1
|
Aranda AJ, Aguilar-Tipacamú G, Perez DR, Bañuelos-Hernandez B, Girgis G, Hernandez-Velasco X, Escorcia-Martinez SM, Castellanos-Huerta I, Petrone-Garcia VM. Emergence, migration and spreading of the high pathogenicity avian influenza virus H5NX of the Gs/Gd lineage into America. J Gen Virol 2025; 106:002081. [PMID: 40279164 PMCID: PMC12032427 DOI: 10.1099/jgv.0.002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/31/2025] [Indexed: 04/26/2025] Open
Abstract
The high pathogenicity avian influenza virus H5N1, which first emerged in the winter of 2021, has resulted in multiple outbreaks across the American continent through the summer of 2023 and they continue based on early 2025 records, presenting significant challenges for global health and food security. The viruses causing the outbreaks belong to clade 2.3.4.4b, which are descendants of the lineage A/Goose/Guangdong/1/1996 (Gs/Gd) through genetic reassortments with several low pathogenicity avian influenza viruses present in populations of Anseriformes and Charadriiformes orders. This review addresses these issues by thoroughly analysing available epidemiological databases and specialized literature reviews. This project explores the mechanisms behind the resurgence of the H5N1 virus. It provides a comprehensive overview of the origin, timeline and factors contributing to its prevalence among wild bird populations on the American continent.
Collapse
Affiliation(s)
- Alejandro J. Aranda
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Gabriela Aguilar-Tipacamú
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Licenciatura en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bernardo Bañuelos-Hernandez
- Facultad de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, León, México
| | - George Girgis
- Nevysta Laboratory, Iowa State University Research Park, Ames, Lowa, USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | - Socorro M. Escorcia-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | | | - Victor M. Petrone-Garcia
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores de Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| |
Collapse
|
2
|
Kilany WH, Safwat M, Zain El-Abideen MA, Hisham I, Moussa Y, Ali A, Elkady MF. Multivalent Inactivated Vaccine Protects Chickens from Distinct Clades of Highly Pathogenic Avian Influenza Subtypes H5N1 and H5N8. Vaccines (Basel) 2025; 13:204. [PMID: 40006750 PMCID: PMC11860572 DOI: 10.3390/vaccines13020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVE Highly pathogenic avian influenza (HPAI) H5 subtype remains a significant menace to both the poultry industry and human public health. Biosecurity and mass vaccination of susceptible commercial poultry flocks are crucial to reduce the devastating economic loss and hinder the evolution of the virus. METHODS In this study, we developed a multivalent avian influenza virus (AIV) vaccine, including strains representing the HPAI 2.2.1.1., 2.2.1.2., and 2.3.4.4b clades circulating in Egypt and the Middle East. Specific pathogen-free (SPF) two-week-old chickens were vaccinated with a single vaccine shot and observed for four weeks post-vaccination before being challenged. The challenge experiment involved using one strain of HPAI H5N1 subtype clade 2.2.1.2 and two strains of HPAI H5N8 subtype clade 2.3.4.4b derived from chickens and ducks. To assess the vaccine's potency and efficacy, the pre-challenge humoral immune response and post-challenge survival and virus shedding were evaluated. Results: All the vaccinated birds exhibited 100% seroconversion 2 weeks post-vaccination (2 WPV). In addition, protective antibody titers against each diagnostic antigen, i.e., 7.8 ± 1.8 (H5N1, clade 2.2.1.2), 10.0 ± 0.0 (H5N1, clade 2.2.1.1), and 7.5 ± 0.9 (H5N8, clade 2.3.4.4b) were detected 3 WPV. The vaccination achieved complete protection (100%) against all challenge viruses with no disease symptoms. The vaccinated birds exhibited a statistically significant reduction in oropharyngeal virus shedding 2 days post-challenge (DPC). CONCLUSIONS This study illustrated that a single application of a multivalent genetic-matching whole AIV vaccine under laboratory conditions elicits adequate protection against the HPAI challenge, representing 2.2.1.2 and 2.3.4.4b clades. The developed vaccine has the potential to be a vaccine of choice against a broad range of HPAI in commercial flocks raised under field conditions in endemic areas.
Collapse
Affiliation(s)
- Walid H. Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), P.O. Box 264, Dokki, Giza 12618, Egypt; (M.S.); (M.A.Z.E.-A.)
- MEVAC—Middle East for Vaccines, Second Industrial Area, El-Salhya El-Gededa 44813, Egypt;
| | - Marwa Safwat
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), P.O. Box 264, Dokki, Giza 12618, Egypt; (M.S.); (M.A.Z.E.-A.)
| | - Mohamed A. Zain El-Abideen
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), P.O. Box 264, Dokki, Giza 12618, Egypt; (M.S.); (M.A.Z.E.-A.)
| | - Islam Hisham
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), P.O. Box 264, Dokki, Giza 12618, Egypt; (M.S.); (M.A.Z.E.-A.)
- MEVAC—Middle East for Vaccines, Second Industrial Area, El-Salhya El-Gededa 44813, Egypt;
| | - Yasmine Moussa
- MEVAC—Middle East for Vaccines, Second Industrial Area, El-Salhya El-Gededa 44813, Egypt;
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.); (M.F.E.)
| | - Magdy F. Elkady
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.); (M.F.E.)
| |
Collapse
|
3
|
Liu S, Qiu F, Gu R, Xu E. Functional Involvement of Signal Transducers and Activators of Transcription in the Pathogenesis of Influenza A Virus. Int J Mol Sci 2024; 25:13589. [PMID: 39769350 PMCID: PMC11677356 DOI: 10.3390/ijms252413589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Signal transducers and activators of transcription (STATs) function both as signal transducers and transcription regulators. STAT proteins are involved in the signaling pathways of cytokines and growth factors; thus, they participate in various life activities and play especially critical roles in antiviral immunity. Convincing evidence suggests that STATs can establish innate immune status through multiple mechanisms, efficiently eliminating pathogens. STAT1 and STAT2 can activate the antiviral status by regulating the interferon (IFN) signal. In turn, suppressor of cytokine signaling-1 (SOCS1) and SOCS3 can modulate the activation of STATs and suppress the excessive antiviral immune response. STAT3 not only regulates the IFN signal, but also transduces Interleukin-6 (IL-6) to stimulate the host antiviral response. The function of STAT4 and STAT5 is related to CD4+ T helper (Th) cells, and the specific mechanism of STAT5 remains to be studied. STAT6 mainly exerts antiviral effects by mediating IL-4 and IL-13 signaling. Here, we reviewed the recent findings regarding the critical roles of STATs in the interactions between the host and viral infection, especially influenza A virus (IAV) infection. We also discuss the molecular mechanisms underlying their functions in antiviral responses.
Collapse
Affiliation(s)
- Shasha Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Qiu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongrong Gu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Erying Xu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Mo J, Segovia K, Chrzastek K, Briggs K, Kapczynski DR. Morphologic characterization and cytokine response of chicken bone-marrow derived dendritic cells to infection with high and low pathogenic avian influenza virus. Front Immunol 2024; 15:1374838. [PMID: 39281683 PMCID: PMC11401072 DOI: 10.3389/fimmu.2024.1374838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, which are key components of the immune system and involved in early immune responses. DCs are specialized in capturing, processing, and presenting antigens to facilitate immune interactions. Chickens infected with avian influenza virus (AIV) demonstrate a wide range of clinical symptoms, based on pathogenicity of the virus. Low pathogenic avian influenza (LPAI) viruses typically induce mild clinical signs, whereas high pathogenic avian influenza (HPAI) induce more severe disease, which can lead to death. For this study, chicken bone marrow-derived DC (ckBM-DC)s were produced and infected with high and low pathogenic avian influenza viruses of H5N2 or H7N3 subtypes to characterize innate immune responses, study effect on cell morphologies, and evaluate virus replication. A strong proinflammatory response was observed at 8 hours post infection, via upregulation of chicken interleukin-1β and stimulation of the interferon response pathway. Microscopically, the DCs underwent morphological changes from classic elongated dendrites to a more general rounded shape that eventually led to cell death with the presence of scattered cellular debris. Differences in onset of morphologic changes were observed between H5 and H7 subtypes. Increases in viral titers demonstrated that both HPAI and LPAI are capable of infecting and replicating in DCs. The increase in activation of infected DCs may be indicative of a dysregulated immune response typically seen with HPAI infections.
Collapse
Affiliation(s)
- Jongsuk Mo
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| | | | - Klaudia Chrzastek
- Pathology and Animal Sciences, Animal and Plant Health Agency (APHA), Addlestone, United Kingdom
| | - Kelsey Briggs
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Disease Research Unit, U.S National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Athens, GA, United States
| |
Collapse
|
5
|
Vijayakumar P, Mishra A, Deka RP, Pinto SM, Subbannayya Y, Sood R, Prasad TSK, Raut AA. Proteomics Analysis of Duck Lung Tissues in Response to Highly Pathogenic Avian Influenza Virus. Microorganisms 2024; 12:1288. [PMID: 39065055 PMCID: PMC11278641 DOI: 10.3390/microorganisms12071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and 320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR) established a protective anti-viral immune response in duck lung tissue. Further, the protein-protein interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease progression in ducks. Together, the functional annotation of the proteome and phosphoproteome datasets revealed the molecular basis of the disease progression and disease resistance mechanism in ducks infected with the HPAI H5N1 virus.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Salem 600051, Tamil Nadu, India
| | - Anamika Mishra
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | - Ram Pratim Deka
- International Livestock Research Institute, National Agricultural Science Complex, Pusa 110012, New Delhi, India;
| | - Sneha M. Pinto
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Yashwanth Subbannayya
- Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; (S.M.P.); (Y.S.)
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Richa Sood
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| | | | - Ashwin Ashok Raut
- Pathogenomics Laboratory, WOAH Reference Lab for Avian Influenza, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, Madhya Pradesh, India; (P.V.); (A.M.); (R.S.)
| |
Collapse
|
6
|
Videla Rodriguez EA, Mitchell JBO, Smith VA. Robust identification of interactions between heat-stress responsive genes in the chicken brain using Bayesian networks and augmented expression data. Sci Rep 2024; 14:9019. [PMID: 38641606 PMCID: PMC11031576 DOI: 10.1038/s41598-024-58679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
Bayesian networks represent a useful tool to explore interactions within biological systems. The aims of this study were to identify a reduced number of genes associated with a stress condition in chickens (Gallus gallus) and to unravel their interactions by implementing a Bayesian network approach. Initially, one publicly available dataset (3 control vs. 3 heat-stressed chickens) was used to identify the stress signal, represented by 25 differentially expressed genes (DEGs). The dataset was augmented by looking for the 25 DEGs in other four publicly available databases. Bayesian network algorithms were used to discover the informative relationships between the DEGs. Only ten out of the 25 DEGs displayed interactions. Four of them were Heat Shock Proteins that could be playing a key role, especially under stress conditions, where maintaining the correct functioning of the cell machinery might be crucial. One of the DEGs is an open reading frame whose function is yet unknown, highlighting the power of Bayesian networks in knowledge discovery. Identifying an initial stress signal, augmenting it by combining other databases, and finally learning the structure of Bayesian networks allowed us to find genes closely related to stress, with the possibility of further exploring the system in future studies.
