1
|
Chung MW, Tzeng CC, Huang YC, Wei KC, Hsu PW, Chuang CC, Lin YJ, Chen KT, Lee CC. Neutrophil-to-lymphocyte ratio dynamics: prognostic value and potential for surveilling glioblastoma recurrence. BMC Cancer 2025; 25:709. [PMID: 40241016 PMCID: PMC12004828 DOI: 10.1186/s12885-025-14118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE Glioblastoma (GBM) is a challenging malignancy with a poor prognosis. While the neutrophil-to-lymphocyte ratio (NLR) is reported to correlate with the prognosis, the significance of changes in the NLR and its prognostic value in GBM remain unclear. This study aims to evaluate changes in the NLR and its predictive value for GBM prognosis and recurrence. METHODS The cohort included 69 newly-diagnosed GBM patients undergoing a standard treatment protocol. NLR was assessed at multiple time points. The dynamic change in NLR (dNLR), defined as the NLR at the point of interest (post-CCRT or post-Stupp) divided by the preoperative NLR, also was assessed. Univariate and multivariate COX regression analyses were conducted to assess the association between the NLR, dNLR and overall survival (OS) and progression-free survival (PFS). RESULTS Univariate analysis revealed that age at diagnosis ≥ 70 (p = 0.019) and post-Stupp dNLR ≥ 1.3 (p = 0.006) were significantly associated with shorter OS. Significant correlations were found between pre-operative KPS ≥ 60 (p = 0.017), gross total resection (p = 0.042), post-Stupp dNLR ≥ 1.3 (p = 0.043) and PFS. Multivariate analysis showed age at diagnosis ≥ 70, pre-operative KPS ≥ 60, post-Stupp NLR ≥ 5 and dNLR ≥ 1.3 were significantly associated with a shorter OS. Significant correlation was found between pre-operative KPS ≥ 60 and PFS. CONCLUSION This study revealed that post-Stupp NLR ≥ 5 and dNLR ≥ 1.3 correlated significantly with a worse glioblastoma prognosis in OS, and dNLR might be more reliable. These two parameters are potentially surveilling markers for glioblastoma recurrence, however further studies are warranted.
Collapse
Affiliation(s)
- Meng-Wu Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fuxing St., Guishan Dist, 33305, Taoyuan, Taiwan
| | - Ching-Chieh Tzeng
- Department of Medical Education, Chang Gung Memorial Hospital, 33305, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fuxing St., Guishan Dist, 33305, Taoyuan, Taiwan
- Chang Gung University, 33302, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fuxing St., Guishan Dist, 33305, Taoyuan, Taiwan
- Chang Gung University, 33302, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, 33305, Taoyuan, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, 236017, New Taipei, Taiwan
| | - Peng-Wei Hsu
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fuxing St., Guishan Dist, 33305, Taoyuan, Taiwan
- School of Medicine, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fuxing St., Guishan Dist, 33305, Taoyuan, Taiwan
- Chang Gung University, 33302, Taoyuan, Taiwan
| | - Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fuxing St., Guishan Dist, 33305, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, 33305, Taoyuan, Taiwan
- Division of Natural Product, Graduate Institute of Biomedical Sciences, Chang Gung University, 33302, Taoyuan, Taiwan
| | - Ko-Ting Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fuxing St., Guishan Dist, 33305, Taoyuan, Taiwan
- Chang Gung University, 33302, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, 33305, Taoyuan, Taiwan
| | - Cheng-Chi Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fuxing St., Guishan Dist, 33305, Taoyuan, Taiwan.
- Chang Gung University, 33302, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Kachuri L, Guerra GA, Nakase T, Wendt GA, Hansen HM, Molinaro AM, Bracci P, McCoy L, Rice T, Wiencke JK, Eckel-Passow JE, Jenkins RB, Wrensch M, Francis SS. Genetic predisposition to altered blood cell homeostasis is associated with glioma risk and survival. Nat Commun 2025; 16:658. [PMID: 39809742 PMCID: PMC11732991 DOI: 10.1038/s41467-025-55919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Glioma is a highly fatal and heterogeneous brain tumor with few known risk factors. Our study examines genetically predicted variability in blood cell indices in relation to glioma risk and survival in 3418 cases and 8156 controls. We find that increased platelet to lymphocyte ratio (PLR) confers an increased risk of glioma (odds ratio (OR) = 1.25, p = 0.005), especially tumors with isocitrate dehydrogenase (IDH) mutations (OR = 1.38, p = 0.007) and IDHmut 1p/19q intact (IDHmut-intact OR = 1.53, p = 0.004) tumors. Genetically inferred increased counts of lymphocytes (IDHmut-intact OR = 0.70, p = 0.004) and neutrophils (IDHmut OR = 0.69, p = 0.019; IDHmut-intact OR = 0.60, p = 0.009) show inverse associations with risk, which may reflect enhanced immune-surveillance. Considering survival, we observe higher mortality risk in patients with IDHmut 1p/19q with genetically predicted increased counts of lymphocytes (hazard ratio (HR) = 1.65, 95% CI: 1.24-2.20), neutrophils (HR = 1.49, 1.13-1.97), and eosinophils (HR = 1.59, 1.18-2.14). Polygenic scores for blood cell traits are also differentially associated with 17 tumor immune microenvironment features in a subtype-specific manner, including signatures related to interferon signaling, PD-1 expression, and T-cell/Cytotoxic responses. Our findings highlight immune-mediated susceptibility mechanisms with potential disease management implications.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Geno A Guerra
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Taishi Nakase
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - George A Wendt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Paige Bracci
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Stephen S Francis
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Mohammad AH, Sakalla R, Davalan W, Ruiz-Barerra MA, Jatana S, Khalaf R, Li H, Aberra R, Al-Saadi T, Diaz RJ. Rise in post-resection neutrophil-to-lymphocyte ratio correlates with decreased survival in glioblastoma patients. Neurooncol Adv 2025; 7:vdaf014. [PMID: 40051660 PMCID: PMC11883344 DOI: 10.1093/noajnl/vdaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background Neutrophil-to-lymphocyte ratio (NLR) is used in the prognostication of multiple malignancies. However, the NLR value in glioblastoma (GBM) is controversial. This controversy may be due to the unaccounted effect of dexamethasone on NLR. Using retrospective data from 230 isocitrate dehydrogenase-1 (IDH) wild-type GBM patients, we studied the prognostic value of NLR in relation to dexamethasone treatment in GBM. Methods We retrospectively analyzed 230 patients with GBM. NLR and dexamethasone use were used as dichotomous variables with cutoff values of 9.5 and 8 mg, respectively. Correlations between high NLR, as well as NLR change after surgery, and patient outcome measures, including post-surgical complications and survival, were assessed using Kaplan-Meier curves, logistic, and Cox regression analyses. Results We demonstrate in this study that high perioperative NLR (≥9.5 NLR) does not associate with survival of GBM patients (274 days, 95% confidence interval [CI] 211-337, vs. 229 days, 95% CI 52-406, P = .9). However, high positive change in NLR (≥6 units) (higher postoperative NLR relative to preoperative NLR) has a significant association with decreased survival in GBM patients (196 days, 95% CI 121-270, vs. 304 days, 95% CI 223-384, P = .01). High preoperative and perioperative average dexamethasone (≥8 mg) treatment did not change the perioperative NLR trend and were not associated with decreased survival. Conclusions We demonstrate that an increase in NLR after surgery associates with decreased GBM patient survival.
Collapse
Affiliation(s)
- Amro H Mohammad
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rawan Sakalla
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - William Davalan
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Miguel Angel Ruiz-Barerra
- Department of Neurosurgery, National Institute of Cancer, Bogotá, Colombia
- Neuro-Oncology Research Group, National Institute of Cancer, Bogotá, Colombia
| | - Sukhdeep Jatana
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Roy Khalaf
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Hongda Li
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rebecca Aberra
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Tariq Al-Saadi
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Roberto J Diaz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Rue University, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Zhou J, Tan B, Gao F. Prognostic values of combined ratios of white blood cells in glioma: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:831. [PMID: 39477886 DOI: 10.1007/s10143-024-03064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Gliomas, the most prevalent type of neurological tumor, pose a challenging prognosis for patients. Recent studies have underscored the importance of inflammatory markers such as the neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and monocyte/lymphocyte ratio (MLR) in predicting the prognosis of gliomas. We undertook a thorough meta-analysis to elucidate the role of these inflammatory markers in forecasting the prognosis of glioma patients. We extracted hazard ratios (HR) and their corresponding 95% confidence intervals (95% CI) from each study for analysis. To assess heterogeneity and identify influential studies, we conducted sensitivity analysis. Subgroup analysis was performed to investigate sources of heterogeneity, and we employed Egger's test to evaluate publication bias in the meta-analysis. Higher NLR levels were associated with shorter overall survival (HR = 1.46, 95% CI: 1.33-1.60) and progression-free survival (HR = 1.24, 95% CI: 1.04-1.48). There was no significant correlation between PLR levels and overall survival (HR = 1.01, 95% CI: 1.00-1.01) or progression-free survival (HR = 1.00, 95% CI: 0.98-1.02) in glioma patients. Elevated MLR levels were associated with decreased overall survival in glioma patients (HR = 1.78, 95% CI: 1.36-2.34). SII levels did not show any significant association with overall or progression-free survival in glioma patients (HR = 1.00, 95% CI: 0.99-1.01).In the sensitivity analysis, two studies potentially contributed to the instability. Subgroup analyses showed patient population and area were identified as potential sources of heterogeneity. Egger's test showed that there was publication bias in the relationship between NLR and PLR and overall survival (P < 0.05).All randomized controlled models, except for these, were not affected by publication bias. NLR and MLR are two reliable indicators of inflammation in the prognosis of glioma patients; PLR and SII do not have significant value in the prognosis of glioma patients.
Collapse
Affiliation(s)
- JiaNuo Zhou
- School of Medicine, LiShui University, LiShui, 323000, Zhejiang, China
| | - Botao Tan
- LiShui University, LiShui, 323000, Zhejiang, China.
| | - Feng Gao
- Department of Neurosurgery, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
5
|
Lee MK, Zhang Z, Sehgal K, Butler R, Stolrow H, Ramush G, Shirai K, Koestler DC, Salas LA, Wiencke JK, Haddad R, Kelsey KT, Christensen BC. Immunomethylomic profiles of long-term head and neck squamous cell carcinoma survivors on immune checkpoint inhibitors. Epigenomics 2024; 16:799-807. [PMID: 38869472 PMCID: PMC11370916 DOI: 10.1080/17501911.2024.2343274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/11/2024] [Indexed: 06/14/2024] Open
Abstract
Aim: This study addresses the challenge of predicting the response of head and neck squamous cell carcinoma (HNSCC) patients to immunotherapy.Methods: Using DNA methylation cytometry, we analyzed the immune profiles of six HNSCC patients who showed a positive response to immunotherapy over a year without disease progression.Results: There was an initial increase in CD8 T memory cells and natural killer cells during the first four cycles of immunotherapy, which then returned to baseline levels after a year. Baseline CD8 T cell levels were lower in HNSCC immunotherapy responders but became similar to those in healthy subjects after immunotherapy.Conclusion: These findings suggest that monitoring fluctuations in immune profiles could potentially identify biomarkers for immunotherapy response in HNSCC patients.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Kartik Sehgal
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Rondi Butler
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02903, USA
- Department of Pathology & Laboratory Medicine, Brown University School of Medicine, Providence, RI 02903, USA
| | - Hannah Stolrow
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Geat Ramush
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02903, USA
- Department of Pathology & Laboratory Medicine, Brown University School of Medicine, Providence, RI 02903, USA
| | - Keisuke Shirai
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Robert Haddad
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02903, USA
- Department of Pathology & Laboratory Medicine, Brown University School of Medicine, Providence, RI 02903, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755,USA
- Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| |
Collapse
|
6
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
7
|
Elguindy M, Young JS, Mondal I, Lu RO, Ho WS. Glioma-Immune Cell Crosstalk in Tumor Progression. Cancers (Basel) 2024; 16:308. [PMID: 38254796 PMCID: PMC10813573 DOI: 10.3390/cancers16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Glioma progression is a complex process controlled by molecular factors that coordinate the crosstalk between tumor cells and components of the tumor microenvironment (TME). Among these, immune cells play a critical role in cancer survival and progression. The complex interplay between cancer cells and the immune TME influences the outcome of immunotherapy and other anti-cancer therapies. Here, we present an updated view of the pro- and anti-tumor activities of the main myeloid and lymphocyte cell populations in the glioma TME. We review the underlying mechanisms involved in crosstalk between cancer cells and immune cells that enable gliomas to evade the immune system and co-opt these cells for tumor growth. Lastly, we discuss the current and experimental therapeutic options being developed to revert the immunosuppressive activity of the glioma TME. Knowledge of the complex interplay that elapses between tumor and immune cells may help develop new combination treatments able to overcome tumor immune evasion mechanisms and enhance response to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Winson S. Ho
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Chen JQ, Salas LA, Wiencke JK, Koestler DC, Molinaro AM, Andrew AS, Seigne JD, Karagas MR, Kelsey KT, Christensen BC. Matched analysis of detailed peripheral blood and tumor immune microenvironment profiles in bladder cancer. Epigenomics 2024; 16:41-56. [PMID: 38221889 PMCID: PMC10804212 DOI: 10.2217/epi-2023-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024] Open
Abstract
Background: Bladder cancer and therapy responses hinge on immune profiles in the tumor microenvironment (TME) and blood, yet studies linking tumor-infiltrating immune cells to peripheral immune profiles are limited. Methods: DNA methylation cytometry quantified TME and matched peripheral blood immune cell proportions. With tumor immune profile data as the input, subjects were grouped by immune infiltration status and consensus clustering. Results: Immune hot and cold groups had different immune compositions in the TME but not in circulating blood. Two clusters of patients identified with consensus clustering had different immune compositions not only in the TME but also in blood. Conclusion: Detailed immune profiling via methylation cytometry reveals the significance of understanding tumor and systemic immune relationships in cancer patients.
