1
|
Joseph A, Cheng X, Harding J, Al-Saleem J, Green P, Griffith M, Veis D, Rauch DA, Ratner L. Role of the CTCF binding site in Human T-Cell Leukemia Virus-1 pathogenesis. PLoS Pathog 2025; 21:e1012293. [PMID: 40460345 PMCID: PMC12165413 DOI: 10.1371/journal.ppat.1012293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/13/2025] [Accepted: 05/13/2025] [Indexed: 06/11/2025] Open
Abstract
During HTLV-1 infection, the virus integrates into the host cell genome as a provirus with a single CCCTC binding protein (CTCF) binding site (vCTCF-BS), which acts as an insulator between transcriptionally active and inactive regions. Previous studies have shown that the vCTCF-BS is important for maintenance of chromatin structure, regulation of viral expression, and DNA and histone methylation. Here, we show that the vCTCF-BS also regulates viral infection and pathogenesis in vivo in a humanized (Hu) mouse model of adult T-cell leukemia/lymphoma. Three cell lines were used to initiate infection of the Hu-mice, i) HTLV-1-WT which carries an intact HTLV-1 provirus genome, ii) HTLV-1-CTCF, which contains a provirus with a mutated vCTCF-BS which abolishes CTCF binding, and a stop codon immediately upstream of the mutated vCTCF-BS which deletes the last 23 amino acids of the p12 gene, and iii) HTLV-1-p12stop that contains the intact vCTCF-BS, but retains the same stop codon in p12 as in the HTLV-1-CTCF cell line. Hu-mice were infected with mitomycin-treated or irradiated HTLV-1 producing cell lines. There was a delay in pathogenicity when Hu-mice were infected with the HTLV-1-CTCF virus compared to mice infected with either HTLV-1-p12 stop or HTLV-1-WT virus. Proviral load (PVL), spleen weights, and CD4 T cell counts were significantly lower in HTLV-1-CTCF infected mice compared to HTLV-1-p12stop infected mice. Furthermore, we found a direct correlation between the PVL in peripheral blood and death of HTLV-1-CTCF infected mice. In cell lines, we found that the vCTCF-BS regulates Tax expression in a time-dependent manner. The scRNAseq analysis of splenocytes from infected mice suggests that the vCTCF-BS plays an important role in activation and expansion of T lymphocytes in vivo. Overall, these findings indicate that the vCTCF-BS regulates Tax expression, proviral load, and HTLV pathogenicity in vivo.
Collapse
Affiliation(s)
- Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacob Al-Saleem
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Patrick Green
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Deborah Veis
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| |
Collapse
|
2
|
Pise-Masison CA, Rahman MA, Masison DC, Gutowska A, Moles R, Bissa M, Sarkis S, Schifanella L, Zhou T, Jones J, Jacobson S, Franchini G. Development and optimization of human T-cell leukemia virus-specific antibody-dependent cell-mediated cytotoxicity (ADCC) assay directed to the envelope protein. J Virol 2025; 99:e0226824. [PMID: 40152593 PMCID: PMC12090781 DOI: 10.1128/jvi.02268-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 03/29/2025] Open
Abstract
An estimated 10-20 million people worldwide are infected with the deltaretrovirus human T-cell leukemia virus type 1 (HTLV-1). Although most infected individuals remain asymptomatic, some progress to develop the fatal and debilitating disease adult T-cell leukemia/lymphoma (ATLL) or HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or develop a plethora of other inflammatory disorders. In addition, HTLV-1 infection is associated with immunosuppression and a shorter lifespan. Although a protective role for neutralizing antibodies has been suggested, the role of non-neutralizing antibody-dependent cell-mediated cytotoxicity (ADCC) remains unclear, largely because an assay to measure this response has not been established. Here, we developed a high-throughput flow cytometry-based assay system to measure HTLV-1 envelope-specific ADCC. We used a natural killer cell-resistant T-lymphoblastoid cell line stably expressing the green fluorescent protein GFP to construct a target cell line expressing HTLV-1 envelope protein and using monoclonal antibodies and plasma samples from HTLV-infected or uninfected individuals, validating the specificity and sensitivity of the assay. We detected high ADCC activity in samples from HTLV-1-infected humans. In the plasma of experimentally infected macaques, ADCC activity was measured and a correlation between ADCC activity and HTLV-1 envelope antibody titers was observed. Further, we observed a significant increase in ADCC titer over time; as HTLV-1 infection persists, a higher ADCC response is generated, potentially influencing disease outcome. ADCC titer in HTLV-1-infected macaques also positively correlated with FLT3LG, IL-17F, CD4+ T cells, and lymphocytes but negatively correlated with monocyte frequency and classical monocyte frequency. In conclusion, these findings detail the generation of a cell line that enabled development of an HTLV-specific ADCC assay, which can be employed in large clinical studies as well as research involving humans or non-human primates.IMPORTANCEThis approach measures human T-cell leukemia virus (HTLV)-specific envelope antibody-dependent cell-mediated cytotoxicity responses, provides a critical tool to investigate the role of envelope-specific binding antibodies in the immune control of HTLV infection and pathogenesis, and may help guide the development of both therapeutic and preventative vaccine approaches.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Jones
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Steve Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Shichijo T, Yasunaga JI. Stratagems of HTLV-1 for persistent infection and the resultant oncogenesis: Immune evasion and clonal expansion. Leuk Res 2025; 152:107680. [PMID: 40120237 DOI: 10.1016/j.leukres.2025.107680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is one of the most severe malignant T-cell leukemia/lymphomas induced by human T-cell leukemia virus type I (HTLV-1). HTLV-1 persists in the host through stratagems of proliferating infected cells and evading host immunity. HTLV-1 encodes two viral oncogenes, tax and HTLV-1 bZIP factor (HBZ), which are related with protection from cell death and promotion of cell proliferation. In addition, HBZ and the somatic mutations in host genes, such as C-C chemokine receptor 4 (CCR4) and CIC, convert HTLV-1-infected cells into regulatory T (Treg)-like cells, leading to evasion of host immunity. A recent study demonstrated the key mechanisms for clonal expansion of HTLV-1-infected cells; the activation of the transforming growth factor (TGF)-β signaling pathway by HBZ not only converts HTLV-1-infected cells into a Treg-like cells through Foxp3 expression, but also contributes to the proliferation of HTLV-1-infected cells themselves. Due to the longevity induced by HTLV-1 infection, somatic mutations and epigenetic aberrations are accumulated in infected clones, contributing to the oncogenesis of ATL. Collectively, the long-term survival of infected cells enabled by the HTLV-1's stratagems for persistent infection ultimately leads to ATL oncogenesis via the accumulation of genetic/epigenetic abnormalities.
Collapse
Affiliation(s)
- Takafumi Shichijo
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Kogure Y, Kataoka K. Clinical and therapeutic significance of genetic profiling in adult T-cell leukemia/lymphoma. Leuk Res 2025; 151:107676. [PMID: 40056531 DOI: 10.1016/j.leukres.2025.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a highly aggressive T-cell malignancy with a poor prognosis. Several genetic analyses using next-generation sequencing have uncovered recurrent mutations and copy number alterations involved in diverse functional pathways, including T-cell receptor/NF-κB signaling, immune surveillance, transcription factors, chemokine receptors, and CIC-ATXN1 complex. In addition to these alterations, recurrent structural variations, including PD-L1 (CD274) and REL truncations, characterize ATLL genome. Recent clinicogenetic studies have linked several genetic alterations, such as PRKCB mutations, to a worse clinical outcome. Using genetic and clinical factors, novel prognostic models have been developed, which outperform previous models based on only clinical factors in prognostic prediction. Furthermore, genetic and epigenetic events influencing response to molecularly targeted therapies, such as mogamulizumab and valemetostat, have also been identified. Collectively, these insights underscore the clinical importance of assessing genetic alterations. This review highlights the latest insights into the genetic landscape of ATLL and their clinical implications, which will facilitate the development of future strategies for targeted and personalized therapy.
Collapse
Affiliation(s)
- Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan; Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Liu B, Yasunaga JI, Liang Y, Zhou R, Yang S, Yuan X, Liu J, Zuo X, Miura M, Higuchi Y, Matsumoto T, Toyoda K, Matsuoka M, Ma G. Identification of AK4 and RHOC as potential oncogenes addicted by adult T cell leukemia. Proc Natl Acad Sci U S A 2025; 122:e2416412122. [PMID: 39982744 PMCID: PMC11874535 DOI: 10.1073/pnas.2416412122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Adult T cell leukemia (ATL) is a highly aggressive T cell malignancy characterized by human T cell leukemia virus type 1 (HTLV-1) infection. ATL has a very poor prognosis and lacks satisfactory treatments; therefore, it is critical to identify potential targets in ATL cells in order to develop effective targeted therapeutics. Here, we report the identification of two oncogenes, AK4 and RHOC, as target genes of miR-455-3p, a tumor-suppressive microRNA in ATL patients. Importantly, AK4 and RHOC are highly expressed in ATL and exhibit oncogenic potentials in vitro and in vivo. Interestingly, transcriptome and metabolome analyses reveal a functional overlap of AK4 and RHOC, including activating oncogenic pathways such as Myc targets and deregulating lipid metabolism such as enhancing the production of sphingomyelin, a tumor-promoting lipid. In particular, compared to other types of T cell malignancy such as T cell acute lymphoblastic leukemia (T-ALL) and cutaneous T cell lymphoma (CTCL), ATL is sensitive to sphingomyelin inhibition and AK4 or RHOC depletion. Altogether, we report a distinct dependency of ATL on AK4 and RHOC oncogenes and an oncometabolite sphingomyelin, which together represent targetable vulnerabilities of ATL that could be exploited for developing effective therapeutics.
Collapse
Affiliation(s)
- Benquan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Yi Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Ruoning Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Sikai Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Xiaoyi Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Xiaorui Zuo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| | - Michi Miura
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Yusuke Higuchi
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Takashi Matsumoto
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Kosuke Toyoda
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Guangyong Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing211198, China
| |
Collapse
|
6
|
Sviderskaia K, Meier-Stephenson V. Viral Appropriation of Specificity Protein 1 (Sp1): The Role of Sp1 in Human Retro- and DNA Viruses in Promoter Activation and Beyond. Viruses 2025; 17:295. [PMID: 40143226 PMCID: PMC11946086 DOI: 10.3390/v17030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Specificity protein 1 (Sp1) is a highly ubiquitous transcription factor and one employed by numerous viruses to complete their life cycles. In this review, we start by summarizing the relationships between Sp1 function, DNA binding, and structural motifs. We then describe the role Sp1 plays in transcriptional activation of seven viral families, composed of human retro- and DNA viruses, with a focus on key promoter regions. Additionally, we discuss pathways in common across multiple viruses, highlighting the importance of the cell regulatory role of Sp1. We also describe Sp1-related epigenetic and protein post-translational modifications during viral infection and how they relate to Sp1 binding. Finally, with these insights in mind, we comment on the potential for Sp1-targeting therapies, such as repurposing drugs currently in use in the anti-cancer realm, and what limitations such agents would have as antivirals.
