CORE‐Thailand investigators. Glycated hemoglobin variability and the risk of cardiovascular events in patients with prediabetes and type 2 diabetes mellitus: A post-hoc analysis of a prospective and multicenter study. J Diabetes Investig 2023; 14:1391-1400. [PMID: 37610280 PMCID: PMC10688133 DOI: 10.1111/jdi.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
AIMS/INTRODUCTION High glycated hemoglobin (HbA1c) variability has been reported to be linked with cardiovascular events in type 2 diabetes patients. Only a few studies have been carried out on Asian patients. This study aimed to investigate the association of prediabetes and type 2 diabetes in Asian patients by performing a post-hoc analysis of a multicenter, prospective, observational study. MATERIALS AND METHODS Data for prediabetes and type 2 diabetes patients were retrieved from a multicenter national registry entitled "CORE-Thailand study." The primary outcome was 4P-MACE (major adverse cardiovascular events, including non-fatal myocardial infarction, heart failure hospitalization, non-fatal stroke and all-cause death). Patients were stratified according to quartiles of HbA1c standard deviation. The Cox proportional hazards regression model was used to estimate the association of HbA1c variability with incident cardiovascular disease. RESULTS A total of 3,811 patients with prediabetes and type 2 diabetes were included. The median follow-up duration was 54 months. In the fully adjusted model, the highest quartile of HbA1c variability showed a statistically significant association with 4P-MACE (hazard ratio [HR] 2.77, 95% confidence interval [CI] 1.77-4.35), fatal and non-fatal myocardial infarction (HR 6.91, 95% CI 1.90-25.12), hospitalization for heart failure (HR 3.34, 95% CI 1.20-9.26) and all-cause death (HR 3.10, 95% CI 1.72-5.57). All these outcomes were statistically significantly different among four quartiles of HbA1c (log-rank P-value <0.05). Fatal and non-fatal stroke showed no statistically significant association with high HbA1c variability. CONCLUSION High HbA1c variability in the highest quartile showed a statistically significant association with multiple adverse cardiovascular events in an Asian population. Minimizing HbA1c fluctuation during long-term follow up should be another important objective for type 2 diabetes patients.
Collapse
Affiliation(s)
- Worapaka Manosroi
- Division of Endocrinology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
- Faculty of Medicine, Center for Clinical Epidemiology and Clinical StatisticsChiang Mai UniversityChiang MaiThailand
| | - Mattabhorn Phimphilai
- Division of Endocrinology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Nipawan Waisayanand
- Division of Endocrinology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Supawan Buranapin
- Division of Endocrinology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | | | - Siriluck Gunaparn
- Division of Cardiology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Arintaya Phrommintikul
- Division of Cardiology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Wanwarang Wongcharoen
- Division of Cardiology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | | |
Collapse
|
21
|
Weng J, Ross C, Baker J, Alfuraih S, Shamloo K, Sharma A. Diabetes-Associated Hyperglycemia Causes Rapid-Onset Ocular Surface Damage. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 37938936 PMCID: PMC10637200 DOI: 10.1167/iovs.64.14.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Purpose The metabolic alterations due to chronic hyperglycemia are well-known to cause diabetes-associated complications. Short-term hyperglycemia has also been shown to cause many acute changes, including hemodynamic alterations and osmotic, oxidative, and inflammatory stress. The present study was designed to investigate whether diabetes-associated hyperglycemia can cause rapid-onset detrimental effects on the tear film, goblet cells, and glycocalyx and can lead to activation of an inflammatory cascade or cellular stress response in the cornea. Methods Mouse models of type 1 and type 2 diabetes were used. Tear film volume, goblet cell number, and corneal glycocalyx area were measured on days 7, 14, and 28 after the onset of hyperglycemia. Transcriptome analysis was performed to quantify changes in 248 transcripts of genes involved in inflammatory, apoptotic, and stress response pathways. Results Our data demonstrate that type 1 and type 2 diabetes-associated hyperglycemia caused a significant decrease in the tear film volume, goblet cell number, and corneal glycocalyx area. The decrease in tear film and goblet cell number was noted as early as 7 days after onset of hyperglycemia. The severity of ocular surface injury was significantly more in type 1 compared to type 2 diabetes. Diabetes mellitus also caused an increase in transcripts of genes involved in the inflammatory, apoptotic, and cellular stress response pathways. Conclusions The results of the present study demonstrate that diabetes-associated hyperglycemia causes rapid-onset damage to the ocular surface. Thus, short-term hyperglycemia in patients with diabetes mellitus may also play an important role in causing ocular surface injury and dry eye.
Collapse
Affiliation(s)
- Judy Weng
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Christopher Ross
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Jacob Baker
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Saleh Alfuraih
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Kiumars Shamloo
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| | - Ajay Sharma
- Chapman University School of Pharmacy, Chapman University, Irvine, California, United States
| |
Collapse
|
22
|
Klimontov VV, Mavlianova KR, Orlov NB, Semenova JF, Korbut AI. Serum Cytokines and Growth Factors in Subjects with Type 1 Diabetes: Associations with Time in Ranges and Glucose Variability. Biomedicines 2023; 11:2843. [PMID: 37893217 PMCID: PMC10603953 DOI: 10.3390/biomedicines11102843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The detrimental effect of hyperglycemia and glucose variability (GV) on target organs in diabetes can be implemented through a wide network of regulatory peptides. In this study, we assessed a broad panel of serum cytokines and growth factors in subjects with type 1 diabetes (T1D) and estimated associations between concentrations of these molecules with time in ranges (TIRs) and GV. One hundred and thirty subjects with T1D and twenty-seven individuals with normal glucose tolerance (control) were included. Serum levels of 44 cytokines and growth factors were measured using a multiplex bead array assay. TIRs and GV parameters were derived from continuous glucose monitoring. Subjects with T1D compared to control demonstrated an increase in concentrations of IL-1β, IL-1Ra, IL-2Rα, IL-3, IL-6, IL-7, IL-12 p40, IL-16, IL-17A, LIF, M-CSF, IFN-α2, IFN-γ, MCP-1, MCP-3, and TNF-α. Patients with TIR ≤ 70% had higher levels of IL-1α, IL-1β, IL-6, IL-12 p70, IL-16, LIF, M-CSF, MCP-1, MCP-3, RANTES, TNF-α, TNF-β, and b-NGF, and lower levels of IL-1α, IL-4, IL-10, GM-CSF, and MIF than those with TIR > 70%. Serum IL-1β, IL-10, IL-12 p70, MCP-1, MCP-3, RANTES, SCF, and TNF-α correlated with TIR and time above range. IL-1β, IL-8, IL-10, IL-12 p70, MCP-1, RANTES, MIF, and SDF-1α were related to at least one amplitude-dependent GV metric. In logistic regression models, IL-1β, IL-4, IL-10, IL-12 p70, GM-CSF, HGF, MCP-3, and TNF-α were associated with TIR ≤ 70%, and MIF and PDGF-BB demonstrated associations with coefficient of variation values ≥ 36%. These results provide further insight into the pathophysiological effects of hyperglycemia and GV in people with diabetes.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia
| | - Kamilla R. Mavlianova
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia
| | - Nikolai B. Orlov
- Laboratory of Clinical Immunogenetics, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia
| | - Julia F. Semenova
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia
| | - Anton I. Korbut
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia
| |
Collapse
|
23
|
An Y, Xu BT, Wan SR, Ma XM, Long Y, Xu Y, Jiang ZZ. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol 2023; 22:237. [PMID: 37660030 PMCID: PMC10475205 DOI: 10.1186/s12933-023-01965-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by long-term hyperglycaemia, which leads to microangiopathy and macroangiopathy and ultimately increases the mortality of diabetic patients. Endothelial dysfunction, which has been recognized as a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy, is characterized by a reduction in NO bioavailability. Oxidative stress, which is the main pathogenic factor in diabetes, is one of the major triggers of endothelial dysfunction through the reduction in NO. In this review, we summarize the four sources of ROS in the diabetic vasculature and the underlying molecular mechanisms by which the pathogenic factors hyperglycaemia, hyperlipidaemia, adipokines and insulin resistance induce oxidative stress in endothelial cells in the context of diabetes. In addition, we discuss oxidative stress-targeted interventions, including hypoglycaemic drugs, antioxidants and lifestyle interventions, and their effects on diabetes-induced endothelial dysfunction. In summary, our review provides comprehensive insight into the roles of oxidative stress in diabetes-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Bu-Tuo Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Xiu-Mei Ma
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
24
|
Liu H, Li T, Yu H, Chen X, Li J, Tan H, Jia D, Yu Y. A phase-I randomized euglycemic clamp study to demonstrate the pharmacokinetic and pharmacodynamic equivalence of an insulin degludec biosimilar (B01411) with the reference product in healthy Chinese volunteers. Expert Opin Investig Drugs 2023; 32:773-781. [PMID: 37665683 DOI: 10.1080/13543784.2023.2254690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND B01411 is a biosimilar candidate manufactured by Jilin Huisheng Biopharmaceutical Co. Ltd for the reference insulin degludec (Tresiba) (IDeg). This study aimed to evaluate the pharmacokinetics (PK), pharmacodynamics (PD), and safety of the two IDeg products and to assess the PK/PD similarity of B01411 compared with the reference IDeg product. RESEARCH DESIGN & METHODS A single-center, single-dose, randomized, crossover, open-labeled, phase I, euglycemic clamp study in healthy Chinese subjects to examine the bioequivalence of B01411 (0.4 U/kg) compared with the reference IDeg product. Blood samples were collected at a predefined time for the analysis of blood glucose (BG), IDeg, and C-peptide concentrations. The glucose infusion rate (GIR) was adjusted to maintain the BG at approximately 0.28 mmol/L below baseline throughout the clamp. RESULTS Thirty-two subjects (20 males and 12 females) were enrolled, 31 of whom received both treatments. The 90% confidence intervals for the ratio of the least-squares geometric means for AUCIDeg,0-24 h, AUCGIR,0-24 h, IDegmax, and GIRmax were all in the range of 0.80-1.25. Only one adverse event of puncture site bruising occurred once in a subject in the B01411 group. CONCLUSION B01411 exhibited a pharmacokinetic and pharmacodynamic similarity to the reference product. Both IDeg products were well tolerated. CLINICAL TRIAL REGISTRATION http://www.chinadrugtrials.org.cn/index.html#. Identifier is CTR20192122.