Collapse
Affiliation(s)
- Ji-Qing Chen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
| | - John D Seigne
- Department of Surgery, Section of Urology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
| | - Karl T Kelsey
- Departments of Epidemiology & Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
- Departments of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03766, USA
| |
Collapse
|
9
|
Vellame DS, Shireby G, MacCalman A, Dempster EL, Burrage J, Gorrie-Stone T, Schalkwyk LS, Mill J, Hannon E. Uncertainty quantification of reference-based cellular deconvolution algorithms. Epigenetics 2023; 18:2137659. [PMID: 36539387 PMCID: PMC9980651 DOI: 10.1080/15592294.2022.2137659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
The majority of epigenetic epidemiology studies to date have generated genome-wide profiles from bulk tissues (e.g., whole blood) however these are vulnerable to confounding from variation in cellular composition. Proxies for cellular composition can be mathematically derived from the bulk tissue profiles using a deconvolution algorithm; however, there is no method to assess the validity of these estimates for a dataset where the true cellular proportions are unknown. In this study, we describe, validate and characterize a sample level accuracy metric for derived cellular heterogeneity variables. The CETYGO score captures the deviation between a sample's DNA methylation profile and its expected profile given the estimated cellular proportions and cell type reference profiles. We demonstrate that the CETYGO score consistently distinguishes inaccurate and incomplete deconvolutions when applied to reconstructed whole blood profiles. By applying our novel metric to >6,300 empirical whole blood profiles, we find that estimating accurate cellular composition is influenced by both technical and biological variation. In particular, we show that when using a common reference panel for whole blood, less accurate estimates are generated for females, neonates, older individuals and smokers. Our results highlight the utility of a metric to assess the accuracy of cellular deconvolution, and describe how it can enhance studies of DNA methylation that are reliant on statistical proxies for cellular heterogeneity. To facilitate incorporating our methodology into existing pipelines, we have made it freely available as an R package (https://github.com/ds420/CETYGO).
Collapse
Affiliation(s)
| | - Gemma Shireby
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Ailsa MacCalman
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Emma L Dempster
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Tyler Gorrie-Stone
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| |
Collapse
|
10
|
Jarmuzek P, Defort P, Kot M, Wawrzyniak-Gramacka E, Morawin B, Zembron-Lacny A. Cytokine Profile in Development of Glioblastoma in Relation to Healthy Individuals. Int J Mol Sci 2023; 24:16206. [PMID: 38003396 PMCID: PMC10671437 DOI: 10.3390/ijms242216206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cytokines play an essential role in the control of tumor cell development and multiplication. However, the available literature provides ambiguous data on the involvement of these proteins in the formation and progression of glioblastoma (GBM). This study was designed to evaluate the inflammatory profile and to investigate its potential for the identification of molecular signatures specific to GBM. Fifty patients aged 66.0 ± 10.56 years with newly diagnosed high-grade gliomas and 40 healthy individuals aged 71.7 ± 4.9 years were included in the study. White blood cells were found to fall within the referential ranges and were significantly higher in GBM than in healthy controls. Among immune cells, neutrophils showed the greatest changes, resulting in elevated neutrophil-to-lymphocyte ratio (NLR). The neutrophil count inversely correlated with survival time expressed by Spearman's coefficient rs = -0.359 (p = 0.010). The optimal threshold values corresponded to 2.630 × 103/µL for NLR (the area under the ROC curve AUC = 0.831, specificity 90%, sensitivity 76%, the relative risk RR = 7.875, the confidence intervals 95%CI 3.333-20.148). The most considerable changes were recorded in pro-inflammatory cytokines interleukin IL-1β, IL-6, and IL-8, which were approx. 1.5-2-fold higher, whereas tumor necrosis factor α (TNFα) and high mobility group B1 (HMGB1) were lower in GBM than healthy control (p < 0.001). The results of the ROC, AUC, and RR analysis of IL-1β, IL-6, IL-8, and IL-10 indicate their high diagnostics potential for clinical prognosis. The highest average RR was observed for IL-6 (RR = 2.923) and IL-8 (RR = 3.151), which means there is an approx. three-fold higher probability of GBM development after exceeding the cut-off values of 19.83 pg/mL for IL-6 and 10.86 pg/mL for IL-8. The high values of AUC obtained for the models NLR + IL-1β (AUC = 0.907), NLR + IL-6 (AUC = 0.908), NLR + IL-8 (AUC = 0.896), and NLR + IL-10 (AUC = 0.887) prove excellent discrimination of GBM patients from healthy individuals and may represent GBM-specific molecular signatures.
Collapse
Affiliation(s)
- Pawel Jarmuzek
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Piotr Defort
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Marcin Kot
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Edyta Wawrzyniak-Gramacka
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| |
Collapse
|
11
|
Kachuri L, Guerra GA, Wendt GA, Hansen HM, Molinaro AM, Bracci P, McCoy L, Rice T, Wiencke JK, Eckel-Passow JE, Jenkins RB, Wrensch M, Francis SS. Genetic predisposition to altered blood cell homeostasis is associated with glioma risk and survival. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.15.23296448. [PMID: 37905116 PMCID: PMC10614986 DOI: 10.1101/2023.10.15.23296448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Glioma is a highly fatal brain tumor comprised of molecular subtypes with distinct clinical trajectories. Observational studies have suggested that variability in immune response may play a role in glioma etiology. However, their findings have been inconsistent and susceptible to reverse causation due to treatment effects and the immunosuppressive nature of glioma. We applied genetic variants associated (p<5×10-8) with blood cell traits to a meta-analysis of 3418 glioma cases and 8156 controls. Genetically predicted increase in the platelet to lymphocyte ratio (PLR) was associated with an increased risk of glioma (odds ratio (OR)=1.25, p=0.005), especially in IDH-mutant (IDHmut OR=1.38, p=0.007) and IDHmut 1p/19q non-codeleted (IDHmut-noncodel OR=1.53, p=0.004) tumors. However, reduced glioma risk was observed for higher counts of lymphocytes (IDHmut-noncodel OR=0.70, p=0.004) and neutrophils (IDHmut OR=0.69, p=0.019; IDHmut-noncodel OR=0.60, p=0.009), which may reflect genetic predisposition to enhanced immune-surveillance. In contrast to susceptibility, there was no association with survival in IDHmut-noncodel; however, in IDHmut 1p/19q co-deleted tumors, we observed higher mortality with increasing genetically predicted counts of lymphocytes (hazard ratio (HR)=1.65, 95% CI: 1.24-2.20), neutrophils (HR=1.49, 1.13-1.97), and eosinophils (HR=1.59, 1.18-2.14). Polygenic scores for blood cell traits were also associated with tumor immune microenvironment features, with heterogeneity by IDH status observed for 17 signatures related to interferon signaling, PD-1 expression, and T-cell/Cytotoxic responses. In summary, we identified novel, immune-mediated susceptibility mechanisms for glioma with potential disease management implications.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Geno A. Guerra
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA
| | - George A. Wendt
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Helen M. Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Annette M. Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA
| | - Paige Bracci
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - John K. Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, US
| | | | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
| | - Stephen S. Francis
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, US
| |
Collapse
|
12
|
Nissen E, Reiner A, Liu S, Wallace RB, Molinaro AM, Salas LA, Christensen BC, Wiencke JK, Koestler DC, Kelsey KT. Assessment of immune cell profiles among post-menopausal women in the Women's Health Initiative using DNA methylation-based methods. Clin Epigenetics 2023; 15:69. [PMID: 37118842 PMCID: PMC10141818 DOI: 10.1186/s13148-023-01488-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Over the past decade, DNA methylation (DNAm)-based deconvolution methods that leverage cell-specific DNAm markers of immune cell types have been developed to provide accurate estimates of the proportions of leukocytes in peripheral blood. Immune cell phenotyping using DNAm markers, termed immunomethylomics or methylation cytometry, offers a solution for determining the body's immune cell landscape that does not require fresh blood and is scalable to large sample sizes. Despite significant advances in DNAm-based deconvolution, references at the population level are needed for clinical and research interpretation of these additional immune layers. Here we aim to provide some references for immune populations in a group of multi-ethnic post-menopausal American women. RESULTS We applied DNAm-based deconvolution to a large sample of post-menopausal women enrolled in the Women's Health Initiative (baseline, N = 58) or the ancillary Long Life Study (WHI-LLS, N = 1237) to determine the reference ranges of 58 immune parameters, including proportions and absolute counts for 19 leukocyte subsets and 20 derived cell ratios. Participants were 50-94 years old at the time of blood draw, and N = 898 (69.3%) self-identified as White. Using linear regression models, we observed significant associations between age at blood draw and absolute counts and proportions of naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ memory, neutrophils, and natural killer cells. We also assessed the same immune profiles in a subset of paired longitudinal samples collected 14-18 years apart across N = 52 participants. Our results demonstrate high inter-individual variability in rates of change of leukocyte subsets over this time. And, when conducting paired t tests to test the difference in counts and proportions between the baseline visit and LLS visit, there were significant changes in naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ cells and neutrophils, similar to the results seen when analyzing the association with age in the entire cohort. CONCLUSIONS Here, we show that derived cell counts largely reflect the immune profile associated with proportions and that these novel methods replicate the known immune profiles associated with age. Further, we demonstrate the value this methylation cytometry approach can add as a potential application in epidemiological studies.
Collapse
Affiliation(s)
- Emily Nissen
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander Reiner
- Division of Public Health Science, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Simin Liu
- Departments of Epidemiology, Medicine, and Surgery, Brown University, Providence, RI, USA
| | - Robert B Wallace
- Departments of Epidemiology and Internal Medicine, School of Public Health, University of Iowa, Iowa City, IA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA.
| |
Collapse
|
13
|
Vaios EJ, Winter SF, Shih HA, Dietrich J, Peters KB, Floyd SR, Kirkpatrick JP, Reitman ZJ. Novel Mechanisms and Future Opportunities for the Management of Radiation Necrosis in Patients Treated for Brain Metastases in the Era of Immunotherapy. Cancers (Basel) 2023; 15:2432. [PMID: 37173897 PMCID: PMC10177360 DOI: 10.3390/cancers15092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Radiation necrosis, also known as treatment-induced necrosis, has emerged as an important adverse effect following stereotactic radiotherapy (SRS) for brain metastases. The improved survival of patients with brain metastases and increased use of combined systemic therapy and SRS have contributed to a growing incidence of necrosis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) pathway (cGAS-STING) represents a key biological mechanism linking radiation-induced DNA damage to pro-inflammatory effects and innate immunity. By recognizing cytosolic double-stranded DNA, cGAS induces a signaling cascade that results in the upregulation of type 1 interferons and dendritic cell activation. This pathway could play a key role in the pathogenesis of necrosis and provides attractive targets for therapeutic development. Immunotherapy and other novel systemic agents may potentiate activation of cGAS-STING signaling following radiotherapy and increase necrosis risk. Advancements in dosimetric strategies, novel imaging modalities, artificial intelligence, and circulating biomarkers could improve the management of necrosis. This review provides new insights into the pathophysiology of necrosis and synthesizes our current understanding regarding the diagnosis, risk factors, and management options of necrosis while highlighting novel avenues for discovery.