Collapse
Affiliation(s)
- Kira Sviderskaia
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Vanessa Meier-Stephenson
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
7
|
Mizuike J, Suzuki K, Tosaka S, Kuze Y, Kobayashi S, Nakashima M, Jimbo K, Nannya Y, Suzuki Y, Uchimaru K, Yamagishi M. Rewired chromatin structure and epigenetic gene dysregulation during HTLV-1 infection to leukemogenesis. Cancer Sci 2025; 116:513-523. [PMID: 39561277 PMCID: PMC11786301 DOI: 10.1111/cas.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) broadly impacts host genes, affecting the infected cell population and inducing the development of a disease with a poor prognosis, adult T-cell leukemia-lymphoma (ATL). This study aimed to provide a comprehensive epigenomic characterization of the infected cell population and evaluated the transcriptome and chromatin structures of peripheral blood cells in HTLV-1-infected individuals using RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin sequencing (ATAC-seq). The infected cells showed significant changes in gene expression patterns from the polyclonal stage and before ATL onset while demonstrating similarities to tumor-forming ATL cells. These similarities were a result of large-scale open chromatin changes, supporting the independent early formation of epigenomic aberrations as an underlying mechanism for later clonal propagation. This study also demonstrated that HTLV-1 Tax directly affects the host chromatin structure, thereby developing fundamental epigenomic characteristics. Several Tax target genes, including the RASGRP3-ERK pathway, were recognized, indicating an impact on signaling pathways. This genome-wide variability in chromatin structural property is a novel feature of HTLV-1 infection and may contribute to pathogenic mechanisms. In addition, it has crucial implications for better understanding the impact of HTLV-1 on the host genome and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Jun Mizuike
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Kako Suzuki
- Laboratory of Viral Oncology and Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Shu Tosaka
- Laboratory of Viral Oncology and Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Yuta Kuze
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Seiichiro Kobayashi
- Division of Hematopoietic Disease Control, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Department of HematologyKanto Rosai HospitalKanagawaJapan
| | - Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
- Department of Rare Diseases Research, Institute of Medical ScienceSt. Marianna University School of MedicineKanagawaJapan
| | - Koji Jimbo
- Division of Hematopoietic Disease Control, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Department of Hematology/OncologyIMSUT Hospital, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Department of Hematology/OncologyIMSUT Hospital, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
- Department of Hematology/OncologyIMSUT Hospital, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Makoto Yamagishi
- Laboratory of Viral Oncology and Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
8
|
Pourrezaei S, Letafati A, Molaverdi G, Norouzi M, Mozhgani SH. RAB3GAP2 dysregulation in adult T-cell leukemia/lymphoma (ATLL) compared to acute lymphoblastic leukemia (ALL): a molecular perspective. BMC Res Notes 2025; 18:28. [PMID: 39838474 PMCID: PMC11752935 DOI: 10.1186/s13104-025-07084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a type of blood cancer related to human T-cell lymphotropic virus type 1 (HTLV-1). The principal aim of this study was to investigate cellular processes related to innate immune response, intracellular protein transport, and translational initiation regulation in individuals afflicted with ATLL and Acute lymphoblastic leukemia (ALL). Whole blood samples and peripheral blood mononuclear cells were collected from 10 viral ATLL patients and 10 ALL subjects. Real-time quantitative PCR was then performed to quantify mRNA expression levels of SMC6, FANCM, EIF4H, WDR7, RAB3GAP2, and IFN α/β. The study revealed some distinctions between ATLL and ALL patients. Particularly, RAB3GAP2 level (P = 0.028) was found to be elevated in ATLL patients compared to ALL. Conversely, expression levels of IFN-β (P = 0.31), SMC6 (P = 0.68), WDR7 (P = 0.43), EIF4H (P = 0.38), and FANCM (P = 0.57) were diminished in ATLL patients in contrast to ALL. These proteins play a pivotal role in both translation and immune activation, suggesting a potential correlation between the observed disparities and the virus-mediated progression of cancer. However, it is worth noting that the expression differences in FANCM, EIF4H, SMC6, and WDR7 between ATLL and ALL were minimal. This proposes that the underlying molecular mechanisms governing ATLL and ALL may largely overlap concerning these cellular processes. However, considerable increased expression of RAB3GAP2 was observed in ATLL compared to ALL.
Collapse
Affiliation(s)
- Samira Pourrezaei
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Alborz, Iran
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran.
- Non-communicable Disease Research Center, Alborz University of Medical Sciences, Alborz, Iran.
| |
Collapse
|
9
|
King EM, Panfil AR. Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology. Viruses 2025; 17:124. [PMID: 39861913 PMCID: PMC11769288 DOI: 10.3390/v17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished. The ability to study RNA epigenetic modifications and splice variants has become more feasible with the recent development of third-generation sequencing technologies, such as Oxford nanopore sequencing. This review will highlight the dynamic roles of known RNA and post-transcriptional RNA epigenetic modifications within HTLV-1 biology, including viral hbz, long noncoding RNAs, microRNAs (miRNAs), transfer RNAs (tRNAs), R-loops, N6-methyladenosine (m6A) modifications, and RNA-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Emily M. King
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Comprehensive Cancer Center, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Bahavar A, Moradi A, Mohammadi H, Norouzi M, Khodayar S, Mozhgani SH, Tabarraei A. Possible Trace of HTLV-1 Virus in Modulation of Cbl-b, ITCH, and PP2A Suppressor Genes. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2025; 14:472-482. [PMID: 40123588 PMCID: PMC11927157 DOI: 10.22088/ijmcm.bums.14.1.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/29/2024] [Indexed: 03/25/2025]
Abstract
For almost 40 years, human T-lymphotropic virus type 1 (HTLV-1) has posed a persistent challenge in managing the major diseases associated with HTLV-1. Intracellular inhibitors are critical regulators of T cell activation, and their function can be influenced by viruses. Because of less studied aspects of HTLV-1 in T cell activation, we evaluated three suppressor genes in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and asymptomatic carriers (ACs). Thirty samples were collected from three groups from 10/09/2022 to 03/27/2024. To confirm all the samples, ELISA and PCR tests were done. The isolation of peripheral blood mononuclear cells (PBMCs), RNA extraction, and cDNA synthesis were conducted. Subsequently, the expression of Tax trans-activator, HTLV-1 bZIP factor (HBZ), protein phosphatase 2 A (PP2A), and two E3 ligases, including Casitas B lymphoma-b (Cbl-b) and itchy E3 Ubiquitin protein ligase (ITCH), was measured via Real-time PCR. This survey showed a significant increase in ITCH among individuals with HAM/TSP and ACs compared to the healthy group. The PP2A mRNA expression level was upregulated in the ACs; in contrast, the expression levels were approximately similar in the HAM/TSP and healthy groups. Also, the mean expression level of Cbl-b was higher in the ACs than in the other groups; however, it was not statistically significant. Our findings demonstrated that the intercellular suppressor genes could be dysregulated during the HTLV-1 infection, probably as part of the virus's strategic goals. The findings can be helpful for future investigation in the diagnosis and treatment area.
Collapse
Affiliation(s)
- Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Abdolvahab Moradi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Khodayar
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sayed-Hamidreza Mozhgani
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
11
|
Wada Y, Naito T, Fukushima T, Saito M. Evaluation of ALKBH2 and ALKBH3 gene regulation in patients with adult T-cell leukemia/lymphoma. Virol J 2024; 21:316. [PMID: 39633427 PMCID: PMC11619432 DOI: 10.1186/s12985-024-02590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic virus that causes malignant adult T-cell leukemia/lymphoma (ATL). Patients infected with HTLV-1 are considered HTLV-1 carriers, and a small proportion of patients progress to life-threatening ATL after a long asymptomatic phase. No antiviral agent or preventive vaccine specific for HTLV-1 infection is established in current situation. For development of countermeasures to combat HTLV-1 infection and ATL, it is essential to expand our knowledge about their pathogenesis. Recently, AlkB homolog (ALKBH) family have been shown to participate in the oncogenesis of various cancer types. METHODS To investigate the potential role of ALKBH family members in the pathogenesis of ATL, we analyzed their gene expression dynamics in HTLV-1-infected T-cell lines and peripheral blood mononuclear cell-derived clinical specimens obtained from asymptomatic HTLV-1 carriers and patients with acute-type ATL. Epigenetic analysis was performed to dissect the mechanisms of ALKBH3 gene regulation using cultivated cells and a public dataset. RESULTS The mRNA expression levels of ALKBH2 and ALKBH3 were significantly or suggestively decreased in asymptomatic HTLV-1 carriers, but reverted in acute-type ATL patients, correlating with HTLV-1 basic leucine zipper factor gene expression. Intriguingly, the pre-mRNA expression of ALKBH2 and ALKBH3 was significantly suppressed in patients infected with HTLV-1, but not in healthy controls. Epigenetic analysis was performed to dissect the mechanisms of ALKBH3 gene regulation. In vitro analysis suggested a possible relationship between DNA methylation and ALKBH3 gene expression. Investigation of a public dataset revealed that specific CpG sites exhibited characteristically regulated methylation states in HTLV-1-infected T-cell subsets. CONCLUSION We discovered dynamically regulated patterns of ALKBH2 and ALKBH3 gene expression in patients infected with HTLV-1, and specific CpG sites epigenetically regulated by HTLV-1 infection. This study provides novel insights into HTLV-1 infection and contributes to the elucidation of ATL pathogenesis.
Collapse
Affiliation(s)
- Yuji Wada
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tadasuke Naito
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, Graduate School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
12
|
Yamada Y, Miyoshi H, Takeuchi M, Nakashima K, Yamada K, Kato T, Tanaka K, Kohno K, Imaizumi Y, Miyazaki Y, Ohshima K. TIGIT expression on neoplastic cells is a poor prognostic factor for adult T-cell leukaemia/lymphoma. Pathology 2024; 56:993-999. [PMID: 39266421 DOI: 10.1016/j.pathol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/02/2024] [Accepted: 06/02/2024] [Indexed: 09/14/2024]
Abstract
Adult T-cell leukaemia/lymphoma (ATLL) is an aggressive peripheral T-cell neoplasm with a poor prognosis. T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) is an immune checkpoint receptor expressed on T and natural killer cells. Although increased TIGIT expression in the tumour microenvironment is associated with poor prognosis in various neoplasms, its relevance in ATLL remains unknown. Herein, we investigated the clinicopathological impact of TIGIT expression on ATLL using immunohistochemistry. TIGIT expression was detected in 21 of 84 patients (25%). A partial association between the clinical features and immune checkpoint molecules and the expression of TIGIT was found including sIL-2R, CD86 and GITR. TIGIT-positive patients [median survival time (MST) 8.9 months, 95% confidence interval (CI) 7.7-15.6] had inferior overall survival compared with TIGIT-negative patients (MST 18.7 months, 95% CI 12.0-36.4) (p=0.0124]. TIGIT expression maintained its prognostic value for overall survival in both univariate and multivariate analyses [hazard ratio (HR) 1.909; 95% CI 1.044-3.488; p=0.0356]. Further studies are required to clarify the clinical and biological significance of TIGIT expression in patients with ATLL.