Collapse
Affiliation(s)
- Hui Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Li
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongling Yu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinlei Chen
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Huiwen Tan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Dejia Jia
- Department of Research and Development, Jilin Huisheng Biopharmaceutical Co. Ltd, Jilin, China
| | - Yerong Yu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Shi R, Feng L, Liu YM, Xu WB, Luo BB, Tang LT, Bi QY, Cao HY. Glycemic dispersion: a new index for screening high glycemic variability. Diabetol Metab Syndr 2023; 15:95. [PMID: 37158980 PMCID: PMC10169464 DOI: 10.1186/s13098-023-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE For patients with diabetes, high-frequency and -amplitude glycemic variability may be more harmful than continuous hyperglycemia; however, there is still a lack of screening indicators that can quickly and easily assess the level of glycemic variability. The aim of this study was to investigate whether the glycemic dispersion index is effective for screening high glycemic variability. METHODS A total of 170 diabetes patients hospitalized in the Sixth Affiliated Hospital of Kunming Medical University were included in this study. After admission, the fasting plasma glucose, 2-hour postprandial plasma glucose, and glycosylated hemoglobin A1c were measured. The peripheral capillary blood glucose was measured seven times in 24 h, before and after each of three meals and before bedtime. The standard deviation of the seven peripheral blood glucose values was calculated, and a standard deviation of > 2.0 was used as the threshold of high glycemic variability. The glycemic dispersion index was calculated and its diagnostic efficacy for high glycemic variability was determined by the Mann-Whitney U test, receiver operating characteristic (ROC) curve and, Pearson correlation analysis. RESULTS The glycemic dispersion index of patients with high glycemic variability was significantly higher than that of those with low glycemic variability (p < 0.01). The best cutoff value of the glycemic dispersion index for screening high glycemic variability was 4.21. The area under the curve (AUC) was 0.901 (95% CI: 0.856-0.945) and had a sensitivity of 0.781 and specificity of 0.905. It was correlated with the standard deviation of blood glucose values (r = 0.813, p < 0.01). CONCLUSIONS The glycemic dispersion index had good sensitivity and specificity for screening high glycemic variability. It was significantly associated with the standard deviation of blood glucose concentration and is simple and easy to calculate. It was an effective screening indicator of high glycemic variability.
Collapse
Affiliation(s)
- Rui Shi
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Lei Feng
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China.
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People's Republic of China.
| | - Yan-Mei Liu
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People's Republic of China
| | - Wen-Bo Xu
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Bei-Bei Luo
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People's Republic of China
| | - Ling-Tong Tang
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Qian-Ye Bi
- Center Blood Station of Yuxi, Yuxi, China
| | - Hui-Ying Cao
- Department of Medical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Yunnan, China
| |
Collapse
|
26
|
Esdaile H, Hill N, Mayet J, Oliver N. Glycaemic control in people with diabetes following acute myocardial infarction. Diabetes Res Clin Pract 2023; 199:110644. [PMID: 36997029 DOI: 10.1016/j.diabres.2023.110644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Diabetes is a highly prevalent disease associated with considerable cardiovascular end organ damage and mortality. Despite significant changes to the management of acute myocardial infarction over the last two decades, people with diabetes remain at risk of complications and mortality following a myocardial infarct for a multitude of reasons, including increased coronary atherosclerosis, associated coronary microvascular dysfunction, and diabetic cardiomyopathy. Dysglycaemia causes significant endothelial dysfunction and upregulation of inflammation within the vasculature and epigenetic changes mean that these deleterious effects may persist despite subsequent efforts to tighten glycaemic control. Whilst clinical guidelines advocate for the avoidance of both hyper- and hypoglcyaemia in the peri-infarct period, the evidence base is lacking, and currently there is no consensus on the benefits of glycaemic control beyond this period. Glycaemic variability contributes to the glycaemic milieu and may have prognostic importance following myocardial infarct. The use of continuous glucose monitoring means that glucose trends and parameters can now be captured and interrogated, and its use, along with newer medicines, may provide novel opportunities for intervention after myocardial infarction in people with diabetes.
Collapse
Affiliation(s)
- Harriet Esdaile
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Du Cane Road, London, W12 0NN, London, United Kingdom.
| | - Neil Hill
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction Imperial College London, London, United Kingdom
| | - Jamil Mayet
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nick Oliver
- Faculty of Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Alfadul H, Sabico S, Ansari MGA, Alnaami AM, Amer OE, Hussain SD, Wani K, Khattak MNK, Clerici M, Al-Daghri NM. Differences and Associations of NLRP3 Inflammasome Levels with Interleukins 1α, 1β, 33 and 37 in Adults with Prediabetes and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:biomedicines11051315. [PMID: 37238986 DOI: 10.3390/biomedicines11051315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammasome activation of the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) has been observed to be involved in the pathogenesis of numerous inflammatory diseases, including prediabetes (PD) and type 2 diabetes mellitus (T2DM). Varying levels of glycemia can trigger inflammasome activation; yet, limited studies have reported the associations between NLRP3 levels or other circulating interleukins (ILs) and glycemic status. This study investigated the differences and associations between serum levels of NLRP3 and IL-1α, IL-1β, IL-33 and IL-37 in Arab adults with PD and T2DM. A total of 407 Saudi adults (151 males and 256 females) (mean age = 41.4 ± 9.1 years and mean BMI = 30.7 ± 6.4 kg/m2) were included. Overnight-fasting serum samples were collected. The participants were stratified according to T2DM status. Serum levels of NLRP3 and ILs of interest were assessed using commercially available assays. In all participants, age- and BMI-adjusted circulating levels of IL-37 were significantly higher in the T2DM group (p = 0.02) than in healthy controls (HC) and the PD group. A general linear model analysis revealed that NLRP3 levels were significantly influenced by T2DM status; age; and ILs 18, 1α and 33 (p-values 0.03, 0.04, 0.005, 0.004 and 0.007, respectively). IL-1α and triglycerides significantly predicted NLRP3 levels by as much as 46% of the variance perceived (p < 0.01). In conclusion, T2DM status significantly influenced NLRP3 expression and other IL levels in varying degrees. Whether these altered levels of inflammasome markers can be favorably reversed through lifestyle interventions needs to be investigated prospectively in the same population.