Collapse
Affiliation(s)
- Eugene J. Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sebastian F. Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Helen A. Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katherine B. Peters
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - John P. Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
Bell-Glenn S, Salas LA, Molinaro AM, Butler RA, Christensen BC, Kelsey KT, Wiencke JK, Koestler DC. Calculating detection limits and uncertainty of reference-based deconvolution of whole-blood DNA methylation data. Epigenomics 2023; 15:435-451. [PMID: 37337720 PMCID: PMC10308256 DOI: 10.2217/epi-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
DNA methylation (DNAm)-based cell mixture deconvolution (CMD) has become a quintessential part of epigenome-wide association studies where DNAm is profiled in heterogeneous tissue types. Despite being introduced over a decade ago, detection limits, which represent the smallest fraction of a cell type in a mixed biospecimen that can be reliably detected, have yet to be determined in the context of DNAm-based CMD. Moreover, there has been little attention given to approaches for quantifying the uncertainty associated with DNAm-based CMD. Here, analytical frameworks for determining both cell-specific limits of detection and quantification of uncertainty associated with DNAm-based CMD are described. This work may contribute to improved rigor, reproducibility and replicability of epigenome-wide association studies involving CMD.
Collapse
Affiliation(s)
- Shelby Bell-Glenn
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rondi A Butler
- Departments of Epidemiology & Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
- Department of Molecular & Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
- Department of Community & Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Karl T Kelsey
- Departments of Epidemiology & Pathology & Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Bracci PM, Rice T, Hansen HM, Francis SS, Lee S, McCoy LS, Shrestha PP, Warrier G, Clarke JL, Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR. Pre-surgery immune profiles of adult glioma patients. J Neurooncol 2022; 159:103-115. [PMID: 35716311 PMCID: PMC9325836 DOI: 10.1007/s11060-022-04047-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Although immunosuppression is a known characteristic of glioma, no previous large studies have reported peripheral blood immune cell profiles prior to patient surgery and chemoradiation. This report describes blood immune cell characteristics and associated variables prior to surgery among typical glioma patients seen at a large University practice. METHODS We analyzed pre-surgery blood samples from 139 glioma patients diagnosed with a new or recurrent grade II/III glioma (LrGG, n = 64) or new glioblastoma (GBM, n = 75) and 454 control participants without glioma. Relative cell fractions of CD4, CD8, B-cells, Natural Killer cells, monocytes, and neutrophils, were estimated via a validated deconvolution algorithm from blood DNA methylation measures from Illumina EPIC arrays. RESULTS Dexamethasone use at time of blood draw varied by glioma type being highest among patients with IDH wild-type (wt) GBM (75%) and lowest for those with oligodendroglioma (14%). Compared to controls, glioma patients showed statistically significant lower cell fractions for all immune cell subsets except for neutrophils which were higher (all p-values < 0.001), in part because of the higher prevalence of dexamethasone use at time of blood draw for IDHwt GBM. Patients who were taking dexamethasone were more likely to have a low CD4 count (< 200, < 500), increased neutrophils, low absolute lymphocyte counts, higher total cell count and higher NLR. CONCLUSION We show that pre-surgery blood immune profiles vary by glioma subtype, age, and more critically, by use of dexamethasone. Our results highlight the importance of considering dexamethasone exposures in all studies of immune profiles and of obtaining immune measures prior to use of dexamethasone, if possible.
Collapse
Affiliation(s)
- Paige M Bracci
- Department of Epidemiology and Biostatistics, UCSF, 1450 3rd Street, San Francisco, CA, 94158, USA.
| | - Terri Rice
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
| | - Helen M Hansen
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
| | | | - Sean Lee
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
| | - Lucie S McCoy
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
| | - Pavan P Shrestha
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
| | - Gayathri Warrier
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurology, UCSF, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Epidemiology and Biostatistics, UCSF, 1450 3rd Street, San Francisco, CA, 94158, USA
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurology, UCSF, San Francisco, CA, USA
| | - John K Wiencke
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
| | | |
Collapse
|
16
|
Yuan J, Liu J, Fan R, Liu Z. HECTD3 enhances cell radiation resistance and migration by regulating LKB1 mediated ZEB1 in glioma. Eur J Neurosci 2022; 56:4275-4286. [PMID: 35768187 DOI: 10.1111/ejn.15748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Homologous to the E6-associated protein carboxyl terminus domain containing 3 (HECTD3) has been reported to play a role in carcinogenesis. Here, we explored the role of HECTD3 in regulating the radiation resistance of glioma, and the underlying mechanism. HECTD3 expressions in glioma tissues were assessed using Western blotting, qRT-PCR and immunohistochemistry. Glioma cells were exposed to 2, 4, 6 or 8Gy X-ray to mimic the radiation treatment. CCK-8, clone formation assay, flow cytometry assay, transwell chambers and animal assay were used to test cell viability, apoptosis, migration, invasiveness and tumorigenesis, respectively. HECTD3 expression was increased in glioma tissues, especially from patients with radiation resistance. Knockdown of HECTD3 promoted cell apoptosis and inhibited cell viability under the condition of 8Gy X-ray, as well as suppressed cell migration and invasiveness. In mechanism, HECTD3 positively regulated ZEB1 expression through regulating the ubiquitination of LKB1 protein. Overexpression of ZEB2 significantly abolished the effects of HECTD3 downregulation in inhibiting the radiation resistance and migration of glioma cells. Moreover, downregulation of HECTD3 further enhanced the anti-tumor effect of X-ray on glioma growth in vivo. In conclusion, HECTD3 was overexpressed in glioma patients with radiation resistance. Knockdown of HECTD3 sensitized glioma cells to radiation and inhibited cell migration by downregulating ZEB1 expression via regulating the ubiquitination of LKB1 protein. This study reveals that HECTD3 might be a potent target to enhance the radiation sensitivity of glioma.
Collapse
Affiliation(s)
- Jinjin Yuan
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junqi Liu
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruitai Fan
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongwen Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Bell-Glenn S, Thompson JA, Salas LA, Koestler DC. A Novel Framework for the Identification of Reference DNA Methylation Libraries for Reference-Based Deconvolution of Cellular Mixtures. FRONTIERS IN BIOINFORMATICS 2022; 2. [PMID: 35419567 PMCID: PMC9004796 DOI: 10.3389/fbinf.2022.835591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Reference-based deconvolution methods use reference libraries of cell-specific DNA methylation (DNAm) measurements as a means toward deconvoluting cell proportions in heterogeneous biospecimens (e.g., whole-blood). As the accuracy of such methods depends highly on the CpG loci comprising the reference library, recent research efforts have focused on the selection of libraries to optimize deconvolution accuracy. While existing approaches for library selection work extremely well, the best performing approaches require a training data set consisting of both DNAm profiles over a heterogeneous cell population and gold-standard measurements of cell composition (e.g., flow cytometry) in the same samples. Here, we present a framework for reference library selection without a training dataset (RESET) and benchmark it against the Legacy method (minfi:pickCompProbes), where libraries are constructed based on a pre-specified number of cell-specific differentially methylated loci (DML). RESET uses a modified version of the Dispersion Separability Criteria (DSC) for comparing different libraries and has four main steps: 1) identify a candidate set of cell-specific DMLs, 2) randomly sample DMLs from the candidate set, 3) compute the Modified DSC of the selected DMLs, and 4) update the selection probabilities of DMLs based on their contribution to the Modified DSC. Steps 2–4 are repeated many times and the library with the largest Modified DSC is selected for subsequent reference-based deconvolution. We evaluated RESET using several publicly available datasets consisting of whole-blood DNAm measurements with corresponding measurements of cell composition. We computed the RMSE and R2 between the predicted cell proportions and their measured values. RESET outperformed the Legacy approach in selecting libraries that improve the accuracy of deconvolution estimates. Additionally, reference libraries constructed using RESET resulted in cellular composition estimates that explained more variation in DNAm as compared to the Legacy approach when evaluated in the context of epigenome-wide association studies (EWAS) of several publicly available data sets. This finding has implications for the statistical power of EWAS. RESET combats potential challenges associated with existing approaches for reference library assembly and thus, may serve as a viable strategy for library construction in the absence of a training data set.
Collapse
Affiliation(s)
- Shelby Bell-Glenn
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey A. Thompson
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Devin C. Koestler,
| |
Collapse
|
18
|
Molinaro AM, Wiencke JK, Warrier G, Koestler DC, Chunduru P, Lee JY, Hansen HM, Lee S, Anguiano J, Rice T, Bracci PM, McCoy L, Salas LA, Christensen BC, Wrensch M, Kelsey KT, Taylor JW, Clarke JL. Interactions of Age and Blood Immune Factors and Noninvasive Prediction of Glioma Survival. J Natl Cancer Inst 2022; 114:446-457. [PMID: 34597382 PMCID: PMC8902347 DOI: 10.1093/jnci/djab195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Tumor-based classification of human glioma portends patient prognosis, but considerable unexplained survival variability remains. Host factors (eg, age) also strongly influence survival times, partly reflecting a compromised immune system. How blood epigenetic measures of immune characteristics and age augment molecular classifications in glioma survival has not been investigated. We assess the prognostic impact of immune cell fractions and epigenetic age in archived blood across glioma molecular subtypes for the first time. METHODS We evaluated immune cell fractions and epigenetic age in archived blood from the University of California San Francisco Adult Glioma Study, which included a training set of 197 patients with IDH-wild type, 1p19q intact, TERT wild type (IDH/1p19q/TERT-WT) glioma, an evaluation set of 350 patients with other subtypes of glioma, and 454 patients without glioma. RESULTS IDH/1p19q/TERT-WT patients had lower lymphocyte fractions (CD4+ T, CD8+ T, natural killer, and B cells) and higher neutrophil fractions than people without glioma. Recursive partitioning analysis delineated 4 statistically significantly different survival groups for patients with IDH/1p19q/TERT-WT based on an interaction between chronological age and 2 blood immune factors, CD4+ T cells, and neutrophils. Median overall survival ranged from 0.76 years (95% confidence interval = 0.55-0.99) for the worst survival group (n = 28) to 9.72 years (95% confidence interval = 6.18 to not available) for the best (n = 33). The recursive partitioning analysis also statistically significantly delineated 4 risk groups in patients with other glioma subtypes. CONCLUSIONS The delineation of different survival groups in the training and evaluation sets based on an interaction between chronological age and blood immune characteristics suggests that common host immune factors among different glioma types may affect survival. The ability of DNA methylation-based markers of immune status to capture diverse, clinically relevant information may facilitate noninvasive, personalized patient evaluation in the neuro-oncology clinic.
Collapse
Affiliation(s)
- Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Gayathri Warrier
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pranathi Chunduru
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ji Yoon Lee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sean Lee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joaquin Anguiano
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Terri Rice
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Lucie McCoy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Departments of Molecular and Systems Biology and Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Salas LA, Zhang Z, Koestler DC, Butler RA, Hansen HM, Molinaro AM, Wiencke JK, Kelsey KT, Christensen BC. Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nat Commun 2022; 13:761. [PMID: 35140201 PMCID: PMC8828780 DOI: 10.1038/s41467-021-27864-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
DNA methylation microarrays can be employed to interrogate cell-type composition in complex tissues. Here, we expand reference-based deconvolution of blood DNA methylation to include 12 leukocyte subtypes (neutrophils, eosinophils, basophils, monocytes, naïve and memory B cells, naïve and memory CD4 + and CD8 + T cells, natural killer, and T regulatory cells). Including derived variables, our method provides 56 immune profile variables. The IDOL (IDentifying Optimal Libraries) algorithm was used to identify libraries for deconvolution of DNA methylation data for current and previous platforms. The accuracy of deconvolution estimates obtained using our enhanced libraries was validated using artificial mixtures and whole-blood DNA methylation with known cellular composition from flow cytometry. We applied our libraries to deconvolve cancer, aging, and autoimmune disease datasets. In conclusion, these libraries enable a detailed representation of immune-cell profiles in blood using only DNA and facilitate a standardized, thorough investigation of immune profiles in human health and disease.
