1
|
Zorumski CF, Covey DF, Izumi Y, Evers AS, Maguire JL, Mennerick SJ. New directions in neurosteroid therapeutics in neuropsychiatry. Neurosci Biobehav Rev 2025; 172:106119. [PMID: 40127877 DOI: 10.1016/j.neubiorev.2025.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
In recent years three neuroactive steroids (NAS), brexanolone (allopregnanolone, AlloP), ganaxolone and zuranolone, have been approved for the treatment of neuropsychiatric illnesses including postpartum depression and seizures in a neurodevelopmental syndrome. The approved agents are pregnane steroids and strong positive allosteric modulators (PAMs) of gamma-aminobutyric acid type A receptors (GABAARs). Broad effects on GABAARs play important roles in therapeutic benefits. However, these NAS also have actions on non-GABAR targets that could be important for clinical outcomes. Thus, understanding the broader effects of NAS is potentially important for expanding the therapeutic landscape of these important modulators. The approved NAS as well as other structurally distinct NAS and oxysterols have effects on non-GABAAR receptors and ion channels, along with intracellular actions that could have therapeutic importance, including modulation of cellular stress mechanisms, neuroinflammation, mitochondrial function and autophagy, among others. In this review, we explore GABAergic and other cellular effects of pregnane steroids including novel molecules that have potential therapeutic importance. This work discusses the complex chemical nature of NAS and what is being learned at cellular, molecular, synaptic and brain network levels about key sites of action including GABAARs and other targets.
Collapse
Affiliation(s)
- Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Douglas F Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex S Evers
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Steven J Mennerick
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Ju M, Feng W, Guo Z, Yang K, Wang T, Yu H, Qi C, Liu M, Tao J, Xiao R. The Link Between Oxysterols and Gut Microbiota in the Co-Dysfunction of Cognition and Muscle. Nutrients 2025; 17:1277. [PMID: 40219034 PMCID: PMC11990608 DOI: 10.3390/nu17071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Alterations of oxysterols and gut microbiota have been recognized as indicators affecting mild cognitive impairment (MCI) and sarcopenia, respectively, whereas their association with co-dysfunction has not been investigated. Methods: In this study, a total of 1035 individuals were divided into Control (n = 264), MCI (n = 435), and MCI with possible sarcopenia (MPS, n = 336) groups. Cognition and muscle indexes, serum oxysterols, and gut microbiota were measured. Spearman's rank coefficients were calculated to determine their correlations. Results: Performances of global and multidimensional cognitive tests was successively worse in the Control, MCI, and MPS groups. Longer duration of five-time chair stand test, lower 6-meter walk speed, and handgrip strength were observed in the MPS group, along with increased 27-hydroxycholesterol (27-OHC) and 5α,6α-epoxycholesterol and decreased 5α-Cholest-8(14)-ene-3β,15α-diol (15-HC). Higher concentrations of amyloid precursor protein (APP), neurofilament, and C-terminal agrin fragment (CAF) were discovered in the MCI and MPS groups. The α-diversity of gut microbiota in the MCI and MPS group was remarkably decreased, followed by a shifted abundance of microbial taxa, such as Alistipes and Rikenellaceae. Multiple significant correlations were found between cognition and muscle indexes and with oxysterols. Conclusions: Our study indicates that oxysterols and gut microbiota are prominently involved in the co-dysfunction of cognition and muscle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing 100069, China; (M.J.); (W.F.); (Z.G.); (K.Y.); (T.W.); (H.Y.); (C.Q.); (M.L.); (J.T.)
| |
Collapse
|
3
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Kuznetsova EA, Zakirjanova GF, Tsentsevitsky AN, Petrov AM. 25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction. Pflugers Arch 2025; 477:421-439. [PMID: 39786596 DOI: 10.1007/s00424-024-03058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability. Here, using fluorescent dyes, the time course of endocytosis induced by intense activity of the phrenic nerve was studied at the mouse diaphragm neuromuscular junction. It was found that a significant portion of endocytic events occurs after the end of tetanic stimulation. Pitstop 2, clathrin inhibitor, and more profoundly dynole 34-2, dynamin antagonist, suppressed endocytic FM1-43 dye uptake both during and after tetanus. Furthermore, synaptic vesicles formed in the presence of the endocytic blockers released FM-dye during subsequent evoked exocytosis at a lower rate. 25-Hydroxycholesterol (25HC) is an oxysterol, ubiquitously synthetized from excessive cholesterol. In addition, its production greatly increases by activated macrophages. 25HC accelerated FM-dye endocytosis and its sequential evoked exocytosis, and dynole (but not pitstop) prevented 25HC-mediated enhancement of endocytic FM-dye uptake. The positive effects of 25HC were interfered with chelation of cytosolic Ca2+ with a slow Ca2+ buffer EGTA-AM, Ca2+ antagonist TMB8, and sphingomyelin-hydrolyzing enzyme. In contrast to amphiphilic FM1-43 dye capture, 25HC reduced uptake of hydrophilic high molecular weight markers (labeled dextrans and toxin), which utilize bulk endocytosis to enter into nerve terminals. Thus, synaptic vesicle endocytosis had a relatively slow kinetics following the tetanic activity and can be accelerated by 25HC. The positive effect of 25HC on endocytosis engages a dynamin-dependent pathway, interconnected with cytoplasmic Ca2+ and sphingomyelin integrity.
Collapse
Affiliation(s)
- Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Guzalia F Zakirjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, 119234, Russia
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
- Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia.
- Kazan Federal University, 18 Kremlyovskaya St., Kazan, 420008, Russia.
| |
Collapse
|
5
|
Choi H, Kim HJ, Lee SE, Song HH, Kim J, Han J, Jeong JH, Lee DY, Chang S, Mook-Jung I. 25-Hydroxycholesterol modulates microglial function and exacerbates Alzheimer's disease pathology: mechanistic insights and therapeutic potential of cholesterol esterification inhibition. J Neuroinflammation 2025; 22:50. [PMID: 40001197 PMCID: PMC11863767 DOI: 10.1186/s12974-025-03357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigates the role of 25-hydroxycholesterol (25HC), a metabolite produced by cholesterol hydroxylase encoded by the Ch25h gene, in modulating microglial function and its potential implications in Alzheimer's disease (AD) pathology. We demonstrated that 25HC impairs microglial surveillance, reduces phagocytic capacity, and increases the production of pro-inflammatory cytokines. In vivo two-photon microscopy revealed that 25HC administration diminishes microglial response to brain lesions, while flow cytometry confirmed reduced phagocytosis in both in vivo and in vitro models. Additionally, amyloid-beta (Aβ) was shown to upregulate Ch25h expression and elevate 25HC levels in microglia, exacerbating these functional impairments. Mechanistically, 25HC was found to enhance cholesterol esterification, disrupt cell membrane dynamics, and further reduce microglial mobility and phagocytosis. Treatment with Avasimibe, a cholesterol esterification inhibitor, restored membrane dynamics and microglial function, leading to attenuated AD pathology in a 5XFAD mouse model. These findings suggest that 25HC-induced changes in microglial function contribute to AD progression, and targeting cholesterol metabolism could offer therapeutic potential.
Collapse
Affiliation(s)
- Hayoung Choi
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Convergence Dementia Research Center, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Haeng Jun Kim
- Convergence Dementia Research Center, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyun Ho Song
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jieun Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jihui Han
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - June-Hyun Jeong
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Convergence Dementia Research Center, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Savulescu-Fiedler I, Dorobantu-Lungu LR, Dragosloveanu S, Benea SN, Dragosloveanu CDM, Caruntu A, Scheau AE, Caruntu C, Scheau C. The Cross-Talk Between the Peripheral and Brain Cholesterol Metabolisms. Curr Issues Mol Biol 2025; 47:115. [PMID: 39996836 PMCID: PMC11853762 DOI: 10.3390/cimb47020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Cholesterol is an essential element for the development and normal function of the central nervous system. While peripheral cholesterol is influenced by liver metabolism and diet, brain cholesterol metabolism takes place in an isolated system due to the impermeability of the blood-brain barrier (BBB). However, cross-talk occurs between the brain and periphery, specifically through metabolites such as oxysterols that play key roles in regulating cholesterol balance. Several neurodegenerative conditions such as Alzheimer's disease or Parkinson's disease are considered to be affected by the loss of this balance. Also, the treatment of hypercholesterolemia needs to consider these discrete interferences between brain and peripheral cholesterol and the possible implications of each therapeutic approach. This is particularly important because of 27-hydroxycholesterol and 24-hydroxycholesterol, which can cross the BBB and are involved in cholesterol metabolism. This paper examines the metabolic pathways of cholesterol metabolism in the brain and periphery and focuses on the complex cross-talk between these metabolisms. Also, we emphasize the regulatory role of the BBB and the need for an integrated approach to cholesterol management.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Luiza-Roxana Dorobantu-Lungu
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases “C.C. Iliescu”, 022328 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Departament of Infectious Diseases, National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
7
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
8
|
Loiola RA, Nguyen C, Dib S, Saint-Pol J, Dehouck L, Sevin E, Naudot M, Landry C, Pahnke J, Pot C, Gosselet F. 25-Hydroxycholesterol attenuates tumor necrosis factor alpha-induced blood-brain barrier breakdown in vitro. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167479. [PMID: 39181516 DOI: 10.1016/j.bbadis.2024.167479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Rodrigo Azevedo Loiola
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Cindy Nguyen
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Shiraz Dib
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Julien Saint-Pol
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Lucie Dehouck
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Emmanuel Sevin
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Marie Naudot
- Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, F-80039 Amiens, France
| | - Christophe Landry
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO), Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway; Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL), University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Ramat Aviv, IL-6997801, Israel
| | - Caroline Pot
- Lausanne University Hospital (CHUV), University of Lausanne, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, CH-1011 Lausanne, Vaud, Switzerland
| | - Fabien Gosselet
- University of Artois, UR2465, Blood-Brain Barrier (BBB) Laboratory, F-62300 Lens, France.
