1
|
Noreen S, Maqbool I, Saleem A, Mahmood H, Rai N. Recent insights and applications of nanocarriers-based drug delivery systems for colonic drug delivery and cancer therapy: An updated review. Crit Rev Oncol Hematol 2025; 208:104646. [PMID: 39914570 DOI: 10.1016/j.critrevonc.2025.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant tumor globally and is associated with high morbidity and mortality rates. The advancement of novel nanocarrier-based drug delivery systems has revolutionized therapeutic strategies for colonic drug delivery and cancer treatment. This review provides updated insights into various nanocarrier technologies, including quantum dots (QDs), polymeric nanoparticles (PNPs), magnetic and metallic nanoparticles, solid lipid nanoparticles (SLNs), and self-microemulsifying and self-nanoemulsifying drug delivery systems (SMEDDS/SNEDDS). These nanocarriers offer enhanced drug stability, controlled release, and targeted delivery, particularly for CRC treatment, resulting in up to 70 % improved therapeutic efficacy and a significant reduction in systemic toxicity as reported in preclinical studies. The review comprehensively discusses the structural composition, mechanisms of action, therapeutic potential, and imaging capabilities of these systems, with a focus on their applications in theranostics and targeted CRC therapy. For instance, polymeric nanoparticles have demonstrated a 50 % increase in bioavailability compared to conventional formulations, while QDs have enabled real-time imaging with high precision for tumor localization. Additionally, the toxicity profiles and challenges associated with these nanocarriers are critically evaluated. Despite significant progress in preclinical and clinical studies, the review highlights the need for optimizing biocompatibility, scalability, and regulatory standards to facilitate the clinical translation of these promising technologies. Emerging formulations such as graphene quantum dots and PEGylated nanoparticles have shown potential for achieving dual therapeutic and diagnostic applications with fewer adverse effects. Overall, nanocarrier-based systems hold great potential for personalized and more effective treatments in colon-targeted therapies.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan; Centre for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria.
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Anum Saleem
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Hassan Mahmood
- Humanities Department, COMSATS University Islamabad, Lahore Campus, Punjab, Pakistan
| | - Nadia Rai
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
2
|
Mahajan S, Aalhate M, Chatterjee E, Singh H, Sharma A, Maji I, Gupta U, Guru SK, Singh PK. Harnessing the targeting potential of hyaluronic acid for augmented anticancer activity and safety of duvelisib-loaded nanoparticles in hematological malignancies. Int J Biol Macromol 2024; 282:136600. [PMID: 39427787 DOI: 10.1016/j.ijbiomac.2024.136600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Duvelisib (DUV) is effective against numerous hematological malignancies; however, it suffers from numerous setbacks like poor aqueous solubility, low cellular uptake and adverse effects. Hyaluronic acid is an excellent ligand for CD44 receptors that are overexpressed on cancer cell surfaces. Thus, for the targeted delivery of DUV in hematological malignancies, we have fabricated hyaluronic acid-coated polylactide-co-glycolide nanoparticles (DUV-P/CH/HA-NPs) through electrostatic interactions. DUV-P/CH/HA-NPs exhibited optimum characteristics such as mean particle size of 183.63 ± 0.23 nm, polydispersity index of 0.261 ± 0.02 and drug loading capacity of 5.75 ± 0.05 %. An in-vitro release study demonstrated sustained release behavior of DUV-P/CH/HA-NPs (77.65 ± 2.89 % release in 48 h). The flow cytometry experiments revealed 1.62-fold and 1.50-fold enhanced uptake of DUV-P/CH/HA-NPs compared to non-coated nanoparticles in MOLT-4 and HH cells, respectively. The DUV-P/CH/HA-NPs showed higher cytotoxicity, arrested the cell cycle in G0/G1 phase and showed increased apoptosis compared to non-coated nanoparticles and free DUV. An in-vivo pharmacokinetic study revealed 2.9-fold and 3.6-fold enhancement in AUC0-t and MRT with the DUV-P/CH/HA-NPs compared to free DUV. Further, toxicity evaluation and hemolysis assessment of DUV-P/CH/HA-NPs indicated good safety for intravenous administration. Conclusively, DUV-P/CH/HA-NPs are an excellent option for selectively targeting hematological malignant cells.
Collapse
Affiliation(s)
- Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India.
| |
Collapse
|
3
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
4
|
Lu Q, Yao X, Zheng H, Ou J, You J, Zhang Q, Guo W, Xu J, Geng L, Liu Q, Pei N, Gong Y, Zhu H, Shen Y. SS-31 modification alleviates ferroptosis induced by superparamagnetic iron oxide nanoparticles in hypoxia/reoxygenation cardiomyocytes. Heliyon 2024; 10:e38584. [PMID: 39506934 PMCID: PMC11538732 DOI: 10.1016/j.heliyon.2024.e38584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are widely used in cardiovascular applications. However, their potential to induce ferroptosis in myocardial cells post-ischemia-reperfusion hinders clinical adoption. We investigated the mechanisms behind SPION-induced cytotoxicity in myocardial cells and explored whether co-loading SPION with SS-31 (a kind of mitochondrial-targeted antioxidant peptide) could counteract this toxicity. To create SPION@SS-31, SS-31 was physically adsorbed onto SPION. To study the dose- and time-dependent cytotoxic effects and assess the influence of SS-31 on reducing SPION-induced damage, hypoxia/reoxygenation(H/R) H9C2 cells were treated with either SPION or SPION@SS-31. We examined the relationship between SPION and ferroptosis by measuring mitochondrial ROS, mitochondrial membrane potential (MMP), lipid peroxidation products, ATP, GSH, GPX4, mitochondrial structure, nonheme iron content, cellular iron regulation, and typical ferroptosis markers. The findings showed that SPION induced concentration- and time-dependent toxicity, marked by a significant cell viability loss and an increase in LDH levels. In contrast, SPION@SS-31 produced results comparable to the H/R group, implying that SS-31 can notably reduce cell damage induced by SPION. SPION disrupted cellular iron homeostasis, with FtH and FtMt expression increased and reduced levels of FPN1 and ABCB8, which led to the overload of mitochondrial iron. This iron dysregulation damaged mitochondrial function and integrity, causing ATP depletion, MMP loss, and decreased GPX4 and GSH levels, accompanied by a burst of mitochondrial lipid peroxidation, ultimately resulting in ferroptosis in H/R cardiomyocytes. Notably, SS-31 significantly alleviated SPION-induced ferroptosis by decreasing mitochondrial MDA production and maintaining GSH and GPX4 levels, indicating its possibility to reverse SPION-induced cytotoxicity. The viability of H/R cells and cells treated with SPION and Fer-1 did not differ statistically, whereas cells exposed to SPION along with inhibitors like 3-MA, zVAD, or Nec-1 showed a substantial loss in viability, implying that ferroptosis is the primary mechanism behind SPION-induced myocardial toxicity. SPION triggers mitochondrial lipid peroxidation by causing overload of iron, leading to ferroptosis in H/R H9C2 cells. Mitochondria appear to be the primary target of SPION-induced toxic effects. SS-31 demonstrates potential in inhibiting this ferroptosis by acting as a mitochondria-targeted antioxidant, suggesting that the modification of mitochondria-targeted antioxidant peptides represents an innovative and practical approach to attenuate the myocardial toxicity associated with SPION.
Collapse
Affiliation(s)
- Qizheng Lu
- Department of Digestive Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510000, Guangdong Province, China
| | - Xiaobo Yao
- Department of Cardiology, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200125, China
| | - Hao Zheng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jinbo Ou
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jieyun You
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qi Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wei Guo
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Xu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Geng
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qinghua Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ning Pei
- College of Science, Shanghai University, Shanghai, 200444, China
| | - Yongyong Gong
- College of Science, Shanghai University, Shanghai, 200444, China
| | - Hongming Zhu
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
5
|
Fahmy HM, Shekewy S, Elhusseiny FA, Elmekawy A. Enhanced Biocompatibility by Evaluating the Cytotoxic and Genotoxic Effects of Magnetic Iron Oxide Nanoparticles and Chitosan on Hepatocellular Carcinoma Cells (HCC). Cell Biochem Biophys 2024; 82:1027-1042. [PMID: 38558242 PMCID: PMC11344728 DOI: 10.1007/s12013-024-01256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Hepatocellular carcinoma (HCC), the fifth most prevalent cancer worldwide, is influenced by a myriad of clinic-pathological factors, including viral infections and genetic abnormalities. This study delineates the synthesis, characterization, and the biological efficacy of iron oxide nanoparticles (Fe3O4) and chitosan-coated iron oxide nanoparticles (Fe3O4-CS) against HCC. Analytical methods confirmed the successful synthesis of both nanoparticles, with Fe3O4-CS demonstrating a smaller, uniform spherical morphology and distinct surface and magnetic properties attributable to its chitosan coating. The prepared materials were analyzed using various techniques, and their potential cytotoxic effects on HepG2 cancer cells line for HCC were investigated. In biological evaluations against HepG2 cells, a notable distinction in cytotoxicity was observed. Fe3O4 showed modest anticancer activity with an IC50 of 383.71 ± 23.9 µg/mL, whereas Fe3O4 exhibited a significantly enhanced cytotoxic effect, with a much lower IC50 of 39.15 ± 39.2 µg/mL. The Comet assay further evidenced Fe3O4-CS potent DNA damaging effect, showcasing its superior ability to induce apoptosis through extensive DNA fragmentation. Biochemical analyses integrated into our results reveal that Fe3O4-CS not only induces significant DNA damage but also markedly alters oxidative stress markers. Compared to control and Fe3O4-treated cells, Fe3O4-CS exposure significantly elevated levels of oxidative stress markers: superoxide dismutase (SOD) increased to 192.07 U/ml, catalase (CAT) decreased to 0.03 U/L, glutathione peroxidase (GPx) rose dramatically to 18.76 U/gT, and malondialdehyde (MDA) levels heightened to 30.33 nmol/gT. These results underscore the potential of Fe3O4-CS nanoparticles not only in inducing significant DNA damage conducive to cancer cell apoptosis but also in altering enzymatic activities and oxidative stress markers, suggesting a dual mechanism of action that may underpin their therapeutic advantage in cancer treatment. Our findings advocate for the further exploration of Fe3O4-CS nanoparticles in the development of anticancer drugs, emphasizing their capability to trigger oxidative stress and enhance antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Samar Shekewy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
- Physics Department, Faculty of Science, Menofia University, Menofia, Egypt
| | | | - Ahmed Elmekawy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
6
|
Wei B, Zhou Y, Li Q, Zhen S, Wu Q, Xiao Z, Liao J, Zhu B, Duan J, Yang X, Liang F. Outdoor fine particulate matter exposure and telomere length in humans: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116206. [PMID: 38518608 DOI: 10.1016/j.ecoenv.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Although the association between changes in human telomere length (TL) and ambient fine particulate matter (PM2.5) has been documented, there remains disagreement among the related literature. Our study conducted a systematic review and meta-analysis of epidemiological studies to investigate the health effects of outdoor PM2.5 exposure on human TL after a thorough database search. To quantify the overall effect estimates of TL changes associated with every 10 μg/m3 increase in PM2.5 exposure, we focused on two main topics, which were outdoor long-term exposure and prenatal exposure of PM2.5. Additionally, we included a summary of short-term PM2.5 exposure and its impact on TL due to limited data availability. Our qualitative analysis included 20 studies with 483,600 participants. The meta-analysis showed a statistically significant association between outdoor PM2.5 exposure and shorter human TL, with pooled impact estimates (β) of -0.12 (95% CI: -0.20, -0.03, I2= 95.4%) for general long-term exposure and -0.07 (95% CI: -0.15, 0.00, I2= 74.3%) for prenatal exposure. In conclusion, our findings suggest that outdoor PM2.5 exposure may contribute to TL shortening, and noteworthy associations were observed in specific subgroups, suggesting the impact of various research variables. Larger, high-quality studies using standardized methodologies are necessary to strengthen these conclusions further.