Collapse
Affiliation(s)
- Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rondi A Butler
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
| |
Collapse
|
20
|
Chen JQ, Salas LA, Wiencke JK, Koestler DC, Molinaro AM, Andrew AS, Seigne JD, Karagas MR, Kelsey KT, Christensen BC. Immune profiles and DNA methylation alterations related with non-muscle-invasive bladder cancer outcomes. Clin Epigenetics 2022; 14:14. [PMID: 35063012 PMCID: PMC8783448 DOI: 10.1186/s13148-022-01234-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) patients receive frequent monitoring because ≥ 70% will have recurrent disease. However, screening is invasive, expensive, and associated with significant morbidity making bladder cancer the most expensive cancer to treat per capita. There is an urgent need to expand the understanding of markers related to recurrence and survival outcomes of NMIBC. METHODS AND RESULTS We used the Illumina HumanMethylationEPIC array to measure peripheral blood DNA methylation profiles of NMIBC patients (N = 603) enrolled in a population-based cohort study in New Hampshire and applied cell type deconvolution to estimate immune cell-type proportions. Using Cox proportional hazard models, we identified that increasing CD4T and CD8T cell proportions were associated with a statistically significant decreased hazard of tumor recurrence or death (CD4T: HR = 0.98, 95% CI = 0.97-1.00; CD8T: HR = 0.97, 95% CI = 0.95-1.00), whereas increasing monocyte proportion and methylation-derived neutrophil-to-lymphocyte ratio (mdNLR) were associated with the increased hazard of tumor recurrence or death (monocyte: HR = 1.04, 95% CI = 1.00-1.07; mdNLR: HR = 1.12, 95% CI = 1.04-1.20). Then, using an epigenome-wide association study (EWAS) approach adjusting for age, sex, smoking status, BCG treatment status, and immune cell profiles, we identified 2528 CpGs associated with the hazard of tumor recurrence or death (P < 0.005). Among these CpGs, the 1572 were associated with an increased hazard and were significantly enriched in open sea regions; the 956 remaining CpGs were associated with a decreased hazard and were significantly enriched in enhancer regions and DNase hypersensitive sites. CONCLUSIONS Our results expand on the knowledge of immune profiles and methylation alteration associated with NMIBC outcomes and represent a first step toward the development of DNA methylation-based biomarkers of tumor recurrence.
Collapse
Affiliation(s)
- Ji-Qing Chen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03766, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03766, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03766, USA
| | - John D Seigne
- Department of Surgery, Section of Urology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03766, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03766, USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03766, USA.
- Departments of Molecular and Systems Biology, and Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03766, USA.
- Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, 660 Williamson Translation Research Building, Lebanon, NH, 03756, USA.
| |
Collapse
|
21
|
Shanthikumar S, Neeland MR, Saffery R, Ranganathan SC, Oshlack A, Maksimovic J. DNA Methylation Profiles of Purified Cell Types in Bronchoalveolar Lavage: Applications for Mixed Cell Paediatric Pulmonary Studies. Front Immunol 2021; 12:788705. [PMID: 35003108 PMCID: PMC8727592 DOI: 10.3389/fimmu.2021.788705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023] Open
Abstract
In epigenome-wide association studies analysing DNA methylation from samples containing multiple cell types, it is essential to adjust the analysis for cell type composition. One well established strategy for achieving this is reference-based cell type deconvolution, which relies on knowledge of the DNA methylation profiles of purified constituent cell types. These are then used to estimate the cell type proportions of each sample, which can then be incorporated to adjust the association analysis. Bronchoalveolar lavage is commonly used to sample the lung in clinical practice and contains a mixture of different cell types that can vary in proportion across samples, affecting the overall methylation profile. A current barrier to the use of bronchoalveolar lavage in DNA methylation-based research is the lack of reference DNA methylation profiles for each of the constituent cell types, thus making reference-based cell composition estimation difficult. Herein, we use bronchoalveolar lavage samples collected from children with cystic fibrosis to define DNA methylation profiles for the four most common and clinically relevant cell types: alveolar macrophages, granulocytes, lymphocytes and alveolar epithelial cells. We then demonstrate the use of these methylation profiles in conjunction with an established reference-based methylation deconvolution method to estimate the cell type composition of two different tissue types; a publicly available dataset derived from artificial blood-based cell mixtures and further bronchoalveolar lavage samples. The reference DNA methylation profiles developed in this work can be used for future reference-based cell type composition estimation of bronchoalveolar lavage. This will facilitate the use of this tissue in studies examining the role of DNA methylation in lung health and disease.
Collapse
Affiliation(s)
- Shivanthan Shanthikumar
- Respiratory and Sleep Medicine, Royal Children’s Hospital, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Respiratory Diseases, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- *Correspondence: Shivanthan Shanthikumar,
| | - Melanie R. Neeland
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Molecular Immunity, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Richard Saffery
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Molecular Immunity, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Sarath C. Ranganathan
- Respiratory and Sleep Medicine, Royal Children’s Hospital, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Respiratory Diseases, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Alicia Oshlack
- Computational Biology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- School of BioScience, University of Melbourne, Parkville, VIC, Australia
| | - Jovana Maksimovic
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Respiratory Diseases, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Computational Biology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Brain and other central nervous system (CNS) tumors, while rare, cause significant morbidity and mortality across all ages. This article summarizes the current state of the knowledge on the epidemiology of brain and other CNS tumors. RECENT FINDINGS For childhood and adolescent brain and other CNS tumors, high birth weight, non-chromosomal structural birth defects and higher socioeconomic position were shown to be risk factors. For adults, increased leukocyte telomere length, proportion of European ancestry, higher socioeconomic position, and HLA haplotypes increase risk of malignant brain tumors, while immune factors decrease risk. Although no risk factor accounting for a large proportion of brain and other CNS tumors has been discovered, the use of high throughput "omics" approaches and improved detection/measurement of environmental exposures will help us refine our current understanding of these factors and discover novel risk factors for this disease.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Stephen S Francis
- Department of Neurological Surgery, Division of Neuro and Molecular Epidemiology, University of California, San Francisco, CA, USA
| | - Jill S Barnholtz-Sloan
- Trans-Divisional Research Program, Division of Cancer Epidemiology and Genetics, and Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
23
|
Xu G, Li C, Wang Y, Ma J, Zhang J. Correlation between preoperative inflammatory markers, Ki-67 and the pathological grade of glioma. Medicine (Baltimore) 2021; 100:e26750. [PMID: 34516487 PMCID: PMC8428732 DOI: 10.1097/md.0000000000026750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT To investigate the correlation between preoperative inflammatory markers, Ki-67 expression and the pathological grade of glioma, and to provide a reference for clinical prediction of glioma prognosis.A total of 45 glioma patients who underwent surgery with complete clinical and pathological data were in our hospital from January 2012 to December 2018 were enrolled. Glioma was divided into WHO grade I to IV. Forty-five healthy health examiners with matched clinical characteristics were included to the control group. Blood routine tests were recorded at admission in both the glioma and control group. The ratio of neutrophil to lymphocyte cytometry (NLR), derived neutrophil to lymphocyte ratio (dNLR) (white blood cell count - neutrophil count to neutrophil count), platelet to lymphocyte ratio (PLR) and prognostic nutritional index (PNI, serum albumin content + 5 × lymphocyte count) were calculated. The expression of Ki-67 in glioma was detected by immunohistochemistry. The relationship between the above markers, Ki-67 expression and pathological grade of glioma was evaluated with receiver operating characteristics curve analysis and Spearman correlation test. The correlation between the markers and Ki-67 were also determined.NLR, dNLR, PLR were increased in the glioma group (P < .001, <.001, .002), whereas red blood cell distribution width (RDW) was decreased (P = .009). All the glioma samples expressed Ki-67 with varying degree. Receiver operating characteristics curve analysis reveals NLR, dNLR, PLR, and RDW have significant discriminating ability in differentiating the glioma and control sample. NLR, PLR, PNI, and Ki-67 were significantly correlated with glioma pathology grade (P = .023, .006, .019, <.05), while dNLR and RDW were not associated with glioma grade. Finally, NLR and PLR were related to Ki-67 expression in glioma patients (P = .002, .022), while dNLR and RDW were not related to Ki-67 expression.Preoperative inflammatory markers NLR, PLR, PNI, and postoperative Ki-67 expression are associated with pathological grade of glioma. Detection of these markers may aid in better prediction of glioma prognosis.
Collapse
Affiliation(s)
- Guangda Xu
- Department of Surgery, Affiliated Hospital of Jining Medical College, Jining City, Shandong Province, China
| | - Chengxue Li
- Department of Neurosurgery, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, China
| | - Yanguo Wang
- Department of Neurosurgery, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, China
| | - Jinan Ma
- Department of Neurosurgery, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, China
| | - Junchen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical College, Jining City, Shandong Province, China
| |
Collapse
|
24
|
Lin YJ, Wei KC, Chen PY, Lim M, Hwang TL. Roles of Neutrophils in Glioma and Brain Metastases. Front Immunol 2021; 12:701383. [PMID: 34484197 PMCID: PMC8411705 DOI: 10.3389/fimmu.2021.701383] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils, which are the most abundant circulating leukocytes in humans, are the first line of defense against bacterial and fungal infections. Recent studies have reported the role and importance of neutrophils in cancers. Glioma and brain metastases are the most common malignant tumors of the brain. The tumor microenvironment (TME) in the brain is complex and unique owing to the brain-blood barrier or brain-tumor barrier, which may prevent drug penetration and decrease the efficacy of immunotherapy. However, there are limited studies on the correlation between brain cancer and neutrophils. This review discusses the origin and functions of neutrophils. Additionally, the current knowledge on the correlation between neutrophil-to-lymphocyte ratio and prognosis of glioma and brain metastases has been summarized. Furthermore, the implications of tumor-associated neutrophil (TAN) phenotypes and the functions of TANs have been discussed. Finally, the potential effects of various treatments on TANs and the ability of neutrophils to function as a nanocarrier of drugs to the brain TME have been summarized. However, further studies are needed to elucidate the complex interactions between neutrophils, other immune cells, and brain tumor cells.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
25
|
Magod P, Mastandrea I, Rousso-Noori L, Agemy L, Shapira G, Shomron N, Friedmann-Morvinski D. Exploring the longitudinal glioma microenvironment landscape uncovers reprogrammed pro-tumorigenic neutrophils in the bone marrow. Cell Rep 2021; 36:109480. [PMID: 34348160 DOI: 10.1016/j.celrep.2021.109480] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/17/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Recent multi-omics studies show different immune tumor microenvironment (TME) compositions in glioblastoma (GBM). However, temporal comprehensive knowledge of the TME from initiation of the disease remains sparse. We use Cre recombinase (Cre)-inducible lentiviral murine GBM models to compare the cellular evolution of the immune TME in tumors initiated from different oncogenic drivers. We show that neutrophils infiltrate early during tumor progression primarily in the mesenchymal GBM model. Depleting neutrophils in vivo at the onset of disease accelerates tumor growth and reduces the median overall survival time of mice. We show that, as a tumor progresses, bone marrow-derived neutrophils are skewed toward a phenotype associated with pro-tumorigenic processes. Our findings suggest that GBM can remotely regulate systemic myeloid differentiation in the bone marrow to generate neutrophils pre-committed to a tumor-supportive phenotype. This work reveals plasticity in the systemic immune host microenvironment, suggesting an additional point of intervention in GBM treatment.