| |
Collapse
|
9
|
Romero J, Toral-Rios D, Yu J, Paul SM, Cashikar AG. 25-hydroxycholesterol promotes brain cytokine production and leukocyte infiltration in a mouse model of lipopolysaccharide-induced neuroinflammation. J Neuroinflammation 2024; 21:251. [PMID: 39369253 PMCID: PMC11456242 DOI: 10.1186/s12974-024-03233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Neuroinflammation has been implicated in the pathogenesis of several neurologic and psychiatric disorders. Microglia are key drivers of neuroinflammation and, in response to different inflammatory stimuli, overexpress a proinflammatory signature of genes. Among these, Ch25h is a gene overexpressed in brain tissue from Alzheimer's disease as well as various mouse models of neuroinflammation. Ch25h encodes cholesterol 25-hydroxylase, an enzyme upregulated in activated microglia under conditions of neuroinflammation, that hydroxylates cholesterol to form 25-hydroxycholesterol (25HC). 25HC can be further metabolized to 7α,25-dihydroxycholesterol, which is a potent chemoattractant of leukocytes. We have previously shown that 25HC increases the production and secretion of the proinflammatory cytokine, IL-1β, by primary mouse microglia treated with lipopolysaccharide (LPS). In the present study, wildtype (WT) and Ch25h-knockout (KO) mice were peripherally administered LPS to induce an inflammatory state in the brain. In LPS-treated WT mice, Ch25h expression and 25HC levels increased in the brain relative to vehicle-treated WT mice. Among LPS-treated WT mice, females produced significantly higher levels of 25HC and showed transcriptomic changes reflecting higher levels of cytokine production and leukocyte migration than WT male mice. However, females were similar to males among LPS-treated KO mice. Ch25h-deficiency coincided with decreased microglial activation in response to systemic LPS. Proinflammatory cytokine production and intra-parenchymal infiltration of leukocytes were significantly lower in KO compared to WT mice. Amounts of IL-1β and IL-6 in the brain strongly correlated with 25HC levels. Our results suggest a proinflammatory role for 25HC in the brain following peripheral administration of LPS.
Collapse
Affiliation(s)
- Johnathan Romero
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Danira Toral-Rios
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Jinsheng Yu
- Department of Genetics & Genome Technology Access Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Steven M Paul
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, 63110, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 425 S Euclid Ave, Campus Box 8134, St Louis, MO, 63110, USA
| | - Anil G Cashikar
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, 63110, USA.
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, 425 S Euclid Ave, Campus Box 8134, St Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Fu Y, Xie GM, Liu RQ, Xie JL, Zhang J, Zhang J. From aberrant neurodevelopment to neurodegeneration: Insights into the hub gene associated with autism and alzheimer's disease. Brain Res 2024; 1838:148992. [PMID: 38729333 DOI: 10.1016/j.brainres.2024.148992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/31/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Guang-Ming Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Rong-Qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200010, China.
| | - Jun Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai 200010, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China.
| |
Collapse
|
11
|
Romero-Ramírez L, Mey J. Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications. Int J Mol Sci 2024; 25:9279. [PMID: 39273226 PMCID: PMC11395147 DOI: 10.3390/ijms25179279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and released into the digestive tract to facilitate lipid uptake during the digestion process. Most of these BAs are reabsorbed and recycled back to the liver. Some of these BAs progress to other tissues through the bloodstream. The presence of BAs in the central nervous system (CNS) has been related to their capacity to cross the blood-brain barrier (BBB) from the systemic circulation. However, the expression of enzymes and receptors involved in their synthesis and signaling, respectively, support the hypothesis that there is an endogenous source of BAs with a specific function in the CNS. Over the last decades, BAs have been tested as treatments for many CNS pathologies, with beneficial effects. Although they were initially reported as neuroprotective substances, they are also known to reduce inflammatory processes. Most of these effects have been related to the activation of the Takeda G protein-coupled receptor 5 (TGR5). This review addresses the new challenges that face BA research for neuroscience, focusing on their molecular functions. We discuss their endogenous and exogenous sources in the CNS, their signaling through the TGR5 receptor, and their mechanisms of action as potential therapeutics for neuropathologies.
Collapse
Affiliation(s)
- Lorenzo Romero-Ramírez
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Jörg Mey
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
12
|
Izumi Y, O’Dell KA, Cashikar AG, Paul SM, Covey DF, Mennerick SJ, Zorumski CF. Neurosteroids mediate and modulate the effects of pro-inflammatory stimulation and toll-like receptors on hippocampal plasticity and learning. PLoS One 2024; 19:e0304481. [PMID: 38875235 PMCID: PMC11178232 DOI: 10.1371/journal.pone.0304481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/13/2024] [Indexed: 06/16/2024] Open
Abstract
Pro-inflammatory changes contribute to multiple neuropsychiatric illnesses. Understanding how these changes are involved in illnesses and identifying strategies to alter inflammatory responses offer paths to potentially novel treatments. We previously found that acute pro-inflammatory stimulation with high (μg/ml) lipopolysaccharide (LPS) for 10-15 min dampens long-term potentiation (LTP) in the hippocampus and impairs learning. Effects of LPS involved non-canonical inflammasome signaling but were independent of toll-like receptor 4 (TLR4), a known LPS receptor. Low (ng/ml) LPS also inhibits LTP when administered for 2-4 h, and here we report that this LPS exposure requires TLR4. We also found that effects of low LPS on LTP involve the oxysterol, 25-hydroxycholesterol, akin to high LPS. Effects of high LPS on LTP are blocked by inhibiting synthesis of 5α-reduced neurosteroids, indicating that neurosteroids mediate LTP inhibition. 5α-Neurosteroids also have anti-inflammatory effects, and we found that exogenous allopregnanolone (AlloP), a key 5α-reduced steroid, prevented effects of low but not high LPS on LTP. We also found that activation of TLR2, TLR3 and TLR7 inhibited LTP and that AlloP prevented the effects of TLR2 and TLR7, but not TLR3. The enantiomer of AlloP, a steroid that has anti-inflammatory actions but low activity at GABAA receptors, prevented LTP inhibition by TLR2, TLR3 and TLR7. In vivo, both AlloP enantiomers prevented LPS-induced learning defects. These studies indicate that neurosteroids play complex roles in network effects of acute neuroinflammation and have potential importance for development of AlloP analogues as therapeutic agents.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kazuko A. O’Dell
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Anil G. Cashikar
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven M. Paul
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Douglas F. Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
- Developmental Biology and Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Steven J. Mennerick
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Charles F. Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
13
|
Wang X, Xie Y, Fan X, Wu X, Wang D, Zhu L. Intermittent hypoxia training enhances Aβ endocytosis by plaque associated microglia via VPS35-dependent TREM2 recycling in murine Alzheimer's disease. Alzheimers Res Ther 2024; 16:121. [PMID: 38831312 PMCID: PMC11145795 DOI: 10.1186/s13195-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Beta-amyloid (Aβ) deposition in the brain parenchyma is a crucial initiating step in the amyloid cascade hypothesis of Alzheimer's disease (AD) pathology. Furthermore, dysfunction of plaque-associated microglia, also known as disease-associated microglia (DAM) has been reported to accelerate Aβ deposition and cognitive impairment. Our previous research demonstrated that intermittent hypoxia training (IHT) improved AD pathology by upregulating autophagy in DAM, thereby enhancing oligomeric Aβ (oAβ) clearance. Considering that oAβ internalization is the initial stage of oAβ clearance, this study focused on the IHT mechanism involved in upregulating Aβ uptake by DAM. METHODS IHT was administered to 8-month-old APP/PS1 mice or 6-month-old microglial vacuolar protein sorting 35 (VPS35) knockout mice in APP/PS1 background (MG VPS35 KO: APP/PS1) for 28 days. After the IHT, the spatial learning-memory capacity of the mice was assessed. Additionally, AD pathology was determined by estimating the nerve fiber and synapse density, Aβ plaque deposition, and Aβ load in the brain. A model of Aβ-exposed microglia was constructed and treated with IHT to explore the related mechanism. Finally, triggering receptor expressed on myeloid cells 2 (TREM2) intracellular recycling and Aβ internalization were measured using a fluorescence tracing technique. RESULTS Our results showed that IHT ameliorated cognitive function and Aβ pathology. In particular, IHT enhanced Aβ endocytosis by augmenting the intracellular transport function of microglial TREM2, thereby contributing to Aβ clearance. Furthermore, IHT specifically upregulated VPS35 in DAM, the primary cause for the enhanced intracellular recycling of TREM2. IHT lost ameliorative effect on Aβ pathology in MG VPS35 KO: APP/PS1 mice brain. Lastly, the IHT mechanism of VPS35 upregulation in DAM was mediated by the transcriptional regulation of VPS35 by transcription factor EB (TFEB). CONCLUSION IHT enhances Aβ endocytosis in DAM by upregulating VPS35-dependent TREM2 recycling, thereby facilitating oAβ clearance and mitigation of Aβ pathology. Moreover, the transcriptional regulation of VPS35 by TFEB demonstrates a close link between endocytosis and autophagy in microglia. Our study further elucidates the IHT mechanism in improving AD pathology and provides evidence supporting the potential application of IHT as a complementary therapy for AD.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaoyang Fan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No.9, Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226009, China.