Collapse
Affiliation(s)
- Bincai Wei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yawen Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihan Zhen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingyao Wu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyi Xiao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Liao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiahao Duan
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China..
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Safhi AY, Albariqi AH, Sabei FY, Alsalhi A, Khalil FMA, Waheed A, Arbi FM, White A, Anthony S, Alissa M. Journey into tomorrow: cardiovascular wellbeing transformed by nano-scale innovations. Curr Probl Cardiol 2024; 49:102428. [PMID: 38311274 DOI: 10.1016/j.cpcardiol.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Worldwide, cardiovascular diseases (CVDs) account for the vast majority of deaths and place enormous financial strains on healthcare systems. Gold nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes, and lipids are innovative nanomaterials promising in tackling CVDs. In the setting of CVDs, these nanomaterials actively impact cellular responses due to their distinctive properties, including surface energy and topographies. Opportunities to more precisely target CVDs have arisen due to recent developments in nanomaterial science, which have introduced fresh approaches. An in-depth familiarity with the illness and its targeted mechanisms is necessary to use nanomaterials in CVDs effectively. We support the academic community's efforts to prioritize Nano-technological techniques in addressing risk factors linked with cardiovascular diseases, acknowledging the far-reaching effects of these conditions. The significant impact of nanotechnology on the early detection and treatment of cardiovascular diseases highlights the critical need for novel approaches to this pressing health problem, which is affecting people worldwide.
Collapse
Affiliation(s)
- Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmed H Albariqi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Collage of Science and Art, Department of Biology, Mohayil Asir Abha 61421, Saudi Arabia
| | | | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab 63100, Pakistan
| | - Alexandra White
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China, PR China
| | - Stefan Anthony
- Cardiovascular Center of Excellence at Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
8
|
El-Latif NA, El Zehary RR, Ibrahim FM, Denewar M. Bone marrow stem cells with or without superparamagnetic iron oxide nanoparticles as a magnetic targeting tool: Which is better in regeneration of neurolysed facial nerve? An experimental study. Heliyon 2024; 10:e26675. [PMID: 38434051 PMCID: PMC10906296 DOI: 10.1016/j.heliyon.2024.e26675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Aim This study was performed to evaluate neural regenerative capacities of bone marrow stem cells (BMSCs) with or without superparamagnetic iron oxide nanoparticles (SPIONs) as a magnetic targeting tool after neurolysis of the facial nerve (FN) in albino rats. Methods Thirty-eight male albino rats were selected. Two of them were euthanized for normal FN histology assessment. Thirty-six rats were injected with ethanol in the FN nerve for neurolysis induction and assessed one week post-operatively by eye blinking test. Animals were divided into three groups, each containing twelve rats: Group I (positive control) was injected with Dulbecco Modified Eagle's medium (DMEM-F12), group II was injected with BMSCs in DMEM-F12, and group III was injected with BMSCs in DMEM-F12 with poly l-lysine coated SPIONs (0.5 mmol/mL). Monitoring of SPIONs in the rat's body was carried out by MRI. A circular neodymium magnet N52 (0.57 T, 2 × 5 mm) was placed on each rat in group III just below the right ear at the site of surgery to attract SPIONs labeled BMSCs, left in place for 24 h, and then removed. From each group, six rats were euthanized at the end of the 4th and 8th week of treatment, respectively. The right FN trunks were extracted for routine histological examination using H&E stain. Immunohistochemical examination by anti-S100B was performed to characterize the thickness of the myelin sheath formed by the Schwann cells. Ultra-structural examination was performed to study changes in axons, myelin sheaths, and Schwann cells. Results Regeneration of nerve fibers, Schwan cells, and myelin sheaths was better in group II than in groups I and III histologically, immunohistochemically, and ultra-structurally. Conclusion BMSCs alone could ameliorate FN regeneration better than magnetic targeting treatment using BMSCs labeled with SPIONs.
Collapse
Affiliation(s)
| | | | | | - Mona Denewar
- Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| |
Collapse
|
9
|
Hamadi N, Al-Salam S, Beegam S, Zaaba NE, Elzaki O, Nemmar A. Impact of prolonged exposure to occasional and regular waterpipe smoke on cardiac injury, oxidative stress and mitochondrial dysfunction in male mice. Front Physiol 2024; 15:1286366. [PMID: 38370014 PMCID: PMC10869456 DOI: 10.3389/fphys.2024.1286366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Regular waterpipe smoking (Reg-WPS) is well recognized for its deleterious effect on the heart. However, there is a paucity of experimental studies on the impact of occasional waterpipe smoking (Occ-WPS), also known as nondaily smoking, versus Reg-WPS on cardiac homeostasis, and the mechanisms underlying these effects. Hence, we aimed, in the present study, to investigate the effect of Occ-WPS (30 min/day, 1 day/week) versus Reg-WPS (30 min/day, 5 days/week) for 6 months on systolic blood pressure (SBP), cardiac injury, oxidative markers, chemokines, proinflammatory cytokines, DNA damage and mitochondrial function compared with air (control) exposed mice. Our results show that SBP was increased following exposure to either Occ-WPS or Reg-WPS compared with air-exposed mice. Moreover, we found that only Reg-WPS induced a significant elevation in the levels of troponin I, brain natriuretic peptide, lactate dehydrogenase, and creatine phosphokinase. However, the atrial natriuretic peptide (ANP) was significantly increased in both Occ-WPS and Reg-WPS groups. Compared with air-exposed mice, the levels of lipid peroxidation, reduced glutathione and monocyte chemoattractant protein-1 were only significantly augmented in the Reg-WPS. However, catalase, superoxide dismutase, and CXCL1 were significantly increased in both Occ-WPS and Reg-WPS. The concentrations of the adhesion molecules E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 were solely elevated in the heart of mice exposed to Reg-WPS. Similarly, the concentrations of interleukin-1β and tumor necrosis factor α were only significantly augmented in the Reg-WPS. However, both Occ-WPS and Reg-WPS triggered significant augmentation in the levels of IL17 and DNA damage compared to the control groups. Furthermore, while Occ-WPS induced a slight but statistically insignificant elevation in the concentrations of mammalian targets of rapamycin and nuclear factor erythroid-derived 2-like 2 (Nrf2) expression, Reg-WPS exposure increased their levels substantially, in addition to p53 and mitochondrial complexes II & III, and IV activities compared with air-exposed mice. In conclusion, our findings show that while the long-term Occ-WPS exposure induced an elevation of SBP, ANP, antioxidant enzymes, IL17, CXCL1, and cardiac DNA damage, Reg-WPS exposure was consistently associated with the elevation of SBP and occurrence of cardiac damage, inflammation, oxidative stress, DNA damage and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abderrahim Nemmar
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
11
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
12
|
Guo J, Wang H, Li Y, Zhu S, Hu H, Gu Z. Nanotechnology in coronary heart disease. Acta Biomater 2023; 171:37-67. [PMID: 37714246 DOI: 10.1016/j.actbio.2023.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.
Collapse
Affiliation(s)
- Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Li
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
14
|
Turrina C, Schoenen M, Milani D, Klassen A, Rojas Gonzaléz DM, Cvirn G, Mela P, Berensmeier S, Slabu I, Schwaminger SP. Application of magnetic iron oxide nanoparticles: Thrombotic activity, imaging and cytocompatibility of silica-coated and carboxymethyl dextrane-coated particles. Colloids Surf B Biointerfaces 2023; 228:113428. [PMID: 37379701 DOI: 10.1016/j.colsurfb.2023.113428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Coated iron oxide nanoparticles (IONs) are promising candidates for various applications in nanomedicine, including imaging, magnetic hyperthermia, and drug delivery. The application of IONs in nanomedicine is influenced by factors such as biocompatibility, surface properties, agglomeration, degradation behavior, and thrombogenicity. Therefore, it is essential to investigate the effects of coating material and thickness on the behavior and performance of IONs in the human body. In this study, IONs with a carboxymethyl dextran (CMD) coating and two thicknesses of silica coating (TEOS0.98, and TEOS3.91) were screened and compared to bare iron oxide nanoparticles (BIONs). All three coated particles showed good cytocompatibility (>70%) when tested with smooth muscle cells over three days. To investigate their potential long term behavior inside the human body, the Fe2+ release and hydrodynamic diameters of silica-coated and CMD (carboxymethyl dextrane)-coated IONs were analyzed in simulated body fluids for 72 h at 37 °C. The ION@CMD showed moderate agglomeration of around 100 nm in all four simulated fluids and dissolved faster than the silica-coated particles in artificial exosomal fluid and artificial lysosomal fluid. The particles with silica coating agglomerated in all tested simulated media above 1000 nm. Increased thickness of the silica coating led to decreased degradation of particles. Additionally, CMD coating resulted in nanoparticles with the least prothrombotic activity, and the thick silica coating apparently decreased the prothrombotic properties of nanoparticles compared to BIONs and ION@TEOS0.98. For magnetic resonance applications, ION@CMD and ION@TEOS3.91 showed comparatively high relaxation rates R2 values. In magnetic particle imaging experiments ION@TEOS3.91 yielded the highest normalized signal to noise ratio values and in magnetic hyperthermia studies, ION@CMD and ION@TEOS0.98 showed similar specific loss power. These findings demonstrate the potential of coated IONs in nanomedicine and emphasize the importance of understanding the effect of coating material and thickness on their behavior and performance in the human body.