Collapse
Affiliation(s)
| | - John B O Mitchell
- EaStCHEM School of Chemistry and BSRC, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - V Anne Smith
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK.
| |
Collapse
|
7
|
Nissly RH, Lim L, Keller MR, Bird IM, Bhushan G, Misra S, Chothe SK, Sill MC, Kumar NV, Sivakumar AVN, Naik BR, Jayarao BM, Kuchipudi SV. The Susceptibility of Chickens to Zika Virus: A Comprehensive Study on Age-Dependent Infection Dynamics and Host Responses. Viruses 2024; 16:569. [PMID: 38675911 PMCID: PMC11054531 DOI: 10.3390/v16040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Zika virus (ZIKV) remains a public health concern, with epidemics in endemic regions and sporadic outbreaks in new areas posing significant threats. Several mosquito-borne flaviviruses that can cause human illness, including West Nile, Usutu, and St. Louis encephalitis, have associations with birds. However, the susceptibility of chickens to ZIKV and their role in viral epidemiology is not currently known. We investigated the susceptibility of chickens to experimental ZIKV infection using chickens ranging from 1-day-old chicks to 6-week-old birds. ZIKV caused no clinical signs in chickens of all age groups tested. Viral RNA was detected in the blood and tissues during the first 5 days post-inoculation in 1-day and 4-day-old chicks inoculated with a high viral dose, but ZIKV was undetectable in 6-week-old birds at all timepoints. Minimal antibody responses were observed in 6-week-old birds, and while present in younger chicks, they waned by 28 days post-infection. Innate immune responses varied significantly between age groups. Robust type I interferon and inflammasome responses were measured in older chickens, while limited innate immune activation was observed in younger chicks. Signal transducer and activator of transcription 2 (STAT2) is a major driver of host restriction to ZIKV, and chicken STAT2 is distinct from human STAT2, potentially contributing to the observed resistance to ZIKV infection. The rapid clearance of the virus in older chickens coincided with an effective innate immune response, highlighting age-dependent susceptibility. Our study indicates that chickens are not susceptible to productive ZIKV infection and are unlikely to play a role in the ZIKV epidemiology.
Collapse
Affiliation(s)
- Ruth H. Nissly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
| | - Levina Lim
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
- DermBiont, Inc., 451 D Street, Suite 908, Boston, MA 02210, USA
| | - Margo R. Keller
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
| | - Ian M. Bird
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
- Applied Biological Sciences Group, The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Gitanjali Bhushan
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
- College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Sougat Misra
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.); (S.K.C.)
| | - Shubhada K. Chothe
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.); (S.K.C.)
| | - Miranda C. Sill
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Nagaram Vinod Kumar
- College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India; (N.V.K.); (A.V.N.S.); (B.R.N.)
| | - A. V. N. Sivakumar
- College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India; (N.V.K.); (A.V.N.S.); (B.R.N.)
| | - B. Rambabu Naik
- College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India; (N.V.K.); (A.V.N.S.); (B.R.N.)
| | - Bhushan M. Jayarao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.); (S.K.C.)
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Mahjoor M, Mahmoudvand G, Farokhi S, Shadab A, Kashfi M, Afkhami H. Double-edged sword of JAK/STAT signaling pathway in viral infections: novel insights into virotherapy. Cell Commun Signal 2023; 21:272. [PMID: 37784164 PMCID: PMC10544547 DOI: 10.1186/s12964-023-01240-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) is an intricate signaling cascade composed of various cytokines, interferons (IFN, growth factors, and other molecules. This pathway provides a delicate mechanism through which extracellular factors adjust gene expression, thereby acting as a substantial basis for environmental signals to influence cell growth and differentiation. The interactions between the JAK/STAT cascade and antiviral IFNs are critical to the host's immune response against viral microorganisms. Recently, with the emergence of therapeutic classes that target JAKs, the significance of this cascade has been recognized in an unprecedented way. Despite the functions of the JAK/STAT pathway in adjusting immune responses against viral pathogens, a vast body of evidence proposes the role of this cascade in the replication and pathogenesis of viral pathogens. In this article, we review the structure of the JAK/STAT signaling cascade and its role in immuno-inflammatory responses. We also highlight the paradoxical effects of this pathway in the pathogenesis of viral infections. Video Abstract.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mojtaba Kashfi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
10
|
El-Shall NA, Abd El Naby WSH, Hussein EGS, Yonis AE, Sedeik ME. Pathogenicity of H5N8 avian influenza virus in chickens and in duck breeds and the role of MX1 and IFN-α in infection outcome and transmission to contact birds. Comp Immunol Microbiol Infect Dis 2023; 100:102039. [PMID: 37591150 DOI: 10.1016/j.cimid.2023.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
This study examined the pathogenicity, immunogenicity, and transmission potential of the H5N8 HPAI clade 2.3.4.4b virus in three breeds of ducks and in broiler chickens. Chickens, Muscovy, Pekin, and Mallard ducks (n = 10) received a dose of 6 log10 EID50 of HPAIV H5N8 directly. Nine contact chickens were introduced to each group on the day of infection. All infected chickens died, with MDT of 7.6 days. Muscovy and Pekin ducks died by 11.1% and 10%, respectively, with MDTs of 7 and 6 days. No Mallards died but showed more severe clinical disease than Pekin ducks. Mallards had the highest MX1 gene expression in the lung and spleen and IFN-α in the spleen. MX1 expression levels were lower in the spleen and lung of Pekin ducks, in the spleen of chickens and in the lung of Muscovy ducks than in noninfected controls. However, viral shedding was higher in ducks than in chickens and was highest in Mallards. 66.7% of chickens placed in contact with infected chickens died and 77.8% of in-contact chickens to infected three duck breeds died. In conclusion, there was a diversity in sensitivity and immunogenicity for HPAIV H5N8 among duck breeds, resulting in diverse infection outcomes and transmissibility to contacts. This study provides duck/chicken interface models for HPAIV transmission to poultry.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| | - Walaa S H Abd El Naby
- Genetics and Genetic Engineering in the Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Eid G S Hussein
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Damanhour Branch, Animal Health Research Institute, Agriculture Research Center, Egypt
| | - Ahlam E Yonis
- Biotechnology Department, Reference Laboratory for Veterinary Quality Control on Poultry Production ( RLQP), Damanhour branch, Animal health research institute (AHRI), Agriculture Research Center (ARC), Damanhour, 22511, Egypt
| | - Mahmoud E Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| |
Collapse
|
11
|
Panner Selvam MK, Kanagaraj V, Kathaperumal K, Nissly RH, Daly JM, Kuchipudi SV. Comparative transcriptome analysis of spleen of Newcastle Disease Virus (NDV) infected chicken and Japanese quail: a potential role of NF-κβ pathway activation in NDV resistance. Virusdisease 2023; 34:402-409. [PMID: 37780899 PMCID: PMC10533468 DOI: 10.1007/s13337-023-00833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023] Open
Abstract
Newcastle disease (ND) affects a few hundred avian species including chicken and several species of domestic and wild birds. The clinical outcome of Newcastle disease virus (NDV) infection ranges from mild to severe fatal disease depending on the NDV pathotype and the host species involved. Japanese quails serve as natural reservoirs of NDV and play important role in NDV epidemiology. While infection of chicken with velogenic NDV results in severe often fatal illness, the same infection in Japanese quails results in inapparent infection. The molecular basis of this contrasting clinical outcomes of NDV infection is not yet clearly known. We compared global gene expression in spleen of chicken and Japanese quails infected with lentogenic and velogenic NDVs. We found contrasting regulation of key genes associated with NF-κB pathway and T-cell activation between chicken and Japanese quails. Our data suggests association of NDV resistance in Japanese quails to activation of NF-κB pathway and T cell proliferation. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00833-y.
Collapse
Affiliation(s)
- Manesh Kumar Panner Selvam
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Vijayrani Kanagaraj
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kumanan Kathaperumal
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruth H. Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, USA
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham, UK
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, USA
| |
Collapse
|
12
|
Pereira PDC, Diniz DG, da Costa ER, Magalhães NGDM, da Silva ADJF, Leite JGS, Almeida NIP, Cunha KDN, de Melo MAD, Vasconcelos PFDC, Diniz JAP, Brites D, Anthony DC, Diniz CWP, Guerreiro-Diniz C. Genes, inflammatory response, tolerance, and resistance to virus infections in migratory birds, bats, and rodents. Front Immunol 2023; 14:1239572. [PMID: 37711609 PMCID: PMC10497949 DOI: 10.3389/fimmu.2023.1239572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Emanuel Ramos da Costa
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Nara Gyzely de Morais Magalhães
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Anderson de Jesus Falcão da Silva
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Jéssica Gizele Sousa Leite
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Natan Ibraim Pires Almeida
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Kelle de Nazaré Cunha
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Mauro André Damasceno de Melo
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Pará, Brazil
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - José Antonio Picanço Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristovam Guerreiro-Diniz
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| |
Collapse
|
13
|
Kajal S, Narang G, Jangir BL, Kundu P, Lather D, Chhabra R. Studies on immunopathological changes induced by commercial IBD live vaccines in poultry birds. Sci Rep 2023; 13:12379. [PMID: 37524771 PMCID: PMC10390494 DOI: 10.1038/s41598-023-39017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
Intermediate plus live strain infectious bursal disease virus (IBDV) vaccines are used to control IBDV endemic infections in India. In the present study, immunopathological changes induced by commercial infectious bursal disease live vaccines with different immunization regimes were compared. A total of days old 108 Cobb broiler chicks were randomly divided into five groups with 24 chicks each in groups I, II, III and 18 chicks each in group IV and V. Group I served as control I (no immunization) and group II and III chicks were immunized with a single dose of vaccines 1 and 2 on 17th day of age (DOA), respectively. The group IV and V chicks were immunized with vaccines 1 and 2, respectively with primary dose on 17th DOA followed by booster dose on 24th DOA. Both intermediate plus live vaccines produced gross and histopathological lesions in lymphoid organs (bursa of Fabricius, thymus, spleen and caecal tonsils). Increased CD4 + , CD8 + T cells in affected bursa of Fabricius was evidenced by immunohistochemistry. Further, up-regulation in relative mRNA expression of IFN-γ, IL-1β and IL-6 were observed in bursa of Fabricius of treated birds, with maximum alteration particularly on 14th day post single immunization and 7th day post booster immunization. The findings suggest that single immunization regime on the 17th day of age showed immunization equivalent to booster immunization with lesser lesions, therefore, may be practiced and promoted in the field conditions for the better economic returns and animal welfare.