Collapse
Affiliation(s)
- Prerna Magod
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ignacio Mastandrea
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liat Rousso-Noori
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Shapira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dinorah Friedmann-Morvinski
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
26
|
Ostrom QT, Edelson J, Byun J, Han Y, Kinnersley B, Melin B, Houlston RS, Monje M, Walsh KM, Amos CI, Bondy ML. Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro Oncol 2021; 23:1304-1314. [PMID: 33743008 PMCID: PMC8328033 DOI: 10.1093/neuonc/noab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological studies of adult glioma have identified genetic syndromes and 25 heritable risk loci that modify individual risk for glioma, as well increased risk in association with exposure to ionizing radiation and decreased risk in association with allergies. In this analysis, we assess whether there is a shared genome-wide genetic architecture between glioma and atopic/autoimmune diseases. METHODS Using summary statistics from a glioma genome-wide association studies (GWAS) meta-analysis, we identified significant enrichment for risk variants associated with gene expression changes in immune cell populations. We also estimated genetic correlations between glioma and autoimmune, atopic, and hematologic traits using linkage disequilibrium score regression (LDSC), which leverages genome-wide single-nucleotide polymorphism (SNP) associations and patterns of linkage disequilibrium. RESULTS Nominally significant negative correlations were observed for glioblastoma (GB) and primary biliary cirrhosis (rg = -0.26, P = .0228), and for non-GB gliomas and celiac disease (rg = -0.32, P = .0109). Our analyses implicate dendritic cells (GB pHM = 0.0306 and non-GB pHM = 0.0186) in mediating both GB and non-GB genetic predisposition, with GB-specific associations identified in natural killer (NK) cells (pHM = 0.0201) and stem cells (pHM = 0.0265). CONCLUSIONS This analysis identifies putative new associations between glioma and autoimmune conditions with genomic architecture that is inversely correlated with that of glioma and that T cells, NK cells, and myeloid cells are involved in mediating glioma predisposition. This provides further evidence that increased activation of the acquired immune system may modify individual susceptibility to glioma.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob Edelson
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, California, USA
| | - Jinyoung Byun
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Younghun Han
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, London, UK
| | - Beatrice Melin
- Department of Radiation Sciences - Oncology, Umea University, Umea, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, London, UK
| | - Michelle Monje
- Department of Neurology, Neurosurgery, Pediatrics and Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher I Amos
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
27
|
Garrett C, Becker TM, Lynch D, Po J, Xuan W, Scott KF, de Souza P. Comparison of neutrophil to lymphocyte ratio and prognostic nutritional index with other clinical and molecular biomarkers for prediction of glioblastoma multiforme outcome. PLoS One 2021; 16:e0252614. [PMID: 34138894 PMCID: PMC8211244 DOI: 10.1371/journal.pone.0252614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Pre- and post-operative neutrophil to lymphocyte ratio (NLR) and prognostic nutritional index (PNI) and other prognostic clinicopathological variables were correlated with progression free survival (PFS) and overall survival (OS) of Glioblastoma Multiforme (GBM) patients. Methods GBM patients (n = 87, single-centre, recruited 2013–2019) were retrospectively divided into low and high groups using literature-derived cut-offs (NLR = 5.07, PNI = 46.97). Kaplan-Meier survival curves and log rank tests assessed PFS and OS. Univariate and multivariate analyses identified PFS and OS prognosticators. Results High vs low post-operative PNI cohort was associated with longer PFS (279 vs 136 days, p = 0.009), but significance was lost on multivariate analysis. Post-operative ECOG (p = 0.043), daily dexamethasone (p = 0.023) and IDH mutation (p = 0.046) were significant on multivariate analysis for PFS. High pre- and post-operative PNI were associated with improved OS (384 vs 114 days, p = 0.034 and 516 vs 245 days, p = 0.001, respectively). Low postoperative NLR correlated with OS (408 vs 249 days, p = 0.029). On multivariate analysis using forward selection process, extent of resection (EOR) (GTR vs biopsy, p = 0.004 and STR vs biopsy, p = 0.011), and any previous surgery (p = 0.014) were independent prognostic biomarkers for OS. On multivariate analysis of these latter variables with literature-derived prognostic biomarkers, EOR remained significantly associated with OS (p = 0.037). Conclusions EOR, followed by having any surgery prior to GBM, are the most significant independent predictors of GBM patient’s OS. Post-operative ECOG, daily dexamethasone and IDH mutation are independent prognostic biomarkers for PFS. PNI may be superior to NLR. Post- vs pre-operative serum inflammatory marker levels may be associated with survival.
Collapse
Affiliation(s)
- Celine Garrett
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Circulating Tumour Cells Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- * E-mail:
| | - Therese M. Becker
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Circulating Tumour Cells Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of New South Wales, Kingsford, NSW, Australia
| | - David Lynch
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Circulating Tumour Cells Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Joseph Po
- Circulating Tumour Cells Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Wei Xuan
- Circulating Tumour Cells Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Circulating Tumour Cells Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Circulating Tumour Cells Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of New South Wales, Kingsford, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
28
|
Ali H, Harting R, de Vries R, Ali M, Wurdinger T, Best MG. Blood-Based Biomarkers for Glioma in the Context of Gliomagenesis: A Systematic Review. Front Oncol 2021; 11:665235. [PMID: 34150629 PMCID: PMC8211985 DOI: 10.3389/fonc.2021.665235] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gliomas are the most common and aggressive tumors of the central nervous system. A robust and widely used blood-based biomarker for glioma has not yet been identified. In recent years, a plethora of new research on blood-based biomarkers for glial tumors has been published. In this review, we question which molecules, including proteins, nucleic acids, circulating cells, and metabolomics, are most promising blood-based biomarkers for glioma diagnosis, prognosis, monitoring and other purposes, and align them to the seminal processes of cancer. METHODS The Pubmed and Embase databases were systematically searched. Biomarkers were categorized in the identified biomolecules and biosources. Biomarker characteristics were assessed using the area under the curve (AUC), accuracy, sensitivity and/or specificity values and the degree of statistical significance among the assessed clinical groups was reported. RESULTS 7,919 references were identified: 3,596 in PubMed and 4,323 in Embase. Following screening of titles, abstracts and availability of full-text, 262 articles were included in the final systematic review. Panels of multiple biomarkers together consistently reached AUCs >0.8 and accuracies >80% for various purposes but especially for diagnostics. The accuracy of single biomarkers, consisting of only one measurement, was far more variable, but single microRNAs and proteins are generally more promising as compared to other biomarker types. CONCLUSION Panels of microRNAs and proteins are most promising biomarkers, while single biomarkers such as GFAP, IL-10 and individual miRNAs also hold promise. It is possible that panels are more accurate once these are involved in different, complementary cancer-related molecular pathways, because not all pathways may be dysregulated in cancer patients. As biomarkers seem to be increasingly dysregulated in patients with short survival, higher tumor grades and more pathological tumor types, it can be hypothesized that more pathways are dysregulated as the degree of malignancy of the glial tumor increases. Despite, none of the biomarkers found in the literature search seem to be currently ready for clinical implementation, and most of the studies report only preliminary application of the identified biomarkers. Hence, large-scale validation of currently identified and potential novel biomarkers to show clinical utility is warranted.
Collapse
Affiliation(s)
- Hamza Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Romée Harting
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Ralph de Vries
- Medical Library, Vrije Universiteit, Amsterdam, Netherlands
| | - Meedie Ali
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| | - Myron G. Best
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center and Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
29
|
He Q, Li L, Ren Q. The Prognostic Value of Preoperative Systemic Inflammatory Response Index (SIRI) in Patients With High-Grade Glioma and the Establishment of a Nomogram. Front Oncol 2021; 11:671811. [PMID: 34055639 PMCID: PMC8162213 DOI: 10.3389/fonc.2021.671811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Background The predictive value of systemic inflammatory response index (SIRI) was confirmed in some malignant tumors. However, few studies investigated the prognostic value of SIRI in high-grade gliomas. This study aimed to evaluate the prognostic relationship of preoperative SIRI in high-grade gliomas and established a nomogram accordingly. Methods Data of operable high-grade glioma patients were analyzed. Kaplan-Meier, log-rank test, cox regression and propensity score matching (PSM) analysis were used to analyze survival. ROC curve and area under the curve (AUC) were used to compare the ability of preoperative SIRI, neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and monocyte-lymphocyte ratio (MLR) to predict prognosis. A nomogram based on the results was established. The consistency index (C-index) was calculated and a calibration curve was drawn.The prediction effect of the nomogram and WHO grade was compared by AUC. Results A total of 105 patients were included. Kaplan-Meier survival analysis showed that the overall survival (OS) of grade III gliomas patients with lower preoperative SIRI (SIRI<1.26) was significantly prolonged (p=0.037), and grade IV gliomas patients with lower preoperative SIRI had a tendency to obtain longer OS (p = 0.107). Cox regression showed preoperative SIRI was an independent prognostic factor for grade IV and grade III glioma, however, in IDH mutant-type IV gliomas, patients with lower SIRI only showed a tendency to obtain better OS. Similar results were obtained in PSM. The prognostic value of SIRI were better than PLR and MLR by ROC analysis. And in grade IV gliomas, the predictive value of SIRI was better than NLR. The nomogram established based on preoperative SIRI, age, extent of resection, number of gliomas, MGMT methylation status and histological types (only in grade III gliomas) could predict the prognosis more accurately. Conclusion SIRI was valuable for prognosis prediction in high-grade glioma. The nomogram covering SIRI could more accurately predict the survival rate in operable high-grade glioma patients.
Collapse
Affiliation(s)
- Qian He
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglan Ren
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Rytel MR, Butler R, Eliot M, Braun JM, Houseman EA, Kelsey KT. DNA methylation in the adipose tissue and whole blood of Agent Orange-exposed Operation Ranch Hand veterans: a pilot study. Environ Health 2021; 20:43. [PMID: 33849548 PMCID: PMC8045317 DOI: 10.1186/s12940-021-00717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Between 1962 and 1971, the US Air Force sprayed Agent Orange across Vietnam, exposing many soldiers to this dioxin-containing herbicide. Several negative health outcomes have been linked to Agent Orange exposure, but data is lacking on the effects this chemical has on the genome. Therefore, we sought to characterize the impact of Agent Orange exposure on DNA methylation in the whole blood and adipose tissue of veterans enrolled in the Air Force Health Study (AFHS). METHODS We received adipose tissue (n = 37) and whole blood (n = 42) from veterans in the AFHS. Study participants were grouped as having low, moderate, or high TCDD body burden based on their previously measured serum levels of dioxin. DNA methylation was assessed using the Illumina 450 K platform. RESULTS Epigenome-wide analysis indicated that there were no FDR-significantly methylated CpGs in either tissue with TCDD burden. However, 3 CpGs in the adipose tissue (contained within SLC9A3, LYNX1, and TNRC18) were marginally significantly (q < 0.1) hypomethylated, and 1 CpG in whole blood (contained within PTPRN2) was marginally significantly (q < 0.1) hypermethylated with high TCDD burden. Analysis for differentially methylated DNA regions yielded SLC9A3, among other regions in adipose tissue, to be significantly differentially methylated with higher TCDD burden. Comparing whole blood data to a study of dioxin exposed adults from Alabama identified a CpG within the gene SMO that was hypomethylated with dioxin exposure in both studies. CONCLUSION We found limited evidence of dioxin associated DNA methylation in adipose tissue and whole blood in this pilot study of Vietnam War veterans. Nevertheless, loci in the genes of SLC9A3 in adipose tissue, and PTPRN2 and SMO in whole blood, should be included in future exposure analyses.
Collapse
Affiliation(s)
- Matthew R. Rytel
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
| | - Rondi Butler
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
- Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI 02912 USA
| | - Melissa Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
| | - E. Andres Houseman
- Statistical Bioinformatics, GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426 USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
- Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI 02912 USA
| |
Collapse
|
31
|
Nøst TH, Holden M, Dønnem T, Bøvelstad H, Rylander C, Lund E, Sandanger TM. Transcriptomic signals in blood prior to lung cancer focusing on time to diagnosis and metastasis. Sci Rep 2021; 11:7406. [PMID: 33795786 PMCID: PMC8017014 DOI: 10.1038/s41598-021-86879-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Recent studies have indicated that there are functional genomic signals that can be detected in blood years before cancer diagnosis. This study aimed to assess gene expression in prospective blood samples from the Norwegian Women and Cancer cohort focusing on time to lung cancer diagnosis and metastatic cancer using a nested case–control design. We employed several approaches to statistically analyze the data and the methods indicated that the case–control differences were subtle but most distinguishable in metastatic case–control pairs in the period 0–3 years prior to diagnosis. The genes of interest along with estimated blood cell populations could indicate disruption of immunological processes in blood. The genes identified from approaches focusing on alterations with time to diagnosis were distinct from those focusing on the case–control differences. Our results support that explorative analyses of prospective blood samples could indicate circulating signals of disease-related processes.