Collapse
Affiliation(s)
- Chiara Turrina
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Max Schoenen
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Davide Milani
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Anna Klassen
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Diana M Rojas Gonzaléz
- Chair of Medical Materials and Implants, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Petra Mela
- Chair of Medical Materials and Implants, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Sebastian P Schwaminger
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed, Mozartgasse 12, 8010 Graz, Austria.
| |
Collapse
|
15
|
Wang X, Jia Z, Zhou X, Su L, Wang M, Wang T, Zhang H. Nanoplastic-induced vascular endothelial injury and coagulation dysfunction in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161271. [PMID: 36587662 DOI: 10.1016/j.scitotenv.2022.161271] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Nanoplastics are the persistent pollutants in a variety of environments, representing a potential threat to human health. Notably, plastic particles have been detected in sample of human bloodstream. It is thus significant to investigate the effects of nanoplastics on the cardiovascular system owing to its ease transfer through the bloodstream to other organs. However, few studies have been performed to evaluate the cardiovascular toxicity of nanoplastics. Herein, we pursued to investigate the adverse cardiovascular impacts of polystyrene (PS), PS-NH2 and PS-COOH nanoplastics on mice. Experimental results demonstrated that the exposure to these nanoplastics could result in structural damage of vascular endothelial cells and inflammatory response. Moreover, it was found out that the dysfunctions of coagulation and prethrombotic state were caused by nanoplastics, which could be ascribed to the activation of JAK1/STAT3/TF signaling pathway. In summary, results clearly indicated that nanoplastic exposure lead to vascular toxicity to mice, which serves as a basis for future studies about the potential physiological threat of nanoplastics to humans.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Xiuran Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Lei Su
- Department of Food Industry, Shandong Institute of Commerce and Technology, Jinan 250103, PR China
| | - Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Tian Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
16
|
Dutta S, Kumar P, Yadav S, Sharma RD, Shivaprasad P, Vimaleswaran KS, Srivastava A, Sharma RK. Accelerating innovations in C H activation/functionalization through intricately designed magnetic nanomaterials: From genesis to applicability in liquid/regio/photo catalysis. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
17
|
Liang X, Li H, Li X, Tian X, Zhang A, Luo Q, Duan J, Chen Y, Pang L, Li C, Liang XJ, Zeng Y, Yang J. Highly sensitive H 2O 2-scavenging nano-bionic system for precise treatment of atherosclerosis. Acta Pharm Sin B 2023; 13:372-389. [PMID: 36815039 PMCID: PMC9939301 DOI: 10.1016/j.apsb.2022.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
In atherosclerosis, chronic inflammatory processes in local diseased areas may lead to the accumulation of reactive oxygen species (ROS). In this study, we devised a highly sensitive H2O2-scavenging nano-bionic system loaded with probucol (RPP-PU), to treat atherosclerosis more effectively. The RPP material had high sensitivity to H2O2, and the response sensitivity could be reduced from 40 to 10 μmol/L which was close to the lowest concentration of H2O2 levels of the pathological environment. RPP-PU delayed the release and prolonged the duration of PU in vivo. In Apolipoprotein E deficient (ApoE‒/‒) mice, RPP-PU effectively eliminated pathological ROS, reduced the level of lipids and related metabolic enzymes, and significantly decreased the area of vascular plaques and fibers. Our study demonstrated that the H2O2-scavenging nano-bionic system could scavenge the abundant ROS in the atherosclerosis lesion, thereby reducing the oxidative stress for treating atherosclerosis and thus achieve the therapeutic goals with atherosclerosis more desirably.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xuanling Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China,Medical College of Qinghai University, Xining 810016, China
| | - Xinxin Tian
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Aiai Zhang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou 075061, China
| | - Qingzhi Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Liyun Pang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yong Zeng
- Beijing Anzhen Hospital of Capital Medical University, Beijing 100029, China,Corresponding authors.
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China,Corresponding authors.
| |
Collapse
|
18
|
Gawel AM, Singh R, Debinski W. Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment-An Update. Biomedicines 2022; 10:1598. [PMID: 35884903 PMCID: PMC9312866 DOI: 10.3390/biomedicines10071598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed and most lethal primary malignant brain tumor in adults. Standard treatments are ineffective, and despite promising results obtained in early phases of experimental clinical trials, the prognosis of GBM remains unfavorable. Therefore, there is need for exploration and development of innovative methods that aim to establish new therapies or increase the effectiveness of existing therapies. One of the most exciting new strategies enabling combinatory treatment is the usage of nanocarriers loaded with chemotherapeutics and/or other anticancer compounds. Nanocarriers exhibit unique properties in antitumor therapy, as they allow highly efficient drug transport into cells and sustained intracellular accumulation of the delivered cargo. They can be infused into and are retained by GBM tumors, and potentially can bypass the blood-brain barrier. One of the most promising and extensively studied groups of nanostructured therapeutics are metal-based nanoparticles. These theranostic nanocarriers demonstrate relatively low toxicity, thus they might be applied for both diagnosis and therapy. In this article, we provide an update on metal-based nanostructured constructs in the treatment of GBM. We focus on the interaction of metal nanoparticles with various forms of electromagnetic radiation for use in photothermal, photodynamic, magnetic hyperthermia and ionizing radiation sensitization applications.
Collapse
Affiliation(s)
- Agata M. Gawel
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
19
|
Diaz-Diestra DM, Palacios-Hernandez T, Liu Y, Smith DE, Nguyen AK, Todorov T, Gray PJ, Zheng J, Skoog SA, Goering PL. Impact of surface chemistry of ultrasmall superparamagnetic iron oxide nanoparticles on protein corona formation and endothelial cell uptake, toxicity, and barrier function. Toxicol Sci 2022; 188:261-275. [PMID: 35708658 DOI: 10.1093/toxsci/kfac058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) have been investigated for biomedical applications, including novel contrast agents, magnetic tracers for tumor imaging, targeted drug delivery vehicles, and magneto-mechanical actuators for hyperthermia and thrombolysis. Despite significant progress, recent clinical reports have raised concerns regarding USPION safety related to endothelial cell dysfunction; however, there is limited information on factors contributing to these clinical responses. The influence of USPION surface chemistry on nanoparticle interactions with proteins may impact endothelial cell function leading to adverse responses. Therefore, the goal of this study was to assess the effects of carboxyl-functionalized USPION (CU) or amine-functionalized USPION (AU) (∼30 nm diameter) on biological responses in human coronary artery endothelial cells. Increased protein adsorption was observed for AU compared to CU after exposure to serum proteins. Exposure to CU, but not AU, resulted in a concentration-dependent decrease in cell viability and perinuclear accumulation inside cytoplasmic vesicles. Internalization of CU was correlated with endothelial cell functional changes under non-cytotoxic conditions, as evidenced by a marked decreased expression of endothelial-specific adhesion proteins (e.g., VE-cadherin and PECAM-1) and increased endothelial permeability. Evaluation of downstream signaling indicated endothelial permeability is associated with actin cytoskeleton remodeling, possibly elicited by intracellular events involving reactive oxygen species, calcium ions, and the nanoparticle cellular uptake pathway. This study demonstrated that USPION surface chemistry significantly impacts protein adsorption and endothelial cell uptake, viability, and barrier function. This information will advance the current toxicological profile of USPION and improve development, safety assessment, and clinical outcomes of USPION-enabled medical products.
Collapse
Affiliation(s)
- Daysi M Diaz-Diestra
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Teresa Palacios-Hernandez
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Yizhong Liu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Diane E Smith
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Alexander K Nguyen
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Todor Todorov
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland
| | - Patrick J Gray
- Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Shelby A Skoog
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| | - Peter L Goering
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering, Laboratories, Center for Devices and Radiological Health, US Food and Drug, Administration, Silver Spring, Maryland
| |
Collapse
|
20
|
Mittal S, Chakole CM, Sharma A, Pandey J, Chauhan MK. An Overview of Green Synthesis and Potential Pharmaceutical Applications of Nanoparticles as Targeted Drug Delivery System in Biomedicines. Drug Res (Stuttg) 2022; 72:274-283. [PMID: 35562101 DOI: 10.1055/a-1801-6793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanotechnology-based nanomedicine offers several benefits over conventional forms of therapeutic agents. Moreover, nanomedicine has become a potential candidate for targeting therapeutic agents at specific sites. However, nanomedicine prepared by synthetic methods may produce unwanted toxic effects. Due to their nanosize range, nanoparticles can easily reach the reticuloendothelial system and may produce unwanted systemic effects. The nanoparticles produced by the green chemistry approach would enhance the safety profile by avoiding synthetic agents and solvents in its preparations. This review encompasses toxicity consideration of nanoparticles, green synthesis techniques of nanoparticle preparation, biomedical application of nanoparticles, and future prospects.
Collapse
Affiliation(s)
- Shweta Mittal
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| | - Chandrashekhar Mahadeo Chakole
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| | - Aman Sharma
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| | - Jaya Pandey
- Amity School school of Applied Sciences Lucknow, Amity University, Uttar Pradesh, India
| | - Meenakshi Kanwar Chauhan
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| |
Collapse
|
21
|
Wu L, Wen W, Wang X, Huang D, Cao J, Qi X, Shen S. Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Part Fibre Toxicol 2022; 19:24. [PMID: 35351185 PMCID: PMC8962100 DOI: 10.1186/s12989-022-00465-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/17/2022] [Indexed: 01/21/2023] Open
Abstract
Background Iron oxide nanoparticles have been approved by food and drug administration for clinical application as magnetic resonance imaging (MRI) and are considered to be a biocompatible material. Large iron oxide nanoparticles are usually used as transversal (T2) contrast agents to exhibit dark contrast in MRI. In contrast, ultrasmall iron oxide nanoparticles (USPIONs) (several nanometers) showed remarkable advantage in longitudinal (T1)-weighted MRI due to the brighten effect. The study of the toxicity mainly focuses on particles with size of tens to hundreds of nanometers, while little is known about the toxicity of USPIONs. Results We fabricated Fe3O4 nanoparticles with diameters of 2.3, 4.2, and 9.3 nm and evaluated their toxicity in mice by intravenous injection. The results indicate that ultrasmall iron oxide nanoparticles with small size (2.3 and 4.2 nm) were highly toxic and were lethal at a dosage of 100 mg/kg. In contrast, no obvious toxicity was observed for iron oxide nanoparticles with size of 9.3 nm. The toxicity of small nanoparticles (2.3 and 4.2 nm) could be reduced when the total dose was split into 4 doses with each interval for 5 min. To study the toxicology, we synthesized different-sized SiO2 and gold nanoparticles. No significant toxicity was observed for ultrasmall SiO2 and gold nanoparticles in the mice. Hence, the toxicity of the ultrasmall Fe3O4 nanoparticles should be attributed to both the iron element and size. In the in vitro experiments, all the ultrasmall nanoparticles (< 5 nm) of Fe3O4, SiO2, and gold induced the generation of the reactive oxygen species (ROS) efficiently, while no obvious ROS was observed in larger nanoparticles groups. However, the ·OH was only detected in Fe3O4 group instead of SiO2 and gold groups. After intravenous injection, significantly elevated ·OH level was observed in heart, serum, and multiple organs. Among these organs, heart showed highest ·OH level due to the high distribution of ultrasmall Fe3O4 nanoparticles, leading to the acute cardiac failure and death. Conclusion Ultrasmall Fe3O4 nanoparticles (2.3 and 4.2 nm) showed high toxicity in vivo due to the distinctive capability in inducing the generation of ·OH in multiple organs, especially in heart. The toxicity was related to both the iron element and size. These findings provide novel insight into the toxicology of ultrasmall Fe3O4 nanoparticles, and also highlight the need of comprehensive evaluation for their clinic application. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00465-y.