Collapse
Affiliation(s)
- Sushma Kajal
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Gulshan Narang
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Pooja Kundu
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Deepika Lather
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Rajesh Chhabra
- College Central Laboratory, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| |
Collapse
|
14
|
Bertram H, Wilhelmi S, Rajavel A, Boelhauve M, Wittmann M, Ramzan F, Schmitt AO, Gültas M. Comparative Investigation of Coincident Single Nucleotide Polymorphisms Underlying Avian Influenza Viruses in Chickens and Ducks. BIOLOGY 2023; 12:969. [PMID: 37508399 PMCID: PMC10375970 DOI: 10.3390/biology12070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Avian influenza is a severe viral infection that has the potential to cause human pandemics. In particular, chickens are susceptible to many highly pathogenic strains of the virus, resulting in significant losses. In contrast, ducks have been reported to exhibit rapid and effective innate immune responses to most avian influenza virus (AIV) infections. To explore the distinct genetic programs that potentially distinguish the susceptibility/resistance of both species to AIV, the investigation of coincident SNPs (coSNPs) and their differing causal effects on gene functions in both species is important to gain novel insight into the varying immune-related responses of chickens and ducks. By conducting a pairwise genome alignment between these species, we identified coSNPs and their respective effect on AIV-related differentially expressed genes (DEGs) in this study. The examination of these genes (e.g., CD74, RUBCN, and SHTN1 for chickens and ABCA3, MAP2K6, and VIPR2 for ducks) reveals their high relevance to AIV. Further analysis of these genes provides promising effector molecules (such as IκBα, STAT1/STAT3, GSK-3β, or p53) and related key signaling pathways (such as NF-κB, JAK/STAT, or Wnt) to elucidate the complex mechanisms of immune responses to AIV infections in both chickens and ducks.
Collapse
Affiliation(s)
- Hendrik Bertram
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany; (H.B.)
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Selina Wilhelmi
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Marc Boelhauve
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany; (H.B.)
| | - Margareta Wittmann
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany; (H.B.)
| | - Faisal Ramzan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany; (H.B.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| |
Collapse
|
15
|
He Z, Wang X, Lin Y, Feng S, Huang X, Zhao L, Zhang J, Ding Y, Li W, Yuan R, Jiao P. Genetic characteristics of waterfowl-origin H5N6 highly pathogenic avian influenza viruses and their pathogenesis in ducks and chickens. Front Microbiol 2023; 14:1211355. [PMID: 37405154 PMCID: PMC10315182 DOI: 10.3389/fmicb.2023.1211355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
Waterfowl, such as ducks, are natural hosts for avian influenza viruses (AIVs) and act as a bridge for transmitting the virus to humans or susceptible chickens. Since 2013, chickens and ducks have been threatened by waterfowl-origin H5N6 subtype AIVs in China. Therefore, it is necessary to investigate the genetic evolution, transmission, and pathogenicity of these viruses. In this study, we determined the genetic characteristics, transmission, and pathogenicity of waterfowl-origin H5N6 viruses in southern China. The hemagglutinin (HA) genes of H5N6 viruses were classified into the MIX-like branch of clade 2.3.4.4h. The neuraminidase (NA) genes belonged to the Eurasian lineage. The PB1 genes were classified into MIX-like and VN 2014-like branches. The remaining five genes were clustered into the MIX-like branch. Therefore, these viruses belonged to different genotypes. The cleavage site of the HA proteins of these viruses was RERRRKR/G, a molecular characteristic of the H5 highly pathogenic AIV. The NA stalk of all H5N6 viruses contained 11 amino acid deletions at residues 58-68. All viruses contained 627E and 701D in the PB2 proteins, which were molecular characteristics of typical bird AIVs. Furthermore, this study showed that Q135 and S23 viruses could replicate systematically in chickens and ducks. They did not cause death in ducks but induced mild clinical signs in them. All the infected chickens showed severe clinical signs and died. These viruses were shed from the digestive and respiratory tracts and transmitted horizontally in chickens and ducks. Our results provide valuable information for preventing H5N6 avian influenza outbreaks.
Collapse
Affiliation(s)
- Zhuoliang He
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Xia Wang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yu Lin
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Siyu Feng
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinyu Huang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Luxiang Zhao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Junsheng Zhang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yangbao Ding
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Weiqiang Li
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Runyu Yuan
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Peirong Jiao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
16
|
Al-Rasheed M, Ball C, Parthiban S, Ganapathy K. Evaluation of protection and immunity induced by infectious bronchitis vaccines administered by oculonasal, spray or gel routes in commercial broiler chicks. Vaccine 2023:S0264-410X(23)00642-4. [PMID: 37316407 DOI: 10.1016/j.vaccine.2023.05.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Broiler chicks' responses following combined IBV live attenuated Massachusetts and 793B strains through gel, spray or oculonasal (ON) vaccination routes were cross-compared. Subsequently, the responses following IBV M41 challenge of the unvaccinated and vaccinated groups were also assessed. Post-vaccination humoral and mucosal immune responses, alongside viral load kinetics in swabs and tissues, were determined using commercial ELISA assays, monoclonal antibody-based IgG and IgA ELISA assays and qRT-PCR respectively. After challenged with IBV-M41 strain, humoral and mucosal immune responses, ciliary protection, viral load kinetics, and immune gene mRNA transcriptions between the three vaccination methods were examined and compared. Findings showed that post-vaccinal humoral and mucosal immune responses were similar in all three vaccination methods. Post vaccinal viral load kinetics is influenced by method of administration. The viral load peaked in the ON group within the tissues and the OP/CL swabs in the first and third weeks respectively. Following M41 challenge, ciliary protection and mucosal immune responses were not influenced by vaccination methods as all three methods offered equal ciliary protection. Immune gene mRNA transcriptions varied by vaccination methods. Significant up-regulation of MDA5, TLR3, IL-6, IFN-α and IFN-β genes were recorded for ON method. For both spray and gel methods, significant up-regulation of only MDA5 and IL-6 genes were noted. The spray and gel-based vaccination methods gave equivalent levels of ciliary protection and mucosal immunity to M41 virulent challenge comparable to those provided by the ON vaccination. Analysis of viral load and patterns of immune gene transcription of the vaccinated-challenged groups revealed high similarity between turbinate and choanal cleft tissues compared to HG and trachea. With regards to immune gene mRNA transcription, for all the vaccinated-challenged groups, similar results were found except for IFN-α, IFN-β and TLR3, which were up-regulated only in ON compared to gel and spray vaccination methods.
Collapse
Affiliation(s)
- Mohammed Al-Rasheed
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK; College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia; Avian Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Christopher Ball
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK
| | - Sivamurthy Parthiban
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK; Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kannan Ganapathy
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK.
| |
Collapse
|
17
|
Foret-Lucas C, Figueroa T, Coggon A, Houffschmitt A, Dupré G, Fusade-Boyer M, Guérin JL, Delverdier M, Bessière P, Volmer R. In Vitro and In Vivo Characterization of H5N8 High-Pathogenicity Avian Influenza Virus Neurotropism in Ducks and Chickens. Microbiol Spectr 2023; 11:e0422922. [PMID: 36625654 PMCID: PMC9927090 DOI: 10.1128/spectrum.04229-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
H5N8 high-pathogenicity avian influenza virus (HPAIV) of clade 2.3.4.4B, which circulated during the 2016 epizootics in Europe, was notable for causing different clinical signs in ducks and chickens. The clinical signs preceding death were predominantly neurological in ducks versus respiratory in chickens. To investigate the determinants for the predominant neurological signs observed in ducks, we infected duck and chicken primary cortical neurons. Viral replication was identical in neuronal cultures from both species. In addition, we did not detect any major difference in the immune and inflammatory responses. These results suggest that the predominant neurological involvement of H5N8 HPAIV infection in ducks could not be recapitulated in primary neuronal cultures. In vivo, H5N8 HPAIV replication in ducks peaked soon after infection and led to an early colonization of the central nervous system. In contrast, viral replication was delayed in chickens but ultimately burst in the lungs of chickens, and the chickens died of respiratory distress before brain damage became significant. Consequently, the immune and inflammatory responses in the brain were significantly higher in duck brains than those in chickens. Our study thus suggests that early colonization of the central nervous system associated with prolonged survival after the onset of virus replication is the likely primary cause of the sustained inflammatory response and subsequent neurological disorders observed in H5N8 HPAIV-infected ducks. IMPORTANCE The severity of high-pathogenicity avian influenza virus (HPAIV) infection has been linked to its ability to replicate systemically and cause lesions in a variety of tissues. However, the symptomatology depends on the host species. The H5N8 virus of clade 2.3.4.4B had a pronounced neurotropism in ducks, leading to severe neurological disorders. In contrast, neurological signs were rarely observed in chickens, which suffered mostly from respiratory distress. Here, we investigated the determinants of H5N8 HPAIV neurotropism. We provide evidence that the difference in clinical signs was not due to a difference in neurotropism. Our results rather indicate that chickens died of respiratory distress due to intense viral replication in the lungs before viral replication in the brain could produce significant lesions. In contrast, ducks better controlled virus replication in the lungs, thus allowing the virus to replicate for a sufficient duration in the brain, to reach high levels, and to cause significant lesions.
Collapse
Affiliation(s)
- Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
18
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Host gene expression is associated with viral shedding magnitude in blue-winged teals (Spatula discors) infected with low-path avian influenza virus. Comp Immunol Microbiol Infect Dis 2022; 90-91:101909. [PMID: 36410069 PMCID: PMC10500253 DOI: 10.1016/j.cimid.2022.101909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Intraspecific variation in host infectiousness affects disease transmission dynamics in human, domestic animal, and many wildlife host-pathogen systems including avian influenza virus (AIV); therefore, identifying host factors related to host infectiousness is important for understanding, controlling, and preventing future outbreaks. Toward this goal, we used RNA-seq data collected from low pathogenicity avian influenza virus (LPAIV)-infected blue-winged teal (Spatula discors) to determine the association between host gene expression and intraspecific variation in cloacal viral shedding magnitude, the transmissible fraction of virus. We found that host genes were differentially expressed between LPAIV-infected and uninfected birds early in the infection, host genes were differentially expressed between shed level groups at one-, three-, and five-days post-infection, host gene expression was associated with LPAIV infection patterns over time, and genes of the innate immune system had a positive linear relationship with cloacal viral shedding. This study provides important insights into host gene expression patterns associated with intraspecific LPAIV shedding variation and can serve as a foundation for future studies focused on the identification of host factors that drive or permit the emergence of high viral shedding individuals.
