1
|
Lu QQ, Zheng WW, Zhang ZY, Cong PK, Guo X, Zhang Y, Zhang XZ, Long SR, Liu RD, Wang ZQ, Cui J. Trichinella spiralis excretory/secretory proteins mediated larval invasion via inducing gut epithelial apoptosis and barrier disruption. PLoS Negl Trop Dis 2025; 19:e0012842. [PMID: 39847596 PMCID: PMC11793818 DOI: 10.1371/journal.pntd.0012842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/04/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Intestinal larva invasion is a crucial step of Trichinella spiralis infection. Intestinal infective larvae (IIL) and their excretory/secretory proteins (ESP) interact with gut epithelium, which often results in gut epithelium barrier injuries. Previous studies showed when T. spiralis invaded intestinal epithelium cells, the IIL ESP disrupted the tight junctions (TJs) of Caco-2 monolayer, but the mechanism is not clear. The IIL ESP might cause gut epithelial apoptosis, weaken the gut barrier and aid the larval invasion. The aim of this study was to investigate whether T. spiralis IIL ESP participate in enterocyte apoptosis and disrupt gut epithelial barrier to promote the larval invasion. METHODOLOGY/PRINCIPAL FINDINGS Cell viability was assessed by CCK-8 assay and the results showed that 200 μg/ml of IIL ESP incubated with Caco-2 cells for 18 h inhibited the Caco-2 cell viability. The results of trans-epithelial electrical resistance (TEER) and FITC-dextran showed that IIL ESP decreased the TEER, increased FITC-dextran flux in Caco-2 monolayer. qPCR, Western blot and immunofluorescence test (IFT) showed that IIL ESP decreased the mRNA and protein expression of TJs (ZO-1, E-cad, Occludin and Claudin-1). The IIL ESP-induced Caco-2 cell apoptosis was observed by DAPI, Hoechst 33358, TUNEL and Annexin V/PI staining. Besides, flow cytometry revealed an increasing apoptosis rate in Caco-2 cells after the IIL ESP treatment. qPCR and Western blot analysis indicated that IIL ESP activated caspases (Caspase 3, Caspase 9 and Caspase 8), up-regulated the pro-apoptotic factors (Bax and Cytochrome c) and down-regulated the anti-apoptosis molecule Bcl-2. Interestingly, pretreatment of Caco-2 cells with apoptosis inhibitor Z-VAD-FMK abrogated and recovered the barrier function of Caco-2 monolayer destroyed by IIL ESP. Furthermore, the Z-VAD-FMK pretreatment also impeded the in vitro larva invasion of Caco-2 monolayer. CONCLUSIONS T. spiralis IIL ESP induced gut epithelial apoptosis, reduced the TJs expression, damaged gut epithelial integrity and barrier function, and promoted larval invasion. These findings provided a basis of further understanding the interaction mechanism between T. spiralis and host gut epithelium, and they were valuable to the development new prevention and therapeutic strategy of early T. spiralis infection.
Collapse
Affiliation(s)
- Qi Qi Lu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Wen Zheng
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhao Yu Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei Kun Cong
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yao Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Zhuo Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Wang BN, Zhang XZ, Wu JY, Zhang ZY, Cong PK, Zheng WW, Long SR, Liu RD, Cui J, Wang ZQ. Vaccination of mice with Trichinella spiralis C-type lectin elicited the protective immunity and enhanced gut epithelial barrier function. PLoS Negl Trop Dis 2025; 19:e0012825. [PMID: 39841790 PMCID: PMC11761079 DOI: 10.1371/journal.pntd.0012825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/24/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model. METHODOLOGY/PRINCIPAL FINDING The ELISA results showed that subcutaneous vaccination of mice with rTsCTL elicited a systemic humoral response (high levels of serum IgG, IgG1/IgG2a and IgA) and significant gut mucosal sIgA responses. The levels of Th1/Th2 cytokines (IFN-γ/IL-4) secreted from spleen, mesenteric lymph nodes and Peyer's patches were distinctly increased at 6 weeks following vaccination (P < 0.05). At one week after challenge, the numbers of goblet cells and expression level of Muc2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while expression of anti-inflammatory cytokines (IL-4 and IL-10) was evidently increased, compared to the infected PBS group. It is interesting that expression levels of gut epithelial tight junctions (TJs; occludin, claudin-1 and E-cad) were prominently elevated and intestinal permeability was interestingly declined in vaccinated mice. The rTsCTL-vaccinated mice exhibited a 51.69 and 48.19% reduction of intestinal adult and muscle larva burdens, respectively. The female fecundity in rTsCTL vaccinated mice was reduced by 40.51%. These findings indicated that rTsCTL vaccination impeded larval invasion and improved gut epithelial integrity and barrier function, reduced worm burdens, and relieved gut and muscle inflammation. CONCLUSIONS Vaccination of mice with rTsCTL elicited an obvious protective immunity against larval challenge, impeded larval invasion of gut mucosa, enhanced gut epithelial integrity and barrier function, reduced worm burdens; it also alleviated gut and muscle inflammation. TsCTL might be a novel candidate target molecule for anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Bo Ning Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Zhuo Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin Yi Wu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhao Yu Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei Kun Cong