| |
Collapse
|
14
|
Jiang T, Li Y. 25-hydroxycholesterol aggravates oxygen-glucose deprivation/reoxygenation-induced pyroptosis through promoting activation of NLRP3 inflammasome in H9C2 cardiomyocytes. Braz J Med Biol Res 2024; 57:e13299. [PMID: 38716981 PMCID: PMC11085030 DOI: 10.1590/1414-431x2024e13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
25-hydroxycholesterol (25-HC) plays a role in the regulation of cell survival and immunity. However, the effect of 25-HC on myocardial ischemia/reperfusion (MI/R) injury remains unknown. Our present study aimed to investigate whether 25-HC aggravated MI/R injury through NLRP3 inflammasome-mediated pyroptosis. The overlapping differentially expressed genes (DEGs) in MI/R were identified from the GSE775, GSE45818, GSE58486, and GSE46395 datasets in Gene Expression Omnibus (GEO) database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using the database of Annotation, Visualization and Integration Discovery (DAVID). The protein-protein interaction (PPI) network of the overlapping DEGs was established using the Search Tool for the Retrieval of Interacting Genes (STRING) database. These bioinformatics analyses indicated that cholesterol 25-hydroxylase (CH25H) was one of the crucial genes in MI/R injury. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was established to simulate MI/R injury. Western blot and RT-qPCR analysis demonstrated that CH25H was significantly upregulated in OGD/R-stimulated H9C2 cardiomyocytes. Moreover, knockdown of CH25H inhibited the OGD/R-induced pyroptosis and nod-like receptor protein 3 (NLRP3) inflammasome activation, as demonstrated by cell counting kit-8 (CCK8), lactate dehydrogenase (LDH), RT-qPCR, and western blotting assays. Conversely, 25-HC, which is synthesized by CH25H, promoted activation of NLRP3 inflammasome in OGD/R-stimulated H9C2 cardiomyocytes. In addition, the NLRP3 inhibitor BAY11-7082 attenuated 25-HC-induced H9C2 cell injury and pyroptosis under OGD/R condition. In conclusion, 25-HC could aggravate OGD/R-induced pyroptosis through promoting activation of NLRP3 inflammasome in H9C2 cells.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Cardiovascular Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yong Li
- Department of Cardiovascular Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
15
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Staurenghi E, Testa G, Leoni V, Cecci R, Floro L, Giannelli S, Barone E, Perluigi M, Leonarduzzi G, Sottero B, Gamba P. Altered Brain Cholesterol Machinery in a Down Syndrome Mouse Model: A Possible Common Feature with Alzheimer's Disease. Antioxidants (Basel) 2024; 13:435. [PMID: 38671883 PMCID: PMC11047305 DOI: 10.3390/antiox13040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Down syndrome (DS) is a complex chromosomal disorder considered as a genetically determined form of Alzheimer's disease (AD). Maintenance of brain cholesterol homeostasis is essential for brain functioning and development, and its dysregulation is associated with AD neuroinflammation and oxidative damage. Brain cholesterol imbalances also likely occur in DS, concurring with the precocious AD-like neurodegeneration. In this pilot study, we analyzed, in the brain of the Ts2Cje (Ts2) mouse model of DS, the expression of genes encoding key enzymes involved in cholesterol metabolism and of the levels of cholesterol and its main precursors and products of its metabolism (i.e., oxysterols). The results showed, in Ts2 mice compared to euploid mice, the downregulation of the transcription of the genes encoding the enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and 24-dehydrocholesterol reductase, the latter originally recognized as an indicator of AD, and the consequent reduction in total cholesterol levels. Moreover, the expression of genes encoding enzymes responsible for brain cholesterol oxidation and the amounts of the resulting oxysterols were modified in Ts2 mouse brains, and the levels of cholesterol autoxidation products were increased, suggesting an exacerbation of cerebral oxidative stress. We also observed an enhanced inflammatory response in Ts2 mice, underlined by the upregulation of the transcription of the genes encoding for α-interferon and interleukin-6, two cytokines whose synthesis is increased in the brains of AD patients. Overall, these results suggest that DS and AD brains share cholesterol cycle derangements and altered oxysterol levels, which may contribute to the oxidative and inflammatory events involved in both diseases.
Collapse
Affiliation(s)
- Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Valerio Leoni
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20832 Desio, Italy;
| | - Rebecca Cecci
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Lucrezia Floro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University, 00185 Roma, Italy; (E.B.); (M.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University, 00185 Roma, Italy; (E.B.); (M.P.)
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| |
Collapse
|
17
|
Toral-Rios D, Long JM, Ulrich JD, Yu J, Strickland MR, Han X, Holtzman DM, Cashikar AG, Paul SM. Cholesterol 25-hydroxylase mediates neuroinflammation and neurodegeneration in a mouse model of tauopathy. J Exp Med 2024; 221:e20232000. [PMID: 38442267 PMCID: PMC10908359 DOI: 10.1084/jem.20232000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles, in addition to neuroinflammation and changes in brain lipid metabolism. 25-Hydroxycholesterol (25-HC), a known modulator of both inflammation and lipid metabolism, is produced by cholesterol 25-hydroxylase encoded by Ch25h expressed as a "disease-associated microglia" signature gene. However, whether Ch25h influences tau-mediated neuroinflammation and neurodegeneration is unknown. Here, we show that in the absence of Ch25h and the resultant reduction in 25-HC, there is strikingly reduced age-dependent neurodegeneration and neuroinflammation in the hippocampus and entorhinal/piriform cortex of PS19 mice, which express the P301S mutant human tau transgene. Transcriptomic analyses of bulk hippocampal tissue and single nuclei revealed that Ch25h deficiency in PS19 mice strongly suppressed proinflammatory signaling in microglia. Our results suggest a key role for Ch25h/25-HC in potentiating proinflammatory signaling to promote tau-mediated neurodegeneration. Ch25h may represent a novel therapeutic target for primary tauopathies, AD, and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Danira Toral-Rios
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Justin M. Long
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Jinsheng Yu
- Department of Genetics, Genome Technology Access Center at the McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Michael R. Strickland
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Xianlin Han
- Department of Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - Anil G. Cashikar
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, USA
| | - Steven M. Paul
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
18
|
Rippee-Brooks MD, Wu W, Dong J, Pappolla M, Fang X, Bao X. Viral Infections, Are They a Trigger and Risk Factor of Alzheimer's Disease? Pathogens 2024; 13:240. [PMID: 38535583 PMCID: PMC10974111 DOI: 10.3390/pathogens13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe cute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD such as the lytic replication and axonal transport of HSV-1, the various mechanisms of ZIKV neurotropism through the human protein Musashi-1 (MSI1), and the spread of SARS-CoV-2 through the transfer of the virus through the BBB endothelial cells to glial cells and then to neurons via transsynaptic transfer. We will also explore beyond these mere associations by carefully analyzing the potential mechanisms by which these viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, the dysregulation of immune responses, and the impact on protein processing (Aβ42 and hyperphosphorylated tau). Controversies and challenges of the virus-AD relationship emerge as we tease out these potential mechanisms. Looking forward, we emphasize future directions, such as distinct questions and proposed experimentations to explore, that the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development while encouraging further discussion.
Collapse
Affiliation(s)
- Meagan D. Rippee-Brooks
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jianli Dong
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Miguel Pappolla
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiang Fang
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiaoyong Bao
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
19
|
Yang Y, Kumar V, Peng W, Fijak M, Gabriela M, Cai W, Meinhardt A, Bhushan S. Role of macrophage colony stimulating factor and interferon regulatory factor 7 in modulating the immune profile of mouse testicular macrophages. J Reprod Immunol 2024; 161:104169. [PMID: 38016190 DOI: 10.1016/j.jri.2023.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Testicular macrophages (TM) are critical for the function of the testis by regulating homeostasis and inflammatory responses. However, the mechanisms by which TM fulfil these roles remain elusive. In this study, we explored the impact of two key testicular microenvironmental factors, namely 25-hydroxycholesterol (25HC), an oxysterol related to sex hormones and macrophage colony-stimulating factor (M-CSF), a factor crucial for macrophage survival and differentiation, on the regulation of the TM phenotype. Specifically, we examined their role in controlling the expression of the transcription factor interferon regulatory factor 7 (Irf7), a factor critical for maintaining the alternative macrophage phenotype. To achieve this, we used an in vitro bone marrow-derived macrophage (BMDM) model as a surrogate for TM to investigate the roles of 25HC and M-CSF in regulating the expression of Irf7 during the polarization of murine TM. M-CSF was identified as the main regulator of Irf7 expression, while 25HC production is a consequence of Irf7 activation in BMDM. In turn, 25HC plays a role in a negative feedback loop on the expression levels of Irf7 in BMDM. Using flow cytometry in Irf7-/- mouse testis the CD64loMHChi TM subpopulation was found to be decreased. Together with lower IL-10 protein levels in Irf7-/- TM this indicates a shift towards an M1-like macrophage profile. In summary, our data indicates that M-CSF could act as an inducer of high Irf7 expression levels in the mouse testis. However, the exact role of the high 25HC concentration in the testis in maintaining the local immune milieu still needs further study.
Collapse
Affiliation(s)
- Yalong Yang
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Vishnu Kumar
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wei Peng
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Monika Fijak
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michel Gabriela
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen, Germany
| | - Wei Cai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
20
|
Kawade N, Yamanaka K. Novel insights into brain lipid metabolism in Alzheimer's disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024; 14:194-216. [PMID: 37330425 PMCID: PMC10839347 DOI: 10.1002/2211-5463.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A genome-wide association study has shown that several AD risk genes are involved in lipid metabolism. Additionally, epidemiological studies have indicated that the levels of several lipid species are altered in the AD brain. Therefore, lipid metabolism is likely changed in the AD brain, and these alterations might be associated with an exacerbation of AD pathology. Oligodendrocytes are glial cells that produce the myelin sheath, which is a lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to white matter abnormalities observed in the AD brain. Here, we review the lipid composition and metabolism in the brain and myelin and the association between lipidic alterations and AD pathology. We also present the abnormalities in oligodendrocyte lineage cells and white matter observed in AD. Additionally, we discuss metabolic disorders, including obesity, as AD risk factors and the effects of obesity and dietary intake of lipids on the brain.