Collapse
Affiliation(s)
- Amanda C Dolinski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jared J Homola
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Mark D Jankowski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; US Environmental Protection Agency, Region 10, Seattle, WA 98101, USA
| | - John D Robinson
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jennifer C Owen
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; Michigan State University, Department of Large Animal Clinical Sciences, 736 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Nouda R, Kawagishi T, Kanai Y, Shimojima M, Saijo M, Matsuura Y, Kobayashi T. The nonstructural p17 protein of a fusogenic bat-borne reovirus regulates viral replication in virus species- and host-specific manners. PLoS Pathog 2022; 18:e1010553. [PMID: 35653397 PMCID: PMC9162341 DOI: 10.1371/journal.ppat.1010553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nelson Bay orthoreovirus (NBV), a member of the family Reoviridae, genus Orthoreovirus, is a bat-borne virus that causes respiratory diseases in humans. NBV encodes two unique nonstructural proteins, fusion-associated small transmembrane (FAST) protein and p17 protein, in the S1 gene segment. FAST induces cell–cell fusion between infected cells and neighboring cells and the fusogenic activity is required for efficient viral replication. However, the function of p17 in the virus cycle is not fully understood. Here, various p17 mutant viruses including p17-deficient viruses were generated by a reverse genetics system for NBV. The results demonstrated that p17 is not essential for viral replication and does not play an important role in viral pathogenesis. On the other hand, NBV p17 regulated viral replication in a bat cell line but not in other human and animal cell lines. Nuclear localization of p17 is associated with the regulation of NBV replication in bat cells. We also found that p17 dramatically enhances the cell–cell fusion activity of NBV FAST protein for efficient replication in bat cells. Furthermore, we found that a protein homologue of NBV p17 from another bat-borne orthoreovirus, but not those of avian orthoreovirus or baboon orthoreovirus, also supported efficient viral replication in bat cells using a p17-deficient virus-based complementation approach. These results provide critical insights into the functioning of the unique replication machinery of bat-borne viruses in their natural hosts. Bat-borne viruses including the severe acute respiratory syndrome coronavirus and Nipah virus generally cause highly pathogenic diseases in humans but not in their bat reservoirs. Nelson Bay orthoreovirus (NBV), a bat-borne virus associated with acute respiratory tract infections in humans, possesses two unique nonstructural proteins, FAST and p17. FAST enhances viral replication through its cell–cell fusion activity, while the function of p17 in the viral life cycle is poorly understood. In this study, we show that p17 is non-essential for viral replication in several human and animal cell lines and does not play a critical role in pathogenesis in vivo. However, p17 localizes to the nucleus and regulates viral replication specifically in cells derived from bats by enhancing the cell–cell fusion activity of FAST in a host-specific manner. Furthermore, the expression of NBV p17 or an NBV p17 homologue from another bat-borne orthoreovirus enhanced the replication of an NBV mutant deficient in p17 in bat cells, suggesting that the function of p17 is virus species-specific. These findings will contribute to our understanding of how the replication of viruses is regulated in their natural reservoirs.
Collapse
Affiliation(s)
- Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takahiro Kawagishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masayuki Shimojima
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masayuki Saijo
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
20
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Pirbaluty AM, Mehrban H, Kadkhodaei S, Ravash R, Oryan A, Ghaderi-Zefrehei M, Smith J. Network Meta-Analysis of Chicken Microarray Data following Avian Influenza Challenge-A Comparison of Highly and Lowly Pathogenic Strains. Genes (Basel) 2022; 13:435. [PMID: 35327988 PMCID: PMC8953847 DOI: 10.3390/genes13030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The current bioinformatics study was undertaken to analyze the transcriptome of chicken (Gallus gallus) after influenza A virus challenge. A meta-analysis was carried out to explore the host expression response after challenge with lowly pathogenic avian influenza (LPAI) (H1N1, H2N3, H5N2, H5N3 and H9N2) and with highly pathogenic avian influenza (HPAI) H5N1 strains. To do so, ten microarray datasets obtained from the Gene Expression Omnibus (GEO) database were normalized and meta-analyzed for the LPAI and HPAI host response individually. Different undirected networks were constructed and their metrics determined e.g., degree centrality, closeness centrality, harmonic centrality, subgraph centrality and eigenvector centrality. The results showed that, based on criteria of centrality, the CMTR1, EPSTI1, RNF213, HERC4L, IFIT5 and LY96 genes were the most significant during HPAI challenge, with PARD6G, HMG20A, PEX14, RNF151 and TLK1L having the lowest values. However, for LPAI challenge, ZDHHC9, IMMP2L, COX7C, RBM18, DCTN3, and NDUFB1 genes had the largest values for aforementioned criteria, with GTF3C5, DROSHA, ATRX, RFWD2, MED23 and SEC23B genes having the lowest values. The results of this study can be used as a basis for future development of treatments/preventions of the effects of avian influenza in chicken.
Collapse
Affiliation(s)
- Azadeh Moradi Pirbaluty
- Department of Genetics and Animal Breeding, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (A.M.P.); (H.M.)
| | - Hossein Mehrban
- Department of Genetics and Animal Breeding, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (A.M.P.); (H.M.)
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran (ABRII), Center of Iran, Isfahan 14968-13151, Iran;
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran;
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Mostafa Ghaderi-Zefrehei
- Department of Genetics and Animal Breeding, Faculty of Agriculture, Yasouj University, Yasouj 75918-74831, Iran
| | - Jacqueline Smith
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
22
|
Al-Rasheed M, Ball C, Manswr B, Leeming G, Ganapathy K. Infectious bronchitis virus infection in chicken: viral load and immune responses in Harderian gland, choanal cleft and turbinate tissues compared to trachea. Br Poult Sci 2022; 63:484-492. [PMID: 35179081 DOI: 10.1080/00071668.2022.2035675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The role of the Harderian gland (HG), choanal cleft (CC) and turbinate in terms of IBV M41 viral load compared to the trachea, and immune (innate, cellular and mucosal) responses were studied in 21-day-old commercial broiler chickens.2. After virulent IBV M41 challenge, the antigen concentration detected either by quantitative RT-PCR or immunohistochemistry peaked at 2-3 days post challenge (dpc) in all tissues. Significant increases of lachrymal IBV-specific IgA and IgY levels were found at 4-5 dpc.3. Gene transcription showed a significant up-regulation of TLR3, MDA5, IL-6, IFN-α and IFN-β, where patterns and magnitude fold-change of mRNA transcription were dependent on the gene and tissue type.4. The results demonstrated active IBV M41 replication in the HG, CC and turbinate, comparable to levels of replication found in the trachea. The data on immune related genes in head-associated tissues provides further understanding on the immunobiology of IBV and offers opportunities to identify their use as quantitative biomarkers in pathogenicity and vaccination-challenge studies.
Collapse
Affiliation(s)
- Mohammed Al-Rasheed
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK.,College of Veterinary Medicine, Avian Research Centre, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Christopher Ball
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK
| | - Basim Manswr
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK.,Faculty of Veterinary Medicine, Diyala University, Iraq
| | - Gail Leeming
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK
| | - Kannan Ganapathy
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK
| |
Collapse
|
23
|
Ball C, Manswr B, Herrmann A, Lemiere S, Ganapathy K. Avian metapneumovirus subtype B vaccination in commercial broiler chicks: heterologous protection and selected host transcription responses to subtype A or B challenge. Avian Pathol 2022; 51:181-196. [PMID: 35099352 DOI: 10.1080/03079457.2022.2036697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Avian metapneumovirus (aMPV) causes respiratory disease and drops in egg production in chicken, and is routinely controlled by vaccination. However, the host's immune response to virulent challenge in vaccinated or unvaccinated broiler chickens is poorly characterised. We show that subtype B vaccination offers heterologous (subtype A challenge) and homologous (subtype B challenge) protection. Subtype B challenge causes significantly greater humoral antibody titres in vaccinated and unvaccinated chickens. In turbinate and lung tissues of unvaccinated-challenged chickens, IgA and IgY mRNA transcription was significantly up-regulated after subtype B challenge compared to subtype A. Cellular immunity (CD8-α and CD8-β) gene transcripts were significantly up-regulated during early and later stages of infection from subtype B or subtype A respectively. Immune gene transcriptional responses (IL-1β, IL-6 and IL-18) were significantly up-regulated after challenge. Gene transcription results have shown that mRNA expression levels of CD8-α, CD8-β, TLR3 and IL-6, particularly in turbinate and trachea tissues, are useful parameters to include in future aMPV vaccination-challenge studies.
Collapse
Affiliation(s)
- Christopher Ball
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK
| | - Basim Manswr
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK.,Faculty of Veterinary Medicine, Diyala University, Iraq
| | - Andreas Herrmann
- Boehringer Ingelheim, 69007 Lyon, 29 avenue Tony Garnier, France
| | - Stephane Lemiere
- Boehringer Ingelheim, 69007 Lyon, 29 avenue Tony Garnier, France
| | - Kannan Ganapathy
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK
| |
Collapse
|
24
|
Comparative Investigation of Gene Regulatory Processes Underlying Avian Influenza Viruses in Chicken and Duck. BIOLOGY 2022; 11:biology11020219. [PMID: 35205087 PMCID: PMC8868632 DOI: 10.3390/biology11020219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Avian influenza poses a great risk to gallinaceous poultry, while mallard ducks can withstand most virus strains. To date, the mechanisms underlying the susceptibility of chicken and the effective immune response of duck have not been completely understood. In this study, our aim is to investigate the transcriptional gene regulation governing the expression of important avian-influenza-induced genes and to reveal the master regulators stimulating an effective immune response after virus infection in ducks while dysfunctioning in chicken. Abstract The avian influenza virus (AIV) mainly affects birds and not only causes animals’ deaths, but also poses a great risk of zoonotically infecting humans. While ducks and wild waterfowl are seen as a natural reservoir for AIVs and can withstand most virus strains, chicken mostly succumb to infection with high pathogenic avian influenza (HPAI). To date, the mechanisms underlying the susceptibility of chicken and the effective immune response of duck have not been completely unraveled. In this study, we investigate the transcriptional gene regulation underlying disease progression in chicken and duck after AIV infection. For this purpose, we use a publicly available RNA-sequencing dataset from chicken and ducks infected with low-pathogenic avian influenza (LPAI) H5N2 and HPAI H5N1 (lung and ileum tissues, 1 and 3 days post-infection). Unlike previous studies, we performed a promoter analysis based on orthologous genes to detect important transcription factors (TFs) and their cooperation, based on which we apply a systems biology approach to identify common and species-specific master regulators. We found master regulators such as EGR1, FOS, and SP1, specifically for chicken and ETS1 and SMAD3/4, specifically for duck, which could be responsible for the duck’s effective and the chicken’s ineffective immune response.