Collapse
Affiliation(s)
- Hend Alfadul
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 13579, Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 13579, Saudi Arabia
| | - Mohammed G A Ansari
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama E Amer
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed D Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Malak N K Khattak
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mario Clerici
- Department of Medical-Surgery Physiopathology and Transplantation, University of Milan, 20122 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20122 Milan, Italy
| | - Nasser M Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 13579, Saudi Arabia
| |
Collapse
|
28
|
Tanioka N, Maeda H, Uemura S, Munekage M, Kitagawa H, Namikawa T, Kuroiwa H, Fujimoto S, Seo S, Hanazaki K. What is the optimal range of glycemic control for non-diabetic patients undergoing gastroenterological surgery? A single-center randomized controlled trial using an artificial pancreas. Artif Organs 2023. [PMID: 37084125 DOI: 10.1111/aor.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND This study aimed to determine the optimal target range of perioperative glycemic control for gastroenterological surgery. A closed-loop-type artificial pancreas (AP) was used to diminish the negative impact of hypoglycemia and glycemic variability during tight glycemic control. METHODS In this single-center randomized trial, non-diabetic patients were assigned to tight (80-110 mg/dL) or moderate glycemic control (110-140 mg/dL) groups between August 2017 and May 2021. AP was used from the intraoperative period until discharge from the intensive care unit. The primary endpoint was the serum interleukin (IL)-6 level on the third postoperative day (3POD), and the secondary endpoints included clinical outcomes. RESULTS Recruitment was closed before reaching the planned number of patients due to slow enrollment. Tight glycemic control (n = 62) resulted in lower mean glucose levels than moderate glycemic control (n = 66) (121.3 ± 10.8 mg/dL vs. 133.5 ± 12.0 mg/dL, p < 0.001). Insulin was administered at a 65% higher rate for tight glycemic control, achieving appropriate glucose control more than 70% of the treatment time. No hypoglycemia occurred during the AP treatment. No significant difference was observed in serum IL-6 levels on 3POD (23.4 ± 31.1 vs. 32.1 ± 131.0 pg/mL, p = 0.64), morbidity rate, surgical mortality rate, or length of hospital stay between the two groups. CONCLUSIONS Clinically relevant short-term results did not differ, implying that 80-110 and 110-140 mg/dL are permissible glycemic control ranges when using AP in non-diabetic patients undergoing gastroenterological surgery. (Registered in UMIN; UMIN000028036).
Collapse
Affiliation(s)
- Nobuhisa Tanioka
- Department of Surgery, Kochi Medical School Hospital, Kochi University, Nankoku, Japan
| | - Hiromichi Maeda
- Department of Surgery, Kochi Medical School Hospital, Kochi University, Nankoku, Japan
| | - Sunao Uemura
- Department of Gastrointestinal Surgery, Kochi Red Cross Hospital, Kochi, Japan
| | - Masaya Munekage
- Department of Surgery, Kochi Medical School Hospital, Kochi University, Nankoku, Japan
| | - Hiroyuki Kitagawa
- Department of Surgery, Kochi Medical School Hospital, Kochi University, Nankoku, Japan
| | - Tsutomu Namikawa
- Department of Surgery, Kochi Medical School Hospital, Kochi University, Nankoku, Japan
| | - Hajime Kuroiwa
- Integrated Center for Advanced Medical Technologies (ICAM-Tech), Kochi Medical School Hospital, Kochi University, Nankoku, Japan
| | - Shimpei Fujimoto
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School Hospital, Kochi University, Nankoku, Japan
| | - Satoru Seo
- Department of Surgery, Kochi Medical School Hospital, Kochi University, Nankoku, Japan
| | - Kazuhiro Hanazaki
- Department of Surgery, Kochi Medical School Hospital, Kochi University, Nankoku, Japan
| |
Collapse
|
29
|
Koizumi T, Watanabe M, Yokota T, Tsuda M, Handa H, Koya J, Nishino K, Tatsuta D, Natsui H, Kadosaka T, Koya T, Nakao M, Hagiwara H, Kamada R, Temma T, Tanaka S, Anzai T. Empagliflozin suppresses mitochondrial reactive oxygen species generation and mitigates the inducibility of atrial fibrillation in diabetic rats. Front Cardiovasc Med 2023; 10:1005408. [PMID: 36815024 PMCID: PMC9940756 DOI: 10.3389/fcvm.2023.1005408] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Recent studies have demonstrated that sodium-glucose co-transporter-2 inhibitors (SGLT2-i) reduce the risk of atrial fibrillation (AF) in patients with diabetes mellitus (DM), in which oxidative stress due to increased reactive oxygen species (ROS) contributes to the pathogenesis of AF. We aimed to further investigate this, and examine whether the SGLT2-i empagliflozin suppresses mitochondrial-ROS generation and mitigates fibrosis. Methods A high-fat diet and low-dose streptozotocin treatment were used to induce type-2 DM (T2DM) in Sprague-Dawley rats. The rats were randomly divided into three groups: control, DM, and DM treated with empagliflozin (30 mg/kg/day) for 8 weeks. The mitochondrial respiratory capacity and ROS generation in the atrial myocardium were measured using a high-resolution respirometer. Oxidative stress markers and protein expression related to mitochondrial biogenesis and dynamics as well as the mitochondrial morphology were examined in the atrial tissue. Additionally, mitochondrial function was examined in H9c2 cardiomyoblasts. Atrial tachyarrhythmia (ATA) inducibility, interatrial conduction time (IACT), and fibrosis were also measured. Results Inducibility of ATA, fibrosis, and IACT were increased in rats with DM when compared to controls, all of which were restored by empagliflozin treatment. In addition, the rats with DM had increased mitochondrial-ROS with an impaired complex I-linked oxidative phosphorylation capacity. Importantly, empagliflozin seemed to ameliorate these impairments in mitochondrial function. Furthermore, empagliflozin reversed the decrease in phosphorylated AMPK expression and altered protein levels related to mitochondrial biogenesis and dynamics, and increased mitochondrial content. Empagliflozin also improved mitochondrial function in H9c2 cells cultured with high glucose medium. Discussion These data suggest that empagliflozin has a cardioprotective effect, at least in part, by reducing mitochondrial ROS generation through AMPK signaling pathways in the atrium of diabetic rats. This suggests that empagliflozin might suppress the development of AF in T2DM.
Collapse
Affiliation(s)
- Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan,*Correspondence: Masaya Watanabe ✉
| | - Takashi Yokota
- Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Handa
- Department of Molecular Biology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jiro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kotaro Nishino
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daishiro Tatsuta
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan,Kushiro City General Hospital, Kushiro, Japan
| | - Rui Kamada
- Hanaoka Seishu Memorial Hospital, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
30
|
Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP. In Vitro Modeling of Diabetes Impact on Vascular Endothelium: Are Essentials Engaged to Tune Metabolism? Biomedicines 2022; 10:biomedicines10123181. [PMID: 36551937 PMCID: PMC9775148 DOI: 10.3390/biomedicines10123181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Angiopathy is a common complication of diabetes mellitus. Vascular endothelium is among the first targets to experience blood-borne metabolic alterations, such as hyperglycemia and hyperlipidemia, the hallmarks of type 2 diabetes. To explore mechanisms of vascular dysfunction and eventual damage brought by these pathologic conditions and to find ways to protect vasculature in diabetic patients, various research approaches are used including in vitro endothelial cell-based models. We present an analysis of the data available from these models that identifies early endothelial cell apoptosis associated with oxidative stress as the major outcome of mimicking hyperglycemia and hyperlipidemia in vitro. However, the fate of endothelial cells observed in these studies does not closely follow it in vivo where massive endothelial damage occurs mainly in the terminal stages of diabetes and in conjunction with comorbidities. We propose that the discrepancy is likely in missing essentials that should be available to cultured endothelial cells to adjust the metabolic state and withstand the immediate apoptosis. We discuss the role of carnitine, creatine, and AMP-activated protein kinase (AMPK) in suiting the endothelial metabolism for long-term function in diabetic type milieu in vitro. Engagement of these essentials is anticipated to expand diabetes research options when using endothelial cell-based models.