Collapse
Affiliation(s)
- Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityJapan
| |
Collapse
|
21
|
Guan X, Wu J, Geng J, Ji D, Wei D, Ling Y, Zhang Y, Jiang G, Pang T, Huang Z. A Novel Hybrid of Telmisartan and Borneol Ameliorates Neuroinflammation and White Matter Injury in Ischemic Stroke Through ATF3/CH25H Axis. Transl Stroke Res 2024; 15:195-218. [PMID: 36577854 DOI: 10.1007/s12975-022-01121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Cerebral ischemic stroke causes substantial white matter injury, which is further aggravated by neuroinflammation mediated by microglia/astrocytes. Given the anti-neuroinflammatory action of telmisartan and the enhancing blood-brain barrier (BBB) permeability potential of resuscitation-inducing aromatic herbs, 13 hybrids (3a-m) of telmisartan (or its simplified analogues) with resuscitation-inducing aromatic agents were designed, synthesized, and biologically evaluated. Among them, the optimal compound 3a (the ester hybrid of telmisartan and (+)-borneol) potently inhibited neuroinflammation mediated by microglia/astrocytes and ameliorated ischemic stroke. Particularly, 3a significantly conferred protection for white matter integrity after cerebral ischemic stroke via decreasing abnormally dephosphorylated neurofilament protein, upregulating myelin basic protein, and attenuating oligodendrocyte damage. Further RNA-sequencing data revealed that 3a upregulated expression of transcriptional regulator ATF3 to reduce the expression of CH25H, prevented proinflammatory state of lipid-droplet-accumulating microglia/astrocytes to limit excessive inflammation, and eventually protected neighboring oligodendrocytes to prevent white matter injury. Taken with the desirable pharmacokinetics behavior and improved brain distribution, 3a may be a feasible therapeutic agent for ischemic stroke and other neurological disorders with white matter injury.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jiahui Geng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Dasha Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Guojun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, 311201, People's Republic of China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
22
|
Dinh QN, Lo C, Zhang DW, Tran V, Gibson-Hughes T, Sheriff A, Diep H, Kim HA, Zhang SR, Barreto-Arce LJ, Jelinic M, Vinh A, Arumugam TV, Chan ST, Lim R, Drummond GR, Sobey CG, De Silva TM. Human amnion epithelial cell therapy reduces hypertension-induced vascular stiffening and cognitive impairment. Sci Rep 2024; 14:1837. [PMID: 38246932 PMCID: PMC10800338 DOI: 10.1038/s41598-024-52214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Vascular inflammation and fibrosis are hallmarks of hypertension and contribute to the development of cardiovascular disease and cognitive impairment. However, current anti-hypertensive drugs do not treat the underlying tissue damage, such as inflammation-associated fibrosis. Human amnion epithelial cells have several properties amenable for treating vascular pathology. This study tested the effect of amnion epithelial cells on vascular pathology and cognitive impairment during hypertension. Male C57Bl6 mice (8-12 weeks) were administered vehicle (saline; n = 58) or angiotensin II (0.7 mg/kg/d, n = 56) subcutaneously for 14 d. After surgery, a subset of mice were injected with 106 amnion epithelial cells intravenously. Angiotensin II infusion increased systolic blood pressure, aortic pulse wave velocity, accumulation of aortic leukocytes, and aortic mRNA expression of collagen subtypes compared to vehicle-infused mice (n = 9-11, P < 0.05). Administration of amnion epithelial cells attenuated these effects of angiotensin II (P < 0.05). Angiotensin II-induced cognitive impairment was prevented by amnion epithelial cell therapy (n = 7-9, P < 0.05). In the brain, amnion epithelial cells modulated some of the inflammatory genes that angiotensin II promoted differential expression of (n = 6, p-adjusted < 0.05). These findings suggest that amnion epithelial cells could be explored as a potential therapy to inhibit vascular pathology and cognitive impairment during hypertension.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Cecilia Lo
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - David Wong Zhang
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Vivian Tran
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Tayla Gibson-Hughes
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ashleigh Sheriff
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Henry Diep
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Hyun Ah Kim
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Shenpeng R Zhang
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Liz J Barreto-Arce
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Maria Jelinic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Siow Teng Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christopher G Sobey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - T Michael De Silva
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
23
|
Petrov AM. Oxysterols in Central and Peripheral Synaptic Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:91-123. [PMID: 38036877 DOI: 10.1007/978-3-031-43883-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g., NMDA and adrenergic receptors), signaling molecules (nitric oxide synthases, protein kinase C, liver X receptors), and synaptic vesicle cycling involved in neurotransmitters release. 24-Hydroxycholesterol, produced by neurons in the brain, could directly affect neighboring synapses and change neurotransmission. 27-Hydroxycholesterol, which can cross the blood-brain barrier, can alter both synaptogenesis and synaptic plasticity. Increased generation of 25-hydroxycholesterol by activated microglia and macrophages could link inflammatory processes to learning and neuronal regulation. Amyloids and oxidative stress can lead to an increase in the levels of ring-oxidized sterols and some of these oxysterols (4-cholesten-3-one, 5α-cholestan-3-one, 7β-hydroxycholesterol, 7-ketocholesterol) have a high potency to disturb or modulate neurotransmission at both the presynaptic and postsynaptic levels. Overall, oxysterols could be used as "molecular prototypes" for therapeutic approaches. Analogs of 24-hydroxycholesterol (SGE-301, SGE-550, SAGE718) can be used for correction of NMDA receptor hypofunction-related states, whereas inhibitors of cholesterol 24-hydroxylase, cholestane-3β,5α,6β-triol, and cholest-4-en-3-one oxime (olesoxime) can be utilized as potential anti-epileptic drugs and (or) protectors from excitotoxicity.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.
- Kazan State Medial University, Kazan, RT, Russia.
- Kazan Federal University, Kazan, RT, Russia.
| |
Collapse
|
24
|
Foo CX, Fessler MB, Ronacher K. Oxysterols in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:125-147. [PMID: 38036878 DOI: 10.1007/978-3-031-43883-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols have emerged as important bioactive lipids in the immune response to infectious diseases. This chapter discusses our current knowledge of oxysterols and their receptors in bacterial and viral infections of the respiratory and gastrointestinal tracts. Oxysterols are produced in response to infections and have multiple roles including chemotaxis of immune cells to the site of infection and regulation of inflammation. Some oxysterols have been shown to possess antiviral or antibacterial activity.Lastly, we delve into the emerging mechanisms of action of oxysterols. Oxysterols can enhance host cell resistance via reduction of membrane accessible cholesterol, modulate membrane immune signalling, and impact inflammasome activation and efferocytosis.
Collapse
Affiliation(s)
- Cheng X Foo
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katharina Ronacher
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Vigne S, Pot C. Implication of Oxysterols and Phytosterols in Aging and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:231-260. [PMID: 38036883 DOI: 10.1007/978-3-031-43883-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is easily oxidized and can be transformed into numerous oxidation products, among which oxysterols. Phytosterols are plant sterols related to cholesterol. Both oxysterols and phytosterols can have an impact on human health and diseases.Cholesterol is a member of the sterol family that plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized into several molecules including bile acids, hormones, and oxysterols. On the other hand, phytosterols are plant-derived compounds structurally related to cholesterol, which can also have an impact on human health. Here, we review the current knowledge about the role of oxysterols and phytosterols on human health and focus on the impact of their pathways on diseases of the central nervous system (CNS), autoimmune diseases, including inflammatory bowel diseases (IBD), vascular diseases, and cancer in both experimental models and human studies. We will first discuss the implications of oxysterols and then of phytosterols in different human diseases.
Collapse
Affiliation(s)
- Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland.
| |
Collapse
|
26
|
Pappolla MA, Refolo L, Sambamurti K, Zambon D, Duff K. Hypercholesterolemia and Alzheimer's Disease: Unraveling the Connection and Assessing the Efficacy of Lipid-Lowering Therapies. J Alzheimers Dis 2024; 101:S371-S393. [PMID: 39422957 DOI: 10.3233/jad-240388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This article examines the relationship between cholesterol levels and Alzheimer's disease (AD), beginning with the early observation that individuals who died from heart attacks often had brain amyloid deposition. Subsequent animal model research proved that high cholesterol could hasten amyloid accumulation. In contrast, cholesterol-lowering treatments appeared to counteract this effect. Human autopsy studies reinforced the cholesterol-AD connection, revealing that higher cholesterol levels during midlife significantly correlated with higher brain amyloid pathology. This effect was especially pronounced in individuals aged 40 to 55. Epidemiological data supported animal research and human tissue observations and suggested that managing cholesterol levels in midlife could reduce the risk of developing AD. We analyze the main observational studies and clinical trials on the efficacy of statins. While observational data often suggest a potential protective effect against AD, clinical trials have not consistently shown benefit. The failure of these trials to demonstrate a clear advantage is partially attributed to multiple factors, including the timing of statin therapy, the type of statin and the appropriate selection of patients for treatment. Many studies failed to target individuals who might benefit most from early intervention, such as high-risk patients like APOE4 carriers. The review addresses how cholesterol is implicated in AD through various biological pathways, the potential preventive role of cholesterol management as suggested by observational studies, and the difficulties encountered in clinical trials, particularly related to statin use. The paper highlights the need to explore alternate therapeutic targets and mechanisms that escape statin intervention.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lorenzo Refolo
- Translational Research Branch, Division of Neuroscience, Bethesda, MD, USA
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Zambon
- Universitat Internacional de Catalunya, Barcelona, Spain
| | - Karen Duff
- Karen Duff, UK Dementia Research Institute at University College London, London, UK
| |
Collapse
|
27
|
Nguyen C, Saint-Pol J, Dib S, Pot C, Gosselet F. 25-Hydroxycholesterol in health and diseases. J Lipid Res 2024; 65:100486. [PMID: 38104944 PMCID: PMC10823077 DOI: 10.1016/j.jlr.2023.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.
Collapse
Affiliation(s)
- Cindy Nguyen
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Julien Saint-Pol
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Shiraz Dib
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Caroline Pot
- Department of Clinical Neurosciences, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Gosselet
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France.
| |
Collapse
|
28
|
Chen H, Guo Z, Sun Y, Dai X. The immunometabolic reprogramming of microglia in Alzheimer's disease. Neurochem Int 2023; 171:105614. [PMID: 37748710 DOI: 10.1016/j.neuint.2023.105614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder (NDD). In the central nervous system (CNS), immune cells like microglia could reprogram intracellular metabolism to alter or exert cellular immune functions in response to environmental stimuli. In AD, microglia could be activated and differentiated into pro-inflammatory or anti-inflammatory phenotypes, and these differences in cellular phenotypes resulted in variance in cellular energy metabolism. Considering the enormous energy requirement of microglia for immune functions, the changes in mitochondria-centered energy metabolism and substrates of microglia are crucial for the cellular regulation of immune responses. Here we reviewed the mechanisms of microglial metabolic reprogramming by analyzing their flexible metabolic patterns and changes that occurred in their metabolism during the development of AD. Further, we summarized the role of drugs in modulating immunometabolic reprogramming to prevent neuroinflammation, which may shed light on a new research direction for AD treatment.