Collapse
|
25
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Reduced Replication of Highly Pathogenic Avian Influenza Virus in Duck Endothelial Cells Compared to Chicken Endothelial Cells Is Associated with Stronger Antiviral Responses. Viruses 2022; 14:v14010165. [PMID: 35062369 PMCID: PMC8779112 DOI: 10.3390/v14010165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.
Collapse
|
26
|
Bessière P, Figueroa T, Coggon A, Foret-Lucas C, Houffschmitt A, Fusade-Boyer M, Dupré G, Guérin JL, Delverdier M, Volmer R. Opposite Outcomes of the Within-Host Competition between High- and Low-Pathogenic H5N8 Avian Influenza Viruses in Chickens Compared to Ducks. J Virol 2022; 96:e0136621. [PMID: 34613804 PMCID: PMC8754203 DOI: 10.1128/jvi.01366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) emerge from low-pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse genetics-engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8LP increased H5N8HP replication and pathogenesis. In contrast, the H5N8LP antagonized H5N8HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8LP, which correlated with H5N8HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variant interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between high- and low-pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention, and they underscore the importance of within-host viral variant interactions in virus evolution.
Collapse
Affiliation(s)
- Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
27
|
Zamperin G, Bianco A, Smith J, Bortolami A, Vervelde L, Schivo A, Fortin A, Marciano S, Panzarin V, Mazzetto E, Milani A, Berhane Y, Digard P, Bonfante F, Monne I. Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field. Viruses 2021; 13:2323. [PMID: 34835129 PMCID: PMC8620788 DOI: 10.3390/v13112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.
Collapse
Affiliation(s)
- Gianpiero Zamperin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Alice Bianco
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Jacqueline Smith
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Lonneke Vervelde
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Andrea Fortin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Sabrina Marciano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Valentina Panzarin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Eva Mazzetto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington, Winnipeg, MB R3E 3M4, Canada;
| | - Paul Digard
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| |
Collapse
|
28
|
Al-Rasheed M, Ball C, Ganapathy K. Route of infectious bronchitis virus vaccination determines the type and magnitude of immune responses in table egg laying hens. Vet Res 2021; 52:139. [PMID: 34772449 PMCID: PMC8587502 DOI: 10.1186/s13567-021-01008-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/06/2021] [Indexed: 11/10/2022] Open
Abstract
Chicken immune responses to infectious bronchitis virus (IBV) vaccination can depend on route of administration, vaccine strain and bird age. Typically for layer chickens, IBV vaccinations are administered by spray in the hatchery at day-old and boosted at intervals with live vaccines via drinking water (DW). Knowledge of live attenuated IBV vaccine virus kinetics and the immune response in egg-laying hens is exceptionally limited. Here, we demonstrated dissemination of vaccine viruses and differences in hen innate, mucosal, cellular and humoral immune responses following vaccination with Massachusetts or 793B strains, administered by DW or oculonasal (ON) routes. Detection of IBV in the Mass-vaccinated groups was greater during early time-points, however, 793B was detected more frequently at later timepoints. Viral RNA loads in the Harderian gland and turbinate tissues were significantly higher for ON-Mass compared to all other vaccinated groups. Lachrymal fluid IgY levels were significantly greater than the control at 14 days post-vaccination (dpv) for both vaccine serotypes, and IgA mRNA levels were significantly greater in ON-vaccinated groups compared to DW-vaccinated groups, demonstrating robust mucosal immune responses. Cell mediated immune gene transcripts (CD8-α and CD8-β) were up-regulated in turbinate and trachea tissues. For both vaccines, dissemination and vaccine virus clearance was slower when given by DW compared to the ON route. For ON administration, both vaccines induced comparable levels of mucosal immunity. The Mass vaccine induced cellular immunity to similar levels regardless of vaccination method. When given either by ON or DW, 793B vaccination induced significantly higher levels of humoral immunity.
Collapse
Affiliation(s)
- Mohammed Al-Rasheed
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Cheshire, UK.,College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Avian Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Christopher Ball
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Cheshire, UK
| | - Kannan Ganapathy
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Cheshire, UK.
| |
Collapse
|
29
|
Soda K, Yamane M, Hidaka C, Miura K, Ung TTH, Nguyen HLK, Ito H, LE MQ, Ito T. Prior infection with antigenically heterologous low pathogenic avian influenza viruses interferes with the lethality of the H5 highly pathogenic strain in domestic ducks. J Vet Med Sci 2021; 83:1899-1906. [PMID: 34732612 PMCID: PMC8762415 DOI: 10.1292/jvms.21-0515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low and highly pathogenic avian influenza viruses (LPAIVs and HPAIVs, respectively) have been co-circulating in poultry populations in Asian, Middle Eastern, and African countries. In our avian-flu surveillance in Vietnamese domestic ducks, viral genes of LPAIV and HPAIV have been frequently detected in the same individual. To assess the influence of LPAIV on the pathogenicity of H5 HPAIV in domestic ducks, an experimental co-infection study was performed. One-week-old domestic ducks were inoculated intranasally and orally with PBS (control) or 106 EID50 of LPAIVs (A/duck/Vietnam/LBM678/2014 (H6N6) or A/Muscovy duck/Vietnam/LBM694/2014 (H9N2)). Seven days later, these ducks were inoculated with HPAIV (A/Muscovy duck/Vietnam/LBM808/2015 (H5N6)) in the same manner. The respective survival rates were 100% and 50% in ducks pre-infected with LBM694 or LBM678 strains and both higher than the survival of the control group (25%). The virus titers in oral/cloacal swabs of each LPAIV pre-inoculation group were significantly lower at 3-5 days post-HPAIV inoculation. Notably, almost no virus was detected in swabs from surviving individuals of the LBM678 pre-inoculation group. Antigenic cross-reactivity among the viruses was not observed in the neutralization test. These results suggest that pre-infection with LPAIV attenuates the pathogenicity of HPAIV in domestic ducks, which might be explained by innate and/or cell-mediated immunity induced by the initial infection with LPAIV.
Collapse
Affiliation(s)
- Kosuke Soda
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Maya Yamane
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University
| | - Chiharu Hidaka
- The United Graduate School of Veterinary Science, Yamaguchi University
| | - Kozue Miura
- Vietnam Research Station, Nagasaki University, c/o National Institute of Hygiene and Epidemiology.,Present address: Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Trang T H Ung
- Department of Virology, National Institute of Hygiene and Epidemiology
| | - Hang L K Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology
| | - Hiroshi Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Mai Q LE
- Department of Virology, National Institute of Hygiene and Epidemiology
| | - Toshihiro Ito
- Department of Joint Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| |
Collapse
|
30
|
Pre-treatment with chicken IL-17A secreted by bioengineered LAB vector protects chicken embryo fibroblasts against Influenza Type A Virus (IAV) infection. Mol Immunol 2021; 140:106-119. [PMID: 34678620 DOI: 10.1016/j.molimm.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 01/01/2023]
Abstract
The recent advances in our understanding of the host factors in orchestrating qualitatively different immune responses against influenza Type A virus (IAV) have changed the perception of conventional approaches for controlling avian influenza virus (AIV) infection in chickens. Given that infection-induced pathogenicity and replication of influenza virus largely rely on regulating host immune responses, immunoregulatory cytokine profiles often determine the disease outcomes. However, in contrast to the function of other inflammatory cytokines, interleukin-17A (IL-17A) has been described as a 'double-edged sword', indicating that in addition to antiviral host responses, IL-17A has a distinct role in promoting viral infection. Therefore, in the present study, we investigated the chicken IL-17A mediated antiviral immune effects on IAVs infection in primary chicken embryo fibroblasts cells (CEFs). To this end, we first bioengineered a food-grade Lactic Acid Producing Bacteria (LAB), Lactococcus lactis (L. lactis), secreting bioactive recombinant chicken IL-17A (sChIL-17A). Next, the functionality of sChIL-17A was confirmed by transcriptional upregulation of several genes associated with antiviral host responses, including granulocyte-monocyte colony-stimulating factor (GM-CSF) (CSF3 in the chickens), interleukin-6 (IL-6), interferon-α (IFN-α), -β and -γ genes in primary CEFs cells. Consistent with our hypothesis that such a pro-inflammatory state may translate to immunoprotection against IAVs infection, we observed that sChIL-17A pre-treatment could significantly limit the viral replication and protect the primary CEFs cells against two heterotypic IAVs such as A/turkey/Wisconsin/1/1966(H9N2) and A/PR/8/1934(H1N1). Together, the data presented in this work suggest that exogenous application of sChIL-17A secreted by modified LAB vector may represent an alternative strategy for improving antiviral immunity against avian influenza virus infection in chickens.