Collapse
Affiliation(s)
- Yuichi Yamada
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan; Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.
| | - Mai Takeuchi
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kazutaka Nakashima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kyohei Yamada
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Ken Tanaka
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Kei Kohno
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan; Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
13
|
Shirasawa M, Nakajima R, Zhou Y, Zhao L, Fikriyanti M, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Activation of the CDK7 Gene, Coding for the Catalytic Subunit of the Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK) and General Transcription Factor II H, by the Trans-Activator Protein Tax of Human T-Cell Leukemia Virus Type-1. Genes (Basel) 2024; 15:1080. [PMID: 39202439 PMCID: PMC11353830 DOI: 10.3390/genes15081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL). The trans-activator protein Tax of HTLV-1 plays crucial roles in leukemogenesis by promoting proliferation of virus-infected cells through activation of growth-promoting genes. However, critical target genes are yet to be elucidated. We show here that Tax activates the gene coding for cyclin-dependent kinase 7 (CDK7), the essential component of both CDK-activating kinase (CAK) and general transcription factor TFIIH. CAK and TFIIH play essential roles in cell cycle progression and transcription by activating CDKs and facilitating transcriptional initiation, respectively. Tax induced CDK7 gene expression not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs) along with increased protein expression. Tax stimulated phosphorylation of CDK2 and RNA polymerase II at sites reported to be mediated by CDK7. Tax activated the CDK7 promoter through the NF-κB pathway, which mainly mediates cell growth promotion by Tax. Knockdown of CDK7 expression reduced Tax-mediated induction of target gene expression and cell cycle progression. These results suggest that the CDK7 gene is a crucial target of Tax-mediated trans-activation to promote cell proliferation by activating CDKs and transcription.
Collapse
Affiliation(s)
- Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama 963-8611, Fukushima, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| |
Collapse
|
14
|
Bittencourt AL, Farre L. Infective dermatitis associated with human T-cell lymphotropic virus type-1, an underdiagnosed disease. Int J Infect Dis 2024; 145:107058. [PMID: 38697604 DOI: 10.1016/j.ijid.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Infective dermatitis associated with human T-cell lymphotropic virus type-1 (HTLV-1) (IDH) is a severe form of chronically infected eczema occurring in early childhood, although very rarely cases have been reported in adults. Most of the cases are from Jamaica and Brazil and occur in individuals with low socioeconomic status. IDH is always associated with refractory Staphylococcus aureus or beta-hemolytic Streptococcus infection of the skin and nasal vestibules. Patients with IDH may develop other even more severe HTLV-1-associated diseases, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) of early or late appearance and adult T-cell leukemia/lymphoma. In the context of the Brazilian experience, it has been observed that 54% of IDH patients exhibit the juvenile form of HAM/TSP while the estimated incidence of adult HAM/TSP is 3%. As there are no curative treatments for HTLV-1 infection (or vaccines) or most of its associated diseases, prevention of infection is fundamental, mainly by vertical transmission, as it is responsible for the development of IDH, infantojuvenile HAM/TSP, and ATL. Public measures to reduce this transmission must be implemented urgently. Furthermore, it is recommended, mainly in HTLV-1 endemic areas, to search for HTLV-1 infection in all patients with infected eczema, even in adults.
Collapse
Affiliation(s)
- A L Bittencourt
- Department of Pathology, Prof. Edgard Santos Teaching Hospital, Federal University of Bahia, Salvador, Brazil
| | - L Farre
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), ONCOBELL, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Spain.
| |
Collapse
|
15
|
Joseph A, Cheng X, Harding J, Al-Saleem J, Green P, Veis D, Rauch D, Ratner L. Role of the CTCF Binding Site in Human T-Cell Leukemia Virus-1 Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596170. [PMID: 38853836 PMCID: PMC11160593 DOI: 10.1101/2024.05.28.596170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During HTLV-1 infection, the virus integrates into the host cell genome as a provirus with a single CCCTC binding protein (CTCF) binding site (vCTCF-BS), which acts as an insulator between transcriptionally active and inactive regions. Previous studies have shown that the vCTCF-BS is important for maintenance of chromatin structure, regulation of viral expression, and DNA and histone methylation. Here, we show that the vCTCF-BS also regulates viral infection and pathogenesis in vivo in a humanized (Hu) mouse model of adult T-cell leukemia/lymphoma. Three cell lines were used to initiate infection of the Hu-mice, i) HTLV-1-WT which carries an intact HTLV-1 provirus genome, ii) HTLV-1-CTCF, which contains a provirus with a mutated vCTCF-BS which abolishes CTCF binding, and a stop codon immediate upstream of the mutated vCTCF-BS which deletes the last 23 amino acids of p12, and iii) HTLV-1-p12stop that contains the intact vCTCF-BS, but retains the same stop codon in p12 as in the HTLV-1-CTCF cell line. Hu-mice were infected with mitomycin treated or irradiated HTLV-1 producing cell lines. There was a delay in pathogenicity when Hu-mice were infected with the CTCF virus compared to mice infected with either p12 stop or WT virus. Proviral load (PVL), spleen weights, and CD4 T cell counts were significantly lower in HTLV-1-CTCF infected mice compared to HTLV-1-p12stop infected mice. Furthermore, we found a direct correlation between the PVL in peripheral blood and death of HTLV-1-CTCF infected mice. In cell lines, we found that the vCTCF-BS regulates Tax expression in a time-dependent manner. The scRNAseq analysis of splenocytes from infected mice suggests that the vCTCF-BS plays an important role in activation and expansion of T lymphocytes in vivo. Overall, these findings indicate that the vCTCF-BS regulates Tax expression, proviral load, and HTLV pathogenicity in vivo.
Collapse
Affiliation(s)
- Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Jacob Al-Saleem
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Patrick Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Deborah Veis
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
16
|
Hayati RF, Nakajima R, Zhou Y, Shirasawa M, Zhao L, Fikriyanti M, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Trans-Activation of the Coactivator-Associated Arginine Methyltransferase 1 ( Carm1) Gene by the Oncogene Product Tax of Human T-Cell Leukemia Virus Type 1. Genes (Basel) 2024; 15:698. [PMID: 38927636 PMCID: PMC11202806 DOI: 10.3390/genes15060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma. The oncogene product Tax of HTLV-I is thought to play crucial roles in leukemogenesis by promoting proliferation of the virus-infected cells through activation of growth-promoting genes. These genes code for growth factors and their receptors, cytokines, cell adhesion molecules, growth signal transducers, transcription factors and cell cycle regulators. We show here that Tax activates the gene coding for coactivator-associated arginine methyltransferase 1 (CARM1), which epigenetically enhances gene expression through methylation of histones. Tax activated the Carm1 gene and increased protein expression, not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs). Tax increased R17-methylated histone H3 on the target gene IL-2Rα, concomitant with increased expression of CARM1. Short hairpin RNA (shRNA)-mediated knockdown of CARM1 decreased Tax-mediated induction of IL-2Rα and Cyclin D2 gene expression, reduced E2F activation and inhibited cell cycle progression. Tax acted via response elements in intron 1 of the Carm1 gene, through the NF-κB pathway. These results suggest that Tax-mediated activation of the Carm1 gene contributes to leukemogenic target-gene expression and cell cycle progression, identifying the first epigenetic target gene for Tax-mediated trans-activation in cell growth promotion.
Collapse
Affiliation(s)
- Rahma F. Hayati
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama 963-8611, Fukushima, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| |
Collapse
|
17
|
Shichijo T, Yasunaga JI, Sato K, Nosaka K, Toyoda K, Watanabe M, Zhang W, Koyanagi Y, Murphy EL, Bruhn RL, Koh KR, Akari H, Ikeda T, Harris RS, Green PL, Matsuoka M. Vulnerability to APOBEC3G linked to the pathogenicity of deltaretroviruses. Proc Natl Acad Sci U S A 2024; 121:e2309925121. [PMID: 38502701 PMCID: PMC10990082 DOI: 10.1073/pnas.2309925121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Human retroviruses are derived from simian ones through cross-species transmission. These retroviruses are associated with little pathogenicity in their natural hosts, but in humans, HIV causes AIDS, and human T-cell leukemia virus type 1 (HTLV-1) induces adult T-cell leukemia-lymphoma (ATL). We analyzed the proviral sequences of HTLV-1, HTLV-2, and simian T-cell leukemia virus type 1 (STLV-1) from Japanese macaques (Macaca fuscata) and found that APOBEC3G (A3G) frequently generates G-to-A mutations in the HTLV-1 provirus, whereas such mutations are rare in the HTLV-2 and STLV-1 proviruses. Therefore, we investigated the mechanism of how HTLV-2 is resistant to human A3G (hA3G). HTLV-1, HTLV-2, and STLV-1 encode the so-called antisense proteins, HTLV-1 bZIP factor (HBZ), Antisense protein of HTLV-2 (APH-2), and STLV-1 bZIP factor (SBZ), respectively. APH-2 efficiently inhibits the deaminase activity of both hA3G and simian A3G (sA3G). HBZ and SBZ strongly suppress sA3G activity but only weakly inhibit hA3G, suggesting that HTLV-1 is incompletely adapted to humans. Unexpectedly, hA3G augments the activation of the transforming growth factor (TGF)-β/Smad pathway by HBZ, and this activation is associated with ATL cell proliferation by up-regulating BATF3/IRF4 and MYC. In contrast, the combination of APH-2 and hA3G, or the combination of SBZ and sA3G, does not enhance the TGF-β/Smad pathway. Thus, HTLV-1 is vulnerable to hA3G but utilizes it to promote the proliferation of infected cells via the activation of the TGF-β/Smad pathway. Antisense factors in each virus, differently adapted to control host cellular functions through A3G, seem to dictate the pathogenesis.