Collapse
|
22
|
Segers FME, Ruder AV, Westra MM, Lammers T, Dadfar SM, Roemhild K, Lam TS, Kooi ME, Cleutjens KBJM, Verheyen FK, Schurink GWH, Haenen GR, van Berkel TJC, Bot I, Halvorsen B, Sluimer JC, Biessen EAL. Magnetic resonance imaging contrast-enhancement with superparamagnetic iron oxide nanoparticles amplifies macrophage foam cell apoptosis in human and murine atherosclerosis. Cardiovasc Res 2022; 118:3346-3359. [PMID: 35325057 PMCID: PMC9847560 DOI: 10.1093/cvr/cvac032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS (Ultra) Small superparamagnetic iron oxide nanoparticles, (U)SPIO, are widely used as magnetic resonance imaging contrast media and assumed to be safe for clinical applications in cardiovascular disease. As safety tests largely relied on normolipidaemic models, not fully representative of the clinical setting, we investigated the impact of (U)SPIOs on disease-relevant endpoints in hyperlipidaemic models of atherosclerosis. METHODS AND RESULTS RAW264.7 foam cells, exposed in vitro to ferumoxide (dextran-coated SPIO), ferumoxtran (dextran-coated USPIO), or ferumoxytol [carboxymethyl (CM) dextran-coated USPIO] (all 1 mg Fe/mL) showed increased apoptosis and reactive oxygen species accumulation for ferumoxide and ferumoxtran, whereas ferumoxytol was tolerated well. Pro-apoptotic (TUNEL+) and pro-oxidant activity of ferumoxide (0.3 mg Fe/kg) and ferumoxtran (1 mg Fe/kg) were confirmed in plaque, spleen, and liver of hyperlipidaemic ApoE-/- (n = 9/group) and LDLR-/- (n = 9-16/group) mice that had received single IV injections compared with saline-treated controls. Again, ferumoxytol treatment (1 mg Fe/kg) failed to induce apoptosis or oxidative stress in these tissues. Concomitant antioxidant treatment (EUK-8/EUK-134) largely prevented these effects in vitro (-68%, P < 0.05) and in plaques from LDLR-/- mice (-60%, P < 0.001, n = 8/group). Repeated ferumoxtran injections of LDLR-/- mice with pre-existing atherosclerosis enhanced plaque inflammation and apoptosis but did not alter plaque size. Strikingly, carotid artery plaques of endarterectomy patients who received ferumoxtran (2.6 mg Fe/kg) before surgery (n = 9) also showed five-fold increased apoptosis (18.2 vs. 3.7%, respectively; P = 0.004) compared with controls who did not receive ferumoxtran. Mechanistically, neither coating nor particle size seemed accountable for the observed cytotoxicity of ferumoxide and ferumoxtran. CONCLUSIONS Ferumoxide and ferumoxtran, but not ferumoxytol, induced apoptosis of lipid-laden macrophages in human and murine atherosclerosis, potentially impacting disease progression in patients with advanced atherosclerosis.
Collapse
Affiliation(s)
- Filip M E Segers
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands,Faculty of Medicine, Research Institute of Internal Medicine, University Hospital Oslo, Oslo, Norway
| | - Adele V Ruder
- Department of Pathology, CARIM School for Cardiovascular Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marijke M Westra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, RWTH Aachen University, Aachen, Germany
| | | | - Karolin Roemhild
- Department of Nanomedicine and Theranostics, RWTH Aachen University, Aachen, Germany,Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Tin Sing Lam
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Marianne Eline Kooi
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kitty B J M Cleutjens
- Department of Pathology, CARIM School for Cardiovascular Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Fons K Verheyen
- Molecular Cell Biology and Electron Microscopy (CRISP), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Geert W H Schurink
- Department of Surgery, CARIM School for Cardiovascular Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Guido R Haenen
- Department of Toxicology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Theo J C van Berkel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Bente Halvorsen
- Faculty of Medicine, Research Institute of Internal Medicine, University Hospital Oslo, Oslo, Norway
| | - Judith C Sluimer
- Corresponding author. Tel: +31 43 3877675; Fax: +31 43 3874613, E-mail: (J.C.S.); E-mail: (E.A.L.B.)
| | - Erik A L Biessen
- Corresponding author. Tel: +31 43 3877675; Fax: +31 43 3874613, E-mail: (J.C.S.); E-mail: (E.A.L.B.)
| |
Collapse
|
23
|
The Surface Amine Group of Ultrasmall Magnetic Iron Oxide Nanoparticles Produce Analgesia in the Spinal Cord and Decrease Long-Term Potentiation. Pharmaceutics 2022; 14:pharmaceutics14020366. [PMID: 35214098 PMCID: PMC8879719 DOI: 10.3390/pharmaceutics14020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/19/2022] Open
Abstract
Our previous studies have revealed the ultrasmall superparamagnetic iron oxide in the amine group USPIO-101 has an analgesic effect on inflammatory pain. Here, we further investigated its effect on the spinal cord and brain via electrophysiological and molecular methods. We used a mouse inflammatory pain model, induced by complete Freund’s adjuvant (CFA), and measured pain thresholds via von Frey methods. We also investigated the effects of USPIO-101 via an extracellular electrophysiological recording at the spinal dorsal horn synapses and hippocampal Schaffer collateral-CA1 synapses, respectively. The mRNA expression of pro-inflammatory cytokines was detected by quantitative real-time polymerase chain reaction (RT-qPCR). Our results showed intrathecal USPIO-101 produces similar analgesic behavior in mice with chronic inflammatory pain via intrathecal or intraplantar administration. The potentiated low-frequency stimulation-induced spinal cord long-term potentiation (LTP) at the spinal cord superficial dorsal horn synapses could decrease via USPIO-101 in mice with chronic inflammatory pain. However, the mRNA expression of cyclooxygenase-2 was enhanced with lipopolysaccharide (LPS) stimulation in microglial cells, and we also found USPIO-101 at 30 µg/mL could decrease the magnitude of hippocampal LTP. These findings revealed that intrathecal USPIO-101 presented an analgesia effect at the spinal cord level, but had neurotoxicity risk at higher doses.
Collapse
|
24
|
Cheng Y, Chen Z, Yang S, Liu T, Yin L, Pu Y, Liang G. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149584. [PMID: 34399324 DOI: 10.1016/j.scitotenv.2021.149584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The extensive production and use of nanomaterials have resulted in the continuous release of nano-sized particles into the environment, and the health risks caused by exposure to these nanomaterials in the occupational population and the general population cannot be ignored. Studies have found that particle exposure is closely related to cardiovascular disease. In addition, there have been many reports that nanomaterials can enter the heart tissue, accumulate and then cause damage. Therefore, in the present article, literature related to nanomaterials-induced cardiotoxicity in recent years was collected from the PubMed database, and then organized and summarized to form a review. This article mainly discusses heart damage caused by nanomaterials from the following three aspects: Firstly, we summarize the research 8 carbon nanotubes, etc. Secondly, we discuss in depth the possible underlying mechanism of the damage to the heart caused by nanoparticles. Oxidative stress damage, mitochondrial damage, inflammation and apoptosis have been found to be key factors. Finally, we summarize the current research models used to evaluate the cardiotoxicity of nanomaterials, highlight reliable emerging technologies and in vitro models that have been used for toxicity evaluation of environmental pollutants in recent years, and indicate their application prospects.
Collapse
Affiliation(s)
- Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China.
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
25
|
Alromi DA, Madani SY, Seifalian A. Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer. Polymers (Basel) 2021; 13:4146. [PMID: 34883649 PMCID: PMC8659429 DOI: 10.3390/polym13234146] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is a disease that has resulted in millions of deaths worldwide. The current conventional therapies utilized for the treatment of cancer have detrimental side effects. This led scientific researchers to explore new therapeutic avenues with an improved benefit to risk profile. Researchers have found nanoparticles, particles between the 1 and 100 nm range, to be encouraging tools in the area of cancer. Magnetic nanoparticles are one of many available nanoparticles at present. Magnetic nanoparticles have increasingly been receiving a considerable amount of attention in recent years owing to their unique magnetic properties, among many others. Magnetic nanoparticles can be controlled by an external magnetic field, signifying their ability to be site specific. The most popular approaches for the synthesis of magnetic nanoparticles are co-precipitation, thermal decomposition, hydrothermal, and polyol synthesis. The functionalization of magnetic nanoparticles is essential as it significantly increases their biocompatibility. The most utilized functionalization agents are comprised of polymers. The synthesis and functionalization of magnetic nanoparticles will be further explored in this review. The biomedical applications of magnetic nanoparticles investigated in this review are drug delivery, magnetic hyperthermia, and diagnosis. The diagnosis aspect focuses on the utilization of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Clinical trials and toxicology studies relating to the application of magnetic nanoparticles for the diagnosis and treatment of cancer will also be discussed in this review.
Collapse
Affiliation(s)
- Dalal A. Alromi
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (D.A.A.); (S.Y.M.)
| | - Seyed Yazdan Madani
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (D.A.A.); (S.Y.M.)