Collapse
|
31
|
Alqazlan N, Emam M, Nagy É, Bridle B, Sargolzaei M, Sharif S. Transcriptomics of chicken cecal tonsils and intestine after infection with low pathogenic avian influenza virus H9N2. Sci Rep 2021; 11:20462. [PMID: 34650121 PMCID: PMC8517014 DOI: 10.1038/s41598-021-99182-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Influenza viruses cause severe respiratory infections in humans and birds, triggering global health concerns and economic burden. Influenza infection is a dynamic process involving complex biological host responses. The objective of this study was to illustrate global biological processes in ileum and cecal tonsils at early time points after chickens were infected with low pathogenic avian influenza virus (LPAIV) H9N2 through transcriptome analysis. Total RNA isolated from ileum and cecal tonsils of non-infected and infected layers at 12-, 24- and 72-h post-infection (hpi) was used for mRNA sequencing analyses to characterize differentially expressed genes and overrepresented pathways. Statistical analysis highlighted transcriptomic signatures significantly occurring 24 and 72 hpi, but not earlier at 12 hpi. Interferon (IFN)-inducible and IFN-stimulated gene (ISG) expression was increased, followed by continued expression of various heat-shock proteins (HSP), including HSP60, HSP70, HSP90 and HSP110. Some upregulated genes involved in innate antiviral responses included DDX60, MX1, RSAD2 and CMPK2. The ISG15 antiviral mechanism pathway was highly enriched in ileum and cecal tonsils at 24 hpi. Overall, most affected pathways were related to interferon production and the heat-shock response. Research on these candidate genes and pathways is warranted to decipher underlying mechanisms of immunity against LPAIV in chickens.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Emam
- grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montreal, QC H3A 0E7 Canada
| | - Éva Nagy
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Byram Bridle
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Sargolzaei
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada ,Select Sires, Inc., Plain City, OH 43064 USA
| | - Shayan Sharif
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
32
|
Tong ZWM, Karawita AC, Kern C, Zhou H, Sinclair JE, Yan L, Chew KY, Lowther S, Trinidad L, Challagulla A, Schat KA, Baker ML, Short KR. Primary Chicken and Duck Endothelial Cells Display a Differential Response to Infection with Highly Pathogenic Avian Influenza Virus. Genes (Basel) 2021; 12:genes12060901. [PMID: 34200798 PMCID: PMC8230508 DOI: 10.3390/genes12060901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) in gallinaceous poultry are associated with viral infection of the endothelium, the induction of a ‘cytokine storm, and severe disease. In contrast, in Pekin ducks, HPAIVs are rarely endothelial tropic, and a cytokine storm is not observed. To date, understanding these species-dependent differences in pathogenesis has been hampered by the absence of a pure culture of duck and chicken endothelial cells. Here, we use our recently established in vitro cultures of duck and chicken aortic endothelial cells to investigate species-dependent differences in the response of endothelial cells to HPAIV H5N1 infection. We demonstrate that chicken and duck endothelial cells display a different transcriptional response to HPAI H5N1 infection in vitro—with chickens displaying a more pro-inflammatory response to infection. As similar observations were recorded following in vitro stimulation with the viral mimetic polyI:C, these findings were not specific to an HPAIV H5N1 infection. However, similar species-dependent differences in the transcriptional response to polyI:C were not observed in avian fibroblasts. Taken together, these data demonstrate that chicken and duck endothelial cells display a different response to HPAIV H5N1 infection, and this may help account for the species-dependent differences observed in inflammation in vivo.
Collapse
Affiliation(s)
- Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
| | - Anjana C. Karawita
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Colin Kern
- Department of Animal Science, University of California, Davis, CA 95616, USA; (C.K.); (H.Z.)
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA; (C.K.); (H.Z.)
| | - Jane E. Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
| | - Limin Yan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
| | - Sue Lowther
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Lee Trinidad
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Arjun Challagulla
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Karel A. Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Michelle L. Baker
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia
- Correspondence:
| |
Collapse
|
33
|
Moatasim Y, Kandeil A, Mostafa A, Kutkat O, Sayes ME, El Taweel AN, AlKhazindar M, AbdElSalam ET, El-Shesheny R, Kayali G, Ali MA. Impact of Individual Viral Gene Segments from Influenza A/H5N8 Virus on the Protective Efficacy of Inactivated Subtype-Specific Influenza Vaccine. Pathogens 2021; 10:pathogens10030368. [PMID: 33808583 PMCID: PMC8003407 DOI: 10.3390/pathogens10030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Since its emergence in 2014, the highly pathogenic avian influenza H5N8 virus has continuously and rapidly spread worldwide in the poultry sector resulting in huge economic losses. A typical inactivated H5N8 vaccine is prepared using the six internal genes from A/PR8/1934 (H1N1) and the two major antigenic proteins (HA and NA) from the circulating H5N8 strain with the HA modified to a low pathogenic form (PR8HA/NA-H5N8). The contribution of the other internal proteins from H5N8, either individually or in combination, to the overall protective efficacy of PR8-based H5N8 vaccine has not been investigated. Using reverse genetics, a set of PR8-based vaccines expressing the individual proteins from an H5N8 strain were rescued and compared to the parent PR8 and low pathogenic H5N8 strains and the commonly used PR8HA/NA-H5N8. Except for the PR8-based vaccine strains expressing the HA of H5N8, none of the rescued combinations could efficiently elicit virus-neutralizing antibodies. Compared to PR8, the non-HA viral proteins provided some protection to infected chickens six days post infection. We assume that this late protection was related to cell-based immunity rather than antibody-mediated immunity. This may explain the slight advantage of using full low pathogenic H5N8 instead of PR8HA/NA-H5N8 to improve protection by both the innate and the humoral arms of the immune system.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed N. El Taweel
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Maha AlKhazindar
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Elsayed T. AbdElSalam
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ghazi Kayali
- Human Link, Dubai, United Arab Emirates
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Correspondence: (G.K.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- Correspondence: (G.K.); (M.A.A.)
| |
Collapse
|
34
|
Munuswamy P, Ramakrishnan S, Latheef SK, Kappala D, Mariappan AK, Kaore M, Anbazhagan K, Puvvala B, Singh KP, Dhama K. First description of natural concomitant infection of avian nephritis virus and infectious bronchitis virus reveals exacerbated inflammatory response and renal damage in broiler chicks. Microb Pathog 2021; 154:104830. [PMID: 33691178 DOI: 10.1016/j.micpath.2021.104830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
We describe the first report on spontaneous Avian Nephritis Virus (ANV) and Infectious Bronchitis Virus (IBV) concurrent infection in broiler chicks. On necropsy, the kidneys were found swollen with its parenchyma and ureters stuffed with urate flakes. Histopathologically, the renal tubular damage and inflammatory response were severe in concurrently infected birds compared to the cases infected only with ANV, which had direct correlation with significantly (p < 0.001) increased expression of IL-1 β, IL-4, IL-12, IL-13, iNOS and IFN-γ transcripts in the kidneys of concurrently infected birds. Relative decrease in IFN-β transcript levels in the concurrently infected birds indicates suppression of antiviral response; the iNOS level was manifold increased which can be attributed to the enhanced macrophage response. Nucleotide sequencing of S1-spike glycoprotein gene of IBV and RNA dependent RNA polymerase gene of ANV confirmed etiologies as Igacovirus of Gammacoronavirus and ANV-2 of Avastrovirus 2, respectively. Both ANV and IBV virus affect kidneys. Our findings suggested that concurrent infections of these two viruses might have enhanced the transcripts of Th1, Th2 and proinflammatory cytokines with reduced IFN-β transcripts resulting in decreased host innate antiviral mechanisms leading to exacerbated renal lesions. Future experimental co-infection studies could throw more lights on pathology and pathogenesis during concurrent infections of ANV and IBV in poultry.
Collapse
Affiliation(s)
- Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India.
| | - Saravanan Ramakrishnan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Deepthi Kappala
- Department of Veterinary Microbiology, Banaras Hindu University, Varanasi, U.P, 221005, India
| | - Asok Kumar Mariappan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Megha Kaore
- Department of Veterinary Pathology, Nagpur Veterinary College, Seminary Hills, Nagpur, Maharashtra, 440006, India
| | - Karthikeyan Anbazhagan
- Department of Animal Genetic and Breeding, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - Bhavani Puvvala
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| |
Collapse
|
35
|
Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses 2021; 13:v13020262. [PMID: 33567791 PMCID: PMC7915228 DOI: 10.3390/v13020262] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Emerging viral diseases are a major threat to global health, and nearly two-thirds of emerging human infectious diseases are zoonotic. Most of the human epidemics and pandemics were caused by the spillover of viruses from wild mammals. Viruses that infect humans and a wide range of animals have historically caused devastating epidemics and pandemics. An in-depth understanding of the mechanisms of viral emergence and zoonotic spillover is still lacking. Receptors are major determinants of host susceptibility to viruses. Animal species sharing host cell receptors that support the binding of multiple viruses can play a key role in virus spillover and the emergence of novel viruses and their variants. Sialic acids (SAs), which are linked to glycoproteins and ganglioside serve as receptors for several human and animal viruses. In particular, influenza and coronaviruses, which represent two of the most important zoonotic threats, use SAs as cellular entry receptors. This is a comprehensive review of our current knowledge of SA receptor distribution among animal species and the range of viruses that use SAs as receptors. SA receptor tropism and the predicted natural susceptibility to viruses can inform targeted surveillance of domestic and wild animals to prevent the future emergence of zoonotic viruses.
Collapse
|
36
|
Kalaiyarasu S, Bhatia S, Mishra N, Senthil Kumar D, Kumar M, Sood R, Rajukumar K, Ponnusamy B, Desai D, Singh VP. Elicitation of Highly Pathogenic Avian Influenza H5N1 M2e and HA2-Specific Humoral and Cell-Mediated Immune Response in Chicken Following Immunization With Recombinant M2e-HA2 Fusion Protein. Front Vet Sci 2021; 7:571999. [PMID: 33614753 PMCID: PMC7892607 DOI: 10.3389/fvets.2020.571999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The study was aimed to evaluate the elicitation of highly pathogenic avian influenza (HPAI) virus (AIV) M2e and HA2-specific immunity in chicken to develop broad protective influenza vaccine against HPAI H5N1. Based on the analysis of Indian AIV H5N1 sequences, the conserved regions of extracellular domain of M2 protein (M2e) and HA2 were identified. Synthetic gene construct coding for M2e and two immunodominant HA2 conserved regions was designed and synthesized after codon optimization. The fusion recombinant protein (~38 kDa) was expressed in a prokaryotic system and characterized by Western blotting with anti-His antibody and anti-AIV polyclonal chicken serum. The M2e–HA2 fusion protein was found to be highly reactive with known AIV-positive and -negative chicken sera by ELISA. Two groups of specific pathogen-free (SPF) chickens were immunized (i/m) with M2e synthetic peptide and M2e–HA2 recombinant protein along with one control group with booster on the 14th day and 28th day with the same dose and route. Pre-immunization sera and whole blood were collected on day 0 followed by 3, 7, 14, 21, and 28 days and 2 weeks after the second booster (42 day). Lymphocyte proliferation assay by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method revealed that the stimulation index (SI) was increased gradually from days 0 to 14 in the immunized group (p < 0.05) than that in control chicken. Toll-like receptor (TLR) mRNA analysis by RT-qPCR showed maximum upregulation in the M2e–HA2-vaccinated group compared to M2e- and sham-vaccinated groups. M2e–HA2 recombinant protein-based indirect ELISA revealed that M2e–HA2 recombinant fusion protein has induced strong M2e and HA2-specific antibody responses from 7 days post-primary immunization, and then the titer gradually increased after booster dose. Similarly, M2e peptide ELISA revealed that M2e–HA2 recombinant fusion protein elicited M2e-specific antibody from day 14 onward. In contrast, no antibody response was detected in the chicken immunized with synthetic peptide M2e alone or control group. Findings of this study will be very useful in future development of broad protective H5N1 influenza vaccine targeting M2e and HA2.