Collapse
|
31
|
Jang M, Choi N, Kim HN. Hyperglycemic Neurovasculature-On-A-Chip to Study the Effect of SIRT1-Targeted Therapy for the Type 3 Diabetes "Alzheimer's Disease". ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201882. [PMID: 36073820 PMCID: PMC9731710 DOI: 10.1002/advs.202201882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/28/2022] [Indexed: 05/22/2023]
Abstract
Diabetes mellitus (DM) is closely related to Alzheimer's disease (AD), but individual cellular changes and the possibilities of recovery through molecular level regulation have not been investigated. Here, a neurovasculature-on-a-chip (NV chip) model is presented in which the perfusable brain microvasculature is surrounded by the neurons. Under hyperglycemic conditions, the brain microvasculature shows disruption of barrier function and reduced expression of junctional markers. The neurons show Tau pathology and amyloid-beta (Aß) accumulation. Endothelial cells and neurons in the NV chip show sirtuin 1 (SIRT1) downregulation under hyperglycemic conditions, suggesting SIRT1 as a key regulator of hyperglycemia-induced AD. The recovery of glucose levels rescue SIRT1 expression, suggesting that this type of intervention may rescue the progression of hyperglycemia-mediated AD. Furthermore, the short hairpin RNA (shRNA)-, clustered regularly interspaced short palindromic repeats (CRISPR)-, and pharmaceutics-mediated regulation of SIRT1 regulate the pathophysiology of the brain endothelium and neurons at the functional and molecular levels.
Collapse
Affiliation(s)
- Minjeong Jang
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolRepublic of KoreaUniversity of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolRepublic of KoreaUniversity of Science and TechnologySeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
32
|
Continuous Glucose Monitoring in Preterm Infants: The Role of Nutritional Management in Minimizing Glycemic Variability. Antioxidants (Basel) 2022; 11:antiox11101945. [PMID: 36290668 PMCID: PMC9598281 DOI: 10.3390/antiox11101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Glycemic variability (GV) is common in preterm infants. In the premature population, GV is a risk factor for morbidity and mortality. Both hypo- and hyperglycemia can impair neurodevelopment. We investigated the impact of continuous versus intermittent tube enteral feeding on GV. In our prospective observational study, 20 preterm infants with a gestational age ≤ 34 weeks at either continuous or intermittent bolus full enteral feeding. For five days, continuous glucose monitoring (CGM) was utilized, which was achieved through the subcutaneous insertion of a sensor. A total of 27,532 measurements of blood glucose were taken. The mean amplitude of glycemic excursions did not differ between the two cohorts statistically. Continuous feeding resulted in higher positive values, increasing the risk of hypo- and hyperglycemia. Subjects who were small for their gestational age had a higher standard deviation during continuous feeding (p = 0.001). Data suggest that intermittent bolus nutrition is better for glycemic control than continuous nutrition. Nutritional management optimization of preterm infants appears to be critical for long-term health. In the future, CGM may provide a better understanding of the optimal glucose targets for various clinical conditions, allowing for a more personalized approach to management.
Collapse
|
33
|
Liu Y, Jiang H, Ruan B, Liu Y, Le S, Fu X, Wang S. Effect of high-protein vs. high-fat snacks before lunch on glycemic variability in prediabetes: A study protocol for a randomized controlled trial. Front Nutr 2022; 9:925870. [PMID: 35928840 PMCID: PMC9344043 DOI: 10.3389/fnut.2022.925870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background China has the largest number of patients with Type 2 Diabetes Mellitus (T2DM), and it tends to increasingly grow in the future, putting an enormous burden on disease control and prevention in China. While glycemic variability (GV) came to be an important indicator of blood glucose control in diabetic patients, studies suggested that premeal snacks may help blood glucose control, but there are still some problems to be researched. Therefore, we designed this trial to evaluate which kind of premeal snacks would lead to better effects on GV under two diet patterns in pre-diabetes subjects and to evaluate assessments of acceptability and compliance, behavior, and metabolism changes in individuals will be described. Methods and analysis The study is a single-center, open-label, multiparallel group, randomized controlled trial. A total of 32 male and female volunteers will be randomized into 4 groups in a single allocated ratio of soy milk (powder) snack, milk (powder) snack, almonds snack, and placebo control with 250 ml of water taken 30 min before lunch, respectively. The study consists of two intervention periods over 11 days. The first intervention period under habitual diet conditions from D3 to D6 (4 days), during which all subjects are asked to maintain their habitual eating and daily activities similar to the run-in period. The second intervention consists of prelunch snacks with standard meals. We will examine both the effect of GV and various metabolic and behavioral outcomes potentially associated with the interventions. At the end of this study, we will assess the acceptability and maintainability of the intervention through interviews. Clinical trial registration Chinese Clinical Trial Registry, identifier ChiCTR2200058935.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Huinan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Binye Ruan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yi Liu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Siyu Le
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyi Fu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiaoyi Fu
| | - Shuran Wang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Shuran Wang
| |
Collapse
|
34
|
Gong H, Liu J, Xue Z, Wang W, Li C, Xu F, Du Y, Lyu X. SIRT3
attenuates coronary atherosclerosis in diabetic patients by regulating endothelial cell function. J Clin Lab Anal 2022; 36:e24586. [PMID: 35791925 PMCID: PMC9396194 DOI: 10.1002/jcla.24586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022] Open
Abstract
Background This study aimed to explore the relationship between the Sirtuin 3 (SIRT3) gene and endothelial cell dysfunction, contributing to the progression of coronary atherosclerosis driven by hyperglycemia. Methods We measured serum SIRT3 levels using enzyme‐linked immunosorbent assay in 95 patients with type 2 diabetes mellitus (T2DM) who underwent diagnostic coronary angiography. The patients were divided into two groups according to the presence (n = 45) or absence (n = 50) of coronary artery disease (CAD). Human aortic endothelial cells (HAECs) grown in vitro in a medium with various concentrations of glucose (5.5, 11, 16.5, 22, 27.5, 33, and 38.5 mM) for 24 h were assessed for protein expression of SIRT3, peroxisome proliferator‐activated receptor alpha (PPAR‐α), endothelial nitric oxide (NO) synthase (eNOS), and inducible NO synthase (iNOS) using Western blot analysis. HAECs were subjected to SIRT3 overexpression or inhibition through SIRT3 adenovirus and siRNA transfection. Results Serum SIRT3 levels were significantly lower in T2DM patients with CAD than in those without CAD (p = 0.048). The in vitro results showed that HG significantly increased SIRT3, PPAR‐α, and eNOS protein expression in a concentration‐dependent manner. Moreover, iNOS expression was decreased in HAECs in response to HG. Reduced PPAR‐α and eNOS levels and increased iNOS levels were observed in SIRT3 silenced HAECs cells. In contrast, SIRT3 overexpression significantly improved PPAR‐α and eNOS expression and suppressed iNOS expression. Conclusion SIRT3 was associated with the progression of atherosclerosis in T2DM patients through upregulation of PPAR‐α and eNOS and downregulation of iNOS, which are involved in endothelial dysfunction under hyperglycemic conditions.
Collapse
Affiliation(s)
- Huiping Gong
- Department of Emergency The Second Hospital of Shandong University Jinan China
| | - Jing Liu
- Department of Cardiology The Second Hospital of Shandong University Jinan China
| | - Zhiwei Xue
- Cheeloo College of Medicine Shandong University Jinan China
| | - Wenwen Wang
- Department of Emergency The Second Hospital of Shandong University Jinan China
| | - Cuicui Li
- Department of Emergency The Second Hospital of Shandong University Jinan China
| | - Fanfan Xu
- Department of Emergency The Second Hospital of Shandong University Jinan China
| | - Yimeng Du
- Department of Cardiology The Second Hospital of Shandong University Jinan China
| | - Xiaona Lyu
- Department of Pediatric Surgery Qilu Hospital of Shandong University Jinan China
| |
Collapse
|
35
|
Huang Y, Yue L, Qiu J, Gao M, Liu S, Wang J. Endothelial Dysfunction and Platelet Hyperactivation in Diabetic Complications Induced by Glycemic Variability. Horm Metab Res 2022; 54:419-428. [PMID: 35835141 PMCID: PMC9282943 DOI: 10.1055/a-1880-0978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development and progression of the complications of chronic diabetes mellitus are attributed not only to increased blood glucose levels but also to glycemic variability. Therefore, a deeper understanding of the role of glycemic variability in the development of diabetic complications may provide more insight into targeted clinical treatment strategies in the future. Previously, the mechanisms implicated in glycemic variability-induced diabetic complications have been comprehensively discussed. However, endothelial dysfunction and platelet hyperactivation, which are two newly recognized critical pathogenic factors, have not been fully elucidated yet. In this review, we first evaluate the assessment of glycemic variability and then summarise the roles of endothelial dysfunction and platelet hyperactivation in glycemic variability-induced complications of diabetes, highlighting the molecular mechanisms involved and their interconnections.