Collapse
Affiliation(s)
- Therese H Nøst
- Department of Community Medicine, UiT - The Arctic University of Norway, Langnes, P.O. Box 6050, 9037, Tromsø, Norway.
| | | | - Tom Dønnem
- Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT - The Artic University of Norway, Tromsø, Norway
| | - Hege Bøvelstad
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Charlotta Rylander
- Department of Community Medicine, UiT - The Arctic University of Norway, Langnes, P.O. Box 6050, 9037, Tromsø, Norway
| | - Eiliv Lund
- Department of Community Medicine, UiT - The Arctic University of Norway, Langnes, P.O. Box 6050, 9037, Tromsø, Norway.,Department of Research, Institute of Population-Based Cancer Research, Cancer Registry of Norway, Oslo, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT - The Arctic University of Norway, Langnes, P.O. Box 6050, 9037, Tromsø, Norway
| |
Collapse
|
32
|
Polano M, Fabbiani E, Adreuzzi E, Cintio FD, Bedon L, Gentilini D, Mongiat M, Ius T, Arcicasa M, Skrap M, Dal Bo M, Toffoli G. A New Epigenetic Model to Stratify Glioma Patients According to Their Immunosuppressive State. Cells 2021; 10:cells10030576. [PMID: 33807997 PMCID: PMC8001235 DOI: 10.3390/cells10030576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 01/02/2023] Open
Abstract
Gliomas are the most common primary neoplasm of the central nervous system. A promising frontier in the definition of glioma prognosis and treatment is represented by epigenetics. Furthermore, in this study, we developed a machine learning classification model based on epigenetic data (CpG probes) to separate patients according to their state of immunosuppression. We considered 573 cases of low-grade glioma (LGG) and glioblastoma (GBM) from The Cancer Genome Atlas (TCGA). First, from gene expression data, we derived a novel binary indicator to flag patients with a favorable immune state. Then, based on previous studies, we selected the genes related to the immune state of tumor microenvironment. After, we improved the selection with a data-driven procedure, based on Boruta. Finally, we tuned, trained, and evaluated both random forest and neural network classifiers on the resulting dataset. We found that a multi-layer perceptron network fed by the 338 probes selected by applying both expert choice and Boruta results in the best performance, achieving an out-of-sample accuracy of 82.8%, a Matthews correlation coefficient of 0.657, and an area under the ROC curve of 0.9. Based on the proposed model, we provided a method to stratify glioma patients according to their epigenomic state.
Collapse
Affiliation(s)
- Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
- Correspondence:
| | - Emanuele Fabbiani
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy;
| | - Eva Adreuzzi
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Division of Molecular Oncology, 33081 Aviano, Italy; (E.A.); (M.M.)
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Luca Bedon
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Mongiat
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Division of Molecular Oncology, 33081 Aviano, Italy; (E.A.); (M.M.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Mauro Arcicasa
- Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Department of Radiotherapy, 33081 Aviano, Italy;
| | - Miran Skrap
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.D.C.); (L.B.); (M.D.B.); (G.T.)
| |
Collapse
|
33
|
Sabedot T, Malta T, Snyder J, Nelson K, Wells M, deCarvalho A, Mukherjee A, Chitale D, Mosella M, Sokolov A, Asmaro K, Robin A, Rosenblum M, Mikkelsen T, Rock J, Poisson L, Lee I, Walbert T, Kalkanis S, Iavarone A, Castro AV, Noushmehr H. A serum-based DNA methylation assay provides accurate detection of glioma. Neuro Oncol 2021; 23:1494-1508. [PMID: 33560371 DOI: 10.1093/neuonc/noab023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The detection of somatic mutations in cell-free DNA (cfDNA) from liquid biopsy has emerged as a non-invasive tool to monitor the follow-up of cancer patients. However, the significance of cfDNA clinical utility remains uncertain in patients with brain tumors, primarily because of the limited sensitivity cfDNA has to detect real tumor-specific somatic mutations. This unresolved challenge has prevented accurate follow-up of glioma patients with non-invasive approaches. METHODS Genome-wide DNA methylation profiling of tumor tissue and serum cell-free DNA of glioma patients. RESULTS Here, we developed a non-invasive approach to profile the DNA methylation status in the serum of patients with gliomas and identified a cfDNA-derived methylation signature that is associated with the presence of gliomas and related immune features. By testing the signature in an independent discovery and validation cohorts, we developed and verified a score metric (the "glioma epigenetic liquid biopsy score" or GeLB) that optimally distinguished patients with or without glioma (sensitivity: 100%, specificity: 97.78%). Furthermore, we found that changes in GeLB score reflected clinicopathological changes during surveillance (e.g., progression, pseudoprogression or response to standard or experimental treatment). CONCLUSIONS Our results suggest that the GeLB score can be used as a complementary approach to diagnose and follow up patients with glioma.
Collapse
Affiliation(s)
- Thais Sabedot
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Tathiane Malta
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - James Snyder
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA.,Department of Neuro Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Kevin Nelson
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Michael Wells
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Ana deCarvalho
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Abir Mukherjee
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA
| | - Dhan Chitale
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA
| | - Maritza Mosella
- Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Karam Asmaro
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Adam Robin
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Michael Rosenblum
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Jack Rock
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Laila Poisson
- Department of Biostatistics, Henry Ford Health System, Detroit, MI, USA
| | - Ian Lee
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Tobias Walbert
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Department of Neuro Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Steven Kalkanis
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Department of Neurology, Columbia University Medical Center, New York, USA
| | - Ana Valeria Castro
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
34
|
Cronjé HT, Elliott HR, Nienaber-Rousseau C, Green FR, Schutte AE, Pieters M. Methylation vs. Protein Inflammatory Biomarkers and Their Associations With Cardiovascular Function. Front Immunol 2020; 11:1577. [PMID: 32849535 PMCID: PMC7411149 DOI: 10.3389/fimmu.2020.01577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
DNA methylation data can be used to estimate proportions of leukocyte subsets retrospectively, when directly measured cell counts are unavailable. The methylation-derived neutrophil-to-lymphocyte and lymphocyte-to-monocyte ratios (mdNLRs and mdLMRs) have proven to be particularly useful as indicators of systemic inflammation. As with directly measured NLRs and LMRs, these methylation-derived ratios have been used as prognostic markers for cancer, although little is known about them in relation to other disorders with inflammatory components, such as cardiovascular disease (CVD). Recently, methylation of five genomic cytosine-phosphate-guanine sites (CpGs) was suggested as proxies for mdNLRs, potentially providing a cost-effective alternative when whole-genome methylation data are not available. This study compares seven methylation-derived inflammatory markers (mdNLR, mdLMR, and individual CpG sites) with five conventionally used protein-based inflammatory markers (C-reactive protein, interleukins 6 and 10, tumor-necrosis factor alpha, and interferon-gamma) and a protein-based inflammation score, in their associations with cardiovascular function (CVF) and risk. We found that markers of CVF were more strongly associated with methylation-derived than protein-based markers. In addition, the protein-based and methylation-derived inflammatory markers complemented rather than proxied one another in their contribution to the variance in CVF. There were no strong correlations between the methylation and protein markers either. Therefore, the methylation markers could offer unique information on the inflammatory process and are not just surrogate markers for inflammatory proteins. Although the five CpGs mirrored the mdNLR well in their capacity as proxies, they contributed to CVF above and beyond the mdNLR, suggesting possible added functional relevance. We conclude that methylation-derived indicators of inflammation enable individuals with increased CVD risk to be identified without measurement of protein-based inflammatory markers. In addition, the five CpGs investigated here could be useful surrogates for the NLR when the cost of array data cannot be met. Used in tandem, methylation-derived and protein-based inflammatory markers explain more variance than protein-based inflammatory markers alone.
Collapse
Affiliation(s)
- Héléne Toinét Cronjé
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | | | - Fiona R Green
- Faculty of Health and Medical Sciences, Formerly School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Aletta E Schutte
- Hypertension in Africa Research Team, Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.,School of Public Health and Community Medicine, University of New South Wales, George Institute for Global Health, Sydney, NSW, Australia
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
35
|
Fiorica F, Colella M, Taibi R, Bonetti A, Giuliani J, Perrone MS, Missiroli S, Giorgi C. Glioblastoma: Prognostic Factors and Predictive Response to Radio and Chemotherapy. Curr Med Chem 2020; 27:2814-2825. [PMID: 32003678 DOI: 10.2174/0929867327666200131095256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is characterized by poor prognosis despite an aggressive therapeutic strategy. In recent years, many advances have been achieved in the field of glioblastoma biology. Here we try to summarize the main clinical and biological factors impacting clinical prognostication and therapy of GBM patients. From that standpoint, hopefully, in the near future, personalized therapies will be available.
Collapse
Affiliation(s)
- Francesco Fiorica
- Department of Radiation Oncology, AULSS 9 Scaligera, Verona, Italy.,Department of Radiation Oncology, University Hospital Ferrara, Ferrara, Italy
| | - Maria Colella
- Department of Radiation Oncology, University Hospital Ferrara, Ferrara, Italy
| | - Rosaria Taibi
- Department of Medical Oncology, National Cancer Institute, Aviano (PN), Italy
| | - Andrea Bonetti
- Department of Oncology, AULSS 9 Scaligera, Verona, Italy
| | | | - Maria Sole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
36
|
Michaud DS, Ruan M, Koestler DC, Alonso L, Molina-Montes E, Pei D, Marsit CJ, De Vivo I, Malats N, Kelsey KT. DNA Methylation-Derived Immune Cell Profiles, CpG Markers of Inflammation, and Pancreatic Cancer Risk. Cancer Epidemiol Biomarkers Prev 2020; 29:1577-1585. [PMID: 32430337 DOI: 10.1158/1055-9965.epi-20-0378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pancreatic cancer is projected to become the second most common cause of cancer-related death over the next 5 years. Because inflammation is thought to be a common trajectory for disease initiation, we sought to prospectively characterize immune profiles using DNA methylation markers and examine DNA methylation levels previously linked to inflammation biomarkers to evaluate whether these immune markers play a key role in pancreatic cancer. METHODS In a nested case-control study pooling three U.S. prospective cohort studies, DNA methylation was measured in prediagnostic leukocytes of incident pancreatic cancer cases and matched controls using the Illumina MethylationEPIC array. Differentially methylated regions were used to predict immune cell types, and CpGs previously associated with inflammatory biomarkers were selected for the analysis. DNA methylation data from a retrospective case-control study conducted in Spain (PanGenEU) was used for independent replication. RESULTS Immune cell proportions and ratio of cell proportions were not associated with pancreatic cancer risk in the nested case-control study. Methylation extent of CpGs residing in or near gene MNDA was significantly associated with pancreatic cancer risk in the nested case-control study and replicated in PanGenEU. Methylation level of a promoter CpG of gene PIM-1 was associated with survival in both studies. CONCLUSIONS Using a targeted approach, we identified several CpGs that may play a role in pancreatic carcinogenesis in two large, independent studies with distinct study designs. IMPACT These findings could provide insight into critical pathways that may help identify new markers of early disease and survival.
Collapse
Affiliation(s)
- Dominique S Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Mengyuan Ruan
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Esther Molina-Montes
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Carmen J Marsit
- Department of Environmental Health and Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| |
Collapse
|
37
|
Kwok D, Okada H. T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. J Neurooncol 2020; 147:281-295. [PMID: 32185647 PMCID: PMC7182069 DOI: 10.1007/s11060-020-03450-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
Abstract
Glioblastoma remains as the most common and aggressive primary adult brain tumor to date. Within the last decade, cancer immunotherapy surfaced as a broadly successful therapeutic approach for a variety of cancers. However, due to the neuroanatomical and immunosuppressive nature of malignant gliomas, conventional chemotherapy and radiotherapy treatments garner limited efficacy in patients with these tumors. The intricate structure of the blood brain barrier restricts immune accessibility into the tumor microenvironment, and malignant gliomas can activate various adaptive responses to subvert anticancer immune responses and reinstate an immunosuppressive milieu. Yet, evidence of lymphocyte infiltration within the brain and recent advancements made in cell engineering technologies implicate the vast potential in the future of neuro-oncological immunotherapy. Previous immunotherapy platforms have paved way to improved modalities, which includes but is not limited to personalized vaccines and chimeric antigen receptor T-cell therapy. This review will cover the various neuroanatomical and immunosuppressive features of central nervous system tumors and highlight the innovations made in T-cell based therapies to overcome the challenges presented by the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Darwin Kwok
- Department of Neurological Surgery, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472 1450 3rd Street, San Francisco, CA, 94158-0520, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472 1450 3rd Street, San Francisco, CA, 94158-0520, USA.