Collapse
Affiliation(s)
- Hongli Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Zichen Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
29
|
Goikolea J, Latorre-Leal M, Tsagkogianni C, Pikkupeura S, Gulyas B, Cedazo-Minguez A, Loera-Valencia R, Björkhem I, Rodriguez Rodriguez P, Maioli S. Different effects of CYP27A1 and CYP7B1 on cognitive function: Two mouse models in comparison. J Steroid Biochem Mol Biol 2023; 234:106387. [PMID: 37648096 DOI: 10.1016/j.jsbmb.2023.106387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
The oxysterol 27-hydroxycholesterol (27OHC) is produced by the enzyme sterol 27-hydroxylase (Cyp27A1) and is mainly catabolized to 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) by the enzyme cytochrome P-450 oxysterol 7α-hydroxylase (Cyp7B1). 27OHC is mostly produced in the liver and can reach the brain by crossing the blood-brain barrier. A large body of evidence shows that CYP27A1 overexpression and high levels of 27OHC have a detrimental effect on the brain, causing cognitive and synaptic dysfunction together with a decrease in glucose uptake in mice. In this work, we analyzed two mouse models with high levels of 27OHC: Cyp7B1 knock-out mice and CYP27A1 overexpressing mice. Despite the accumulation of 27OHC in both models, Cyp7B1 knock-out mice maintained intact learning and memory capacities, neuronal morphology, and brain glucose uptake over time. Neurons treated with the Cyp7B1 metabolite 7-HOCA did not show changes in synaptic genes and 27OHC-treated Cyp7B1 knock-out neurons could not counteract 27OHC detrimental effects. This suggests that 7-HOCA and Cyp7B1 deletion in neurons do not mediate the neuroprotective effects observed in Cyp7B1 knock-out animals. RNA-seq of neuronal nuclei sorted from Cyp7B1 knock-out brains revealed upregulation of genes likely to confer neuroprotection to these animals. Differently from Cyp7B1 knock-out mice, transcriptomic data from CYP27A1 overexpressing neurons showed significant downregulation of genes associated with synaptic function and several metabolic processes. Our results suggest that the differences observed in the two models may be mediated by the higher levels of Cyp7B1 substrates such as 25-hydroxycholesterol and 3β-Adiol in the knock-out mice and that CYP27A1 overexpressing mice may be a more suitable model for studying 27-OHC-specific signaling. We believe that future studies on Cyp7B1 and Cyp27A1 will contribute to a better understanding of the pathogenic mechanisms of neurodegenerative diseases like Alzheimer's disease and may lead to potential new therapeutic approaches.
Collapse
Affiliation(s)
- Julen Goikolea
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Maria Latorre-Leal
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Christina Tsagkogianni
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Sonja Pikkupeura
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Balazs Gulyas
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Raul Loera-Valencia
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden; Tecnologico de Monterrey, School of Medicine and Health Sciences, Chihuahua, Mexico
| | - Ingemar Björkhem
- Karolinska Institutet, Department of Laboratory Medicine, Huddinge, Sweden
| | - Patricia Rodriguez Rodriguez
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden
| | - Silvia Maioli
- Karolinska Institutet, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Stockholm, Sweden.
| |
Collapse
|
30
|
Wang X, Xie Y, Chen G, Lu Y, Wang D, Zhu L. Intermittent hypoxia therapy ameliorates beta-amyloid pathology via TFEB-mediated autophagy in murine Alzheimer's disease. J Neuroinflammation 2023; 20:240. [PMID: 37864249 PMCID: PMC10588168 DOI: 10.1186/s12974-023-02931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Impaired autophagy in plaque-associated microglia (PAM) has been reported to accelerate amyloid plaque deposition and cognitive impairment in AD pathogenesis. Recent evidence suggests that the transcription factor EB (TFEB)-mediated activation of the autophagy-lysosomal pathway is a promising treatment approach for AD. Moreover, the complementary therapy of intermittent hypoxia therapy (IHT) has been shown to upregulate autophagy and impart beneficial effects in patients with AD. However, the effect of IHT on PAM remains unknown. METHODS 8-Month-old APP/PS1 mice were treated with IHT for 28 days. Spatial learning memory capacity and anxiety in mice were investigated. AD pathology was determined by the quantity of nerve fibers and synapses density, numbers of microglia and neurons, Aβ plaque deposition, pro-inflammatory factors, and the content of Aβ in the brain. TFEB-mediated autophagy was determined by western blot and qRT-PCR. Primary microglia were treated with oligomeric Aβ 1-42 (oAβ) combined with IHT for mechanism exploration. Differential genes were screened by RNA-seq. Autophagic degradation process of intracellular oAβ was traced by immunofluorescence. RESULTS In this study, we found that IHT ameliorated cognitive function by attenuating neuronal loss and axonal injury in an AD animal model (APP/PS1 mice) with beta-amyloid (Aβ) pathology. In addition, IHT-mediated neuronal protection was associated with reduced Aβ accumulation and plaque formation. Using an in vitro PAM model, we further confirmed that IHT upregulated autophagy-related proteins, thereby promoting the Aβ autophagic degradation by PAM. Mechanistically, IHT facilitated the nuclear localization of TFEB in PAM, with TFEB activity showing a positive correlation with Aβ degradation by PAM in vivo and in vitro. In addition, IHT-induced TFEB activation was associated with the inhibition of the AKT-MAPK-mTOR pathway. CONCLUSIONS These results suggest that IHT alleviates neuronal damage and neuroinflammation via the upregulation of TFEB-dependent Aβ clearance by PAM, leading to improved learning and memory in AD mice. Therefore, IHT may be a promising non-pharmacologic therapy in complementary medicine against AD.
Collapse
Affiliation(s)
- Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China.
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China
| | - Guijuan Chen
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, No. 9, Seyuan Road, Chongchuan District, Nantong, 226009, Jiangsu, China.
| |
Collapse
|
31
|
Qin S, Zeng H, Wu Q, Li Q, Zeeshan M, Ye L, Jiang Y, Zhang R, Jiang X, Li M, Zhang R, Chen W, Chou WC, Dong GH, Li DC, Zeng XW. An integrative analysis of lipidomics and transcriptomics in various mouse brain regions in response to real-ambient PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165112. [PMID: 37364843 DOI: 10.1016/j.scitotenv.2023.165112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Exposure to Fine particulate matter (PM2.5) has been associated with various neurological disorders. However, the underlying mechanisms of PM2.5-induced adverse effects on the brain are still not fully defined. Multi-omics analyses could offer novel insights into the mechanisms of PM2.5-induced brain dysfunction. In this study, a real-ambient PM2.5 exposure system was applied to male C57BL/6 mice for 16 weeks, and lipidomics and transcriptomics analysis were performed in four brain regions. The findings revealed that PM2.5 exposure led to 548, 283, 304, and 174 differentially expressed genes (DEGs), as well as 184, 89, 228, and 49 distinctive lipids in the hippocampus, striatum, cerebellum, and olfactory bulb, respectively. Additionally, in most brain regions, PM2.5-induced DEGs were mainly involved in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, and calcium signaling pathway, while PM2.5-altered lipidomic profile were primarily enriched in retrograde endocannabinoid signaling and biosynthesis of unsaturated fatty acids. Importantly, mRNA-lipid correlation networks revealed that PM2.5-altered lipids and DEGs were obviously enriched in pathways involving in bile acid biosynthesis, De novo fatty acid biosynthesis, and saturated fatty acids beta-oxidation in brain regions. Furthermore, multi-omics analyses revealed that the hippocampus was the most sensitive part to PM2.5 exposure. Specifically, dysregulation of Pla2g1b, Pla2g, Alox12, Alox15, and Gpx4 induced by PM2.5 were closely correlated to the disruption of alpha-linolenic acid, arachidonic acid and linoleic acid metabolism in the hippocampus. In summary, our findings highlight differential lipidomic and transcriptional signatures of various brain regions by real-ambient PM2.5 exposure, which will advance our understanding of potential mechanisms of PM2.5-induecd neurotoxicity.