Collapse
Affiliation(s)
- Ye Huang
- Emergency Department, China Academy of Chinese Medical Sciences Xiyuan
Hospital, Beijing, China
| | - Long Yue
- Emergency Department, China Academy of Chinese Medical Sciences Xiyuan
Hospital, Beijing, China
| | - Jiahuang Qiu
- Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing, China
| | - Ming Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing, China
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing, China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Capital Medical University
Beijing Obstetrics and Gynecology Hospital, Beijing, China
- Correspondence Prof. Jingshang
Wang Capital Medical University Beijing Obstetrics and
Gynecology HospitalDepartment of Traditional Chinese
MedicineBeijingChina 18811213525
| |
Collapse
|
36
|
Awad EM, Ahmed ASF, El-Daly M, Amin AH, El-Tahawy NFG, Wagdy A, Hollenberg MD, Taye A. Dihydromyricetin protects against high glucose-induced endothelial dysfunction: Role of HIF-1α/ROR2/NF-κB. Biomed Pharmacother 2022; 153:113308. [PMID: 35752009 DOI: 10.1016/j.biopha.2022.113308] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVES Dihydromyricetin (DHM), a natural flavonoid isolated from vine tea with anti-inflammatory activity was evaluated for its ability to prevent vascular endothelial dysfunction caused by hyperglycaemia. METHODS Vasoconstrictor (phenylephrine-PE) and vasodilator (acetylcholine-ACh) responses were monitored for female rat aorta rings maintained in a bioassay organ bath for 3 h at 37 °C in either low (LG: 10 mM) or high (HG: 40 mM, to mimic hyperglycaemia) glucose-Krebs buffer in the absence or presence of 50 µM DHM. Tissues recovered from the organ bath at 3 h were fixed and analyzed for morphological changes and their expression of eNOS, iNOS, HIF-1α, GLUT1, ROR2 tyrosine kinase, NF-κB, TNF-α, Bax, Bcl2, caspase-3, and forindices of increased oxidative stress. KEY FINDINGS HG-incubated tissues showed increased PE-stimulated contractile response and decreased ACh-mediated endothelial vasodilation. DHM prevented both of these changes. Besides, HG incubation increased the immunoreactivity to iNOS, HIF-1α, GLUT1, ROR2, NF-κB, TNF-α, Bax, and active caspase-3, and decreased the expression of eNOS and Bcl2. Hyperglycaemia-like conditions also increased the indices of oxidative/nitrosative stress. These HG-induced changes, which were accompanied by an increase in tissue adventitial thickness and inflammatory cell infiltration, were all prevented by DHM. CONCLUSION Our data demonstrate an anti-inflammatory protective action of DHM to preserve vascular function in the setting of hyperglycaemia.
Collapse
Affiliation(s)
- Eman M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Nashwa F G El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - AlShimaa Wagdy
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Morley D Hollenberg
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
37
|
Shandilya A, Mehan S, Kumar S, Sethi P, Narula AS, Alshammari A, Alharbi M, Alasmari AF. Activation of IGF-1/GLP-1 Signalling via 4-Hydroxyisoleucine Prevents Motor Neuron Impairments in Experimental ALS-Rats Exposed to Methylmercury-Induced Neurotoxicity. Molecules 2022; 27:3878. [PMID: 35745001 PMCID: PMC9228431 DOI: 10.3390/molecules27123878] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe adult motor neuron disease that causes progressive neuromuscular atrophy, muscle wasting, weakness, and depressive-like symptoms. Our previous research suggests that mercury levels are directly associated with ALS progression. MeHg+-induced ALS is characterised by oligodendrocyte destruction, myelin basic protein (MBP) depletion, and white matter degeneration, leading to demyelination and motor neuron death. The selection of MeHg+ as a potential neurotoxicant is based on our evidence that it has been connected to the development of ALS-like characteristics. It causes glutamate-mediated excitotoxicity, calcium-dependent neurotoxicity, and an ALS-like phenotype. Dysregulation of IGF-1/GLP-1 signalling has been associated with ALS progression. The bioactive amino acid 4-hydroxyisoleucine (HI) from Trigonella foenum graecum acts as an insulin mimic in rodents and increases insulin sensitivity. This study examined the neuroprotective effects of 4-HI on MeHg+-treated adult Wistar rats with ALS-like symptoms, emphasising brain IGF1/GLP-1 activation. Furthermore, we investigated the effect of 4-HI on MBP levels in rat brain homogenate, cerebrospinal fluid (CSF), blood plasma, and cell death indicators such as caspase-3, Bax, and Bcl-2. Rats were assessed for muscular strength, locomotor deficits, depressed behaviour, and spatial learning in the Morris water maze (MWM) to measure neurobehavioral abnormalities. Doses of 4-HI were given orally for 42 days in the MeHg+ rat model at 50 mg/kg or 100 mg/kg to ameliorate ALS-like neurological dysfunctions. Additionally, neurotransmitters and oxidative stress markers were examined in rat brain homogenates. Our findings suggest that 4-HI has neuroprotective benefits in reducing MeHg+-induced behavioural, neurochemical, and histopathological abnormalities in ALS-like rats exposed to methylmercury.
Collapse
Affiliation(s)
- Ambika Shandilya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (A.F.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (A.F.A.)
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (A.F.A.)
| |
Collapse
|
38
|
Cheng CK, Shang W, Liu J, Cheang WS, Wang Y, Xiang L, Lau CW, Luo JY, Ng CF, Huang Y, Wang L. Activation of AMPK/miR-181b Axis Alleviates Endothelial Dysfunction and Vascular Inflammation in Diabetic Mice. Antioxidants (Basel) 2022; 11:1137. [PMID: 35740034 PMCID: PMC9220246 DOI: 10.3390/antiox11061137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Hyperglycemia in diabetes mellitus impairs endothelial function and disrupts microRNA (miRNA) profiles in vasculature, increasing the risk of diabetes-associated complications, including coronary artery disease, diabetic retinopathy, and diabetic nephropathy. miR-181b was previously reported to be an anti-inflammatory mediator in vasculature against atherosclerosis. The current study aimed to investigate whether miR-181b ameliorates diabetes-associated endothelial dysfunction, and to identify potential molecular mechanisms and upstream inducer of miR-181b. We found that miR-181b level was decreased in renal arteries of diabetic patients and in advanced glycation end products (AGEs)-treated renal arteries of non-diabetic patients. Transfection of miR-181b mimics improved endothelium-dependent vasodilation in aortas of high fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice, accompanied by suppression of superoxide overproduction and vascular inflammation markers. AMPK activator-induced AMPK activation upregulated miR-181b level in human umbilical vein endothelial cells (HUVECs). Chronic exercise, potentially through increased blood flow, activated AMPK/miR-181b axis in aortas of diabetic mice. Exposure to laminar shear stress upregulated miR-181b expression in HUVECs. Overall, our findings highlight a critical role of AMPK/miR-181b axis and extend the benefits of chronic exercise in counteracting diabetes-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Chak-Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Wenbin Shang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Jian Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100871, China;
| | - Wai-San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai 519000, China;
| | - Yu Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Li Xiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Chi-Wai Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Jiang-Yun Luo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Chi-Fai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.); (Y.W.); (L.X.); (C.-W.L.); (J.-Y.L.)