Collapse
Affiliation(s)
- Takafumi Shichijo
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Kei Sato
- Division of Systems Virology, Institute of Medical Science, The University of Tokyo, Tokyo108-8639, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama332-0012, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
| | - Kosuke Toyoda
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Miho Watanabe
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
| | - Wenyi Zhang
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Edward L. Murphy
- Department of Laboratory Medicine, University of California, San Francisco94158
- Department of Epidemiology/Biostatistics, University of California, San Francisco
- Vitalant Research Institute, San Francisco94105
| | | | - Ki-Ryang Koh
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka545-0053, Japan
| | - Hirofumi Akari
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi484-8506, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto860-0811, Japan
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX78229
- HHMI, University of Texas Health San Antonio, San Antonio, TX78229
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX78229
- HHMI, University of Texas Health San Antonio, San Antonio, TX78229
| | - Patrick L. Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| |
Collapse
|
18
|
Sudo H, Tonoyama Y, Ikebe E, Hasegawa H, Iha H, Ishida YI. Proteomic analysis of adult T-cell leukemia/lymphoma: A biomarker identification strategy based on preparation and in-solution digestion methods of total proteins. Leuk Res 2024; 138:107454. [PMID: 38452534 DOI: 10.1016/j.leukres.2024.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Adult T-cell leukemia/lymphoma (ATL), caused by human T-cell leukemia virus type-1 (HTLV-1) infection, is a malignant hematologic cancer that remains difficult to cure. We herein established a biomarker identification strategy based on the total cell proteomics of cultured ATL cells to search for novel ATL biomarkers. Four protocols with a combination of selected conditions based on lysis buffers and addition agents for total cell proteomics were used for a differential analysis between the ATL cell group (consisting of 11 cell lines), HTLV-1-infected cell group (consisting of 6 cell lines), and HTLV-1-negative cell group (consisting of 6 cell lines). In the analysis, we identified 24 and 27 proteins that were significantly increased (ratio ≥2.0, p < 0.05) and decreased (ratio ≤ 0.5, p < 0.05), respectively, in the ATL group. Previously reported CCL3 and CD30/TNFRSF8 were confirmed to be among significantly increased proteins. Furthermore, correlation analysis between identified proteins and Tax suggested that RASSF2 and GORASP2 were candidates of novel Tax-regulated factors. The biomarker identification strategy established herein is expected to contribute to the identification of biomarkers for ATL and other diseases.
Collapse
Affiliation(s)
- Haruka Sudo
- Laboratory of Biochemistry, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan
| | - Yasuhiro Tonoyama
- Support Center for Student Practical Lab, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan
| | - Emi Ikebe
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Faculty of Medicine, Oita University, Oita, Japan
| | - Yo-Ichi Ishida
- Laboratory of Biochemistry, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Kanagawa 244-0806, Japan; Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.
| |
Collapse
|
19
|
Alpuche-Lazcano SP, Scarborough RJ, Gatignol A. MicroRNAs and long non-coding RNAs during transcriptional regulation and latency of HIV and HTLV. Retrovirology 2024; 21:5. [PMID: 38424561 PMCID: PMC10905857 DOI: 10.1186/s12977-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV) have replicative and latent stages of infection. The status of the viruses is dependent on the cells that harbour them and on different events that change the transcriptional and post-transcriptional events. Non-coding (nc)RNAs are key factors in the regulation of retrovirus replication cycles. Notably, micro (mi)RNAs and long non-coding (lnc)RNAs are important regulators that can induce switches between active transcription-replication and latency of retroviruses and have important impacts on their pathogenesis. Here, we review the functions of miRNAs and lncRNAs in the context of HIV and HTLV. We describe how specific miRNAs and lncRNAs are involved in the regulation of the viruses' transcription, post-transcriptional regulation and latency. We further discuss treatment strategies using ncRNAs for HIV and HTLV long remission, reactivation or possible cure.
Collapse
Affiliation(s)
- Sergio P Alpuche-Lazcano
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
- National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - Robert J Scarborough
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Medicine, Division of Infectious Diseases, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
20
|
Aikawa A, Kozako T, Kato N, Ohsugi T, Honda SI. Anti-tumor activity of 5-aminoimidazole-4-carboxamide riboside with AMPK-independent cell death in human adult T-cell leukemia/lymphoma. Eur J Pharmacol 2023; 961:176180. [PMID: 37956732 DOI: 10.1016/j.ejphar.2023.176180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive T cell leukemia/lymphoma caused by human T-cell lymphotropic virus type I (HTLV-1). Acadesine or 5-aminoimidazole-4-carboxamide riboside (AICAR) is an AMP-activated protein kinase (AMPK) activator that was recently shown to have tumor suppressive effects on B cell chronic lymphocytic leukemia, but not ATL. This study evaluated the cytotoxic effects of AICAR on ATL-related cell lines and its anti-tumor activity. Here, we demonstrated that AICAR induced cell death via apoptosis and the mitochondrial membrane depolarization of ATL-related cell lines (S1T, MT-1, and MT-2) but not non-HTLV-1-infected Jurkat cells. However, AICAR did not increase the phosphorylation levels of AMPKα. In addition, AICAR increased the expression of the death receptors (DR) DR4 and DR5, and necroptosis-related proteins including phosphorylated receptor-interacting protein family members and the mixed lineage kinase domain-like protein. Interestingly, HTLV-1 Tax, an HTLV-1-encoded oncogenic factor, did not affect AICAR-induced apoptosis. Furthermore, AICAR inhibited the growth of human ATL tumor xenografts in NOD/SCID/gamma mice in vivo. Together, these results suggest that AICAR induces AMPK-independent cell death in ATL-related cell lines and has anti-tumor activity, indicating that it might be a therapeutic agent for ATL.
Collapse
Affiliation(s)
- Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Naho Kato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Takeo Ohsugi
- Department of Hematology and Immunology, Rakuno Gakuen University, Hokkaido, Japan.
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
21
|
Nakahata S, Enriquez-Vera D, Jahan MI, Sugata K, Satou Y. Understanding the Immunopathology of HTLV-1-Associated Adult T-Cell Leukemia/Lymphoma: A Comprehensive Review. Biomolecules 2023; 13:1543. [PMID: 37892225 PMCID: PMC10605031 DOI: 10.3390/biom13101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL). HTLV-1 carriers have a lifelong asymptomatic balance between infected cells and host antiviral immunity; however, 5-10% of carriers lose this balance and develop ATL. Coinfection with Strongyloides promotes ATL development, suggesting that the immunological status of infected individuals is a determinant of HTLV-1 pathogenicity. As CD4+ T cells play a central role in host immunity, the deregulation of their function and differentiation via HTLV-1 promotes the immune evasion of infected T cells. During ATL development, the accumulation of genetic and epigenetic alterations in key host immunity-related genes further disturbs the immunological balance. Various approaches are available for treating these abnormalities; however, hematopoietic stem cell transplantation is currently the only treatment with the potential to cure ATL. The patient's immune state may contribute to the treatment outcome. Additionally, the activity of the anti-CC chemokine receptor 4 antibody, mogamulizumab, depends on immune function, including antibody-dependent cytotoxicity. In this comprehensive review, we summarize the immunopathogenesis of HTLV-1 infection in ATL and discuss the clinical findings that should be considered when developing treatment strategies for ATL.
Collapse
Affiliation(s)
- Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| | - Daniel Enriquez-Vera
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| | - M. Ishrat Jahan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
22
|
Andoh K, Nishimori A, Matsuura Y. The bovine leukemia virus-derived long non-coding RNA AS1-S binds to bovine hnRNPM and alters the interaction between hnRNPM and host mRNAs. Microbiol Spectr 2023; 11:e0085523. [PMID: 37671887 PMCID: PMC10581181 DOI: 10.1128/spectrum.00855-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/02/2023] [Indexed: 09/07/2023] Open
Abstract
Viruses utilize several strategies to cause latent infection and evade host immune responses. Long non-coding RNA (lncRNA), a class of non-protein-encoding RNA that regulates various cellular functions by interacting with RNA-binding proteins, plays important roles for viral latency in several viruses, such as herpesviruses and retroviruses, due to its lack of antigenicity. Bovine leukemia virus (BLV), which belongs to the family Retroviridae, encodes the BLV-derived lncRNA AS1-S, which is a major transcript expressed in latently infected cells. We herein identified bovine heterogeneous nuclear ribonucleoprotein M (hnRNPM), an RNA-binding protein located in the nucleus, as the binding partner of AS1-S using an RNA-protein pull-down assay. The pull-down assay using recombinant hnRNPM mutants showed that RNA recognition motifs (RRMs) 1 and 2, located in the N-terminal region of bovine hnRNPM, were responsible for the binding to AS1-S. Furthermore, RNA immunoprecipitation (RIP) assay results showed that the expression of AS1-S increased the number of mRNAs that co-immunoprecipitated with bovine hnRNPM in MDBK cells. These results suggested that AS1-S could alter the interaction between hnRNPM and host mRNAs, potentially interfering with cellular functions during the initial phase of mRNA maturation in the nucleus. Since most of the identified mRNAs that exhibited increased binding to hnRNPM were correlated with the KEGG term "Pathways in cancer," AS1-S might affect the proliferation and expansion of BLV-infected cells and contribute to tumor progression. IMPORTANCE BLV infects bovine B cells and causes malignant lymphoma, a disease that greatly affects the livestock industry. Due to its low incidence and long latent period, the molecular mechanisms underlying the progression of lymphoma remain enigmatic. Several non-coding RNAs (ncRNAs), such as miRNA and lncRNA, have recently been discovered in the BLV genome, and the relationship between BLV pathogenesis and these ncRNAs is attracting attention. However, most of the molecular functions of these transcripts remain unidentified. To the best of our knowledge, this is the first report describing a molecular function for the BLV-derived lncRNA AS1-S. The findings reported herein reveal a novel mechanism underlying BLV pathogenesis that could provide important insights for not only BLV research but also comparative studies of retroviruses.
Collapse
Affiliation(s)
- Kiyohiko Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Asami Nishimori
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yuichi Matsuura
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Aristodemou AEN, Rueda DS, Taylor GP, Bangham CRM. The transcriptome of HTLV-1-infected primary cells following reactivation reveals changes to host gene expression central to the proviral life cycle. PLoS Pathog 2023; 19:e1011494. [PMID: 37523412 PMCID: PMC10431621 DOI: 10.1371/journal.ppat.1011494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/16/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Infections by Human T cell Leukaemia Virus type 1 (HTLV-1) persist for the lifetime of the host by integrating into the genome of CD4+ T cells. Proviral gene expression is essential for proviral survival and the maintenance of the proviral load, through the pro-proliferative changes it induces in infected cells. Despite their role in HTLV-1 infection and a persistent cytotoxic T lymphocyte response raised against the virus, proviral transcripts from the sense-strand are rarely detected in fresh cells extracted from the peripheral blood, and have recently been found to be expressed intermittently by a small subset of cells at a given time. Ex vivo culture of infected cells prompts synchronised proviral expression in infected cells from peripheral blood, allowing the study of factors involved in reactivation in primary cells. Here, we used bulk RNA-seq to examine the host transcriptome over six days in vitro, following proviral reactivation in primary peripheral CD4+ T cells isolated from subjects with non-malignant HTLV-1 infection. Infected cells displayed a conserved response to reactivation, characterised by discrete stages of gene expression, cell division and subsequently horizontal transmission of the virus. We observed widespread changes in Polycomb gene expression following reactivation, including an increase in PRC2 transcript levels and diverse changes in the expression of PRC1 components. We hypothesize that these transcriptional changes constitute a negative feedback loop that maintains proviral latency by re-deposition of H2AK119ub1 following the end of proviral expression. Using RNAi, we found that certain deubiquitinases, BAP1, USP14 and OTUD5 each promote proviral transcription. These data demonstrate the detailed trajectory of HTLV-1 proviral reactivation in primary HTLV-1-carrier lymphocytes and the impact on the host cell.