Collapse
Affiliation(s)
- Shuangjian Qin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingqing Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States
| | - Guang-Hui Dong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dao-Chuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Wen Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
32
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Ramar M. Sitosterol-rich Digera muricata against 7-ketocholesterol and lipopolysaccharide-mediated atherogenic responses by modulating NF-ΚB/iNOS signalling pathway in macrophages. 3 Biotech 2023; 13:331. [PMID: 37670802 PMCID: PMC10475456 DOI: 10.1007/s13205-023-03741-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Digera muricata L., commonly known as Tartara, is an edible herb used as traditional medicine in many countries of Africa and Asia. This study aimed to elucidate the effect of a phytosterol-rich extract of D. muricata on 7-ketocholesterol-mediated atherosclerosis in macrophages. The extract was examined by phytochemical analyses, GC-MS, TLC, DPPH scavenging and hRBC membrane stabilization assays. Macrophage polarization was studied with experimental groups framed based on alamar blue cell viability and griess assays. Regulations of arginase enzyme activity, ROS generation, mitochondrial membrane potential, cell membrane integrity, pinocytosis, lipid uptake and peroxidation, as well as, intracellular calcium deposition were determined. In addition, expressions of atherogenic mediators were analysed using PCR, ELISA and immunocytochemistry techniques. Diverse phytochemicals with higher free radical scavenging activity and anti-inflammatory potential have been detected in the D. muricata. Co-treatment with D. muricata markedly reduced the atherogenic responses induced by 7KCh in the presence of LPS such as ROS, especially, NO and O2- along with lipid peroxidation. Furthermore, D. muricata significantly normalized mitochondrial membrane potential, cell membrane integrity, pinocytic activity, intracellular lipid accumulation and calcium deposition. These results provided us with the potentiality of D. muricata in ameliorating atherogenesis. Additionally, it decreased the expression of pro-atherogenic mediators (iNOS, COX-2, MMP9, IL-6, IL-1β, CD36, CD163 and TGFβ1) and increased anti-atherogenic mediators (MRC1 and PPARγ) with high cellular expressions of NF-κB and iNOS. Results showed the potential of sitosterol-rich D. muricata as a versatile biomedical therapeutic agent against abnormal macrophage polarization and its associated pathologies.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600 015 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025 India
| |
Collapse
|
33
|
Yousefi P, Gholami A, Mehrjo M, Razizadeh MH, Akhavan M, Karampoor S, Tabibzadeh A. The role of cholesterol 25-hydroxylase in viral infections: Mechanisms and implications. Pathol Res Pract 2023; 249:154783. [PMID: 37660656 DOI: 10.1016/j.prp.2023.154783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Viral infections pose significant threats to human health, causing various diseases with varying severity. The intricate interactions between viruses and host cells determine the outcome of infection, including viral replication, immune responses, and disease progression. Cholesterol 25-hydroxylase (CH25H) is an enzyme that catalyzes the conversion of cholesterol to 25-hydroxycholesterol (25HC), a potent antiviral molecule. In recent years, increasing evidence has highlighted the critical involvement of CH25H in modulating immune responses and influencing viral infections. Notably, the review discusses the implications of CH25H in viral pathogenesis and the development of therapeutic strategies. It examines the interplay between CH25H and viral immune evasion mechanisms, highlighting the potential of viral antagonism of CH25H to enhance viral replication and pathogenesis. Furthermore, it explores the therapeutic potential of targeting CH25H or modulating its downstream signaling pathways as a strategy to control viral infections and enhance antiviral immune responses. This comprehensive review demonstrates the crucial role of CH25H in viral infections, shedding light on its mechanisms of action in viral entry, replication, and immune modulation. Understanding the complex interplay between CH25H and viral infections may pave the way for novel therapeutic approaches and the development of antiviral strategies aimed at exploiting the antiviral properties of CH25H and enhancing host immune responses against viral pathogens. In the current review, we tried to provide an overview of the antiviral activity and importance of CH25H in viral pathogenesis.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gholami
- School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohsen Mehrjo
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mandana Akhavan
- Department of Microbiology, Faculty of Medical Sciences, Islamic Azad University, Arak Branch, Arak, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Morioka N, Tsuruta M, Masuda N, Yamano K, Nakano M, Kochi T, Nakamura Y, Hisaoka-Nakashima K. Inhibition of Nuclear Receptor Related Orphan Receptor γ Ameliorates Mechanical Hypersensitivity Through the Suppression of Spinal Microglial Activation. Neuroscience 2023; 526:223-236. [PMID: 37419402 DOI: 10.1016/j.neuroscience.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Microglia are crucial in induction of central sensitization under a chronic pain state. Therefore, control of microglial activity is important to ameliorate nociceptive hypersensitivity. The nuclear receptor retinoic acid related orphan receptor γ (RORγ) contributes to the regulation of inflammation-related gene transcription in some immune cells, including T cells and macrophages. Their role and function in regulation of microglial activity and nociceptive transduction have yet to be elaborated. Treatment of cultured microglia with specific RORγ inverse agonists, SR2211 or GSK2981278, significantly suppressed lipopolysaccharide (LPS)-induced mRNA expression of pronociceptive molecules interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF). Intrathecal treatment of naïve male mice with LPS markedly induced mechanical hypersensitivity and upregulation of ionized calcium-biding adaptor molecule (Iba1) in the spinal dorsal horn, indicating microglial activation. In addition, intrathecal treatment with LPS significantly induced mRNA upregulation of IL-1β and IL-6 in the spinal dorsal horn. These responses were prevented by intrathecal pretreatment with SR2211. In addition, intrathecal administration of SR2211 significantly ameliorated established mechanical hypersensitivity and upregulation of Iba1 immunoreactivity in the spinal dorsal horn of male mice following peripheral sciatic nerve injury. The current findings demonstrate that blockade of RORγ in spinal microglia exerts anti-inflammatory effects, and that RORγ may be an appropriate target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Maho Tsuruta
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Nao Masuda
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kiichi Yamano
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Manaya Nakano
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takahiro Kochi
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
35
|
Agrawal RR, Larrea D, Xu Y, Shi L, Zirpoli H, Cummins LG, Emmanuele V, Song D, Yun TD, Macaluso FP, Min W, Kernie SG, Deckelbaum RJ, Area-Gomez E. Alzheimer's-Associated Upregulation of Mitochondria-Associated ER Membranes After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:2219-2241. [PMID: 36571634 PMCID: PMC10287820 DOI: 10.1007/s10571-022-01299-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 10/04/2022] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-β as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Delfina Larrea
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Lingyan Shi
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
| | - Leslie G Cummins
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Valentina Emmanuele
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Donghui Song
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
| | - Taekyung D Yun
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Wei Min
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Steven G Kernie
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA.
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, C. Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
36
|
Wang X, Xie Y, Niu Y, Wan B, Lu Y, Luo Q, Zhu L. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting. Front Cell Neurosci 2023; 17:1189348. [PMID: 37234914 PMCID: PMC10206058 DOI: 10.3389/fncel.2023.1189348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Hypoxia-induced neuronal damage is the primary cause of cognitive impairment induced by high-altitude exposure. Microglia play a crucial regulatory role in the central nervous system (CNS) homeostasis and synaptic plasticity. M1-type polarized microglia are suspected to be responsible for CNS injury under hypoxic conditions, but the exact molecular mechanism is still unelucidated. Methods CX3CR1 knock out and wide type mice were exposed to a simulated plateau at 7000 m for 48 h to construct the model of hypobaric hypoxia-induced memory impairment. The memory impairment of mice was assessed by Morris water maze. The dendritic spine density in the hippocampus was examined by Golgi staining. The synapses in the CA1 region and the number of neurons in the DG region were examined by immunofluorescence staining. The synapses in microglia activation and phagocytosis were examined by immunofluorescence. The levels of CX3CL1/CX3CR1 and their downstream proteins were detected. CX3CR1 knockout primary microglia were treated with CX3CL1 combined with 1% O2. The levels of proteins related to microglial polarization, the uptake of synaptosome and phagocytotic ability of microglia were detected. Results In this study, mice exposed to a simulated 7000 m altitude for 48 h developed significant amnesia for recent memories, but no significant change in their anxiety levels was observed. Hypobaric hypoxia exposure (7000 m altitude above sea level for 48 h) resulted in synapse loss in the CA1 region of the hippocampus, but no significant changes occurred in the total number of neurons. Meanwhile, microglia activation, increased phagocytosis of synapses by microglia, and CX3CL1/CX3CR1 signal activation were observed under hypobaric hypoxic exposure. Further, we found that after hypobaric hypoxia exposure, CX3CR1-deficient mice showed less amnesia, less synaptic loss in the CA1 region, and less increase in M1 microglia, compared to their wildtype siblings. CX3CR1-deficient microglia did not exhibit M1-type polarization in response to either hypoxia or CX3CL1 induction. Both hypoxia and CX3CL1 induced the phagocytosis of synapses by microglia through the upregulation of microglial phagocytosis. Discussion The current study demonstrates that CX3CL1/CX3CR1 signal mediates the M1-type polarization of microglia under high-altitude exposure and upregulates microglial phagocytosis, which increases the phagocytosis of synapses in the CA1 region of the hippocampus, causing synaptic loss and inducing forgetting.
Collapse
|
37
|
Izumi Y, Ishikawa M, Nakazawa T, Kunikata H, Sato K, Covey DF, Zorumski CF. Neurosteroids as stress modulators and neurotherapeutics: lessons from the retina. Neural Regen Res 2023; 18:1004-1008. [PMID: 36254981 PMCID: PMC9827771 DOI: 10.4103/1673-5374.355752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neurosteroids are rapidly emerging as important new therapies in neuropsychiatry, with one such agent, brexanolone, already approved for treatment of postpartum depression, and others on the horizon. These steroids have unique properties, including neuroprotective effects that could benefit a wide range of brain illnesses including depression, anxiety, epilepsy, and neurodegeneration. Over the past 25 years, our group has developed ex vivo rodent models to examine factors contributing to several forms of neurodegeneration in the retina. In the course of this work, we have developed a model of acute closed angle glaucoma that involves incubation of ex vivo retinas under hyperbaric conditions and results in neuronal and axonal changes that mimic glaucoma. We have used this model to determine neuroprotective mechanisms that could have therapeutic implications. In particular, we have focused on the role of both endogenous and exogenous neurosteroids in modulating the effects of acute high pressure. Endogenous allopregnanolone, a major stress-activated neurosteroid in the brain and retina, helps to prevent severe pressure-induced retinal excitotoxicity but is unable to protect against degenerative changes in ganglion cells and their axons under hyperbaric conditions. However, exogenous allopregnanolone, at a pharmacological concentration, completely preserves retinal structure and does so by combined effects on gamma-aminobutyric acid type A receptors and stimulation of the cellular process of macroautophagy. Surprisingly, the enantiomer of allopregnanolone, which is inactive at gamma-aminobutyric acid type A receptors, is equally retinoprotective and acts primarily via autophagy. Both enantiomers are also equally effective in preserving retinal structure and function in an in vivo glaucoma model. These studies in the retina have important implications for the ongoing development of allopregnanolone and other neurosteroids as therapeutics for neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Makoto Ishikawa
- Department of Ophthalmic Imaging and Information Analytics; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmic Imaging and Information Analytics; Department of Ophthalmology; Department of Retinal Disease Control; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kunikata
- Department of Ophthalmology; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmic Imaging and Information Analytics; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Douglas F Covey
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
38
|
Cashikar AG, Toral-Rios D, Timm D, Romero J, Strickland M, Long JM, Han X, Holtzman DM, Paul SM. Regulation of astrocyte lipid metabolism and ApoE secretionby the microglial oxysterol, 25-hydroxycholesterol. J Lipid Res 2023; 64:100350. [PMID: 36849076 PMCID: PMC10060115 DOI: 10.1016/j.jlr.2023.100350] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Neuroinflammation, a major hallmark of Alzheimer's disease and several other neurological and psychiatric disorders, is often associated with dysregulated cholesterol metabolism. Relative to homeostatic microglia, activated microglia express higher levels of Ch25h, an enzyme that hydroxylates cholesterol to produce 25-hydroxycholesterol (25HC). 25HC is an oxysterol with interesting immune roles stemming from its ability to regulate cholesterol metabolism. Since astrocytes synthesize cholesterol in the brain and transport it to other cells via ApoE-containing lipoproteins, we hypothesized that secreted 25HC from microglia may influence lipid metabolism as well as extracellular ApoE derived from astrocytes. Here, we show that astrocytes take up externally added 25HC and respond with altered lipid metabolism. Extracellular levels of ApoE lipoprotein particles increased after treatment of astrocytes with 25HC without an increase in Apoe mRNA expression. In mouse astrocytes-expressing human ApoE3 or ApoE4, 25HC promoted extracellular ApoE3 better than ApoE4. Increased extracellular ApoE was due to elevated efflux from increased Abca1 expression via LXRs as well as decreased lipoprotein reuptake from suppressed Ldlr expression via inhibition of SREBP. 25HC also suppressed expression of Srebf2, but not Srebf1, leading to reduced cholesterol synthesis in astrocytes without affecting fatty acid levels. We further show that 25HC promoted the activity of sterol-o-acyl transferase that led to a doubling of the amount of cholesteryl esters and their concomitant storage in lipid droplets. Our results demonstrate an important role for 25HC in regulating astrocyte lipid metabolism.