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Cancer Immunotherapy Program, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Declerck K, Vanden Berghe W. Characterization of Blood Surrogate Immune-Methylation Biomarkers for Immune Cell Infiltration in Chronic Inflammaging Disorders. Front Genet 2019; 10:1229. [PMID: 31827492 PMCID: PMC6890858 DOI: 10.3389/fgene.2019.01229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) and atherosclerosis are both chronic age- and inflammation-dependent diseases. In addition, atherosclerosis is frequently observed in AD patients indicating common involvement of vascular components in both disease etiologies. Recently, epigenome-wide association studies have identified epigenetic alterations, and in particularly DNA methylation changes for both disorders. We hypothesized the existence of a common DNA methylation profile in atherosclerosis and AD which may be valuable as a blood-based DNA methylation inflammaging biomarker. Using publicly available 450k Illumina methylation datasets, we identified a co-methylation network associated with both atherosclerosis and AD in whole blood samples. This methylation profile appeared to indicate shifts in blood immune cell type distribution. Remarkably, similar methylation changes were also detected in disease tissues, including AD brain tissues, atherosclerotic plaques, and tumors and were found to correlate with immune cell infiltration. In addition, this immune-related methylation profile could also be detected in other inflammaging diseases, including Parkinson’s disease and obesity, but not in multiple sclerosis, schizophrenia, and osteoporosis. In conclusion, we identified a blood-based immune-related DNA methylation signature in multiple inflammaging diseases associated with changes in blood immune cell counts and predictive for immune cell infiltration in diseased tissues. In addition to epigenetic clock measurements, this immune-methylation signature may become a valuable blood-based biomarker to prevent chronic inflammatory disease development or monitor lifestyle intervention strategies which promote healthy aging.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics, and Epigenetic Signaling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, Antwerp University, Antwerp, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics, and Epigenetic Signaling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, Antwerp University, Antwerp, Belgium
| |
Collapse
|
39
|
Kim GS, Smith AK, Xue F, Michopoulos V, Lori A, Armstrong DL, Aiello AE, Koenen KC, Galea S, Wildman DE, Uddin M. Methylomic profiles reveal sex-specific differences in leukocyte composition associated with post-traumatic stress disorder. Brain Behav Immun 2019; 81:280-291. [PMID: 31228611 PMCID: PMC6754791 DOI: 10.1016/j.bbi.2019.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental disorder precipitated by trauma exposure. However, only some persons exposed to trauma develop PTSD. There are sex differences in risk; twice as many women as men develop a lifetime diagnosis of PTSD. Methylomic profiles derived from peripheral blood are well-suited for investigating PTSD because DNA methylation (DNAm) encodes individual response to trauma and may play a key role in the immune dysregulation characteristic of PTSD pathophysiology. In the current study, we leveraged recent methodological advances to investigate sex-specific differences in DNAm-based leukocyte composition that are associated with lifetime PTSD. We estimated leukocyte composition on a combined methylation array dataset (483 participants, ∼450 k CpG sites) consisting of two civilian cohorts, the Detroit Neighborhood Health Study and Grady Trauma Project. Sex-stratified Mann-Whitney U test and two-way ANCOVA revealed that lifetime PTSD was associated with significantly higher monocyte proportions in males, but not in females (Holm-adjusted p-val < 0.05). No difference in monocyte proportions was observed between current and remitted PTSD cases in males, suggesting that this sex-specific difference may reflect a long-standing trait of lifetime history of PTSD, rather than current state of PTSD. Associations with lifetime PTSD or PTSD status were not observed in any other leukocyte subtype and our finding in monocytes was confirmed using cell estimates based on a different deconvolution algorithm, suggesting that our sex-specific findings are robust across cell estimation approaches. Overall, our main finding of elevated monocyte proportions in males, but not in females with lifetime history of PTSD provides evidence for a sex-specific difference in peripheral blood leukocyte composition that is detectable in methylomic profiles and that may reflect long-standing changes associated with PTSD diagnosis.
Collapse
Affiliation(s)
- Grace S Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Medical Scholars Program, University of Illinois College of Medicine, Urbana, IL, USA
| | - Alicia K Smith
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Fei Xue
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Adriana Lori
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Don L Armstrong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Allison E Aiello
- Gillings School of Global Public Health, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sandro Galea
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Derek E Wildman
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
40
|
Lei YY, Li YT, Hu QL, Wang J, Sui AX. Prognostic impact of neutrophil-to-lymphocyte ratio in gliomas: a systematic review and meta-analysis. World J Surg Oncol 2019; 17:152. [PMID: 31472673 PMCID: PMC6717646 DOI: 10.1186/s12957-019-1686-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background In some malignant tumors, a high neutrophil-to-lymphocyte ratio (NLR) is connected with unfavorable prognosis. Nevertheless, the prognostic value of the NLR in gliomas remains disputed. The clinical significance of the NLR in gliomas was investigated in our study. Methods The databases, PubMed, Embase, and the Cochrane Library, were searched using words like “glioma,” “glioblastoma,” “neutrophil-to-lymphocyte ratio,” and others through May 2019. We evaluated the significance of NLR on overall survival (OS) of patients with gliomas in our study. Results Finally, 16 cohorts with 2275 patients were analyzed. The pooled analysis revealed that an elevated NLR was connected with unfavorable OS (hazards ratio (HR): 1.43, 95% confidence interval (CI): 1.27–1.62) outcomes of patients with gliomas. Conclusion A high NLR can be considered a high-risk prognostic factor in gliomas, and more adjuvant chemotherapy should be recommended for high-risk patients. Electronic supplementary material The online version of this article (10.1186/s12957-019-1686-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Ying Lei
- Department of Oncology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Yi-Tong Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Qi-Lu Hu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Juan Wang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Ai-Xia Sui
- Department of Oncology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
41
|
Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR. Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol 2019; 15:405-417. [PMID: 31227792 PMCID: PMC7286557 DOI: 10.1038/s41582-019-0220-2] [Citation(s) in RCA: 480] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
The WHO 2007 glioma classification system (based primarily on tumour histology) resulted in considerable interobserver variability and substantial variation in patient survival within grades. Furthermore, few risk factors for glioma were known. Discoveries over the past decade have deepened our understanding of the molecular alterations underlying glioma and have led to the identification of numerous genetic risk factors. The advances in molecular characterization of glioma have reframed our understanding of its biology and led to the development of a new classification system for glioma. The WHO 2016 classification system comprises five glioma subtypes, categorized by both tumour morphology and molecular genetic information, which led to reduced misclassification and improved consistency of outcomes within glioma subtypes. To date, 25 risk loci for glioma have been identified and several rare inherited mutations that might cause glioma in some families have been discovered. This Review focuses on the two dominant trends in glioma science: the characterization of diagnostic and prognostic tumour markers and the identification of genetic and other risk factors. An overview of the many challenges still facing glioma researchers is also included.
Collapse
Affiliation(s)
- Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret R Wrensch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
Kemerdere R, Akgun MY, Toklu S, Alizada O, Tanriverdi T. Preoperative systemic inflammatory markers in low- and high-grade gliomas: A retrospective analysis of 171 patients. Heliyon 2019; 5:e01681. [PMID: 31193037 PMCID: PMC6513782 DOI: 10.1016/j.heliyon.2019.e01681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/28/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose Preoperative neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and lymphocyte-monocyte ratio (LMR) are recognized as prognostic markers of grade of gliomas. The aim of this study was to determine whether preoperative levels of NLR, PLR, and LMR differ between low- and high-grade gliomas. Methods Retrospective analysis of preoperative neutrophil, lymphocyte, monocyte, and platelet counts and NLR, PLR, and LMR were performed in 171 patients who underwent glioma surgery. The results were compared between low- and high-grade gliomas. Results Neutrophil count was significantly increased while lymphocyte count significantly decreased in high-grade gliomas (HGGs). NLR and PLR were significantly higher in HGGs but LMR was significantly reduced in HGGs. NLR and PLR correlated with glioma grade and only NLR showed highest accuracy predicting higher grade. Conclusions Levels of preoperative NLR value can help to evaluate disease progression and predict higher grade of glioma.
Collapse
Affiliation(s)
- Rahsan Kemerdere
- Department of Neurosurgery, Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Yigit Akgun
- Department of Neurosurgery, Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sureyya Toklu
- Department of Neurosurgery, Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Orkhan Alizada
- Department of Neurosurgery, Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Taner Tanriverdi
- Department of Neurosurgery, Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
43
|
Fan C, Zhang J, Liu Z, He M, Kang T, Du T, Song Y, Fan Y, Xu J. Prognostic role of microvessel density in patients with glioma. Medicine (Baltimore) 2019; 98:e14695. [PMID: 30817605 PMCID: PMC6831436 DOI: 10.1097/md.0000000000014695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aim of this study was to systematically evaluate the prognostic role of microvessel density (MVD) in patients with glioma through performing a meta-analysis. METHODS Web of Science, EMBASE, PubMed, Cochrane Library, and China National Knowledge Infrastructure were searched for potentially relevant literature. The study characteristics and relevant data were extracted. Hazard ratios (HRs) with 95% confidence intervals (CIs) were pooled to estimate the prognostic role of MVD in patients with glioma. RESULTS Nine studies with 536 patients were included. The pooled HR of higher MVD for overall survival (OS) was 1.64 (95% CI, 1.07-2.50) in patients with glioma. Subgroup analyses were also performed. The pooled HRs of higher MVD in studies from East Asia studies examining high-grade gliomas and studies using anti-CD105 antibodies were 1.99 (95% CI, 1.04-3.80), 1.60 (95% CI, 1.09-2.34) and 2.99 (95% CI, 1.50-5.99), respectively. No significant publication bias was found (P = .592), but significant between-study heterogeneity was observed (I = 80.5%, P <.001) in the meta-analysis. CONCLUSION Our results suggested that higher MVD was associated with worse OS in patients with glioma. The findings may assist future research on antiangiogenic therapy and help predict prognosis in glioma. However, due to the limited number of studies, more well-designed studies are warranted to further verify our results.
Collapse
Affiliation(s)
- Chaofeng Fan
- Department of Neurosurgery and National Clinical Research Center for Geriatrics
| | - Jing Zhang
- Department of Neurosurgery and National Clinical Research Center for Geriatrics
| | - Zhiyong Liu
- Department of Neurosurgery and National Clinical Research Center for Geriatrics
| | | | - Tianyi Kang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy
| | - Ting Du
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy
| | - Yanlin Song
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yimeng Fan
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jianguo Xu
- Department of Neurosurgery and National Clinical Research Center for Geriatrics
| |
Collapse
|
44
|
Advancing brain tumor epidemiology - multi-level integration and international collaboration: The 2018 Brain Tumor Epidemiology Consortium meeting report. Clin Neuropathol 2019; 37:254-261. [PMID: 30343678 PMCID: PMC6350238 DOI: 10.5414/np301148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
The Brain Tumor Epidemiology Consortium (BTEC) is an international consortium that aims to foster multicenter and inter-disciplinary collaborations that focus on research related to the etiology, outcomes, and prevention of brain tumors. The 19th annual BTEC meeting was held in Copenhagen, Denmark, on June 19 – 21, 2018. The meeting focused on forming international collaborations and integrating multiple data types for the next generation of studies in brain tumor epidemiology. The next BTEC meeting will be held in Southern California in June 2019.