Collapse
Affiliation(s)
- Semmannan Kalaiyarasu
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Sandeep Bhatia
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Niranjan Mishra
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Dhanapal Senthil Kumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Manoj Kumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Richa Sood
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Katherukamem Rajukumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Boopathi Ponnusamy
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Dhruv Desai
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Vijendra Pal Singh
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| |
Collapse
|
37
|
Huang J, Wu S, Wu W, Liang Y, Zhuang H, Ye Z, Qu X, Liao M, Jiao P. The Biological Characteristics of Novel H5N6 Highly Pathogenic Avian Influenza Virus and Its Pathogenesis in Ducks. Front Microbiol 2021; 12:628545. [PMID: 33584629 PMCID: PMC7874018 DOI: 10.3389/fmicb.2021.628545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Clade 2.3.4.4 H5Nx highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in poultry in the world. Some of these viruses acquired internal genes from other subtype avian influenza viruses (AIVs) such as H9 and H6 for the generation of novel reassortant viruses and continually circulated in poultry. Here, we applied a duck-origin virus DK87 and a chicken-origin virus CK66 to assess the biological characteristics of novel reassortant H5N6 HPAIVs and its pathogenesis in ducks. A genetic analysis indicated that the HA genes of the two H5N6 HPAIVs were closely related to the H5 viruses of clade 2.3.4.4 circulating in Eastern Asia and classified into H5 AIV/Eastern Asia (EA)-like lineage. Their NA genes fell into Eurasian lineage had close relationship with those of H5N6 viruses circulating in China, Laos, Vietnam, Japan, and Korea. All internal genes of DK87 were aggregated closely with H5 AIV/EA-like viruses. The internal genes (PB1, PA, NP, M, and NS) of CK66 were derived from H9N2 AIV/SH98-like viruses and the PB2 were derived from H5 AIV/EA-like viruses. These results indicate that clade 2.3.4.4 H5N6 AIVs have continually evolved and recombined with the H9N2 viruses circulating in Southern China. Pathogenicity test showed that the two viruses displayed a broader tissue distribution in ducks and caused no clinical signs. These results indicated that ducks were permissive for the replication of the chicken-origin reassortant virus CK66 without prior adaptation, but the duck-origin virus DK87-inoculated ducks showed significantly higher viral titers in some organs than the CK66-inoculated ducks at 5 day post-inoculated (DPI). The recovery of viruses from oropharyngea and cloacal swabs of contacted ducks indicated that they transmitted in native ducks by direct contact. Quantitative reverse transcription PCR (qRT-PCR) results revealed that the immune-relative genes (PRRs, IFNs, Mx-1, IL-6, and IL-8) in the lungs of inoculated ducks were expressed regardless of virus origin, but the expression of these genes was significantly higher in response to infection with the DK87 virus compared to the CK66 virus at 3 DPI. Overall, we should provide further insights into how clade 2.3.4.4 H5N6 AIVs undergo genetic and pathogenic variations to prevent outbreaks of this disease.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Siyu Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wenbo Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiwen Liang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haibin Zhuang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiyu Ye
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peirong Jiao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
38
|
Horman WSJ, Nguyen THO, Kedzierska K, Butler J, Shan S, Layton R, Bingham J, Payne J, Bean AGD, Layton DS. The Dynamics of the Ferret Immune Response During H7N9 Influenza Virus Infection. Front Immunol 2020; 11:559113. [PMID: 33072098 PMCID: PMC7541917 DOI: 10.3389/fimmu.2020.559113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022] Open
Abstract
As the recent outbreak of SARS-CoV-2 has highlighted, the threat of a pandemic event from zoonotic viruses, such as the deadly influenza A/H7N9 virus subtype, continues to be a major global health concern. H7N9 virus strains appear to exhibit greater disease severity in mammalian hosts compared to natural avian hosts, though the exact mechanisms underlying this are somewhat unclear. Knowledge of the H7N9 host-pathogen interactions have mainly been constrained to natural sporadic human infections. To elucidate the cellular immune mechanisms associated with disease severity and progression, we used a ferret model to closely resemble disease outcomes in humans following influenza virus infection. Intriguingly, we observed variable disease outcomes when ferrets were inoculated with the A/Anhui/1/2013 (H7N9) strain. We observed relatively reduced antigen-presenting cell activation in lymphoid tissues which may be correlative with increased disease severity. Additionally, depletions in CD8+ T cells were not apparent in sick animals. This study provides further insight into the ways that lymphocytes maturate and traffic in response to H7N9 infection in the ferret model.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey Butler
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Songhua Shan
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Rachel Layton
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Jean Payne
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Andrew G D Bean
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Daniel S Layton
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| |
Collapse
|
39
|
Chothe SK, Nissly RH, Lim L, Bhushan G, Bird I, Radzio-Basu J, Jayarao BM, Kuchipudi SV. NLRC5 Serves as a Pro-viral Factor During Influenza Virus Infection in Chicken Macrophages. Front Cell Infect Microbiol 2020; 10:230. [PMID: 32509599 PMCID: PMC7248199 DOI: 10.3389/fcimb.2020.00230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023] Open
Abstract
Avian influenza viruses (AIVs) cause major economic losses to the global poultry industry. Many host factors have been identified that act as regulators of the inflammatory response and virus replication in influenza A virus (IAV) infected cells including nucleotide-binding oligomerization domain (NOD) like receptor (NLR) family proteins. Evidence is emerging that NLRC5, the largest NLR member, is a regulator of host immune responses against invading pathogens including viruses; however, its role in the avian immune system and AIV pathogenesis has not been fully explored. In this study, we found that NLRC5 is activated by a range of low and highly pathogenic AIVs in primary chicken lung cells and a chicken macrophage cell line. Further, siRNA mediated NLRC5 knockdown in chicken macrophages resulted in a significant reduction in AIV replication which was associated with the upregulation of genes associated with activated NFκB signaling pathway. The knockdown of NLRC5 enhanced the expression of genes known to be associated with viral defense and decreased innate cytokine gene expression following AIV infection. Overall, our investigation strongly suggests that NLRC5 is a pro-viral factor during IAV infection in chicken and may contribute to pathogenesis through innate cytokine regulation. Further studies are warranted to investigate the IAV protein(s) that may regulate activation of NLRC5.
Collapse
Affiliation(s)
- Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Levina Lim
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Gitanjali Bhushan
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ian Bird
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jessica Radzio-Basu
- Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Bhushan M Jayarao
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
40
|
The Microbiota Contributes to the Control of Highly Pathogenic H5N9 Influenza Virus Replication in Ducks. J Virol 2020; 94:JVI.00289-20. [PMID: 32102887 DOI: 10.1128/jvi.00289-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ducks usually show little or no clinical signs following highly pathogenic avian influenza virus infection. In order to analyze whether the microbiota could contribute to the control of influenza virus replication in ducks, we used a broad-spectrum oral antibiotic treatment to deplete the microbiota before infection with a highly pathogenic H5N9 avian influenza virus. Antibiotic-treated ducks and nontreated control ducks did not show any clinical signs following H5N9 virus infection. We did not detect any significant difference in virus titers neither in the respiratory tract nor in the brain nor spleen. However, we found that antibiotic-treated H5N9 virus-infected ducks had significantly increased intestinal virus excretion at days 3 and 5 postinfection. This was associated with a significantly decreased antiviral immune response in the intestine of antibiotic-treated ducks. Our findings highlight the importance of an intact microbiota for an efficient control of avian influenza virus replication in ducks.IMPORTANCE Ducks are frequently infected with avian influenza viruses belonging to multiple subtypes. They represent an important reservoir species of avian influenza viruses, which can occasionally be transmitted to other bird species or mammals, including humans. Ducks thus have a central role in the epidemiology of influenza virus infection. Importantly, ducks usually show little or no clinical signs even following infection with a highly pathogenic avian influenza virus. We provide evidence that the microbiota contributes to the control of influenza virus replication in ducks by modulating the antiviral immune response. Ducks are able to control influenza virus replication more efficiently when they have an intact intestinal microbiota. Therefore, maintaining a healthy microbiota by limiting perturbations to its composition should contribute to the prevention of avian influenza virus spread from the duck reservoir.
Collapse
|
41
|
Bertran K, Pantin-Jackwood MJ, Criado MF, Lee DH, Balzli CL, Spackman E, Suarez DL, Swayne DE. Pathobiology and innate immune responses of gallinaceous poultry to clade 2.3.4.4A H5Nx highly pathogenic avian influenza virus infection. Vet Res 2019; 50:89. [PMID: 31675983 PMCID: PMC6824115 DOI: 10.1186/s13567-019-0704-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
In the 2014-2015 Eurasian lineage clade 2.3.4.4A H5 highly pathogenic avian influenza (HPAI) outbreak in the U.S., backyard flocks with minor gallinaceous poultry and large commercial poultry (chickens and turkeys) operations were affected. The pathogenesis of the first H5N8 and reassortant H5N2 clade 2.3.4.4A HPAI U.S. isolates was investigated in six gallinaceous species: chickens, Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Both viruses caused 80-100% mortality in all species, except for H5N2 virus that caused 60% mortality in chickens. The surviving challenged birds remained uninfected based on lack of clinical disease and lack of seroconversion. Among the infected birds, chickens and Japanese quail in early clinical stages (asymptomatic and listless) lacked histopathologic findings. In contrast, birds of all species in later clinical stages (moribund and dead) had histopathologic lesions and systemic virus replication consistent with HPAI virus infection in gallinaceous poultry. These birds had widespread multifocal areas of necrosis, sometimes with heterophilic or lymphoplasmacytic inflammatory infiltrate, and viral antigen in parenchymal cells of most tissues. In general, lesions and antigen distribution were similar regardless of virus and species. However, endotheliotropism was the most striking difference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tissues. The expression of IFN-γ and IL-10 in Japanese quail, and IL-6 in chickens, were up-regulated in later clinical stages compared to asymptomatic birds.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Mary J Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Charles L Balzli
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.,Battelle National Biodefense Institute, National Biodefense Analysis and Countermeasures Center, 8300 Research PI, Fort Detrick, MD, 21702, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, 30605, USA.
| |
Collapse
|
42
|
Cui B, Wang F, Wang LDL, Pan C, Ke J, Tian Y. A Comparative Analysis of Risk Perception and Coping Behaviors among Chinese Poultry Farmers Regarding Human and Poultry Infection with Avian Influenza. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203832. [PMID: 31614454 PMCID: PMC6843141 DOI: 10.3390/ijerph16203832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
Abstract
Poultry farmers face a dual risk when mutant avian influenza (AI) virus exhibits zoonotic characteristics. A/H5N1 and A/H7N9 are two principal strains of the AI virus that have captured public attention in recent years, as they have both been reported and can infect poultry and humans, respectively. Previous studies have focused either on poultry farmers’ risk perception and biosecurity preventive behaviors (BPBs) against A/H5N1 infection with poultry, or on their risk perception and personal protective behaviors (PPBs) against human infection with A/H7N9, even though these two strains often appear simultaneously. To bridge this research gap, a survey (N = 426) was conducted in the Chinese provinces of Jiangsu and Anhui to assess risk perception and coping behaviors adopted by poultry farmers facing the dual risk of these two viral strains. Paired sample t-tests revealed that farmers’ perceived risk of poultry infection with A/H5N1 was significantly higher than their perceived risk of human infection with A/H7N9, and that their reported frequency of BPBs against A/H5N1 was significantly higher than the frequency of PPBs against A/H7N9. Moreover, farmers were less familiar with AI infection in human beings compared to that in poultry, but they felt a higher sense of control regarding human AI infection. Multivariate regression analyses showed that farm size and perceived risks of both human and poultry infection with AI were positively associated with BPBs and PPBs. The findings of this research suggest that a campaign to spread knowledge about human AI infection among poultry farmers is needed, and that a policy incentive to encourage large-scale poultry farming could be effective in improving implementation of BPBs and PPBs.