Collapse
Affiliation(s)
- Aris E. N. Aristodemou
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David S. Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, United Kingdom
| | - Graham P. Taylor
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Maksimova V, Wilkie T, Smith S, Phelps C, Melvin C, Yu L, Niewiesk S, Green PL, Panfil AR. HTLV-1 Hbz protein, but not hbz mRNA secondary structure, is critical for viral persistence and disease development. PLoS Pathog 2023; 19:e1011459. [PMID: 37327244 DOI: 10.1371/journal.ppat.1011459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic cause of adult T-cell leukemia/lymphoma (ATL) and encodes a viral oncoprotein (Hbz) that is consistently expressed in asymptomatic carriers and ATL patients, suggesting its importance in the development and maintenance of HTLV-1 leukemic cells. Our previous work found Hbz protein is dispensable for virus-mediated T-cell immortalization but enhances viral persistence. We and others have also shown that hbz mRNA promotes T-cell proliferation. In our current studies, we evaluated the role of hbz mRNA on HTLV-1-mediated immortalization in vitro as well as in vivo persistence and disease development. We generated mutant proviral clones to examine the individual contributions of hbz mRNA, hbz mRNA secondary structure (stem-loop), and Hbz protein. Wild-type (WT) and all mutant viruses produced virions and immortalized T-cells in vitro. Viral persistence and disease development were also evaluated in vivo by infection of a rabbit model and humanized immune system (HIS) mice, respectively. Proviral load and sense and antisense viral gene expression were significantly lower in rabbits infected with mutant viruses lacking Hbz protein compared to WT or virus with an altered hbz mRNA stem-loop (M3 mutant). HIS mice infected with Hbz protein-deficient viruses showed significantly increased survival times compared to animals infected with WT or M3 mutant virus. Altered hbz mRNA secondary structure, or loss of hbz mRNA or protein, has no significant effect on T-cell immortalization induced by HTLV-1 in vitro; however, the Hbz protein plays a critical role in establishing viral persistence and leukemogenesis in vivo.
Collapse
Affiliation(s)
- Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Tasha Wilkie
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Susan Smith
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Cameron Phelps
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Corrine Melvin
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Lianbo Yu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Stefan Niewiesk
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Patrick L Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
25
|
Bangham CRM. HTLV-1 persistence and the oncogenesis of adult T-cell leukemia/lymphoma. Blood 2023; 141:2299-2306. [PMID: 36800643 PMCID: PMC10646791 DOI: 10.1182/blood.2022019332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), also known as human T-lymphotropic virus type 1, causes the aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) in 5% of infected people and a chronic progressive inflammatory disease of the central nervous system, HTLV-1-associated myelopathy, in ∼0.3% to 4% of them, varying between regions where it is endemic. Reliable treatments are lacking for both conditions, although there have been promising recent advances in the prevention and treatment of ATL. Because ATL typically develops after several decades of infection, it is necessary to understand how the virus persists in the host despite a strong immune response, and how this persistence results in oncogenesis.
Collapse
|
26
|
Polakowski N, Sarker MAK, Hoang K, Boateng G, Rushing AW, Kendle W, Pique C, Green PL, Panfil AR, Lemasson I. HBZ upregulates myoferlin expression to facilitate HTLV-1 infection. PLoS Pathog 2023; 19:e1011202. [PMID: 36827461 PMCID: PMC9994761 DOI: 10.1371/journal.ppat.1011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4+ T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse. In this study we show that HBZ additionally enhances HTLV-1 infection by activating expression of myoferlin (MyoF), which functions in membrane fusion and repair and vesicle transport. Results from ChIP assays and quantitative reverse transcriptase PCR indicate that HBZ forms a complex with c-Jun or JunB at two enhancer sites within the MYOF gene and activates transcription through recruitment of the coactivator p300/CBP. In HTLV-1-infected T-cells, specific inhibition of MyoF using the drug, WJ460, or shRNA-mediated knockdown of MyoF reduced infection efficiency. This effect was associated with a decrease in cell adhesion and an intracellular reduction in the abundance of HTLV-1 envelope (Env) surface unit (SU) and transmembrane domain (TM). Lysosomal protease inhibitors partially restored SU levels in WJ460-treated cells, and SU localization to LAMP-2 sites was increased by MyoF knockdown, suggesting that MyoF restricts SU trafficking to lysosomes for degradation. Consistent with these effects, less SU was associated with cell-free virus particles. Together, these data suggest that MyoF contributes to HTLV-1 infection through modulation of Env trafficking and cell adhesion.
Collapse
Affiliation(s)
- Nicholas Polakowski
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Md Abu Kawsar Sarker
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Kimson Hoang
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Georgina Boateng
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Amanda W. Rushing
- Catawba College, Department of Biology, Salisbury, North Carolina, United States of America
| | - Wesley Kendle
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
| | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick L. Green
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amanda R. Panfil
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Isabelle Lemasson
- Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Ahmadi Ghezeldasht S, Blackbourn DJ, Mosavat A, Rezaee SA. Pathogenicity and virulence of human T lymphotropic virus type-1 (HTLV-1) in oncogenesis: adult T-cell leukemia/lymphoma (ATLL). Crit Rev Clin Lab Sci 2023; 60:189-211. [PMID: 36593730 DOI: 10.1080/10408363.2022.2157791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T lymphocytes caused by human T lymphotropic virus type-1 (HTLV-1) infection. HTLV-1 was brought to the World Health Organization (WHO) and researchers to address its impact on global public health, oncogenicity, and deterioration of the host immune system toward autoimmunity. In a minority of the infected population (3-5%), it can induce inflammatory networks toward HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), or hijacking the infected CD4+ T lymphocytes into T regulatory subpopulation, stimulating anti-inflammatory signaling networks, and prompting ATLL development. This review critically discusses the complex signaling networks in ATLL pathogenesis during virus-host interactions for better interpretation of oncogenicity and introduces the main candidates in the pathogenesis of ATLL. At least two viral factors, HTLV-1 trans-activator protein (TAX) and HTLV-1 basic leucine zipper factor (HBZ), are implicated in ATLL manifestation, interacting with host responses and deregulating cell signaling in favor of infected cell survival and virus dissemination. Such molecules can be used as potential novel biomarkers for ATLL prognosis or targets for therapy. Moreover, the challenging aspects of HTLV-1 oncogenesis introduced in this review could open new venues for further studies on acute leukemia pathogenesis. These features can aid in the discovery of effective immunotherapies when reversing the gene expression profile toward appropriate immune responses gradually becomes attainable.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran.,Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Ashrafi F, Rahimzada M, Parandi M, Mirhosseini A, Mashkani B, Ahmadi Ghezeldasht S, Soltani A, Rafatpanah H, Mosavat A, Abdolrahim Rezaee S. Molecular insight into the study of adult T-cell leukemia/lymphoma (ATLL): Ten-year studies on HTLV-1 associated diseases in an endemic region. Gene 2022; 847:146885. [PMID: 36108787 DOI: 10.1016/j.gene.2022.146885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
The outcome of successful infection, including human T-cell leukemia virus type 1 (HTLV-1), is determined by the interactions between the host and the infectious agent. Ten years of work on HTLV-1-associated diseases in an endemic region of Iran have been critically compared in the present study. The outstanding findings of RNA-seq, system biology analysis, and gene expression measurements on adult T-cell leukemia/lymphoma (ATLL) and enzootic bovine leukosis(EBL) in our lab encouraged us to investigate the significant role of oncogenes in the ATLL malignancy. Most studies assessed such interactions by the proviral load (PVL), Tax, and HBZ regulatory proteins in HTLV-1 and the host's immunological and cell cycle factors. The current study is a comprehensive comparing view of our previously published and unpublished results investigating the HTLV-1-host interactions leading to the transformation of the infected cell. The main focus has been on the essential proteins implicated in the virus dissemination, cell survival, and proliferation of infected cells toward leukemia development and progression. Similar to its homolog BLV-AS-1-2 in EBL, the HTLV-1-HBZ is a pivotal factor in the maintenance and progression of the ATLL. In addition, the inappropriate activities of the PI3K/Akt pathway, BRCAs, and RAD51 in the DNA repair system, which are orchestrating many other immortalization pathways, might be the central factors in the manifestation of ATLL. HTLV-1-HBZ and the host PI3K/Akt pathway, BCAs, and RAD51 could be suggested as influential targets for the prognosis and proper therapy of ATLL.
Collapse
Affiliation(s)
- Fereshteh Ashrafi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masooma Rahimzada
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Parandi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mirhosseini
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and, Research (ACECR), Razavi Khorasan, Mashhad, Iran.
| | - Ararsh Soltani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran; HTLV-1 Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and, Research (ACECR), Razavi Khorasan, Mashhad, Iran.
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran; HTLV-1 Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Ramanayake S, Moulding DA, Tanaka Y, Singh A, Bangham CRM. Dynamics and consequences of the HTLV-1 proviral plus-strand burst. PLoS Pathog 2022; 18:e1010774. [PMID: 36441826 PMCID: PMC9731428 DOI: 10.1371/journal.ppat.1010774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Expression of the transcriptional transactivator protein Tax, encoded on the proviral plus-strand of human T-cell leukaemia virus type 1 (HTLV-1), is crucial for the replication of the virus, but Tax-expressing cells are rarely detected in fresh blood ex vivo. The dynamics and consequences of the proviral plus-strand transcriptional burst remain insufficiently characterised. We combined time-lapse live-cell imaging, single-cell tracking and mathematical modelling to study the dynamics of Tax expression at single-cell resolution in two naturally-infected, non-malignant T-cell clones transduced with a short-lived enhanced green fluorescent protein (d2EGFP) Tax reporter system. Five different patterns of Tax expression were observed during the 30-hour observation period; the distribution of these patterns differed between the two clones. The mean duration of Tax expression in the two clones was 94 and 417 hours respectively, estimated from mathematical modelling of the experimental data. Tax expression was associated with a transient slowing in cell-cycle progression and proliferation, increased apoptosis, and enhanced activation of the DNA damage response pathways. Longer-term follow-up (14 days) revealed an increase in the proportion of proliferating cells and a decrease in the fraction of apoptotic cells as the cells ceased Tax expression, resulting in a greater net expansion of the initially Tax-positive population. Time-lapse live-cell imaging showed enhanced cell-to-cell adhesion among Tax-expressing cells, and decreased cell motility of Tax-expressing cells at the single-cell level. The results demonstrate the within-clone and between-clone heterogeneity in the dynamics and patterns of HTLV-1 plus-strand transcriptional bursts and the balance of positive and negative consequences of the burst for the host cell.
Collapse
Affiliation(s)
- Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dale A. Moulding
- Light Microscopy Core Facility, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Tan BJY, Sugata K, Ono M, Satou Y. HTLV-1 persistence and leukemogenesis: A game of hide-and-seek with the host immune system. Front Immunol 2022; 13:991928. [PMID: 36300109 PMCID: PMC9591123 DOI: 10.3389/fimmu.2022.991928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus which mainly infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATL), is primarily transmitted via direct cell-to-cell transmission. This feature generates a wide variety of infected clones in hosts, which are maintained via clonal proliferation, resulting in the persistence and survival of the virus. The maintenance of the pool of infected cells is achieved by sculpting the immunophenotype of infected cells and modulating host immune responses to avoid immune surveillance. Here, we review the processes undertaken by HTLV-1 to modulate and subvert host immune responses which contributes to viral persistence and development of ATL.