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Wen Zheng
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Wang BN, Zhang XZ, Cong PK, Zheng WW, Wu JY, Long SR, Liu RD, Zhang X, Cui J, Wang ZQ. Trichinellaspiralis C-type lectin mediates larva invasion of gut mucosa via binding to syndecan-1 and damaging epithelial integrity in mice. Int J Biol Macromol 2024; 280:135958. [PMID: 39322156 DOI: 10.1016/j.ijbiomac.2024.135958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
C-type lectin (CTL) plays a vital role in parasite adhesion, invading host's cells and immune escape. The objective of this research was to explore whether recombinant T. spiralis CTL (rTsCTL) binding with syndecan-1 damages intestine epithelial integrity and mediates T. spiralis intrusion in mice. The results showed that rTsCTL interacted with syndecan-1 and activated STAT3 pathway in gut epithelium, decreased tight junctions (TJs) expressions and damaged gut epithelium integrity, promoted T. spiralis intrusion, and increased expression level of inflammatory cytokine and mucin. The syndecan-1 inhibitor (β-xyloside) and STAT3 phosphorylation inhibitor (Stattic) significantly suppressed syndecan-1 expression and STAT3 pathway activation, reduced the expression levels of TJs, pro-inflammatory cytokines (TNF-α and IL-1β), Muc2 and Muc5ac, and declined intestinal permeability in T. spiralis-infected mice. These results revealed that the inhibitors suppressed T. spiralis invasion and development in gut mucosa, decreased intestinal adult burdens and relieved gut inflammation. These findings further testified that the in vivo binding of TsCTL with syndecan-1 destroyed enteral mucosal epithelial integrity and promoted T. spiralis intrusion of gut mucosa via activating STAT3 pathway and decreasing TJs expression. TsCTL could be deemed as a promising vaccine target to interrupt T. spiralis infection.
Collapse
Affiliation(s)
- Bo Ning Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Zhuo Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Kun Cong
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Wen Zheng
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Yi Wu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Cheng YK, Zhang Y, Zhang ZY, Cong PK, Feng JY, Zhang R, Long SR, Zhang X, Wang ZQ, Cui J. Biological characteristics and functions of a novel glutamate dehydrogenase from Trichinella spiralis. Parasite 2024; 31:65. [PMID: 39465975 PMCID: PMC11514599 DOI: 10.1051/parasite/2024065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Glutamate dehydrogenase (GDH) plays an important role in the metabolism of organisms. Its high abundance in mitochondria in particular highlights its core role in cellular physiological processes. GDH catalyzes the mutual conversion between L-glutamic acid and α-ketoglutaric acids. At the same time, this transformation is accompanied by the oxidation-reduction of NAD(H) or NADP(H). This process not only helps to link amino acid metabolism with sugar metabolism, but also helps maintain the balance of intracellular pH and nitrogen homeostasis. In this study, a novel Trichinella spiralis glutamate dehydrogenase (TsGDH) was cloned, expressed and identified. The results revealed that TsGDH was expressed at various stages of development of the nematode T. spiralis, with higher expression levels in the adult worm stage, and was mainly localized in the cuticle, muscular layer, stichosome and female intrauterine embryos. After RNAi treatment, larval natural TsGDH enzyme activity was obviously reduced, and metabolism, molting, growth and reproduction were also significantly inhibited. The results indicate that TsGDH plays an important role in the development and survival of T. spiralis, and it may be a potential molecular target of anti-Trichinella vaccines and drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Quan Wang
-
Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450052 China
| | - Jing Cui
-
Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
5
|
Weng M, Zhang R, Zhang Z, Wu J, Zheng W, Lu Q, Long S, Liu R, Wang Z, Cui J. A Novel Trichinella spiralis Galectin Strengthens the Macrophage ADCC Killing of Larvae via Driving M1 Polarization. Int J Mol Sci 2024; 25:10920. [PMID: 39456703 PMCID: PMC11506943 DOI: 10.3390/ijms252010920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Galectin recognizes β-galactosides through its carbohydrate recognition domains (CRDs). This study aimed to determine the biological features of a novel Trichinella spiralis galectin (galactoside-binding lectin family protein, TsGLFP) and its role in driving macrophage M1 polarization and enhancing ADCC killing of larvae. TsGLFP belongs to the galectin family and has two CRDs. The complete TsGLFP cDNA sequence was cloned and then expressed in Escherichia coli BL21. The results of qPCR, Western blot, and indirect immunofluorescence tests (IIFTs) revealed that TsGLFP was expressed in various stages of T. spiralis worms and principally localized at the cuticle and around the female embryos of the nematode. rTsGLFP had the function of agglutinating mouse erythrocytes, and this agglutination activity could be inhibited by lactose. After the mouse macrophage RAW264.7 was incubated with rTsGLFP, the expression level of the M1 genes (iNOS, IL-6, and TNF-α) and NO production were obviously increased. After incubating macrophages with rTsGLFP, there was a noticeable rise in the expression levels of p-IκB-α and p-NF-κB p65. Additionally, rTsGLFP enhanced the macrophage's ability to kill newborn larvae by ADCC cytotoxicity. When the macrophages were pretreated with the specific p-NF-κB p65 inhibitor PDTC, and then stimulated with rTsGLFP, the expression levels of iNOS, NO, and p-NF-κB p65 and the macrophages' ADCC cytotoxicity were distinctly decreased. These findings indicated that rTsGLFP enhanced the macrophage ADCC killing of larvae by driving M1 polarization through activating the NF-κB pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongquan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| |