- School of Pharmacy, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| |
Collapse
|
26
|
Small-Sized Co-Polymers for Targeted Delivery of Multiple Imaging and Therapeutic Agents. NANOMATERIALS 2021; 11:nano11112996. [PMID: 34835760 PMCID: PMC8625475 DOI: 10.3390/nano11112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Research has increasingly focused on the delivery of high, often excessive amounts of drugs, neglecting negative aspects of the carrier's physical preconditions and biocompatibility. Among them, little attention has been paid to "small but beautiful" design of vehicle and multiple cargo to achieve effortless targeted delivery into deep tissue. The design of small biopolymers for deep tissue targeted delivery of multiple imaging agents and therapeutics (mini-nano carriers) emphasizes linear flexible polymer platforms with a hydrodynamic diameter of 4 nm to 10 nm, geometrically favoring dynamic juxtaposition of ligands to host receptors, and economic drug content. Platforms of biodegradable, non-toxic poly(β-l-malic acid) of this size carrying multiple chemically bound, optionally nature-derived or synthetic affinity peptides and drugs for a variety of purposes are described in this review with specific examples. The size, shape, and multiple attachments to membrane sites accelerate vascular escape and fast blood clearance, as well as the increase in medical treatment and contrasts for tissue imaging. High affinity antibodies routinely considered for targeting, such as the brain through the blood-brain barrier (BBB), are replaced by moderate affinity binding peptides (vectors), which penetrate at high influxes not achievable by antibodies.
Collapse
|
27
|
Pan Q, Xu J, Wen CJ, Xiong YY, Gong ZT, Yang YJ. Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. Int J Nanomedicine 2021; 16:6719-6747. [PMID: 34621124 PMCID: PMC8491866 DOI: 10.2147/ijn.s328723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite several recent advances, current therapy and prevention strategies for myocardial infarction are far from satisfactory, owing to limitations in their applicability and treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic compounds, enhance tissue engineering processes, and regulate the behaviour of transplants such as stem cells. Thus, NPs may be more effective than other mechanisms, and may minimize potential adverse effects. This review provides evidence for the view that function-oriented systems are more practical than traditional material-based systems; it also summarizes the latest advances in NP-based strategies for the treatment and prevention of myocardial infarction.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Cen-Jin Wen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
28
|
Chen L, Huang Q, Zhao T, Sui L, Wang S, Xiao Z, Nan Y, Ai K. Nanotherapies for sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species: New insight for treating COVID-19. Redox Biol 2021; 45:102046. [PMID: 34174559 PMCID: PMC8205260 DOI: 10.1016/j.redox.2021.102046] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 has caused up to 127 million cases of COVID-19. Approximately 5% of COVID-19 patients develop severe illness, and approximately 40% of those with severe illness eventually die, corresponding to more than 2.78 million people. The pathological characteristics of COVID-19 resemble typical sepsis, and severe COVID-19 has been identified as viral sepsis. Progress in sepsis research is important for improving the clinical care of these patients. Recent advances in understanding the pathogenesis of sepsis have led to the view that an uncontrolled inflammatory response and oxidative stress are core factors. However, in the traditional treatment of sepsis, it is difficult to achieve a balance between the inflammation, pathogens (viruses, bacteria, and fungi), and patient tolerance, resulting in high mortality of patients with sepsis. In recent years, nanomaterials mediating reactive oxygen and nitrogen species (RONS) and the inflammatory response have shown previously unattainable therapeutic effects on sepsis. Despite these advantages, RONS and inflammatory response-based nanomaterials have yet to be extensively adopted as sepsis therapy. To the best of our knowledge, no review has yet discussed the pathogenesis of sepsis and the application of nanomaterials. To help bridge this gap, we discuss the pathogenesis of sepsis related to inflammation and the overproduction RONS, which activate pathogen-associated molecular pattern (PAMP)-pattern recognition receptor (PRR) and damage-associated molecular pattern (DAMP)-PRR signaling pathways. We also summarize the application of nanomaterials in the treatment of sepsis. As highlighted here, this strategy could synergistically improve the therapeutic efficacy against both RONS and inflammation in sepsis and may prolong survival. Current challenges and future developments for sepsis treatment are also summarized.
Collapse
Affiliation(s)
- Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, Hunan, China
| | - Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, Hunan, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.
| |
Collapse
|
29
|
Hou X, Shi Y, Yang M, Yu S, Fan X, Liang J, Pan X, Wang X. Fabrication of poly( t-butyl betaine carboxylate)-based nanoparticles and study on their in vivo biosecurity. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2387-2401. [PMID: 34428381 DOI: 10.1080/09205063.2021.1971822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this article was to fabricate the novel poly(t-butyl betaine carboxylate)-S-S-poly (1, 3-dioxan-2-one) nanoparticles (PCB-tBU-S-S-PDI NPs) and study their in vivo biosecurity. The poly(t-butyl betaine carboxylate) (PCB-tBU) segment was conjugated to the poly(1, 3-dioxan-2-one)(PDI) moity with a disulfide bond to obtain the copolymer PCB-tBU-S-S-PDI. Hydrogen nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR) spectra were applied to study the structure of PCB-tBU-S-S-PDI. The cargo-free NPs were administrated to Sprague-Dawley (SD) rats by intraperitoneal injection every 3 days for 30 days. Then, the blood routine examination, blood biochemistry, and histologic slides of rat's organs were carried out to monitor the in vivo biosecurity of cargo-free PCB-tBU-S-S-PDI NPs. 1H NMR and FTIR spectra confirmed the successfully synthesis of PCB-tBU-S-S-PDI. The cargo-free NPs showed spherical morphology with an average of 139.8 ± 0.26 nm. The results of blood biochemistry and blood routine examination suggested that the cargo-free PCB-tBU-S-S-PDI NPs did not show any influence on the liver and renal functions of treated rats. Significantly, the physiological slides of treated rat's organs did not show any physiological and pathological changes. These phenomena suggested that the PCB-tBU-S-S-PDI NPs had good biosecurity, and it could be used as a vehicle for antineoplastic drug delivery.
Collapse
Affiliation(s)
- Xueyan Hou
- College of pharmacy, Xinxiang Medical University, Xinxiang, P.R. China
| | - Yongli Shi
- College of pharmacy, Xinxiang Medical University, Xinxiang, P.R. China
| | - Mingbo Yang
- College of pharmacy, Xinxiang Medical University, Xinxiang, P.R. China
| | - Shasha Yu
- College of pharmacy, Xinxiang Medical University, Xinxiang, P.R. China
| | - Xue Fan
- College of pharmacy, Xinxiang Medical University, Xinxiang, P.R. China
| | - Jinna Liang
- College of pharmacy, Xinxiang Medical University, Xinxiang, P.R. China
| | - Xiaofei Pan
- College of pharmacy, Xinxiang Medical University, Xinxiang, P.R. China
| | - Xiao Wang
- College of pharmacy, Xinxiang Medical University, Xinxiang, P.R. China
| |
Collapse
|
30
|
Chitosan and Curcumin Nanoformulations against Potential Cardiac Risks Associated with Hydroxyapatite Nanoparticles in Wistar Male Rats. Int J Biomater 2021; 2021:3394348. [PMID: 34373695 PMCID: PMC8349268 DOI: 10.1155/2021/3394348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Nanoparticle-induced cardiovascular diseases have attracted much attention. Upon entering the blood circulation system, these particles have the potency to induce cardiomyocytes, leading to cardiac failure or myocardial ischemia, and the molecular mechanism remains to be completely clarified. In this study, the cardiac toxicity of rats orally exposed to hydroxyapatite nanoparticles (HAPNPs) has been observed through an increase in myocardial infarction serum markers including CK-MB and alterations in routine blood factors, expression of apoptosis-related protein P53, and increased levels of serum inflammatory markers represented by the tumor necrosis factor alpha and Interleukin-6, as well as a decline in heart antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed, as well as notable histological and histochemical alterations in the heart of these animals. mRNA and protein expressions of vascular endothelial growth factor (VEGF-A), cyclooxygenase-2 (COX-2), and atrial natriuretic factor (ANF) were elevated in the myocardium. However, the coadministration of chitosan nanoparticles (CsNPs) and/or curcumin nanoparticles (CurNPs) successfully modulated these alterations and induced activation in antioxidant parameters. The present data suggest that HAPNPs-induced apoptosis via the mitochondrial pathway may play a crucial role in cardiac tissue damage and the early treatment with CsNPs and CurNPs may protect the heart from infarction induced by HAPNPs toxic effect.
Collapse
|
31
|
Zadeh Mehrizi T, Amini Kafiabad S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: a review. J Pharm Pharmacol 2021; 74:179-190. [PMID: 34244798 DOI: 10.1093/jpp/rgab089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Nanotechnology and nanoparticles are used in different applications in disease monitoring and therapy in contact with blood. Nanoparticles showed different effects on blood components and reduced or improved the function of therapeutic platelet during the storage time. This review study was performed to evaluate the impacts of various sizes and charges of nanoparticles on platelet function and storage time. The present review contains the literature between 2010 and 2020. The data have been used from different sites such as PubMed, Wiley, ScienceDirect and online electronic journals. KEY FINDINGS From the literature survey, it has been demonstrated that among various properties, size and charge of nanoparticles were critical on the function of therapeutic platelet during the storage and inhibition of their aggregation. Overall, this study described that nanoparticles with smaller size and negative charge were more effective in increasing the survival time, inhibition of aggregation and improving the function of therapeutic platelet. SUMMARY Based on the current review, it can be confirmed that nanoparticles such as dendrimer, Au, Ag and iron oxide nanoparticles with smaller size and negative charge have significant advantages for improving the efficacy of platelets during the storage chain and inhibition of their aggregation.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sedigheh Amini Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
32
|
El-Nekeety AA, Hassan ME, Hassan RR, Elshafey OI, Hamza ZK, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Nanoencapsulation of basil essential oil alleviates the oxidative stress, genotoxicity and DNA damage in rats exposed to biosynthesized iron nanoparticles. Heliyon 2021; 7:e07537. [PMID: 34345731 PMCID: PMC8319530 DOI: 10.1016/j.heliyon.2021.e07537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
The application of essential oils in food and pharmaceutical sectors face several challenges due to their sensitivity to oxidation process. Additionally, the biosynthesis of nanometals is growing rapidly; however, the toxicity of these particles against living organisms did not well explore yet. This study aimed to determine the bioactive compounds in basil essential oil (BEO) using GC-MS, to encapsulate and characterize BEO and to evaluate its protective role against the oxidative stress and genotoxicity of biosynthesized iron nanoparticles (Fe-NPs) in rats. Six groups of male Sprague-Dawley rats were treated orally for 4 weeks included the control group, Fe-NPs-treated group (100 mg/kg b.w.); EBEO-treated groups at low (100 mg/kg b.w.) or high (200 mg/kg b.w.) dose and the groups treated with Fe-NPs plus the low or the high dose of EBEO. The GC-MS analysis revealed the identification of 48 compounds and linalool was the major compound. The average sizes and zeta potential of the synthesized Fe-NPs and EBEO were 60 ± 4.76 and 120 ± 3.2 nm and 42.42 mV and -6.4 mV, respectively. Animals treated with Fe-NPs showed significant increase in serum biochemical analysis, oxidative stress markers, cytokines, lipid profile, DNA fragmentation and antioxidant enzymes and their gene expression and severe changes in the histology of liver and kidney tissues. Administration of Fe-NPs plus EBEO alleviated these disturbances and the high dose could normalize most of the tested parameters and improved the histology of liver and kidney. It could be concluded that caution should be taken in using the biosynthesized metal nanoparticles in different application. EBEO is a potent candidate to protect against the hazards of metal nanoparticles and can be applied in food and medical applications.