Collapse
Affiliation(s)
- Bin Cui
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| | - Feifei Wang
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| | - Linda Dong-Ling Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou 225001, Jiangsu Province, China.
| | - Chengyun Pan
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| | - Jun Ke
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| | - Yi Tian
- Business College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.
| |
Collapse
|
43
|
Li X, Huang M, Song J, Shi X, Chen X, Yang F, Pi J, Zhang H, Xu G, Zheng J. Analysis of fishy taint in duck eggs reveals the causative constituent of the fishy odor and factors affecting the perception ability of this odor. Poult Sci 2019; 98:5198-5207. [DOI: 10.3382/ps/pez260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/18/2019] [Indexed: 01/18/2023] Open
|
44
|
An SH, Lee CY, Hong SM, Choi JG, Lee YJ, Jeong JH, Kim JB, Song CS, Kim JH, Kwon HJ. Bioengineering a highly productive vaccine strain in embryonated chicken eggs and mammals from a non-pathogenic clade 2·3·4·4 H5N8 strain. Vaccine 2019; 37:6154-6161. [PMID: 31495597 DOI: 10.1016/j.vaccine.2019.08.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
Abstract
The clade 2·3·4·4 H5Nx is a highly pathogenic avian influenza (HPAI) virus, which first appeared in China and has spread worldwide since then, including Korea. It is divided into subclades a - d, but the PR8-derived recombinant clade 2·3·4·4 a viruses replicate inefficiently in embryonated chicken eggs (ECEs). High virus titer in ECEs and no mammalian pathogenicity are the most important prerequisites of efficacious and safer vaccine strains against HPAI. In this study, we have synthesized hemagglutinin (HA) and neuraminidase (NA) genes based on the consensus amino acid sequences of the clade 2·3·4·4a and b H5N8 HPAIVs, using the GISAID database. We generated PR8-derived H5N8 recombinant viruses with single point mutations in HA and NA, which are related to efficient replication in ECEs. The H103Y mutation in HA increased mammalian pathogenicity as well as virus titer in ECEs, by 10-fold. We also successfully eradicated mammalian pathogenicity in H103Y-bearing H5N8 recombinant virus by exchanging PB2 genes of PR8 and 01310 (Korean H9N2 vaccine strain). The final optimized H5N8 vaccine strain completely protected against a heterologous clade 2·3·4·4c H5N6 HPAIV in chickens, and induced hemagglutination inhibition (HI) antibody in ducks. However, the antibody titer of ducks showed age-dependent results. Thus, H103Y and 01310PB2 gene have been successfully applied to generate a highly productive, safe, and efficacious clade 2·3·4·4 H5N8 vaccine strain in ECEs.
Collapse
Affiliation(s)
- Se-Hee An
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Seung-Min Hong
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea
| | - Jun-Gu Choi
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gyeongsangbuk-do 39660, Republic of Korea
| | - Jei-Hyun Jeong
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Jun-Beom Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826 Seoul, Republic of Korea; Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Kangwon-do, Republic of Korea.
| |
Collapse
|
45
|
Drobik-Czwarno W, Wolc A, Kucharska K, Martyniuk E. Genetic determinants of resistance to highly pathogenic avian influenza in chickens. ROCZNIKI NAUKOWE POLSKIEGO TOWARZYSTWA ZOOTECHNICZNEGO 2019. [DOI: 10.5604/01.3001.0013.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) poses a huge threat to poultry production and also introduces an epidemiological risk in the human population. Thus far, HPAI has been controlled mainly through widespread implementation of biosecurity, and in the case of an outbreak, liquidation of flocks and establishment of protection zones. Alternative strategies for combating HPAI include the use of vaccines, genetic modification, and genetic selection for increased general and specific immunity in birds. These kinds of strategies often require identification of the genes involved in the immune response to the pathogen. Many genes have been identified as potentially associated with differences in the response to HPAI between poultry species and between individuals. Thus far, the most attention has been focused on genes taking part in regulating the innate immune response, which is responsible for preventing infection and limiting the replication and spread of the virus. The most commonly mentioned candidates for layer chickens include interferon-stimulated genes (ISGs) and RIG-I-like receptors. Proteins encoded by genes of the BTLN family, defensins, and proteins involved in apoptosis have also been associated with differences in the response to HPAI. Recent years have seen an increasing number of studies on the genetic determinants of individual differences in the response to HPAI in chickens. Data from HPAI outbreaks in the US in the spring of 2015 and Mexico in the years 2012-2016 have enabled a more precise analysis of this problem. A number of genes have been identified as associated with the immune response, but their specific role in determining the survival of birds requires further study. Preliminary results indicate that genetic determinants of resistance to HPAI are highly complex and can vary depending on the virus strain and the genetic line of birds.
Collapse
Affiliation(s)
- Wioleta Drobik-Czwarno
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Nauk o Zwierzętach Katedra Genetyki i Ogólnej Hodowli Zwierząt
| | - Anna Wolc
- Iowa State University Department of Animal Science
| | - Kornelia Kucharska
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Nauk o Zwierzętach Katedra Biologii Środowiska Zwierząt, Zakład Zoologii
| | - Elżbieta Martyniuk
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie; Wydział Nauk o Zwierzętach
| |
Collapse
|
46
|
Cui B, Wang LDL, Ke J, Tian Y. Chinese poultry farmers' decision-making for avian influenza prevention: a qualitative analysis. Zoonoses Public Health 2019; 66:647-654. [PMID: 31215154 DOI: 10.1111/zph.12617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/27/2022]
Abstract
Poultry farmers faced dual risk when mutant avian influenza (AI) virus showed the zoonotic characteristics. A/H5N1 and A/H7N9 were two dominant AI virus strains that have captured the attention of the public over the years for they have been reported to bring about greater loss to poultry and human, respectively. Previous studies mainly used quantitative methods investigating either the means that poultry farmers adopted for protecting their poultry against A/H5N1 infection or the poultry farmers' self-protective behaviours against A/H7N9 infection. We sought insights into the underlying factors influencing Chinese poultry farmers' protective behaviours in response to the dual risk of AI by a qualitative way. Semi-structured in-depth interviews were conducted with 25 Chinese chicken farmers recruited by purposive sampling between November 2016 and May 2017, the peak season of AI. All interviews were audio-taped, transcribed and analysed using a grounded theory approach. From participants' experiences, we revealed five main themes: Measures adopted for protecting poultry and farmers, Emotional response to the AI epidemic, Perceived risk of AI, Perceived effectiveness of the preventive measures adopted and Perceived self-efficacy to take preventive measures. The information of AI outbreak directly triggered Chinese chicken farmers' emotional response and thereafter preventive actions. Compared to the perceived risk of poultry infection with A/H5N1 which mainly connected to economic loss, participants perceived much lower risk of human infection with A/H7N9. AI epidemic information played a key role triggering poultry farmers' response behaviours. Chinese poultry farmers weighted more attention on the risk of poultry infection which was highly associated with economic losses. The government should build and improve an early AI warning and information transmission network to poultry farmers. Further reinforcement of related self-protective and preventive knowledge training towards poultry farmers is necessary.
Collapse
Affiliation(s)
- Bin Cui
- Business College of Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Linda Dong-Ling Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| | - Jun Ke
- Business College of Yangzhou University, Yangzhou, China
| | - Yi Tian
- Business College of Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Cui B, Liu ZP, Ke J, Tian Y. Determinants of highly pathogenic avian influenza outbreak information sources, risk perception and adoption of biosecurity behaviors among poultry farmers in China. Prev Vet Med 2019; 167:25-31. [PMID: 31027717 DOI: 10.1016/j.prevetmed.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Abstract
The implementation of biosecurity measures among farmers is the first line of defense against highly pathogenic avian influenza (HPAI) on poultry farms. Yet much less is known about the association between HPAI outbreak information sources, farmers' risk perception and their adoption of biosecurity behaviors (BBs). To bridge this gap, a survey (n = 426) was conducted to measure the relationship between these factors among poultry farmers in the Chinese provinces of Jiangsu and Anhui. The data reveal that farmers use multiple information sources to obtain information about HPAI outbreaks. Multivariate regression shows that HPAI outbreak information disseminated through business networks is associated with reported adoption of BBs, while farm size and ease of access to a veterinary clinic are associated with both higher risk perception and increased BBs. Moreover, increased BBs are associated with farmers who maintain stable production and sales contractual relationships with poultry product processing and marketing enterprises. The findings of this research will allow authorities to more effectively disseminate HPAI information to poultry farmers through business networks.
Collapse
Affiliation(s)
- Bin Cui
- Business College of Yangzhou University, Yangzhou, Jiangsu Province, PR China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University Yangzhou, Jiangsu Province, PR China.
| | - Zong Ping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, PR China
| | - Jun Ke
- Business College of Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yi Tian
- Business College of Yangzhou University, Yangzhou, Jiangsu Province, PR China
| |
Collapse
|
48
|
Nuñez IA, Ross TM. A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 2019; 7:2515135518821625. [PMID: 30834359 PMCID: PMC6391539 DOI: 10.1177/2515135518821625] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Drive, CVI Room 1504, Athens, GA 30602, USA
| |
Collapse
|
49
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
50
|
Ma L, Liu H, Wang R, Jin T, Liu D, Gao GF, Chen Q. Low Pathogenic Avian Influenza A (H5N7) Virus Isolated from a Domestic Duck in Dongting Lake Wetland of China, 2016. Virol Sin 2019; 34:97-101. [PMID: 30610572 DOI: 10.1007/s12250-018-0081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Runkun Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - George Fu Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, CAS Center for Influenza Research and Early Warning, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|