Collapse
Affiliation(s)
- Benjy J. Y. Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- *Correspondence: Benjy J. Y. Tan, ; Yorifumi Satou,
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- *Correspondence: Benjy J. Y. Tan, ; Yorifumi Satou,
| |
Collapse
|
31
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Maslinska M, Kostyra-Grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022; 13:823659. [PMID: 36148238 PMCID: PMC9488556 DOI: 10.3389/fimmu.2022.823659] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease with a clinical picture of not only mainly exocrine gland involvement, with dryness symptoms, but also internal organ and systems involvement. The epithelial damage and releasing of antigens, which, in some circumstances, become autoantigens, underlay the pathogenesis of pSS. The activation of autoimmune processes in pSS leads to the hyperactivation of B cells with autoantibody production and other immunological phenomena such as hypergammaglobulinemia, production of cryoglobulins, or formation of extra-nodal lymphoid tissue. Among the risk factors for the development of this disease are viral infections, which themselves can activate autoimmune reactions and influence the host’s immune response. It is known that viruses, through various mechanisms, can influence the immune system and initiate autoimmune reactions. These mechanisms include molecular mimicry, bystander activation, production of superantigens—proteins encoded by viruses—or a programming to produce viral cytokines similar to host cytokines such as, e.g., interleukin-10. Of particular importance for pSS are viruses which not only, as expected, activate the interferon pathway but also play a particular role, directly or indirectly, in B cell activation or present tropism to organs also targeted in the course of pSS. This article is an attempt to present the current knowledge of the influence specific viruses have on the development and course of pSS.
Collapse
|
33
|
Poondru S, Joseph A, Harding JC, Sundaramoorthi H, Mehta-Shah N, Green P, Hassan A, Rauch DA, Ratner L. Adult T-Cell Leukemia-Lymphoma Presenting Concurrently with Myelopathy. Case Rep Oncol 2022; 15:918-926. [PMID: 36636671 PMCID: PMC9830276 DOI: 10.1159/000525174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. Of the approximate ten to twenty million people currently infected worldwide, 4-9% of infected individuals develop adult T-cell leukemia/lymphoma (ATLL) or HTLV-associated myelopathy/tropical spastic paresis (HAM/TSP) in their lifetime. The current report is based on a patient who presented concurrently with CD30+ lymphoma subtype ATLL and HAM/TSP. The patient's ATLL responded to brentuximab-vedotin-based chemotherapy; however, HAM/TSP did not improve. The patient's peripheral blood mononuclear cells were cultured and injected into immunodeficient mice, and the mice developed massive organ involvement and chronic lymphocytic leukemia-subtype ATLL. This case study is novel in the findings of concurrent development of ATLL and HAM/TSP, the response to brentuximab-vedotin chemotherapy, and the use HTLV-1 helix basic zipper protein-targeted probe for RNAscope for diagnosis.
Collapse
Affiliation(s)
- Sneha Poondru
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Ancy Joseph
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - John C. Harding
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | | | - Neha Mehta-Shah
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Patrick Green
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Anjum Hassan
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Daniel A. Rauch
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- *Lee Ratner,
| |
Collapse
|
34
|
D’Agostino DM, Raimondi V, Silic-Benussi M, Ciminale V. MiR-150 in HTLV-1-infection and T-cell transformation. Front Immunol 2022; 13:974088. [PMID: 36072598 PMCID: PMC9442802 DOI: 10.3389/fimmu.2022.974088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus-1 (HTLV-1) is a retrovirus that persistently infects CD4+ T-cells, and is the causative agent of adult T-cell leukemia/lymphoma (ATLL), tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM) and several inflammatory diseases. T-cell transformation by HTLV-1 is driven by multiple interactions between viral regulatory proteins and host cell pathways that govern cell proliferation and survival. Studies performed over the last decade have revealed alterations in the expression of many microRNAs in HTLV-1-infected cells and ATLL cells, and have identified several microRNA targets with roles in the viral life cycle and host cell turnover. This review centers on miR-150-5p, a microRNA whose expression is temporally regulated during lymphocyte development and altered in several hematological malignancies. The levels of miR-150-5p are reduced in many HTLV-1-transformed- and ATLL-derived cell lines. Experiments in these cell lines showed that downregulation of miR-150-5p results in activation of the transcription factor STAT1, which is a direct target of the miRNA. However, data on miR-150-5p levels in freshly isolated ATLL samples are suggestive of its upregulation compared to controls. These apparently puzzling findings highlight the need for more in-depth studies of the role of miR-150-5p in HTLV-1 infection and pathogenesis based on knowledge of miR-150-5p-target mRNA interactions and mechanisms regulating its function in normal leukocytes and hematologic neoplasms.
Collapse
Affiliation(s)
- Donna M. D’Agostino
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Istituto Oncologico Veneto (IOV)- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
- *Correspondence: Donna M. D’Agostino, ; Vincenzo Ciminale,
| | - Vittoria Raimondi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Micol Silic-Benussi
- Istituto Oncologico Veneto (IOV)- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - Vincenzo Ciminale
- Istituto Oncologico Veneto (IOV)- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- *Correspondence: Donna M. D’Agostino, ; Vincenzo Ciminale,
| |
Collapse
|
35
|
Ruggieri M, Ducasa N, Juraske C, Polo VG, Berini C, Quiroga MF, Christopoulos P, Minguet S, Biglione M, Schamel WW. Phenotypic and functional analysis of γδ T cells in the pathogenesis of human T-cell lymphotropic virus type 1 infection. Front Immunol 2022; 13:920888. [PMID: 36032168 PMCID: PMC9403740 DOI: 10.3389/fimmu.2022.920888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is the cause of serious malignant and inflammatory diseases, including adult T-cell leukemia and lymphoma and tropical spastic paraparesis. The potential protective role of γδ T cells in HTLV-1 infection remains unclear. Here, demonstrate that there is a decrease in the amount of Vγ9Vδ2 T cells in patients with HTLV-1, especially in those with HTLV-1 associated pathologies. This suggests that γδ T cells could be involved in controlling the virus. Indeed, we found that Vγ9Vδ2 T cells, expanded from non-infected individuals, can kill cells expressing the viral proteins HBZ and Tax and this phenotype is reversed in the presence of mevastatin. Cytotoxicity by Vγ9Vδ2 T cells was not associated with an increase of INF-γ production. In sharp contrast, killing by NK cells was reduced by Tax expression. Thus, our study provides initial evidence for a potential protective role of Vγ9Vδ2 T cells against HTLV-1 infection. Therapeutic exploitation of these insights is feasible with current technologies of T-cell therapies and could provide novel tools to prevent and treat HTLV-1-associated malignancies and neurologic complications.
Collapse
Affiliation(s)
- Matias Ruggieri
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany
- Institute for Clinical Pathology, University Hospital Freiburg, Freiburg, Germany
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
- *Correspondence: Matias Ruggieri,
| | - Nicolás Ducasa
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Claudia Juraske
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| | - Virginia Gonzalez Polo
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Carolina Berini
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Maria Florencia Quiroga
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoracic Clinic at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| | - Mirna Biglione
- National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute for Biomedical Research in Retroviruses and AIDS (INBIRS), Buenos Aires, Argentina
| | - Wolfgang W. Schamel
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| |
Collapse
|
36
|
Shallak M, Alberio T, Fasano M, Monti M, Iacobucci I, Ladet J, Mortreux F, Accolla RS, Forlani G. The endogenous HBZ interactome in ATL leukemic cells reveals an unprecedented complexity of host interacting partners involved in RNA splicing. Front Immunol 2022; 13:939863. [PMID: 35979358 PMCID: PMC9376625 DOI: 10.3389/fimmu.2022.939863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a T-cell lymphoproliferative neoplasm caused by the human T-cell leukemia virus type 1 (HTLV-1). Two viral proteins, Tax-1 and HBZ play important roles in HTLV-1 infectivity and in HTLV-1-associated pathologies by altering key pathways of cell homeostasis. However, the molecular mechanisms through which the two viral proteins, particularly HBZ, induce and/or sustain the oncogenic process are still largely elusive. Previous results suggested that HBZ interaction with nuclear factors may alter cell cycle and cell proliferation. To have a more complete picture of the HBZ interactions, we investigated in detail the endogenous HBZ interactome in leukemic cells by immunoprecipitating the HBZ-interacting complexes of ATL-2 leukemic cells, followed by tandem mass spectrometry analyses. RNA seq analysis was performed to decipher the differential gene expression and splicing modifications related to HTLV-1. Here we compared ATL-2 with MOLT-4, a non HTLV-1 derived leukemic T cell line and further compared with HBZ-induced modifications in an isogenic system composed by Jurkat T cells and stably HBZ transfected Jurkat derivatives. The endogenous HBZ interactome of ATL-2 cells identified 249 interactors covering three main clusters corresponding to protein families mainly involved in mRNA splicing, nonsense-mediated RNA decay (NMD) and JAK-STAT signaling pathway. Here we analyzed in detail the cluster involved in RNA splicing. RNAseq analysis showed that HBZ specifically altered the transcription of many genes, including crucial oncogenes, by affecting different splicing events. Consistently, the two RNA helicases, members of the RNA splicing family, DDX5 and its paralog DDX17, recently shown to be involved in alternative splicing of cellular genes after NF-κB activation by HTLV-1 Tax-1, interacted and partially co-localized with HBZ. For the first time, a complete picture of the endogenous HBZ interactome was elucidated. The wide interaction of HBZ with molecules involved in RNA splicing and the subsequent transcriptome alteration strongly suggests an unprecedented complex role of the viral oncogene in the establishment of the leukemic state.