Collapse
Affiliation(s)
- Aziza A. El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt
| | - Marwa E. Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | - Rasha R. Hassan
- Immunology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | - Ola I. Elshafey
- Physical Chemistry Dept., National Research Centre, Dokki, Cairo, Egypt
| | - Zeinab K. Hamza
- Food Toxicology & Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt
| | | | | | | |
Collapse
|
33
|
Alsaleh NB. Adverse cardiovascular responses of engineered nanomaterials: Current understanding of molecular mechanisms and future challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102421. [PMID: 34166839 DOI: 10.1016/j.nano.2021.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 11/30/2022]
Abstract
Nanotechnology is spanning multiple fields of study from materials science to computer engineering and drug discovery. Since the early 21st century, nanotechnology and nano-enabled research have received great attention and governmental funding accompanied with interest to ensure human and environmental safety of engineered nanomaterials (ENMs). Optimal functioning of the cardiovascular (CV) system is of utmost importance for the overall health of the body. Following exposure, ENMs essentially end up in the circulation (at least partially) and hence it is key to assess any associated adverse CV consequences. Accumulating research suggests that exposure to ENMs (different compositions and physicochemical properties) has the capacity to directly and indirectly interact with CV components resulting in adverse events and worsening of CV complications. However, the underlying molecular mechanisms driving these events remain to be elucidated. In this article, we review state-of-art literature on ENM-associated adverse CV responses and discuss the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
34
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Rodríguez-López JL, Silva-Pereyra HG, Labrada-Delgado GJ, Pérez-Guillé B, Soriano-Rosales RE, Jiménez-Bravo Luna MA, Brito-Aguilar R, Mukherjee PS, Gayosso-Chávez C, Delgado-Chávez R. Environmental Fe, Ti, Al, Cu, Hg, Bi, and Si Nanoparticles in the Atrioventricular Conduction Axis and the Associated Ultrastructural Damage in Young Urbanites: Cardiac Arrhythmias Caused by Anthropogenic, Industrial, E-Waste, and Indoor Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8203-8214. [PMID: 34081443 DOI: 10.1021/acs.est.1c01733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Air pollution exposure is a risk factor for arrhythmia. The atrioventricular (AV) conduction axis is key for the passage of electrical signals to ventricles. We investigated whether environmental nanoparticles (NPs) reach the AV axis and whether they are associated with ultrastructural cell damage. Here, we demonstrate the detection of the shape, size, and composition of NPs by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 10 subjects from Metropolitan Mexico City (MMC) with a mean age of 25.3 ± 5.9 and a 71-year-old subject without cardiac pathology. We found that in every case, Fe, Ti, Al, Hg, Cu, Bi, and/or Si spherical or acicular NPs with a mean size of 36 ± 17 nm were present in the AV axis in situ, freely and as conglomerates, within the mitochondria, sarcomeres, lysosomes, lipofuscin, and/or intercalated disks and gap junctions of Purkinje and transitional cells, telocytes, macrophages, endothelium, and adjacent atrial and ventricular fibers. Erythrocytes were found to transfer NPs to the endothelium. Purkinje fibers with increased lysosomal activity and totally disordered myofilaments and fragmented Z-disks exhibited NP conglomerates in association with gap junctions and intercalated disks. AV conduction axis pathology caused by environmental NPs is a plausible and modifiable risk factor for understanding common arrhythmias and reentrant tachycardia. Anthropogenic, industrial, e-waste, and indoor NPs reach pacemaker regions, thereby increasing potential mechanisms that disrupt the electrical impulse pathways of the heart. The cardiotoxic, oxidative, and abnormal electric performance effects of NPs in pacemaker locations warrant extensive research. Cardiac arrhythmias associated with nanoparticle effects could be preventable.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, 32 Campus Drive, 287 Skaggs Building, Missoula, Montana 59812, United States
- Universidad del Valle de México, Ciudad de México 14370, México
| | | | | | | | - Hector G Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, México
| | - Gladis J Labrada-Delgado
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, México
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lei J, Li Z, Huang X, Li X, Zhang G, Kan H, Chen R, Zhang Y. The Acute Effect of Diesel Exhaust Particles and Different Fractions Exposure on Blood Coagulation Function in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084136. [PMID: 33919809 PMCID: PMC8070753 DOI: 10.3390/ijerph18084136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 04/08/2021] [Indexed: 11/27/2022]
Abstract
The toxicity and widespread exposure opportunity of diesel exhaust particles (DEP) has aroused public health concerns. This study aimed to investigate the acute effect of DEP and different fractions exposure on blood coagulation function in mice. In this study, nine- week-old C57BL/6J male mice were divided into four exposure groups (with 15 mice in each group). The water-soluble (WS) and water-insoluble (WIS) fractions of DEP were isolated, and intratracheal instillation was used for DEP, WS and WIS exposure. The phosphate buffer saline (PBS) exposure group was set as the control group. After 24 h exposure, the mice were sacrificed for blood routine, coagulation function and bleeding time examinations to estimate the acute effect of DEP, WS and WIS exposure on the blood coagulation function. In our results, no statistically significant difference in weight of body, brain and lung was observed in different exposure groups. While several core indexes in blood coagulation like bleeding time (BT), fibrinogen (FIB), activated partial thromboplastin time (APTT) and prothrombin time (PT) altered or showed a lower tendency after DEP, WS and WIS exposure. For example, BT was lower In WIS exposure group (211.00 s) compared with PBS exposure group (238.50 s) (p < 0.01), and FIB was lower in WS exposure group (233.00 g/L) compared with PBS exposure group (249.50 g/L) (p < 0.05). Additionally, systemic inflammation-related indexes like white blood cell count (WBC), neutrophil count (NEUT), lymphocyte count (LYMPH) altered after DEP, WS and WIS exposure. In conclusion, DEP, WS and WIS fractions exposure could result in the hypercoagulable state of blood in mice. The noteworthy effects of WS and WIS fractions exposure on blood coagulation function deserve further investigation of the potential mechanism.
Collapse
Affiliation(s)
- Jian Lei
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Zhouzhou Li
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Xingke Huang
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Xin Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (X.L.); (G.Z.)
| | - Guangzheng Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (X.L.); (G.Z.)
| | - Haidong Kan
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Renjie Chen
- Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, School of Public Health, Fudan University, Shanghai 200032, China; (J.L.); (Z.L.); (X.H.); (H.K.); (R.C.)
| | - Yuhao Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (X.L.); (G.Z.)
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Correspondence:
| |
Collapse
|
36
|
Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000162] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muzahidul I. Anik
- Chemical Engineering University of Rhode Island Kingston Rhode Island 02881 USA
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science Kyushu University Fukuoka 816–8580 Japan
- Atomic Energy Research Establishment Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Imran Hossain
- Institute for Micromanufacturing Louisiana Tech University Ruston Louisiana 71270 USA
| | - A. M. U. B. Mahfuz
- Biotechnology and Genetic Engineering University of Development Alternative Dhaka 1209 Bangladesh
| | - M. Tayebur Rahman
- Materials Science and Engineering University of Rajshahi Rajshahi 6205 Bangladesh
| | - Isteaque Ahmed
- Chemical Engineering University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
37
|
Kottana RK, Maurizi L, Schnoor B, Morris K, Webb JA, Massiah MA, Millot N, Papa AL. Anti-Platelet Effect Induced by Iron Oxide Nanoparticles: Correlation with Conformational Change in Fibrinogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004945. [PMID: 33284518 DOI: 10.1002/smll.202004945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Iron oxide nanoparticles are developed for various biomedical applications, however, there is limited understanding regarding their effects and toxicity on blood components. The particles traveling in circulation inevitably interact with blood cells and plasma proteins and may interfere with hemostasis. Specifically, this study focuses on the influence of superparamagnetic iron oxide nanoparticles (SPIONs) coated with a biocompatible polymer, polyvinyl alcohol (PVA), on platelet function. Here, engineered SPIONs that are functionalized with various PVA coatings to provide these particles with different surface charges and polymer packing are described. These formulations are assessed for any interference with human platelet functions and coagulation, ex vivo. Positively charged SPIONs induce a significant change in platelet GPIIb-IIIa conformation, indicative of platelet activation at the dose of 500 µg mL-1 . Remarkably, engineered PVA(polyvinyl alcohol)-SPIONs all display a robust dose-dependent anti-platelet effect on platelet aggregation, regardless of the PVA charge and molecular weight. After assessing hypotheses involving SPION-induced steric hindrance in platelet-platelet bridging, as well as protein corona involvement in the antiplatelet effect, the study concludes that the presence of PVA-SPIONs induces fibrinogen conformational change, which correlates with the observed dose-dependent anti-platelet effect.