| |
Collapse
|
39
|
Wei Y, Khalaf AT, Ye P, Fan W, Su J, Chen W, Hu H, Menhas R, Wang L, Oglah Z. Therapeutic Benefits of Pomegranate Flower Extract: A Novel Effect That Reduces Oxidative Stress and Significantly Improves Diastolic Relaxation in Hyperglycemic In Vitro in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4158762. [PMID: 35722136 PMCID: PMC9200500 DOI: 10.1155/2022/4158762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
Abstract
The pomegranate flower is an ancient herb in traditional Chinese medicine with multiple properties. Recent studies have shown that pomegranate flower extract is beneficial, especially for hyperglycemia. In this experiment, we investigated the diastolic effect of pomegranate flower polyphenol (PFP) extract on the isolated thoracic aorta of rats in both the absence and presence of high glucose levels. Isotonic contractile forces were recorded from aortic rings (about 3 mm in length) from rats using the BL-420F Biological Function Test System. Tissues were precontracted with 60 mM KCl to obtain maximum tension under 1.0 g load for 1 hour before the balance was achieved, and the fluid was changed every 15 minutes. PFP (700 mg/L-900 mg/L) showed a concentration-dependent relaxant effect on the aortic rings; vasodilation in the endothelium-intact was significantly higher than that in the de-endothelialized segments (P < 0.01). The endothelium-dependent vasorelaxant effect of PFP was partially attenuated by K+ channel blockers, tetraethylammonium (TEA), glibenclamide (Glib), and BaCl2, as well as L-NAME (eNOS inhibitor) on the denuded endothelium artery ring. Concentration-dependent inhibition of PFP on releasing intracellular Ca2+ in the Ca2+-free solution and vasoconstriction of CaCl2 in Ca2+-free buffer plus K+ (60 mM) was observed. In addition, PFP (0.1-10 mg/L) showed significant inhibition of acetylcholine-induced endothelial-dependent relaxation in the aorta of rats in the presence of high glucose (44 mmol/L). Nevertheless, the vasodilating effect of PFP was inhibited by atropine and L-NAME. The results indicated that PFP-induced vasodilation was most likely related to the antioxidant effects through enhanced NO synthesis, as well as the blocking of K+ channels and inhibition of extracellular Ca2+ entry. In conclusion, these observations showed that PFP ameliorates vasodilation in hyperglycemic rats. Hence, our results suggest that PFP supplementation may be beneficial for hypertensive patients with diabetes.
Collapse
Affiliation(s)
- Yuanyuan Wei
- College of Medicine, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ahmad Taha Khalaf
- College of Medicine, Chengdu University, Chengdu 610106, Sichuan, China
| | - Peng Ye
- Department of Anatomy and Histology, College of Medicine, Chengdu University, Chengdu 610106, Sichuan, China
| | - Wei Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610106, Sichuan, China
| | - Junyi Su
- College of Medical, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Wanlu Chen
- Department of Anatomy and Histology, College of Medicine, Chengdu University, Chengdu 610106, Sichuan, China
| | - Hao Hu
- Department of Anatomy and Histology, College of Medicine, Chengdu University, Chengdu 610106, Sichuan, China
| | - Rashid Menhas
- Research Center of Sport Social Sciences, School of Physical Education and Sports, Soochow University, Suzhou, Jiangsu, China
| | - Lifeng Wang
- Department of Physiology, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Zahraa Oglah
- School of Science, Auckland University of Technology (AUT), 55 Wellesley Street East, Auckland, New Zealand
| |
Collapse
|
40
|
Mohd Nor NA, Budin SB, Zainalabidin S, Jalil J, Sapian S, Jubaidi FF, Mohamad Anuar NN. The Role of Polyphenol in Modulating Associated Genes in Diabetes-Induced Vascular Disorders. Int J Mol Sci 2022; 23:6396. [PMID: 35742837 PMCID: PMC9223817 DOI: 10.3390/ijms23126396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 01/05/2023] Open
Abstract
Diabetes-induced vascular disorder is considered one of the deadly risk factors among diabetic patients that are caused by persistent hyperglycemia that eventually leads to cardiovascular diseases. Elevated reactive oxygen species (ROS) due to high blood glucose levels activate signaling pathways such as AGE/RAGE, PKC, polyol, and hexosamine pathways. The activated signaling pathway triggers oxidative stress, inflammation, and apoptosis which later lead to vascular dysfunction induced by diabetes. Polyphenol is a bioactive compound that can be found abundantly in plants such as vegetables, fruits, whole grains, and nuts. This compound exerts therapeutic effects in alleviating diabetes-induced vascular disorder, mainly due to its potential as an anti-oxidative, anti-inflammatory, and anti-apoptotic agent. In this review, we sought to summarize the recent discovery of polyphenol treatments in modulating associated genes involved in the progression of diabetes-induced vascular disorder.
Collapse
Affiliation(s)
- Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
- PICOMS International University College, Taman Batu Muda, Batu Caves, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
41
|
Zhu SL, Wang ML, He YT, Guo SW, Li TT, Peng WJ, Luo D. Capsaicin ameliorates intermittent high glucose-mediated endothelial senescence via the TRPV1/SIRT1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154081. [PMID: 35405615 DOI: 10.1016/j.phymed.2022.154081] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Patients with diabetes have accelerated vascular aging when compared with healthy individuals. Hyperglycemia, especially intermittent high glucose (IHG), is the main cause of vascular endothelial senescence. Capsaicin, a major component of chili pepper is thought to contribute to cardiovascular protection by spicy food. OBJECTIVE To investigate the pathway related with the effects of capsaicin on endothelial cell senescence induced by IHG. METHODS HUVECs were exposed to IHG (5 mM or 33 mM glucose, alternating every 12 hours for 3 days) and treated with capsaicin at 0.3, 1 and 3 μM. To determine endothelial cell senescence, we examined the senescence-related β-galactosidase staining, cell cycle arrest, cell viability, as well as production of reactive oxygen species (ROS). To evaluate the involvement of TRPV1/[Ca2+]i/CaMKII/AMPK/SIRT1 pathway in anti- senescence effects of capsaicin, HUVECs were treated with CAPZ (a TRPV1 antagonist), BAPTA-AM (an intracellular calcium chelator), KN62 (a CaMKII antagonist), compound C (an AMPK inhibitor), or EX527 (a SIRT1 inhibitor). To knockdown TRPV1, HUVECs were transfected with shRNA lentivirus targeting TRPV1. The levels of SIRT1, p21, TRPV1, AMPK and phospho-AMPK were evaluated by western blotting. RESULTS IHG suppressed the levels of SIRT1 and enhanced endothelial senescence. Capsaicin upregulated SIRT1 expression and downregulated the senescence marker, p21, thereby protecting endothelial cells from IHG-induced senescence as indicated by relieved G0/G1 phase arrest, improved cell viabilities, and reduced counts of senescent cells and ROS production. Pre-treatment with CAPZ, BAPTA-AM, KN62 or compound C abrogated the anti-senescence effects of capsaicin. Capsaicin restored AMPK phosphorylation and IHG-inhibited TRPV1 expression. Moreover, TRPV1 silencing suppressed SIRT1 expression and abolished the anti-senescence effects of capsaicin. CONCLUSION Capsaicin elevates SIRT1 levels through TRPV1/[Ca2+]i/CaMKII/AMPK pathway and suppresses IHG-mediated endothelial cell senescence. This study provides initial evidence that capsaicin is a potential candidate for the prevention of vascular aging in diabetes.
Collapse
Affiliation(s)
- Si-Lu Zhu
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Mei-Ling Wang
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Nursing, Zhenjiang College, Zhenjiang, China
| | - Yue-Teng He
- School of Pharmaceutics, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Shu-Wen Guo
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ting-Ting Li
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wei-Jie Peng
- School of Pharmaceutics, Jiangxi Medical College, Nanchang University, Nanchang, PR China; Key laboratory of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.
| | - Dan Luo
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
42
|
Jakubiak GK, Cieślar G, Stanek A. Nitrotyrosine, Nitrated Lipoproteins, and Cardiovascular Dysfunction in Patients with Type 2 Diabetes: What Do We Know and What Remains to Be Explained? Antioxidants (Basel) 2022; 11:856. [PMID: 35624720 PMCID: PMC9137700 DOI: 10.3390/antiox11050856] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a strong risk factor for the development of cardiovascular diseases (CVDs), which are the most important cause of morbidity and mortality in the population of patients living with DM. DM is associated with lipid metabolism disorders characterized by a decrease in the high-density lipoprotein blood concentration, an increase in the triglyceride blood concentration, and the presence of modified lipoproteins not routinely measured in clinical practice. Nitrated lipoproteins are produced by the nitration of the tyrosyl residues of apolipoproteins by myeloperoxidase. There is some evidence from the research conducted showing that nitrated lipoproteins may play a role in the development of cardiovascular dysfunction, but this issue requires further investigation. It was found that the nitration of HDL particles was associated with a decrease in caspase-3 and paraoxonase-1 activity, as well as a decrease in the activity of cholesterol transport via ABCA1, which reduces the protective effect of HDL particles on the cardiovascular system. Less information has been collected about the role of nitrated LDL particles. Thus far, much more information has been obtained on the relationship of nitrotyrosine expression with the presence of cardiovascular risk factors and the development of cardiovascular dysfunction. The purpose of this paper is to provide an extensive review of the literature and to present the most important information on the current state of knowledge on the association between nitrotyrosine and nitrated lipoproteins with dysfunction of the cardiovascular system, especially in patients living with DM. Moreover, directions for future research in this area were discussed.