Collapse
Affiliation(s)
- Mariam Shallak
- Laboratories of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Tiziana Alberio
- Laboratory of Biochemistry and Functional Proteomics, Department of Science and High Technology, University of Insubria, Busto Arsizio, Italy
| | - Mauro Fasano
- Laboratory of Biochemistry and Functional Proteomics, Department of Science and High Technology, University of Insubria, Busto Arsizio, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Julien Ladet
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
- *Correspondence: Franck Mortreux, ; Roberto S. Accolla, ; Greta Forlani,
| | - Roberto S. Accolla
- Laboratories of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
- *Correspondence: Franck Mortreux, ; Roberto S. Accolla, ; Greta Forlani,
| | - Greta Forlani
- Laboratories of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, Varese, Italy
- *Correspondence: Franck Mortreux, ; Roberto S. Accolla, ; Greta Forlani,
| |
Collapse
|
37
|
Tram J, Mesnard JM, Peloponese JM. Alternative RNA splicing in cancer: what about adult T-cell leukemia? Front Immunol 2022; 13:959382. [PMID: 35979354 PMCID: PMC9376482 DOI: 10.3389/fimmu.2022.959382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells employ a broad range of mechanisms to regulate gene expression. Among others, mRNA alternative splicing is a key process. It consists of introns removal from an immature mRNA (pre-mRNA) via a transesterification reaction to create a mature mRNA molecule. Large-scale genomic studies have shown that in the human genome, almost 95% of protein-encoding genes go through alternative splicing and produce transcripts with different exons combinations (and sometimes retained introns), thus increasing the proteome diversity. Considering the importance of RNA regulation in cellular proliferation, survival, and differentiation, alterations in the alternative splicing pathway have been linked to several human cancers, including adult T-cell leukemia/lymphoma (ATL). ATL is an aggressive and fatal malignancy caused by the Human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 genome encodes for two oncoproteins: Tax and HBZ, both playing significant roles in the transformation of infected cells and ATL onset. Here, we review current knowledge on alternative splicing and its link to cancers and reflect on how dysregulation of this pathway could participate in HTLV-1-induced cellular transformation and adult T-cell leukemia/lymphoma development.
Collapse
|
38
|
Tu JJ, Maksimova V, Ratner L, Panfil AR. The Past, Present, and Future of a Human T-Cell Leukemia Virus Type 1 Vaccine. Front Microbiol 2022; 13:897346. [PMID: 35602078 PMCID: PMC9114509 DOI: 10.3389/fmicb.2022.897346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus which causes a lifelong infection. An estimated 5-10 million persons are infected with HTLV-1 worldwide - a number which is likely higher due to lack of reliable epidemiological data. Most infected individuals remain asymptomatic; however, a portion of HTLV-1-positive individuals will develop an aggressive CD4+ T-cell malignancy called adult T-cell leukemia/lymphoma (ATL), or a progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Few treatment options exist for HAM/TSP outside of palliative care and ATL carries an especially poor prognosis given the heterogeneity of the disease and lack of effective long-term treatments. In addition, the risk of HTLV-1 disease development increases substantially if the virus is acquired early in life. Currently, there is no realistic cure for HTLV-1 infection nor any reliable measure to prevent HTLV-1-mediated disease development. The severity of HTLV-1-associated diseases (ATL, HAM/TSP) and limited treatment options highlights the need for development of a preventative vaccine or new therapeutic interventions. This review will highlight past HTLV-1 vaccine development efforts, the current molecular tools and animal models which might be useful in vaccine development, and the future possibilities of an effective HTLV-1 vaccine.
Collapse
Affiliation(s)
- Joshua J. Tu
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
39
|
Kiik H, Ramanayake S, Miura M, Tanaka Y, Melamed A, Bangham CRM. Time-course of host cell transcription during the HTLV-1 transcriptional burst. PLoS Pathog 2022; 18:e1010387. [PMID: 35576236 PMCID: PMC9135347 DOI: 10.1371/journal.ppat.1010387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) transactivator protein Tax has pleiotropic functions in the host cell affecting cell-cycle regulation, DNA damage response pathways and apoptosis. These actions of Tax have been implicated in the persistence and pathogenesis of HTLV-1-infected cells. It is now known that tax expression occurs in transcriptional bursts of the proviral plus-strand, but the effects of the burst on host transcription are not fully understood. We carried out RNA sequencing of two naturally-infected T-cell clones transduced with a Tax-responsive Timer protein, which undergoes a time-dependent shift in fluorescence emission, to study transcriptional changes during successive phases of the HTLV-1 plus-strand burst. We found that the transcriptional regulation of genes involved in the NF-κB pathway, cell-cycle regulation, DNA damage response and apoptosis inhibition were immediate effects accompanying the plus-strand burst, and are limited to the duration of the burst. The results distinguish between the immediate and delayed effects of HTLV-1 reactivation on host transcription, and between clone-specific effects and those observed in both clones. The major transcriptional changes in the infected host T-cells observed here, including NF-κB, are transient, suggesting that these pathways are not persistently activated at high levels in HTLV-1-infected cells. The two clones diverged strongly in their expression of genes regulating the cell cycle. Up-regulation of senescence markers was a delayed effect of the proviral plus-strand burst and the up-regulation of some pro-apoptotic genes outlasted the burst. We found that activation of the aryl hydrocarbon receptor (AhR) pathway enhanced and prolonged the proviral burst, but did not increase the rate of reactivation. Our results also suggest that sustained plus-strand expression is detrimental to the survival of infected cells.
Collapse
Affiliation(s)
- Helen Kiik
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michi Miura
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Anat Melamed
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Akbarin MM, Rafatpanah H, Soleimanpour S, Amini AA, Arian A, Mosavat A, Rezaee SA. TAX and HBZ: hFc Ɣ 1 proteins as targets for passive immunotherapy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:586-596. [PMID: 35911645 PMCID: PMC9282740 DOI: 10.22038/ijbms.2022.64787.14266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
Objective(s): Human T leukemia virus type one (HTLV-1) causes two life-threatening diseases in around five percent of infected subjects, a T cell malignancy and a neurodegenerative disease. TAX and HBZ are the main virulence agents implicated in the manifestation of HTLV-1–associated diseases. Therefore, this study aims to produce these HTLV-1 factors as recombinant Fc fusion proteins to study the structures, their immunogenic properties as vaccines, and their capability to produce specific neutralization antibodies. Materials and Methods: TAX and HBZ sequences were chosen from the NCBI-nucleotide database, then designed as human Fc chimers and cloned into Pichia pastoris. Produced proteins were purified by HiTrap affinity chromatography and subcutaneously injected into rabbits. Rabbit Abs were purified by batch chromatography, and their neutralization activities for the HTLV-1-infected MT-2 cell line were assessed. Furthermore, the protective abilities of recombinant proteins were evaluated in Tax or HBZ immunized rabbits by MT-2 cell line inoculation and measurement of HTLV-1-proviral load. Results: Specific Abs against Tax and HBZ can eliminate 2 million MT-2 cells in 1/1000 dilution in vitro. In challenging assays, the immunization of the animals using Tax or HBZ had no protective activity as HTLV-1 PVL was still positive. Conclusion: The result suggests that recombinant TAX and HBZ: hFcγ1 proteins can produce a proper humoral immune response. Therefore, they could be considered a passive immunotherapy source for HTLV-1-associated diseases, while total TAX and HBZ proteins are unsuitable as HTLV-1 vaccine candidates.
Collapse
Affiliation(s)
- Mohammad Mehdi Akbarin
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Ali Amini
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirali Arian
- Animal Laboratory, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Seyed Abdolrahim Rezaee. Mashhad University of Medical Sciences, Azadi square, Faculty of Medicine, Mashhad, Iran.
| |
Collapse
|
41
|
Toyoda K, Matsuoka M. Functional and Pathogenic Roles of Retroviral Antisense Transcripts. Front Immunol 2022; 13:875211. [PMID: 35572593 PMCID: PMC9100821 DOI: 10.3389/fimmu.2022.875211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Exogenous retroviruses such as human immunodeficiency virus type 1 (HIV-1), human T-cell leukemia virus type 1 (HTLV-1) and bovine leukemia virus (BLV) can cause various diseases including immunodeficiency, inflammatory diseases and hematologic malignancies. These retroviruses persistently infect their hosts. Therefore, they need to evade host immune surveillance. One way in which these viruses might avoid immune detection is to utilize functional RNAs, rather than proteins, for certain activities, because RNAs are not recognized by the host immune system. HTLV-1 encodes the HTLV-1 bZIP factor (HBZ) gene in the antisense strand of the provirus. The HBZ protein is constantly expressed in HTLV-1 carriers and patients with adult T-cell leukemia-lymphoma, and it plays critical roles in pathogenesis. However, HBZ not only encodes this protein, but also functions as mRNA. Thus, HBZ gene mRNA is bifunctional. HIV-1 and BLV also encode long non-coding RNAs as antisense transcripts. In this review, we reshape our current understanding of how these antisense transcripts function and how they influence disease pathogenesis.
Collapse
|
42
|
NF-κB-Induced R-Loops and Genomic Instability in HTLV-1-Infected and Adult T-Cell Leukemia Cells. Viruses 2022; 14:v14050877. [PMID: 35632619 PMCID: PMC9147355 DOI: 10.3390/v14050877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a human delta retrovirus that causes adult T-cell leukemia/lymphoma (ATL) in 3–5% of the infected population after decades of clinical latency. HTLV-1 Tax is a potent activator of IKK/NF-κB and a clastogen. While NF-κB activities are associated with cell survival and proliferation, constitutive NF-κB activation (NF-κB hyperactivation) by Tax leads to senescence and oncogenesis. Until recently, the mechanisms underlying the DNA damage and senescence induced by Tax and NF-κB were unknown. Current data indicate that NF-κB hyperactivation by Tax causes the accumulation of a nucleic acid structure known as an R-loop. R-loop excision by the transcription-coupled nucleotide excision repair (TC-NER) endonucleases, Xeroderma pigmentosum F (XPF), and XPG, in turn, promotes DNA double-strand breaks (DSBs). NF-κB blockade prevents Tax-induced R-loop accumulation, DNA damage, and senescence. In the same vein, the silencing of XPF and XPG mitigates Tax senescence, while deficiency in either or both frequently occurs in ATL of all types. ATL cells maintain constitutively active NF-κB, accumulate R-loops, and resist Tax-induced senescence. These results suggest that ATL cells must have acquired adaptive changes to prevent senescence and benefit from the survival and proliferation advantages conferred by Tax and NF-κB. In this review, the roles of R-loops in Tax- and NF-κB-induced DNA DSBs, senescence, and ATL development, and the epigenetic and genetic alterations that arise in ATL to reduce R-loop-associated DNA damage and avert senescence will be discussed.
Collapse
|
43
|
Miura M, Naito T, Saito M. Current Perspectives in Human T-Cell Leukemia Virus Type 1 Infection and Its Associated Diseases. Front Med (Lausanne) 2022; 9:867478. [PMID: 35463007 PMCID: PMC9024061 DOI: 10.3389/fmed.2022.867478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a replication-competent human retrovirus associated with two distinct types of diseases: a malignancy of mature CD4+ T cells called adult T-cell leukemia-lymphoma (ATL) and a chronic inflammatory central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It was the first human retrovirus ever associated with a human cancer. Although most HTLV-1-infected individuals remain asymptomatic for life, a subpopulation develops ATL or HAM/TSP. Although the factors that cause these different manifestations of HTLV-1 infection are not fully understood, accumulating evidence suggests that the complex virus-host interactions, as well as the host immune response against HTLV-1 infection, appear to regulate the development of HTLV-1-associated diseases. This review outlines and discusses the current understanding, ongoing developments, and future perspectives of HTLV-1 research.