Collapse
Affiliation(s)
- Regina Komal Kottana
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, 20052, USA
| | - Lionel Maurizi
- Laboratory ICB, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, Dijon, F-21078, France
| | - Brian Schnoor
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, 20052, USA
| | - Kenise Morris
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, 20052, USA
| | - Jessica Ann Webb
- Department of Chemistry, Columbian College of Arts and Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Michael Anthony Massiah
- Department of Chemistry, Columbian College of Arts and Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Nadine Millot
- Laboratory ICB, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, Dijon, F-21078, France
| | - Anne-Laure Papa
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
38
|
Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2020; 15:167-204. [PMID: 33216662 DOI: 10.1080/17435390.2020.1842934] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unique properties of magnetic iron oxide nanoparticles determined their widespread use in medical applications, the food industry, textile industry, which in turn led to environmental pollution. These factors determine the long-term nature of the effect of iron oxide nanoparticles on the body. However, studies in the field of chronic nanotoxicology of magnetic iron particles are insufficient and scattered. Studies show that toxicity may be increased depending on oral and inhalation routes of administration rather than injection. The sensory nerve pathway can produce a number of specific effects not seen with other routes of administration. Organ systems showing potential toxic effects when injected with iron oxide nanoparticles include the nervous system, heart and lungs, the thyroid gland, and organs of the mononuclear phagocytic system (MPS). A special place is occupied by the reproductive system and the effect of nanoparticles on the health of the first and second generations of individuals exposed to the toxic effects of iron oxide nanoparticles. This knowledge should be taken into account for subsequent studies of the toxicity of iron oxide nanoparticles. Particular attention should be paid to tests conducted on animals with pathologies representing human chronic socially significant diseases. This part of preclinical studies is almost in its infancy but of great importance for further medical translation on nanomaterials to practice.
Collapse
Affiliation(s)
| | | | | | - Varvara G Nikonorova
- Ivanovo State Agricultural Academy named after D.K. Belyaev, Peterburg, Russian Federation
| | | |
Collapse
|
39
|
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2186. [PMID: 33147800 PMCID: PMC7692849 DOI: 10.3390/nano10112186] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a rapidly growing field that uses nanomaterials for the diagnosis, treatment and prevention of various diseases, including cancer. Various biocompatible nanoplatforms with diversified capabilities for tumor targeting, imaging, and therapy have materialized to yield individualized therapy. However, due to their unique properties brought about by their small size, safety concerns have emerged as their physicochemical properties can lead to altered pharmacokinetics, with the potential to cross biological barriers. In addition, the intrinsic toxicity of some of the inorganic materials (i.e., heavy metals) and their ability to accumulate and persist in the human body has been a challenge to their translation. Successful clinical translation of these nanoparticles is heavily dependent on their stability, circulation time, access and bioavailability to disease sites, and their safety profile. This review covers preclinical and clinical inorganic-nanoparticle based nanomaterial utilized for cancer imaging and therapeutics. A special emphasis is put on the rational design to develop non-toxic/safe inorganic nanoparticle constructs to increase their viability as translatable nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Saisree Ravi
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Joy D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
40
|
Maher BA, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Calderón-Garcidueñas L. Iron-rich air pollution nanoparticles: An unrecognised environmental risk factor for myocardial mitochondrial dysfunction and cardiac oxidative stress. ENVIRONMENTAL RESEARCH 2020; 188:109816. [PMID: 32593898 PMCID: PMC7306213 DOI: 10.1016/j.envres.2020.109816] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 05/24/2023]
Abstract
Exposure to particulate air pollution is a major environmental risk factor for cardiovascular mortality and morbidity, on a global scale. Both acute and chronic cardiovascular impacts have so far been attributed to particulate-mediated oxidative stress in the lung and/or via 'secondary' pathways, including endothelial dysfunction, and inflammation. However, increasing evidence indicates the translocation of inhaled nanoparticles to major organs via the circulation. It is essential to identify the composition and intracellular targets of such particles, since these are likely to determine their toxicity and consequent health impacts. Of potential major concern is the abundant presence of iron-rich air pollution nanoparticles, emitted from a range of industry and traffic-related sources. Bioreactive iron can catalyse formation of damaging reactive oxygen species, leading to oxidative stress and cell damage or death. Here, we identify for the first time, in situ, that exogenous nanoparticles (~15-40 nm diameter) within myocardial mitochondria of young, highly-exposed subjects are dominantly iron-rich, and co-associated with other reactive metals including aluminium and titanium. These rounded, electrodense nanoparticles (up to ~ 10 x more abundant than in lower-pollution controls) are located within abnormal myocardial mitochondria (e.g. deformed cristae; ruptured membranes). Measurements of an oxidative stress marker, PrPC and an endoplasmic reticulum stress marker, GRP78, identify significant ventricular up-regulation in the highly-exposed vs lower-pollution controls. In shape/size/composition, the within-mitochondrial particles are indistinguishable from the iron-rich, combustion- and friction-derived nanoparticles prolific in roadside/urban environments, emitted from traffic/industrial sources. Incursion of myocardial mitochondria by inhaled iron-rich air pollution nanoparticles thus appears associated with mitochondrial dysfunction, and excess formation of reactive oxygen species through the iron-catalyzed Fenton reaction. Ventricular oxidative stress, as indicated by PrPC and GRP78 up-regulation, is evident even in children/young adults with minimal risk factors and no co-morbidities. These new findings indicate that myocardial iron overload resulting from inhalation of airborne, metal-rich nanoparticles is a plausible and modifiable environmental risk factor for cardiac oxidative stress and cardiovascular disease, on an international scale.
Collapse
Affiliation(s)
- B A Maher
- Centre for Environmental Magnetism and Palaeomagnetism, Lancaster Environment Centre, University of Lancaster, LA1 4YQ, UK.
| | | | | | - R Torres-Jardón
- Centro de Ciencias de La Atmósfera, Universidad Nacional Autónoma de México,04310, Ciudad de México, Mexico
| | - L Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 14370, Mexico
| |
Collapse
|
41
|
Zheng H, You J, Yao X, Lu Q, Guo W, Shen Y. Superparamagnetic iron oxide nanoparticles promote ferroptosis of ischemic cardiomyocytes. J Cell Mol Med 2020; 24:11030-11033. [PMID: 32780538 PMCID: PMC7521151 DOI: 10.1111/jcmm.15722] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/05/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hao Zheng
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jieyun You
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaobo Yao
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qizheng Lu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Guo
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Effects of DNA Damage and Oxidative Stress in Human Bronchial Epithelial Cells Exposed to PM 2.5 from Beijing, China, in Winter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134874. [PMID: 32640694 PMCID: PMC7369897 DOI: 10.3390/ijerph17134874] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have corroborated that respiratory diseases, including lung cancer, are related to fine particulate matter (<2.5 μm) (PM2.5) exposure. The toxic responses of PM2.5 are greatly influenced by the source of PM2.5. However, the effects of PM2.5 from Beijing on bronchial genotoxicity are scarce. In the present study, PM2.5 from Beijing was sampled and applied in vitro to investigate its genotoxicity and the mechanisms behind it. Human bronchial epithelial cells 16HBE were used as a model for exposure. Low (67.5 μg/mL), medium (116.9 μg/mL), and high (202.5 μg/mL) doses of PM2.5 were used for cell exposure. After PM2.5 exposure, cell viability, oxidative stress markers, DNA (deoxyribonucleic acid) strand breaks, 8-OH-dG levels, micronuclei formation, and DNA repair gene expression were measured. The results showed that PM2.5 significantly induced cytotoxicity in 16HBE. Moreover, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and cellular heme oxygenase (HO-1) were increased, and the level of glutathione (GSH) was decreased, which represented the occurrence of severe oxidative stress in 16HBE. The micronucleus rate was elevated, and DNA damage occurred as indicators of the comet assay, γ-H2AX and 8-OH-dG, were markedly enhanced by PM2.5, accompanied by the influence of 8-oxoguanine DNA glycosylase (OGG1), X-ray repair cross-complementing gene 1 (XRCC1), and poly (ADP-ribose) polymerase-1 (PARP1) expression. These results support the significant role of PM2.5 genotoxicity in 16HBE cells, which may occur through the combined effect on oxidative stress and the influence of DNA repair genes.
Collapse
|
43
|
AKÇAN R, AYDOGAN HC, YILDIRIM MŞ, TAŞTEKİN B, SAĞLAM N. Nanotoxicity: a challenge for future medicine. Turk J Med Sci 2020; 50:1180-1196. [PMID: 32283898 PMCID: PMC7379444 DOI: 10.3906/sag-1912-209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background/aim Due to nanomaterials’ potential benefits for diagnosis and treatment, they are widely used in medical applications and personal care products. Interaction of nanomaterials, which are very small in size, with tissue, cell and microenvironment, can reveal harmful effects that cannot be created with chemically identical and larger counterparts in biological organisms. In this review, a challenge for future medicine, nanotoxicity of nanomaterials is discussed. Materials and methods A detailed review of related literature was performed and evaluated as per medical applications of nanomaterials their toxicity. Results and conclusion Most authors state “the only valid technology will be nanotechnology in the next era”; however, there is no consensus on the impact of this technology on humankind, environment and ecological balance. Studies dealing with the toxic effect of nanomaterials on human health have also varied with developing technology. Nanotoxicology studies such as in vivo-like on 3D human organs, cells, advanced genetic studies, and -omic approaches begin to replace conventional methods. Nanotoxicity and adverse effects of nanomaterials in exposed producers, industry workers, and patients make nanomaterials a double-edged sword for future medicine. In order to control and tackle related risks, regulation and legislations should be implemented, and researchers have to conduct joint multidisciplinary studies in various fields of medical sciences, nanotechnology, nanomedicine, and biomedical engineering.
Collapse
Affiliation(s)
- Ramazan AKÇAN
- Department of Forensic Medicine, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Halit Canberk AYDOGAN
- Department of Forensic Medicine, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Mahmut Şerif YILDIRIM
- Department of Forensic Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, AfyonkarahisarTurkey
| | - Burak TAŞTEKİN
- Department of Forensic Medicine, Faculty of Medicine, Hacettepe University, AnkaraTurkey
| | - Necdet SAĞLAM
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, AnkaraTurkey
| |
Collapse
|
44
|
Jiang W, Zhang C, Tran L, Wang SG, Hakim AD, Liu H. Engineering Nano-to-Micron-Patterned Polymer Coatings on Bioresorbable Magnesium for Controlling Human Endothelial Cell Adhesion and Morphology. ACS Biomater Sci Eng 2020; 6:3878-3898. [DOI: 10.1021/acsbiomaterials.0c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Chaoxing Zhang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Larry Tran
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemical Engineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Sebo Gene Wang
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemistry, College of Natural and Agricultural Sciences, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ammar Dilshad Hakim
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Huinan Liu
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
45
|
Madorran E, Stožer A, Bevc S, Maver U. In vitro toxicity model: Upgrades to bridge the gap between preclinical and clinical research. Bosn J Basic Med Sci 2020; 20:157-168. [PMID: 31621554 PMCID: PMC7202182 DOI: 10.17305/bjbms.2019.4378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/29/2019] [Indexed: 11/30/2022] Open
Abstract
The Centers for Disease Control and Prevention (CDC) provides extensive data that indicate our need for drugs to maintain human population health. Despite the substantial availability of drugs on the market, many patients lack specific drugs. New drugs are required to tackle this issue. Moreover, we need more reliable models for testing drug toxicity, as too many drug approval failures occur with the current models. This article briefly describes various approaches of the currently used models for toxicity screening, to justify the selection of in vitro cell-based models. Cell-based toxicity models have the best potential to reliably predict drug toxicity in humans, as they are developed using the cells of the target organism. However, currently, a large gap exists between in vitro cell-based approach to toxicity testing and the clinical approach, which may be contributing to drug approval failures. We propose improvements to in vitro cell-based toxicity models, which is often an insight approach, to better match this approach with the clinical homeostatic approach. This should enable a more accurate comparison of data between the preclinical as well as clinical models and provide a more comprehensive understanding of human physiology and biological effects of drugs.