Collapse
Affiliation(s)
- Grzegorz K. Jakubiak
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland; (G.C.); (A.S.)
| | | | | |
Collapse
|
43
|
Deng J, Li L, Cao F, Wang F, Wang H, Shi H, Shen L, Zhao F, Zhao Y. Systemic Glycemic Variation Predicts Mortality of Acute Ischemic Stroke After Mechanical Thrombectomy: A Prospective Study Using Continuous Glucose Monitoring. Front Neurol 2022; 13:817033. [PMID: 35370877 PMCID: PMC8974401 DOI: 10.3389/fneur.2022.817033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Objective We investigated the association of glycemic variation with the clinical outcomes of large vessel occlusion (LVO) induced acute ischemic stroke (AIS) after mechanical thrombectomy (MT). Methods We recruited consecutive ischemic patients with stroke. Glucose levels were assessed through continuous glucose monitoring in 70 patients with AIS who had undergone MT. Metrics including percentages of time of glucose levels above the range, the hypoglycemic range, and the time within the range, coefficient of variation, standard deviation (SD), mean of daily differences, mean amplitude of glycemic excursion, largest amplitude of glycemic excursion, high blood glucose index, and low blood glucose index. The outcomes of this observational study were in-hospital mortality, neurological improvement during hospitalization, functional independence, and mortality at follow-up (3 months). The associations of the blood glucose metrics with outcomes were analyzed. Results The average period of glucose monitoring was 3.5 days, and serum glucose was recorded 728 times after MT for each person. The glycemic variation expressed in SDs was independently associated with in-hospital mortality [odds ratio (OR): 2.8, 95% confidence interval (CI): 1.276–6.145, p = 0.01] and the 3-month mortality (OR: 2.107, 95% CI: 1.013–4.382, p = 0.046) after adjusting for potential confounders. There was no association of glycemic variation with the 3-month clinical functional independence. Conclusions Increased systemic glycemic variation was associated with higher odds of mortality of LVO-AIS after MT. Clinical Trial Registration http://www.chictr.org.cn/showproj.aspx?proj=21016, identifier: ChiCTR-OOC-17012378.
Collapse
Affiliation(s)
- Jiangshan Deng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ling Li
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fengya Cao
- Department of Rehabilitation Medicine, Shanghai Eighth People's Hospital, Shanghai, China
| | - Feng Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong Shi
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Shen
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fei Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Fei Zhao
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- *Correspondence: Yuwu Zhao
| |
Collapse
|
44
|
Mahmoud B, Abdel-Moneim A, Negeem Z, Nabil A. The relationship between B-cell lymphoma 2, interleukin-1β, interleukin-17, and interleukin-33 and the development of diabetic nephropathy. Mol Biol Rep 2022; 49:3803-3809. [PMID: 35277788 DOI: 10.1007/s11033-022-07221-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is among the main complications of diabetes mellitus and has been a major factor of renal failure. This study was designed to address the association between beta-cell lymphoma-2 (Bcl-2), interleukin (IL)-1β, IL-17, and IL-33 and the development of DN. METHODS In this study, 20 healthy volunteers and 100 patients were enrolled. According to their biochemical markers, the patients were categorized into five groups: diabetic, chronic renal disease, diabetic chronic renal disease, end-stage renal disease, and diabetic end-stage renal disease. RESULTS Our results showed a noticeable elevation in IL-1β and IL-17 levels and a reduction in IL-33 and Bcl-2 levels in all investigated groups compared with those in the healthy group. Positive correlations were found between IL-1β and fasting blood sugar and between creatinine levels and IL-17, HbA1c%, and sodium levels. However, negative correlations were found between IL-33 and urea and sodium concentrations and between Bcl-2 and HbA1c% and creatinine levels. CONCLUSIONS The present data revealed a marked relationship between Bcl-2, IL-1β, IL-17, and IL-33 levels and the onset and progression of DN. Understanding the molecular pathways of these processes could be translated into the development of therapeutic strategies.
Collapse
Affiliation(s)
- Basant Mahmoud
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Zinab Negeem
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt
| | - Ahmed Nabil
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt.
| |
Collapse
|
45
|
Tang RC, Chen TC, Lin FH. Design Strategy for a Hydroxide-Triggered pH-Responsive Hydrogel as a Mucoadhesive Barrier to Prevent Metabolism Disorders. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58340-58351. [PMID: 34871495 PMCID: PMC8802295 DOI: 10.1021/acsami.1c17706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Excess nutrient uptake is one of the main factors of complications related to metabolism disorders. Therefore, efforts have emerged to modulate nutrient transport in the intestine. However, current approaches are mainly invasive interventions with various side effects. Here, a pH-responsive hydrogel is formulated by acidifying the hydroxide compounds within sucralfate to allow electrostatic interactions between pectin and aluminum ions. The pH responsiveness relies on the alternation of cations and hydroxide species, providing reversible shifting from a hydrogel to a complex coacervate system. It acts as a transient physical barrier coating to inhibit intestinal absorption and changes the viscosity and barrier function in different parts of the gastrointestinal tract, showing enhanced mucoadhesive properties. The therapeutic hydrogel remarkably lowers the immediate blood glucose response by modulating nutrient contact with bowel mucosa, suggesting potential in treating diabetes. In addition, it significantly reduces weight gain, fat accumulation, and hepatic lipid deposition in rodent models. This study provides a novel strategy for fabricating pH-responsive hydrogels, which may serve as a competent candidate for metabolism disorder management.
Collapse
Affiliation(s)
- Rui-Chian Tang
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (ROC)
| | - Tzu-Chien Chen
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (ROC)
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan (ROC)
| | - Feng-Huei Lin
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (ROC)
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan (ROC)
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan, Miaoli County 35053, Taiwan (ROC)
| |
Collapse
|
46
|
Xie W, Wu N, Wang B, Xu Y, Zhang Y, Xiang Y, Zhang W, Chen Z, Yuan Z, Li C, Jia X, Shan Y, Xu B, Bai L, Zhong L, Li Y. Fasting plasma glucose and glucose fluctuation are associated with COVID-19 prognosis regardless of pre-existing diabetes. Diabetes Res Clin Pract 2021; 180:109041. [PMID: 34500004 PMCID: PMC8420085 DOI: 10.1016/j.diabres.2021.109041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/08/2023]
Abstract
AIMS We aimed to investigate the role of Fasting Plasma Glucose (FPG) and glucose fluctuation in the prognosis of COVID-19 patients stratified by pre-existing diabetes. METHODS The associations of FPG and glucose fluctuation indexes with prognosis of COVID-19 in 2,642 patients were investigated by multivariate Cox regression analysis. The primary outcome was in-hospital mortality; the secondary outcome was disease progression. The longitudinal changes of FPG over time were analyzed by the latent growth curve model in COVID-19 patients stratified by diabetes and severity of COVID-19. RESULTS We found FPG as an independent prognostic factor of overall survival after adjustment for age, sex, diabetes and severity of COVID-19 at admission (HR: 1.15, 95% CI: 1.06-1.25, P = 1.02 × 10-3). Multivariate logistic regression analysis indicated that the standard deviation of blood glucose (SDBG) and largest amplitude of glycemic excursions (LAGE) were also independent risk factors of COVID-19 progression (P = 0.03 and 0.04, respectively). The growth trajectory of FPG over the first 3 days of hospitalization was steeper in patients with critical COVID-19 in comparison to moderate patients. CONCLUSIONS Hyperglycemia and glucose fluctuation were adverse prognostic factors of COVID-19 regardless of pre-existing diabetes. This stresses the importance of glycemic control in addition to other therapeutic management.