Collapse
|
45
|
Sun D, Mu Y, Piao H. MicroRNA-153-3p enhances cell radiosensitivity by targeting BCL2 in human glioma. Biol Res 2018; 51:56. [PMID: 30537994 PMCID: PMC6288870 DOI: 10.1186/s40659-018-0203-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background Glioma is the most prevalent malignant tumor in human central nervous systems. Recently, the development of resistance to radiotherapy in glioma patients markedly vitiates the therapy outcome. MiR-153-3p has been reported to be closely correlated with tumor progression, but its effect and molecular mechanism underlying radioresistance remains unclear in glioma. Methods The expression of miR-153-3p was determined in radioresistant glioma clinical specimens as well as glioma cell lines exposed to irradiation (IR) using quantitative real-time PCR. Cell viability, proliferation and apoptosis were then evaluated by MTT assay, colony formation assay, Flow cytometry analysis and caspase-3 activity assay in glioma cells (U87 and U251). Tumor forming was evaluated by nude mice model in vivo. TUNEL staining was used to detect cell apoptosis in nude mice model. The target genes of miR-153-3p were predicted and validated using integrated bioinformatics analysis and a luciferase reporter assay. Results Here, we found that miR-153-3p was down-regulated in radioresistant glioma clinical specimens as well as glioma cell lines (U87 and U251) exposed to IR. Enhanced expression of miR-153-3p promoted the radiosensitivity, promoted apoptosis and elevated caspase-3 activity in glioma cells in vitro, as well as the radiosensitivity in U251 cell mouse xenografs in vivo. Mechanically, B cell lymphoma-2 gene (BCL2) was identified as the direct and functional target of miR-153-3p. Moreover, restoration of BCL2 expression reversed miR-153-3p-induced increase of radiosensitivity, apoptosis and caspase-3 activity in U251 cells in vitro. In addition, clinical data indicated that the expression of miR-153-3p was significantly negatively associated with BCL2 in radioresistance of glioma samples. Conclusions Our findings suggest that miR-153-3p is a potential target to enhance the effect of radiosensitivity on glioma cells, thus representing a new potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Deyu Sun
- Radiation Oncology Department of Gastrointestinal & Urinary & Musculoskeletal Cancer, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yi Mu
- Radiation Oncology Department of Gastrointestinal & Urinary & Musculoskeletal Cancer, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, No.44 Xiao Heyan Street, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
46
|
Grieshober L, Graw S, Barnett MJ, Thornquist MD, Goodman GE, Chen C, Koestler DC, Marsit CJ, Doherty JA. Methylation-derived Neutrophil-to-Lymphocyte Ratio and Lung Cancer Risk in Heavy Smokers. Cancer Prev Res (Phila) 2018; 11:727-734. [PMID: 30254071 PMCID: PMC6214718 DOI: 10.1158/1940-6207.capr-18-0111] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/13/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022]
Abstract
The neutrophil-to-lymphocyte ratio (NLR) is a biomarker that indicates systemic inflammation and can be estimated using array-based DNA methylation data as methylation-derived NLR (mdNLR). We assessed the relationship between prediagnosis mdNLR and lung cancer risk in a nested case-control study in the β-Carotene and Retinol Efficacy Trial (CARET) of individuals at high risk for lung cancer due to heavy smoking or substantial occupational asbestos exposure. We matched 319 incident lung cancer cases to controls based on age at blood draw, smoking, sex, race, asbestos, enrollment year, and time at risk. We computed mdNLR using the ratio of predicted granulocyte and lymphocyte proportions derived from DNA methylation signatures in whole blood collected prior to diagnosis (median 4.4 years in cases). Mean mdNLR was higher in cases than controls (2.06 vs. 1.86, P = 0.03). Conditional logistic regression models adjusted for potential confounders revealed a 21% increased risk of lung cancer per unit increase in mdNLR [OR 1.21; 95% confidence interval (CI) 1.01-1.45]. A 30% increased risk of non-small cell lung cancer (NSCLC) was observed for each unit increase in mdNLR (n = 240 pairs; OR 1.30, 95% CI, 1.03-1.63), and there was no statistically significant association between mdNLR and small-cell lung cancer risk. The mdNLR-NSCLC association was most pronounced in those with asbestos exposure (n = 42 male pairs; OR 3.39; 95% CI, 1.32-8.67). A better understanding of the role of mdNLR in lung cancer etiology may improve prevention and detection of lung cancer. Cancer Prev Res; 11(11); 727-34. ©2018 AACR.
Collapse
Affiliation(s)
- Laurie Grieshober
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Stefan Graw
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Cancer Center, Kansas City, Kansas
| | - Matt J Barnett
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark D Thornquist
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gary E Goodman
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, University of Washington, Seattle, Washington
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Cancer Center, Kansas City, Kansas
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jennifer A Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
47
|
Ambatipudi S, Langdon R, Richmond RC, Suderman M, Koestler DC, Kelsey KT, Kazmi N, Penfold C, Ho KM, McArdle W, Ring SM, Pring M, Waterboer T, Pawlita M, Gaunt TR, Davey Smith G, Thomas S, Ness AR, Relton CL. DNA methylation derived systemic inflammation indices are associated with head and neck cancer development and survival. Oral Oncol 2018; 85:87-94. [PMID: 30220325 PMCID: PMC6156796 DOI: 10.1016/j.oraloncology.2018.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 08/26/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) is often associated with chronic systemic inflammation (SI). In the present study, we assessed if DNA methylation-derived SI (mdSI) indices: Neutrophil-to-Lymphocyte ratio (mdNLR) and Lymphocyte-to-Monocyte ratio (mdLMR) are associated with the presence of HNSCC and overall survival (OS). MATERIALS AND METHODS We used two peripheral blood DNA methylation datasets: an HNSCC case-control dataset (n = 183) and an HNSCC survival dataset (n = 407) to estimate mdSI indices. We then performed multivariate regressions to test the association between mdSI indices, HNSCC development and OS. RESULTS Multivariate logistic regression revealed that elevated mdNLR was associated with increased odds of being an HNSCC case (OR = 3.25, 95% CI = 2.14-5.34, P = 4 × 10-7) while the converse was observed for mdLMR (OR = 0.88, 95% CI = 0.81-0.90, P = 2 × 10-3). In the HNSCC survival dataset, HPV16-E6 seropositive HNSCC cases had an elevated mdLMR (P = 9 × 10-5) and a lower mdNLR (P = 0.003) compared to seronegative patients. Multivariate Cox regression in the HNSCC survival dataset revealed that lower mdLMR (HR = 1.96, 95% CI = 1.30-2.95, P = 0.0013) but not lower mdNLR (HR = 0.68, 95% CI = 0.46-1.00, P = 0.0501) was associated with increased risk of death. CONCLUSION Our results indicate that mdSI estimated by DNA methylation data is associated with the presence of HNSCC and overall survival. The mdSI indices may be used as a valuable research tool to reliably estimate SI in the absence of cell-based estimates. Rigorous validation of our findings in large prospective studies is warranted in the future.
Collapse
Affiliation(s)
- Srikant Ambatipudi
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Ryan Langdon
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, School of Public Health, Providence, RI 02912, USA; Department of Laboratory Medicine & Pathology, Brown University, Providence, RI 02912, USA
| | - Nabila Kazmi
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christopher Penfold
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Karen M Ho
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Wendy McArdle
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Miranda Pring
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Tim Waterboer
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| | - Michael Pawlita
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Steve Thomas
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Andy R Ness
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
48
|
Ambatipudi S, Sharp GC, Clarke SLN, Plant D, Tobias JH, Evans DM, Barton A, Relton CL. Assessing the Role of DNA Methylation-Derived Neutrophil-to-Lymphocyte Ratio in Rheumatoid Arthritis. J Immunol Res 2018; 2018:2624981. [PMID: 30186880 PMCID: PMC6112073 DOI: 10.1155/2018/2624981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a disease of chronic systemic inflammation (SI). In the present study, we used four datasets to explore whether methylation-derived neutrophil-to-lymphocyte ratio (mdNLR) might be a marker of SI in new onset, untreated, and treated prevalent RA cases and/or a marker of treatment response to the tumour necrosis factor inhibitor (TNFi) etanercept. mdNLR was associated with increased odds of being a new onset RA case (OR = 2.32, 95% CI = 1.95-2.80, P < 2 × 10-16) and performed better in distinguishing new onset RA cases from controls compared to covariates: age, gender, and smoking status. In untreated preclinical RA cases and controls, mdNLR at baseline was associated with diagnosis of RA in later life after adjusting for batch (OR = 4.30, 95% CI = 1.52-21.71, P = 0.029) although no association was observed before batch correction. When prevalent RA cases were treated, there was no association with mdNLR in samples before and after batch correction (OR = 0.34, 95% CI = 0.05-1.82, P = 0.23), and mdNLR was not associated with treatment response to etanercept (OR = 1.10, 95% CI = 0.75-1.68, P = 0.64). Our results indicate that SI measured by DNA methylation data is indicative of the recent onset of RA. Although preclinical RA was associated with mdNLR, there was no difference in the mean mdNLR between preclinical RA cases and controls. mdNLR was not associated with RA case status if treatment for RA has commenced, and it is not associated with treatment response. In the future, mdNLR estimates may be used as a valuable research tool to reliably estimate SI in the absence of freshly collected blood samples.
Collapse
Affiliation(s)
- Srikant Ambatipudi
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gemma C. Sharp
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah L. N. Clarke
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, UK
| | - Darren Plant
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academy of Health Sciences, Central Manchester NHS Trust, and Arthritis Research UK Centre for Genetics and Genomics, The University of Manchester, Manchester, UK
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - David M. Evans
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Anne Barton
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academy of Health Sciences, Central Manchester NHS Trust, and Arthritis Research UK Centre for Genetics and Genomics, The University of Manchester, Manchester, UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
49
|
Salas LA, Koestler DC, Butler RA, Hansen HM, Wiencke JK, Kelsey KT, Christensen BC. An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. Genome Biol 2018; 19:64. [PMID: 29843789 PMCID: PMC5975716 DOI: 10.1186/s13059-018-1448-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/08/2018] [Indexed: 11/23/2022] Open
Abstract
Genome-wide methylation arrays are powerful tools for assessing cell composition of complex mixtures. We compare three approaches to select reference libraries for deconvoluting neutrophil, monocyte, B-lymphocyte, natural killer, and CD4+ and CD8+ T-cell fractions based on blood-derived DNA methylation signatures assayed using the Illumina HumanMethylationEPIC array. The IDOL algorithm identifies a library of 450 CpGs, resulting in an average R2 = 99.2 across cell types when applied to EPIC methylation data collected on artificial mixtures constructed from the above cell types. Of the 450 CpGs, 69% are unique to EPIC. This library has the potential to reduce unintended technical differences across array platforms.
Collapse
Affiliation(s)
- Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rondi A Butler
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Helen M Hansen
- Department of Neurological Surgery, Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - John K Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Departments of Molecular and Systems Biology, and Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
| |
Collapse
|
50
|
Abstract
BACKGROUND The aim of this study was to systematically evaluate the prognostic role of survivin in patients with glioma through performing a meta-analysis. METHODS PubMed, Web of Science, Cochrane Library, and EMBASE were searched for potentially eligible literature. The study characteristics and relevant data were extracted. Hazard ratios (HRs) with 95% confidence intervals (CIs) were pooled to estimate the prognostic role of survivin in patients with glioma. RESULTS Sixteen studies with 1260 patients were included. The pooled HR of higher survivin expression for overall survival was 1.96 (95% CI, 1.57-2.45). The pooled HRs of higher survivin expression for progression- and disease-free survival were 1.62 (95% CI, 0.91-2.90) and 2.41 (95% CI, 0.98-5.90), respectively. Subgroup analyses were also performed. CONCLUSION Our results suggested that higher survivin expression was associated with worse overall survival in patients with glioma. The findings may assist future exploration on pathogenesis, diagnosis, anti-survivin therapy, and prognosis in glioma. However, due to the limited study number, more studies are warranted to verify our results.
Collapse
Affiliation(s)
- Sunfu Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, The First People's Hospital of Yibin
| | - Changwei Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, The First People's Hospital of Yibin
| | - Yanlin Song
- West China Medical School of Sichuan University, Sichuan, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, The First People's Hospital of Yibin
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital of Sichuan University, The First People's Hospital of Yibin
| |
Collapse
|