Collapse
|
44
|
Gallo RC, Tagaya Y. Reflections on Some of the Exceptional Features of HTLV-1 and HTLV-1 Research: A Perspective. Front Immunol 2022; 13:859654. [PMID: 35432297 PMCID: PMC9010860 DOI: 10.3389/fimmu.2022.859654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
The report is not a review or a summary. In a manner, it is a perspective but an unusual one. It looks back to the years my colleagues and I (RG) began preparing for human retroviruses (beginning in 1970), how they evolved, and attempts to bring to light or simply to emphasize many exceptional characteristics of a retrovirus known as HTLV-1 and some fortuitous coincidences, with emphasis on the needs of the field. These events cover over one half a century. We have had many reviews on HTLV-1 disease, epidemiology, and basic aspects of its replication, genome, gene functions, structure, and pathogenesis, though continued updates are needed. However, some of its truly exceptional features have not been highlighted, or at least not in a comprehensive manner. This article attempts to do so.
Collapse
Affiliation(s)
- Robert C. Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Robert C. Gallo,
| | - Yutaka Tagaya
- Cell Biology Lab, Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
45
|
Clonal Selection and Evolution of HTLV-1-Infected Cells Driven by Genetic and Epigenetic Alteration. Viruses 2022; 14:v14030587. [PMID: 35336993 PMCID: PMC8950914 DOI: 10.3390/v14030587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
T cells infected with human T-cell leukemia virus type 1 (HTLV-1) acquire various abnormalities during a long latent period and transform into highly malignant adult T-cell leukemia-lymphoma (ATL) cells. This can be described as “clonal evolution”, in which a single clone evolves into ATL cells after overcoming various selective pressures in the body of the infected individuals. Many studies have shown that the genome and epigenome contain a variety of abnormalities, which are reflected in gene expression patterns and define the characteristics of the disease. The latest research findings suggest that epigenomic disorders are thought to begin forming early in infection and evolve into ATL through further changes and accentuation as they progress. Genomic abnormalities profoundly affect clonal dominance and tumor cell characteristics in later events. ATL harbors both genomic and epigenomic abnormalities, and an accurate understanding of these can be expected to provide therapeutic opportunities.
Collapse
|
46
|
Nečasová I, Stojaspal M, Motyčáková E, Brom T, Janovič T, Hofr C. Transcriptional regulators of human oncoviruses: structural and functional implications for anticancer therapy. NAR Cancer 2022; 4:zcac005. [PMID: 35252867 PMCID: PMC8892037 DOI: 10.1093/narcan/zcac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transcription is often the first biosynthetic event of viral infection. Viruses produce preferentially viral transcriptional regulators (vTRs) essential for expressing viral genes and regulating essential host cell proteins to enable viral genome replication. As vTRs are unique viral proteins that promote the transcription of viral nucleic acid, vTRs interact with host proteins to suppress detection and immune reactions to viral infection. Thus, vTRs are promising therapeutic targets that are sequentially and structurally distinct from host cell proteins. Here, we review vTRs of three human oncoviruses: HBx of hepatitis B virus, HBZ of human T-lymphotropic virus type 1, and Rta of Epstein-Barr virus. We present three cunningly exciting and dangerous transcription strategies that make viral infections so efficient. We use available structural and functional knowledge to critically examine the potential of vTRs as new antiviral-anticancer therapy targets. For each oncovirus, we describe (i) the strategy of viral genome transcription; (ii) vTRs' structure and binding partners essential for transcription regulation; and (iii) advantages and challenges of vTR targeting in antiviral therapies. We discuss the implications of vTR regulation for oncogenesis and perspectives on developing novel antiviral and anticancer strategies.
Collapse
Affiliation(s)
- Ivona Nečasová
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Martin Stojaspal
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Edita Motyčáková
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| | - Tomáš Brom
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Tomáš Janovič
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Ctirad Hofr
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, Královopolská 135, Brno 612 65, Czech Republic
| |
Collapse
|
47
|
Exploring New Functional Aspects of HTLV-1 RNA-Binding Protein Rex: How Does Rex Control Viral Replication? Viruses 2022; 14:v14020407. [PMID: 35216000 PMCID: PMC8877913 DOI: 10.3390/v14020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
After integration to the human genome as a provirus, human T-cell leukemia virus type 1 (HTLV-1) utilizes host T cell gene expression machinery for viral replication. The viral RNA-binding protein, Rex, is known to transport unspliced/incompletely spliced viral mRNAs encoding viral structural proteins out of the nucleus to enhance virus particle formation. However, the detailed mechanism of how Rex avoids extra splicing of unspliced/incompletely spliced viral mRNAs and stabilizes them for effective translation is still unclear. To elucidate the underlying molecular mechanism of Rex function, we comprehensively analyzed the changes in gene expression and splicing patterns in Rex-overexpressing T cells. In addition, we identified 81 human proteins interacting with Rex, involved in transcription, splicing, translation, and mRNA quality control. In particular, Rex interacts with NONO and SFPQ, which play important roles in the regulation of transcription and splicing. Accordingly, expression profiles and splicing patterns of a wide variety of genes are significantly changed in Rex-expressing T cells. Especially, the level of vPD-L1 mRNA that lacks the part of exon 4, thus encodes soluble PD-L1 was significantly increased in Rex-expressing cells. Overall, by integrated analysis of these three datasets, we showed for the first time that Rex intervenes the host gene expression machinery throughout the pathway, probably to escort viral unstable mRNAs from transcription (start) to translation (end). Upon exerting its function, Rex may alter the expression level and splicing patterns of various genes, thus influencing the phenotype of the host cell.
Collapse
|
48
|
Pavesi A, Romerio F. Extending the Coding Potential of Viral Genomes with Overlapping Antisense ORFs: A Case for the De Novo Creation of the Gene Encoding the Antisense Protein ASP of HIV-1. Viruses 2022; 14:v14010146. [PMID: 35062351 PMCID: PMC8781085 DOI: 10.3390/v14010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Gene overprinting occurs when point mutations within a genomic region with an existing coding sequence create a new one in another reading frame. This process is quite frequent in viral genomes either to maximize the amount of information that they encode or in response to strong selective pressure. The most frequent scenario involves two different reading frames in the same DNA strand (sense overlap). Much less frequent are cases of overlapping genes that are encoded on opposite DNA strands (antisense overlap). One such example is the antisense ORF, asp in the minus strand of the HIV-1 genome overlapping the env gene. The asp gene is highly conserved in pandemic HIV-1 strains of group M, and it is absent in non-pandemic HIV-1 groups, HIV-2, and lentiviruses infecting non-human primates, suggesting that the ~190-amino acid protein that is expressed from this gene (ASP) may play a role in virus spread. While the function of ASP in the virus life cycle remains to be elucidated, mounting evidence from several research groups indicates that ASP is expressed in vivo. There are two alternative hypotheses that could be envisioned to explain the origin of the asp ORF. On one hand, asp may have originally been present in the ancestor of contemporary lentiviruses, and subsequently lost in all descendants except for most HIV-1 strains of group M due to selective advantage. Alternatively, the asp ORF may have originated very recently with the emergence of group M HIV-1 strains from SIVcpz. Here, we used a combination of computational and statistical approaches to study the genomic region of env in primate lentiviruses to shed light on the origin, structure, and sequence evolution of the asp ORF. The results emerging from our studies support the hypothesis of a recent de novo addition of the antisense ORF to the HIV-1 genome through a process that entailed progressive removal of existing internal stop codons from SIV strains to HIV-1 strains of group M, and fine tuning of the codon sequence in env that reduced the chances of new stop codons occurring in asp. Altogether, the study supports the notion that the HIV-1 asp gene encodes an accessory protein, providing a selective advantage to the virus.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
- Correspondence:
| |
Collapse
|
49
|
Maksimova V, Panfil AR. Human T-Cell Leukemia Virus Type 1 Envelope Protein: Post-Entry Roles in Viral Pathogenesis. Viruses 2022; 14:v14010138. [PMID: 35062342 PMCID: PMC8778545 DOI: 10.3390/v14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL), an aggressive and fatal CD4+ T-cell malignancy, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neurological disease. Disease progression in infected individuals is the result of HTLV-1-driven clonal expansion of CD4+ T-cells and is generally associated with the activities of the viral oncoproteins Tax and Hbz. A closely related virus, HTLV-2, exhibits similar genomic features and the capacity to transform T-cells, but is non-pathogenic. In vitro, HTLV-1 primarily immortalizes or transforms CD4+ T-cells, while HTLV-2 displays a transformation tropism for CD8+ T-cells. This distinct tropism is recapitulated in infected people. Through comparative studies, the genetic determinant for this divergent tropism of HTLV-1/2 has been mapped to the viral envelope (Env). In this review, we explore the emerging roles for Env beyond initial viral entry and examine current perspectives on its contributions to HTLV-1-mediated disease development.
Collapse
Affiliation(s)
- Victoria Maksimova
- Biomedical Sciences Graduate Program, Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Amanda R. Panfil
- Center for Retrovirus Research, Comprehensive Cancer Center and Solove Research Institute, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
50
|
Maksimova V, Smith S, Seth J, Phelps C, Niewiesk S, Satou Y, Green P, Panfil AR. HTLV-1 intragenic viral enhancer influences immortalization phenotype in vitro, but is dispensable for persistence and disease development in animal models. Front Immunol 2022; 13:954077. [PMID: 35958554 PMCID: PMC9359075 DOI: 10.3389/fimmu.2022.954077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL) and chronic neurological disease. The disparity between silenced sense transcription versus constitutively active antisense (Hbz) transcription from the integrated provirus is not fully understood. The presence of an internal viral enhancer has recently been discovered in the Tax gene near the 3' long terminal repeat (LTR) of HTLV-1. In vitro, this enhancer has been shown to bind SRF and ELK-1 host transcription factors, maintain chromatin openness and viral gene transcription, and induce aberrant host gene transcription near viral integration sites. However, the function of the viral enhancer in the context of early HTLV-1 infection events remains unknown. In this study, we generated a mutant Enhancer virus (mEnhancer) and evaluated its effects on HTLV-1-mediated in vitro immortalization, establishment of persistent infection with an in vivo rabbit model, and disease development in a humanized immune system (HIS) mouse model. The mEnhancer virus was able to establish persistent infection in rabbits, and there were no significant differences in proviral load or HTLV-1-specific antibody responses over a 25-week study. However, rabbits infected with the mEnhancer virus had significantly decreased sense and antisense viral gene expression at 12-weeks post-infection. HIS mice infected with wt or mEnhancer virus showed similar disease progression, proviral load, and viral gene expression. While mEnhancer virus was able to sufficiently immortalize primary T-lymphocytes in cell culture, the immortalized cells had an altered phenotype (CD8+ T-cells), decreased proviral load, decreased sense and anti-sense gene expression, and altered cell cycle progression compared to HTLV-1.wt immortalized cells (CD4+ T-cells). These results suggest that the HTLV-1 enhancer element alone does not determine persistence or disease development but plays a pivotal role in regulating viral gene expression.
Collapse
Affiliation(s)
- Victoria Maksimova
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Susan Smith
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Jaideep Seth
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Cameron Phelps
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Patrick L. Green
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Amanda R. Panfil,
| |
Collapse
|