Collapse
Affiliation(s)
- Eneko Madorran
- Institute of Anatomy, Histology and Embryology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Nephrology, Clinic for Internal Medicine, University Medical Center Maribor, Maribor, Slovenia
| | - Uroš Maver
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
46
|
Liu T, Bai R, Zhou H, Wang R, Liu J, Zhao Y, Chen C. The effect of size and surface ligands of iron oxide nanoparticles on blood compatibility. RSC Adv 2020; 10:7559-7569. [PMID: 35492144 PMCID: PMC9049842 DOI: 10.1039/c9ra10969b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/11/2020] [Indexed: 11/21/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used and have attracted increased attention for their unique physicochemical properties, especially in biomedical sciences as contrast agents following intravenous administration. However, only few studies have systematically reported the blood compatibility of iron oxide nanoparticles with different physicochemical properties such as different sizes and surface ligands. Therefore, we selected three widely used organic ligands (polyacrylic acid, hyaluronic acid, and chitosan) with modified SPIONs at the same size of 5-6 nm, and polyacrylic acid-modified SPIONs with different sizes (5, 10, and 30 nm) at different concentrations to evaluate their haemocompatibility. Our results revealed that SPIONs modified with polyacrylic acid demonstrated size-dependent destruction of red blood cells and complement activation. Interestingly, 5 nm SPIONs prolonged blood clotting time as compared with 10 nm and 30 nm SPIONs in vitro. Compared with polyacrylic acid-modified SPIONs, hyaluronic acid- and chitosan-modified SPIONs least affected red blood cells, platelets, coagulation, and complement activation. Hence, hyaluronic acid- and chitosan-coated SPIONs are more suitable for nanomedicine applications than polyacrylic acid-coated SPIONs. Furthermore, the interaction between SPIONs and blood components strongly correlated with the administered concentration of nanoparticles. These results will provide some experimental information for safe-by-design SPIONs.
Collapse
Affiliation(s)
- Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
| | - Rongqi Wang
- Department of Clinical Laboratory, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital Beijing 100080 P. R. China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- Faculty of Life Sciences & Medicine, Northwest University (NWU) Xi'an 710069 P. R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 P. R. China +86-10-62656765 +86 10 8254 5560
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
47
|
Nemmar A, Beegam S, Yuvaraju P, Yasin J, Ali BH, Adeghate E. Nose-Only Water-Pipe Smoke Exposure in Mice Elicits Renal Histopathological Alterations, Inflammation, Oxidative Stress, DNA Damage, and Apoptosis. Front Physiol 2020; 11:46. [PMID: 32116758 PMCID: PMC7026484 DOI: 10.3389/fphys.2020.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of water-pipe tobacco smoking is increasing worldwide, and is relatively high among youth and young adults. Exposure to water-pipe smoke (WPS) has been reported to affect various systems including the respiratory, cardiovascular and reproductive systems. However, the impact of WPS exposure on the kidney has received only scant attention. Here, we assessed the effect of nose-only WPS exposure for one or four consecutive weeks on renal histology, inflammation, oxidative stress, DNA damage, and apoptosis. The duration of the session was 30 min/day and 5 days/week. Control mice were exposed to air. Light and electron microcopy analysis revealed that the WPS exposure (especially at 4-week time point) caused degeneration of the endothelial cells of the glomerular capillaries and vacuolar degenerations of the proximal convoluted tubules. WPS exposure also significantly decreased the creatinine clearance, and significantly increased proteinuria and urinary kidney injury molecule-1 (KIM-1) concentration. Kidney lipid peroxidation, reactive oxygen species, and oxidized glutathione were significantly increased. WPS exposure also affected the concentration of reduced glutathione and the activity of catalase. Likewise, renal concentrations of interleukin (IL)-6, IL-1β and KIM-1 were augmented by WPS exposure. Moreover, WPS caused DNA damage as evaluated by comet assay, and increased the expression of cleaved caspase-3 and cytochrome C in the kidney. We conclude that exposure of mice to WPS caused renal histopathological alterations, inflammation, oxidative stress, DNA damage, and apoptosis. If the latter findings could be substantiated by controlled human studies, it would be an additional cause for disquiet about an established public health concern.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
48
|
Guggenheim EJ, Rappoport JZ, Lynch I. Mechanisms for cellular uptake of nanosized clinical MRI contrast agents. Nanotoxicology 2020; 14:504-532. [PMID: 32037933 DOI: 10.1080/17435390.2019.1698779] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Engineered Nanomaterials (NMs), such as Superparamagnetic Iron Oxide Nanoparticles (SPIONs), offer significant benefits in a wide range of applications, including cancer diagnostic and therapeutic strategies. However, the use of NMs in biomedicine raises safety concerns due to lack of knowledge on possible biological interactions and effects. The initial basis for using SPIONs as biomedical MRI contrast enhancement agents was the idea that they are selectively taken up by macrophage cells, and not by the surrounding cancer cells. To investigate this claim, we analyzed the uptake of SPIONs into well-established cancer cell models and benchmarked this against a common macrophage cell model. In combination with fluorescent labeling of compartments and siRNA silencing of various proteins involved in common endocytic pathways, the mechanisms of internalization of SPIONs in these cell types has been ascertained utilizing reflectance confocal microscopy. Caveolar mediated endocytosis and macropinocytosis are both implicated in SPION uptake into cancer cells, whereas in macrophage cells, a clathrin-dependant route appears to predominate. Colocalization studies confirmed the eventual fate of SPIONs as accumulation in the degradative lysosomes. Dissolution of the SPIONs within the lysosomal environment has also been determined, allowing a fuller understanding of the cellular interactions, uptake, trafficking and effects of SPIONs within a variety of cancer cells and macrophages. Overall, the behavior of SPIONS in non-phagocytotic cell lines is broadly similar to that in the specialist macrophage cells, although some differences in the uptake patterns are apparent.
Collapse
Affiliation(s)
- Emily J Guggenheim
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Joshua Z Rappoport
- Center for Advanced Microscopy, and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Core Technologies for Life Sciences, Boston College, MA, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Hajipour MJ, Mehrani M, Abbasi SH, Amin A, Kassaian SE, Garbern JC, Caracciolo G, Zanganeh S, Chitsazan M, Aghaverdi H, Shahri SMK, Ashkarran A, Raoufi M, Bauser-Heaton H, Zhang J, Muehlschlegel JD, Moore A, Lee RT, Wu JC, Serpooshan V, Mahmoudi M. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem Rev 2019; 119:11352-11390. [PMID: 31490059 PMCID: PMC7003249 DOI: 10.1021/acs.chemrev.8b00323] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adult myocardium has a limited regenerative capacity following heart injury, and the lost cells are primarily replaced by fibrotic scar tissue. Suboptimal efficiency of current clinical therapies to resurrect the infarcted heart results in injured heart enlargement and remodeling to maintain its physiological functions. These remodeling processes ultimately leads to ischemic cardiomyopathy and heart failure (HF). Recent therapeutic approaches (e.g., regenerative and nanomedicine) have shown promise to prevent HF postmyocardial infarction in animal models. However, these preclinical, clinical, and technological advancements have yet to yield substantial enhancements in the survival rate and quality of life of patients with severe ischemic injuries. This could be attributed largely to the considerable gap in knowledge between clinicians and nanobioengineers. Development of highly effective cardiac regenerative therapies requires connecting and coordinating multiple fields, including cardiology, cellular and molecular biology, biochemistry and chemistry, and mechanical and materials sciences, among others. This review is particularly intended to bridge the knowledge gap between cardiologists and regenerative nanomedicine experts. Establishing this multidisciplinary knowledge base may help pave the way for developing novel, safer, and more effective approaches that will enable the medical community to reduce morbidity and mortality in HF patients.
Collapse
Affiliation(s)
| | - Mehdi Mehrani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Amin
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | | | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, 00161, Rome, Italy
| | - Steven Zanganeh
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, United States
| | - Mitra Chitsazan
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | - Haniyeh Aghaverdi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyed Mehdi Kamali Shahri
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aliakbar Ashkarran
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mohammad Raoufi
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering, University of Siegen, Siegen, Germany
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jochen D. Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, United States
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
50
|
Polyacrylic acid-coated iron oxide nanoparticles could be a useful tool for tracking inflammatory monocytes. Future Sci OA 2019; 5:FSO423. [PMID: 31827892 PMCID: PMC6900970 DOI: 10.2144/fsoa-2019-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To establish the effect of poly(acrylic acid)-coated iron oxide nanoparticles (PAC-IONs) and later exposure to a magnetic field on the differentiation of mononuclear phagocytes into macrophages. Methods: By flow cytometry, cell death was evaluated with DIOC6 and PI, Poly (ADP-ribose) Polymerases (PARP) fragmentation, H2AX phosphorylation and TUNEL assay. Cytokines by Cytokine bead array and the intracellular amount of iron by atomic absorption spectrometry. Results: PAC-IONs did not induce apoptosis, modify the cell membrane integrity or alter the mitochondrial membrane potential. They did not affect the cell morphology, the pattern of cytokine accumulation or the activating role of differentiation of mononuclear phagocytes into macrophages on the proliferation of autologous T cells. Conclusion: This evidence indicates that the PAC-IONs are safe and biocompatible. Moreover, the selectivity of the PAC-IONs for mononuclear phagocytes, as well as their increased uptake by non-classical monocytes, warrant future research with a view to their use as a contrast agent, a useful tool for in vivo tracking of tissue-infiltrating mononuclear phagocytes. In the search for materials that allow the study of inflammatory processes when biopsies are not feasible, magnetic nanoparticles have become an alternative tool for use in MRI. This article examined whether supermagnetic iron nanoparticles can affect the basic function of phagocytic cells, with a view to their use in clinical imaging applications.
Collapse
|