Collapse
Affiliation(s)
- Weijia Xie
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Na Wu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Bin Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of The Army Medical University, Chongqing 401120, People's Republic of China
| | - Yu Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of The Army Medical University, Chongqing 401120, People's Republic of China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Wenjing Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of The Army Medical University, Chongqing 401120, People's Republic of China
| | - Zheng Chen
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Zhiquan Yuan
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Chengying Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Xiaoyue Jia
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Yifan Shan
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Bin Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China
| | - Li Bai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of The Army Medical University, Chongqing 401120, People's Republic of China
| | - Li Zhong
- Cardiovascular Disease Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 401120, People's Republic of China.
| |
Collapse
|
47
|
Wu W, Chai Q, Zhang Z. Glucose fluctuation accelerates cardiac injury of diabetic mice via sodium-dependent glucose cotransporter 1 (SGLT1). Arch Biochem Biophys 2021; 709:108968. [PMID: 34153296 DOI: 10.1016/j.abb.2021.108968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Recent studies have shown that blood glucose fluctuation is associated with complications of diabetes mellitus (DM). SGLT1 (sodium-dependent glucose cotransporter 1), is highly expressed in pathological conditions of heart, and is expressed in cardiomyocytes induced by high glucose. Herein, we constructed a diabetic mouse model with glucose fluctuation to investigate whether SGLT1 is involved in glucose fluctuation-induced cardiac injury. Echocardiography, histology examination, and TUNEL staining were performed to evaluate cardiac dysfunction and damage. To assess glucose fluctuation-induced oxidative stress, reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were measured. To assess mitochondrial dysfunction, mitochondrial membrane potential (MMP), ATP content, mitochondrial respiratory chain complex activity, and expression of mitochondrial fusion and fission proteins were determined. The results indicated that diabetic mice with glucose fluctuation showed elevation of cardiac SGLT1 expression, left ventricular dysfunction, oxidative stress and mitochondrial dysfunction. Knockdown of SGLT1 could abrogate the effects of glucose fluctuation on cardiac injury. Thus, our study highlighted that SGLT1 plays an important role in glucose fluctuation induced cardiac injury through oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Weihua Wu
- Department of General Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, People's Republic of China.
| | - Qian Chai
- Department of General Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Ziying Zhang
- Department of General Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
48
|
Lee JY, Kang Y, Kim HJ, Kim DJ, Lee KW, Han SJ. Acute Glucose Shift Induces the Activation of the NLRP3 Inflammasome in THP-1 Cells. Int J Mol Sci 2021; 22:ijms22189952. [PMID: 34576117 PMCID: PMC8465199 DOI: 10.3390/ijms22189952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
We aimed to investigate the effect of acute glucose shift on the activation of the NLRP3 inflammasome, IL-1β secretion, and underlying signaling pathways in THP-1 cells. THP-1 cells were divided into four groups and exposed to the following glucose concentrations for 24 h: constant normal glucose (NG, 5.5 mM), constant high glucose (HG, 25 mM), normal to high glucose shift (NG-to-HG, 5.5 to 25 mM), and high to normal glucose shift (HG-to-NG, 25 to 5.5 mM). Cell viability, oxidative stress, and the levels of NLRP3 inflammasome components were assessed. Both directions of the acute glucose shift increased the activation of the NLRP3 inflammasome, generation of reactive oxygen species (ROS), and expression of phosphorylated p38 MAPK, JNK, and NF-κB compared with either constant NG or HG. Treatment with N-acetylcysteine, a pharmacological antioxidant, inhibited the acute glucose shift-induced generation of ROS, activation of NLRP3 inflammasome, and upregulation of MAPK-NF-κB. Further analysis using inhibitors of p38 MAPK, JNK, and NF-κB indicated that acute glucose shifts promoted IL-1β secretion by activating the signaling pathway in a ROS-MAPK-NF-κB-NLRP3 inflammasome in THP-1 cells. These findings suggested that acute changes in glucose concentration might cause monocyte inflammation, which is associated with diabetic complications.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Department of Endocrinology & Metabolism, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Hae Jin Kim
- Department of Endocrinology & Metabolism, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Dae Jung Kim
- Department of Endocrinology & Metabolism, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Kwan Woo Lee
- Department of Endocrinology & Metabolism, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Seung Jin Han
- Department of Endocrinology & Metabolism, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon 16499, Korea
| |
Collapse
|
49
|
Alfieri V, Myasoedova VA, Vinci MC, Rondinelli M, Songia P, Massaiu I, Cosentino N, Moschetta D, Valerio V, Ciccarelli M, Marenzi G, Genovese S, Poggio P. The Role of Glycemic Variability in Cardiovascular Disorders. Int J Mol Sci 2021; 22:ijms22168393. [PMID: 34445099 PMCID: PMC8395057 DOI: 10.3390/ijms22168393] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most common and costly disorders that affect humans around the world. Recently, clinicians and scientists have focused their studies on the effects of glycemic variability (GV), which is especially associated with cardiovascular diseases. In healthy subjects, glycemia is a very stable parameter, while in poorly controlled DM patients, it oscillates greatly throughout the day and between days. Clinically, GV could be measured by different parameters, but there are no guidelines on standardized assessment. Nonetheless, DM patients with high GV experience worse cardiovascular disease outcomes. In vitro and in vivo studies showed that high GV causes several detrimental effects, such as increased oxidative stress, inflammation, and apoptosis linked to endothelial dysfunction. However, the evidence that treating GV is beneficial is still scanty. Clinical trials aiming to improve the diagnostic and prognostic accuracy of GV measurements correlated with cardiovascular outcomes are needed. The present review aims to evaluate the clinical link between high GV and cardiovascular diseases, taking into account the underlined biological mechanisms. A clear view of this challenge may be useful to standardize the clinical evaluation and to better identify treatments and strategies to counteract this DM aspect.
Collapse
Affiliation(s)
- Valentina Alfieri
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Veronika A. Myasoedova
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Maria Cristina Vinci
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Maurizio Rondinelli
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Paola Songia
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Ilaria Massaiu
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milano, Italy
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
| | - Michele Ciccarelli
- Chirurgia ed Odontoiatria, Dipartimento di Medicina, Università degli Studi di Salerno, 84084 Salerno, Italy;
| | - Giancarlo Marenzi
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Stefano Genovese
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (V.A.); (V.A.M.); (M.C.V.); (M.R.); (P.S.); (I.M.); (N.C.); (D.M.); (V.V.); (G.M.); (S.G.)
- Correspondence: ; Tel.: +39-025-800-2853
| |
Collapse
|
50
|
Klimontov VV, Saik OV, Korbut AI. Glucose Variability: How Does It Work? Int J Mol Sci 2021; 22:7783. [PMID: 34360550 PMCID: PMC8346105 DOI: 10.3390/ijms22157783] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence points to the role of glucose variability (GV) in the development of the microvascular and macrovascular complications of diabetes. In this review, we summarize data on GV-induced biochemical, cellular and molecular events involved in the pathogenesis of diabetic complications. Current data indicate that the deteriorating effect of GV on target organs can be realized through oxidative stress, glycation, chronic low-grade inflammation, endothelial dysfunction, platelet activation, impaired angiogenesis and renal fibrosis. The effects of GV on oxidative stress, inflammation, endothelial dysfunction and hypercoagulability could be aggravated by hypoglycemia, associated with high GV. Oscillating hyperglycemia contributes to beta cell dysfunction, which leads to a further increase in GV and completes the vicious circle. In cells, the GV-induced cytotoxic effect includes mitochondrial dysfunction, endoplasmic reticulum stress and disturbances in autophagic flux, which are accompanied by reduced viability, activation of apoptosis and abnormalities in cell proliferation. These effects are realized through the up- and down-regulation of a large number of genes and the activity of signaling pathways such as PI3K/Akt, NF-κB, MAPK (ERK), JNK and TGF-β/Smad. Epigenetic modifications mediate the postponed effects of glucose fluctuations. The multiple deteriorative effects of GV provide further support for considering it as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
| | - Olga V. Saik
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
- Laboratory of Computer Proteomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia
| | - Anton I. Korbut
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia; (O.V.S.); (A.I.K.)
| |
Collapse
|