Collapse
Affiliation(s)
- Anil G Cashikar
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
| | - Danira Toral-Rios
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - David Timm
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Johnathan Romero
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael Strickland
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Justin M Long
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - David M Holtzman
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven M Paul
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
39
|
Lim H, Oh JS, Kang KR, Seo JY, Kim DK, Yu SK, Kim HJ, Park JC, Kim JS. 25-Hydroxycholesterol induces odontoclastic differentiation through RANK-RANKL upregulation and NF-κB activation in odontoblast-like MDPC-23 cells: An in vitro study. Int Endod J 2023; 56:432-446. [PMID: 36462163 DOI: 10.1111/iej.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
AIM The physiological effects and cellular mechanism of 25-hydroxycholesterol (25-HC), which is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase (CH25H) expressed under inflammatory conditions, are still largely unknown during odontoclastogenesis. This study aimed to evaluate 25-HC-induced odontoclastogenesis and its cellular mechanisms in odontoblast-like MDPC-23 cells. METHODOLOGY To investigate 25-HC-induced odontoclastogenesis of MDPC-23 cells and its cellular mechanism, haemotoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, dentine resorption assay, zymography, reactive oxygen species (ROS) detection, immunocytochemistry, and nuclear translocation were performed. The experimental values are presented as mean ± standard deviation and were compared using analysis of variance, followed by post hoc multiple comparisons (Tukey's test) using SPSS software version 22 (IBM Corp.). A p-value <.05 was considered statistically significant. RESULTS Lipopolysaccharide or receptor activator of nuclear factor-κB ligand (RANKL) induced the synthesis of 25-HC via the expression of CH25H in MDPC-23 cells (p < .01). Multinucleated giant cells with morphological characteristics and TRAP activity of the odontoclast were increased by 25-HC in MDPC-23 cells (p < .01). Moreover, 25-HC increased dentine resorption through the expression and activity of matrix metalloproteinases in MDPC-23 cells. It not only increased the expression of odontoclastogenic biomarkers but also translocated cytosolic nuclear factor-κB (NF-κB) to the nucleus in MDPC-23 cells. Additionally, 25-HC not only increased the production of ROS (p < .01), expression of inflammatory mediators (p < .01), pro-inflammatory cytokines, receptor activator of NF-κB (RANK), and RANKL but also suppressed the expression of osteoprotegerin (OPG) in MDPC-23 cells. In contrast, CDDO-Me, a chemical NF-κB inhibitor, decreased TRAP activity (p < .01) and downregulated the expression of the odontoclastogenic biomarkers, including RANK and RANKL, in MDPC-23 cells. CONCLUSION 25-HC induced odontoclastogenesis by modulating the RANK-RANKL-OPG axis via NF-κB activation in MDPC-23 cells. Therefore, these findings provide that 25-HC derived from cholesterol metabolism may be involved in the pathophysiological etiological factors of internal tooth resorption.
Collapse
Affiliation(s)
- HyangI Lim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Ji-Su Oh
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Korea
| | - Kyeong-Rok Kang
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Jeong-Yeon Seo
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Do Kyung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Sun-Kyoung Yu
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Heung-Joong Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jae-Sung Kim
- Institute of Dental Science, School of Dentistry, Chosun University, Gwangju, Korea
| |
Collapse
|
40
|
de Dios C, Abadin X, Roca-Agujetas V, Jimenez-Martinez M, Morales A, Trullas R, Mari M, Colell A. Inflammasome activation under high cholesterol load triggers a protective microglial phenotype while promoting neuronal pyroptosis. Transl Neurodegener 2023; 12:10. [PMID: 36895045 PMCID: PMC9996936 DOI: 10.1186/s40035-023-00343-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Persistent inflammatory response in the brain can lead to tissue damage and neurodegeneration. In Alzheimer's disease (AD), there is an aberrant activation of inflammasomes, molecular platforms that drive inflammation through caspase-1-mediated proteolytic cleavage of proinflammatory cytokines and gasdermin D (GSDMD), the executor of pyroptosis. However, the mechanisms underlying the sustained activation of inflammasomes in AD are largely unknown. We have previously shown that high brain cholesterol levels promote amyloid-β (Aβ) accumulation and oxidative stress. Here, we investigate whether these cholesterol-mediated changes may regulate the inflammasome pathway. METHODS SIM-A9 microglia and SH-SY5Y neuroblastoma cells were cholesterol-enriched using a water-soluble cholesterol complex. After exposure to lipopolysaccharide (LPS) plus muramyl dipeptide or Aβ, activation of the inflammasome pathway was analyzed by immunofluorescence, ELISA and immunoblotting analysis. Fluorescently-labeled Aβ was employed to monitor changes in microglia phagocytosis. Conditioned medium was used to study how microglia-neuron interrelationship modulates the inflammasome-mediated response. RESULTS In activated microglia, cholesterol enrichment promoted the release of encapsulated IL-1β accompanied by a switch to a more neuroprotective phenotype, with increased phagocytic capacity and release of neurotrophic factors. In contrast, in SH-SY5Y cells, high cholesterol levels stimulated inflammasome assembly triggered by both bacterial toxins and Aβ peptides, resulting in GSDMD-mediated pyroptosis. Glutathione (GSH) ethyl ester treatment, which recovered the cholesterol-mediated depletion of mitochondrial GSH levels, significantly reduced the Aβ-induced oxidative stress in the neuronal cells, resulting in lower inflammasome activation and cell death. Furthermore, using conditioned media, we showed that neuronal pyroptosis affects the function of the cholesterol-enriched microglia, lowering its phagocytic activity and, therefore, the ability to degrade extracellular Aβ. CONCLUSIONS Changes in intracellular cholesterol levels differentially regulate the inflammasome-mediated immune response in microglia and neuronal cells. Given the microglia-neuron cross-talk in the brain, cholesterol modulation should be considered a potential therapeutic target for AD treatment, which may help to block the aberrant and chronic inflammation observed during the disease progression.
Collapse
Affiliation(s)
- Cristina de Dios
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Xenia Abadin
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Vicente Roca-Agujetas
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla., Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Marina Jimenez-Martinez
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Clinical Immunology and Rheumatology, Amsterdam UMC, Amsterdam, Netherlands
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramon Trullas
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Montserrat Mari
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
41
|
You SF, Brase L, Filipello F, Iyer AK, Del-Aguila J, He J, D’Oliveira Albanus R, Budde J, Norton J, Gentsch J, Dräger NM, Sattler SM, Kampmann M, Piccio L, Morris JC, Perrin RJ, McDade E, Dominantly Inherited Alzheimer Network, Paul SM, Cashikar AG, Benitez BA, Harari O, Karch CM. MS4A4A modifies the risk of Alzheimer disease by regulating lipid metabolism and immune response in a unique microglia state. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.06.23285545. [PMID: 36798226 PMCID: PMC9934804 DOI: 10.1101/2023.02.06.23285545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Genome-wide association studies (GWAS) have identified many modifiers of Alzheimer disease (AD) risk enriched in microglia. Two of these modifiers are common variants in the MS4A locus (rs1582763: protective and rs6591561: risk) and serve as major regulators of CSF sTREM2 levels. To understand their functional impact on AD, we used single nucleus transcriptomics to profile brains from carriers of these variants. We discovered a "chemokine" microglial subpopulation that is altered in MS4A variant carriers and for which MS4A4A is the major regulator. The protective variant increases MS4A4A expression and shifts the chemokine microglia subpopulation to an interferon state, while the risk variant suppresses MS4A4A expression and reduces this subpopulation of microglia. Our findings provide a mechanistic explanation for the AD variants in the MS4A locus. Further, they pave the way for future mechanistic studies of AD variants and potential therapeutic strategies for enhancing microglia resilience in AD pathogenesis.
Collapse
Affiliation(s)
- Shih-Feng You
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Logan Brase
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Fabia Filipello
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Abhirami K. Iyer
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Jorge Del-Aguila
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - June He
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | | | - John Budde
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Nina M. Dräger
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M. Sattler
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Piccio
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
- Charles Perkins Centre and Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - John C. Morris
- Department of Neurology, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J. Perrin
- Department of Neurology, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis School of Medicine, USA
| | | | - Steven M. Paul
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Anil G. Cashikar
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
| | - Bruno A. Benitez
- Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
42
|
de Frutos Lucas J, Sewell KR, García-Colomo A, Markovic S, Erickson KI, Brown BM. How does apolipoprotein E genotype influence the relationship between physical activity and Alzheimer's disease risk? A novel integrative model. Alzheimers Res Ther 2023; 15:22. [PMID: 36707869 PMCID: PMC9881295 DOI: 10.1186/s13195-023-01170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Wide evidence suggests that physical activity (PA) confers protection against Alzheimer's disease (AD). On the other hand, the apolipoprotein E gene (APOE) ε4 allele represents the greatest genetic risk factor for developing AD. Extensive research has been conducted to determine whether frequent PA can mitigate the increased AD risk associated with APOE ε4. However, thus far, these attempts have produced inconclusive results. In this context, one possible explanation could be that the influence of the combined effect of PA and APOE ε4 carriage might be dependent on the specific outcome measure utilised. MAIN BODY In order to bridge these discrepancies, the aim of this theoretical article is to propose a novel model on the interactive effects of PA and APOE ε4 carriage on well-established mechanisms underlying AD. Available literature was searched to investigate how PA and APOE ε4 carriage, independently and in combination, may alter several molecular pathways involved in AD pathogenesis. The reviewed mechanisms include amyloid beta (Aβ) and tau deposition and clearance, neuronal resilience and neurogenesis, lipid function and cerebrovascular alterations, brain immune response and glucose metabolism. Finally, combining all this information, we have built an integrative model, which includes evidence-based and theoretical synergistic interactions across mechanisms. Moreover, we have identified key knowledge gaps in the literature, providing a list of testable hypotheses that future studies need to address. CONCLUSIONS We conclude that PA influences a wide array of molecular targets involved in AD neuropathology. A deeper understanding of where, when and, most importantly, how PA decreases AD risk even in the presence of the APOE ε4 allele will enable the creation of new protocols using exercise along pharmaceuticals in combined therapeutic approaches.
Collapse
Affiliation(s)
- Jaisalmer de Frutos Lucas
- Experimental Psychology, Cognitive Processes and Logopedia Department, School of Psychology, Universidad Complutense de Madrid, 28223, Pozuelo de Alarcón, Spain.
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- Departamento de PsicologíaFacultad de Ciencias de la Vida y de la Naturaleza, Universidad Antonio de Nebrija, 28015, Madrid, Spain.
| | - Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Alejandra García-Colomo
- Experimental Psychology, Cognitive Processes and Logopedia Department, School of Psychology, Universidad Complutense de Madrid, 28223, Pozuelo de Alarcón, Spain
| | - Shaun Markovic
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain
- AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Belinda M Brown
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
43
|
The role of ApoE-mediated microglial lipid metabolism in brain aging and disease. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2023; 5:e00018. [PMID: 36710921 PMCID: PMC9869962 DOI: 10.1097/in9.0000000000000018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Microglia are a unique population of immune cells resident in the brain that integrate complex signals and dynamically change phenotypes in response to the brain microenvironment. In recent years, single-cell sequencing analyses have revealed profound cellular heterogeneity and context-specific transcriptional plasticity of microglia during brain development, aging, and disease. Emerging evidence suggests that microglia adapt phenotypic plasticity by flexibly reprogramming cellular metabolism to fulfill distinct immune functions. The control of lipid metabolism is central to the appropriate function and homeostasis of the brain. Microglial lipid metabolism regulated by apolipoprotein E (ApoE), a crucial lipid transporter in the brain, has emerged as a critical player in regulating neuroinflammation. The ApoE gene allelic variant, ε4, is associated with a greater risk for neurodegenerative diseases. In this review, we explore novel discoveries in microglial lipid metabolism mediated by ApoE. We elaborate on the functional impact of perturbed microglial lipid metabolism on the underlying pathogenesis of brain aging and disease.
Collapse
|
44
|
Martins GL, Ferreira CN, Palotás A, Rocha NP, Reis HJ. Role of Oxysterols in the Activation of the NLRP3 Inflammasome as a Potential Pharmacological Approach in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:202-212. [PMID: 35339182 PMCID: PMC10190144 DOI: 10.2174/1570159x20666220327215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a complex clinical condition with multifactorial origin posing a major burden to health care systems across the world. Even though the pathophysiological mechanisms underlying the disease are still unclear, both central and peripheral inflammation has been implicated in the process. Piling evidence shows that the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in AD. As dyslipidemia is a risk factor for dementia, and cholesterol can also activate the inflammasome, a possible link between lipid levels and the NLRP3 inflammasome has been proposed in Alzheimer's. It is also speculated that not only cholesterol but also its metabolites, the oxysterols, may be involved in AD pathology. In this context, mounting data suggest that NLRP3 inflammasome activity can be modulated by different peripheral nuclear receptors, including liver-X receptors, which present oxysterols as endogenous ligands. In light of this, the current review explores whether the activation of NLRP3 by nuclear receptors, mediated by oxysterols, may also be involved in AD and could serve as a potential pharmacological avenue in dementia.
Collapse
Affiliation(s)
- Gabriela L. Martins
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| | | | - András Palotás
- Kazan Federal University, Kazan, Russia
- Asklepios Med, Szeged, Hungary
| | - Natália P. Rocha
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helton J. Reis
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| |
Collapse
|
45
|
Stankiewicz AM, Jaszczyk A, Goscik J, Juszczak GR. Stress and the brain transcriptome: Identifying commonalities and clusters in standardized data from published experiments. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110558. [PMID: 35405299 DOI: 10.1016/j.pnpbp.2022.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
Interpretation of transcriptomic experiments is hindered by many problems including false positives/negatives inherent to big-data methods and changes in gene nomenclature. To find the most consistent effect of stress on brain transcriptome, we retrieved data from 79 studies applying animal models and 3 human studies investigating post-traumatic stress disorder (PTSD). The analyzed data were obtained either with microarrays or RNA sequencing applied to samples collected from more than 1887 laboratory animals and from 121 human subjects. Based on the initial database containing a quarter million differential expression effect sizes representing transcripts in three species, we identified the most frequently reported genes in 223 stress-control comparisons. Additionally, the analysis considers sex, individual vulnerability and contribution of glucocorticoids. We also found an overlap between gene expression in PTSD patients and animals which indicates relevance of laboratory models for human stress response. Our analysis points to genes that, as far as we know, were not specifically tested for their role in stress response (Pllp, Arrdc2, Midn, Mfsd2a, Ccn1, Htra1, Csrnp1, Tenm4, Tnfrsf25, Sema3b, Fmo2, Adamts4, Gjb1, Errfi1, Fgf18, Galnt6, Slc25a42, Ifi30, Slc4a1, Cemip, Klf10, Tom1, Dcdc2c, Fancd2, Luzp2, Trpm1, Abcc12, Osbpl1a, Ptp4a2). Provided transcriptomic resource will be useful for guiding the new research.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
46
|
Chen G, Cheng K, Niu Y, Zhu L, Wang X. (-)-Epicatechin gallate prevents inflammatory response in hypoxia-activated microglia and cerebral edema by inhibiting NF-κB signaling. Arch Biochem Biophys 2022; 729:109393. [PMID: 36084697 DOI: 10.1016/j.abb.2022.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
High-altitude cerebral edema (HACE), a potentially lethal disease, is associated with a time-dependent exposure to altitude-related hypobaric hypoxia (HH) and has reportedly been associated with microglia hyperactivation. Catechins are substances with good antioxidant properties, among which (-)-epigallocatechin gallate (EGCG) may play a neuroprotective role through the inhibition of microglia overactivation; however, the function of its analog- (-)-epicatechin gallate (ECG)-requires further elucidation. The aim of the present study was to investigate whether ECG prevented HACE by inhibiting HH-activated microglia. Primary microglia exposed to lipopolysaccharide (LPS)/ATP were co-treated with EGCG, ECG, and (-)-epigallocatechin, and ECG and EGCG exerted significant anti-inflammatory and neuroprotective effects. ECG inhibited the NF-κB pathway to prevent the activation of microglia induced by 1% O2. In addition, ECG ameliorated the increase in brain water content and aquaporin 4 expression induced by HH in mice. ECG also reduced the number of Iba1+ microglia in the brain, the release of proinflammatory factors, and the recruitment of microglia to blood vessels in HH-exposed mice. The outcomes of the present study revealed that ECG alleviated hypoxic hyperactivated microglia, reduced the neuroinflammation and blood-brain barrier permeability, and prevented HACE by inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Guijuan Chen
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Kang Cheng
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yun Niu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
47
|
Chen C, Ji H, Jiang N, Wang Y, Zhou Y, Zhu Z, Hu Y, Wang Y, Li A, Guo A. Thrombin increases the expression of cholesterol 25-hydroxylase in rat astrocytes after spinal cord injury. Neural Regen Res 2022; 18:1339-1346. [PMID: 36453421 PMCID: PMC9838143 DOI: 10.4103/1673-5374.357905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Astrocytes are important cellular centers of cholesterol synthesis and metabolism that help maintain normal physiological function at the organism level. Spinal cord injury results in aberrant cholesterol metabolism by astrocytes and excessive production of oxysterols, which have profound effects on neuropathology. 25-Hydroxycholesterol (25-HC), the main product of the membrane-associated enzyme cholesterol-25-hydroxylase (CH25H), plays important roles in mediating neuroinflammation. However, whether the abnormal astrocyte cholesterol metabolism induced by spinal cord injury contributes to the production of 25-HC, as well as the resulting pathological effects, remain unclear. In the present study, spinal cord injury-induced activation of thrombin was found to increase astrocyte CH25H expression. A protease-activated receptor 1 inhibitor was able to attenuate this effect in vitro and in vivo. In cultured primary astrocytes, thrombin interacted with protease-activated receptor 1, mainly through activation of the mitogen-activated protein kinase/nuclear factor-kappa B signaling pathway. Conditioned culture medium from astrocytes in which ch25h expression had been knocked down by siRNA reduced macrophage migration. Finally, injection of the protease activated receptor 1 inhibitor SCH79797 into rat neural sheaths following spinal cord injury reduced migration of microglia/macrophages to the injured site and largely restored motor function. Our results demonstrate a novel regulatory mechanism for thrombin-regulated cholesterol metabolism in astrocytes that could be used to develop anti-inflammatory drugs to treat patients with spinal cord injury.
Collapse
Affiliation(s)
- Chen Chen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Ji
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Nan Jiang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yue Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhenjie Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yuming Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Aisong Guo, ; Aihong Li, .
| | - Aisong Guo
- Department of Traditional Chinese Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Aisong Guo, ; Aihong Li, .
| |
Collapse
|
48
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
49
|
Benarroch E. What Is the Role of Microglial Metabolism in Inflammation and Neurodegeneration? Neurology 2022; 99:99-105. [PMID: 35851556 DOI: 10.1212/wnl.0000000000200920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022] Open
|
50
|
Lu Y, Chang P, Ding W, Bian J, Wang D, Wang X, Luo Q, Wu X, Zhu L. Pharmacological inhibition of mitochondrial division attenuates simulated high-altitude exposure-induced cerebral edema in mice: Involvement of inhibition of the NF-κB signaling pathway in glial cells. Eur J Pharmacol 2022; 929:175137. [DOI: 10.1016/j.ejphar.2022.175137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|