Collapse
|
6
|
Li YL, Lu QQ, Zheng WW, Zhang ZY, Wu JY, Wei MH, Zhang XZ, Liu RD, Wang ZQ, Cui J. Biological characteristics of a new long-chain fatty acid transport protein 1 from Trichinella spiralis and its participation in lipid metabolism, larval moulting, and development. Vet Res 2024; 55:126. [PMID: 39350238 PMCID: PMC11443915 DOI: 10.1186/s13567-024-01380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 10/04/2024] Open
Abstract
Long-chain fatty acid transport protein 1 (FATP1) is a member of the fatty acid transporter family. It facilitates transmembrane transport of fatty acids and participates in lipid metabolism. Lipids are essential components of the cell and organelle membranes of Trichinella spiralis. The nematode has lost the capacity to synthesise the necessary lipids de novo and has instead evolved to obtain fatty acids and their derivatives from its host. This study aims to ascertain the primary biological characteristics and roles of T. spiralis FATP1 (TsFATP1) in lipid metabolism, larval moulting, and the development of this nematode. The results show that TsFATP1 is highly expressed at enteral T. spiralis stages, mainly localised at the cuticle, the stichosome and the intrauterine embryos of the parasite. The silencing of the TsFATP1 gene by TsFATP1-specific dsRNA significantly decreases the expression levels of TsFATP1 in the worm. It reduces the contents of ATP, triglycerides, total cholesterol, and phospholipids both in vitro and in vivo. RNAi inhibits lipid metabolism, moulting, and the growth of this nematode. The results demonstrate that TsFATP1 plays an essential role in lipid metabolism, moulting, and the development of T. spiralis. It could also be a target candidate for the anti-Trichinella vaccine and drugs.
Collapse
Affiliation(s)
- Yang Li Li
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Qi Lu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Wen Wen Zheng
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhao Yu Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Jin Yi Wu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Mei Hao Wei
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Korhonen PK, La Rosa G, Sumanam SB, Gomez Morales MA, Ludovisi A, Pozio E, Tonanzi D, Chang BCH, Young ND, Gasser RB. Enhanced Genomic and Transcriptomic Resources for Trichinella pseudospiralis and T. spiralis to Underpin the Discovery of Molecular Differences between Stages and Species. Int J Mol Sci 2024; 25:7366. [PMID: 39000473 PMCID: PMC11242134 DOI: 10.3390/ijms25137366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Nematodes of the genus Trichinella are important pathogens of humans and animals. This study aimed to enhance the genomic and transcriptomic resources for T. pseudospiralis (non-encapsulated phenotype) and T. spiralis (encapsulated phenotype) and to explore transcriptional profiles. First, we improved the assemblies of the genomes of T. pseudospiralis (code ISS13) and T. spiralis (code ISS534), achieving genome sizes of 56.6 Mb (320 scaffolds, and an N50 of 1.02 Mb) and 63.5 Mb (568 scaffolds, and an N50 value of 0.44 Mb), respectively. Then, for each species, we produced RNA sequence data for three key developmental stages (first-stage muscle larvae [L1s], adults, and newborn larvae [NBLs]; three replicates for each stage), analysed differential transcription between stages, and explored enriched pathways and processes between species. Stage-specific upregulation was linked to cellular processes, metabolism, and host-parasite interactions, and pathway enrichment analysis showed distinctive biological processes and cellular localisations between species. Indeed, the secreted molecules calmodulin, calreticulin, and calsyntenin-with possible roles in modulating host immune responses and facilitating parasite survival-were unique to T. pseudospiralis and not detected in T. spiralis. These insights into the molecular mechanisms of Trichinella-host interactions might offer possible avenues for developing new interventions against trichinellosis.
Collapse
Affiliation(s)
- Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Giuseppe La Rosa
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sunita B Sumanam
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maria Angeles Gomez Morales
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandra Ludovisi
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Edoardo Pozio
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniele Tonanzi
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Zhang R, Zhang Y, Yan SW, Cheng YK, Zheng WW, Long SR, Wang ZQ, Cui J. Galactomannan inhibits Trichinella spiralis invasion of intestinal epithelium cells and enhances antibody-dependent cellular cytotoxicity related killing of larvae by driving macrophage polarization. Parasite 2024; 31:6. [PMID: 38334686 PMCID: PMC10854486 DOI: 10.1051/parasite/2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Previous studies have shown that recombinant Trichinella spiralis galectin (rTsgal) is characterized by a carbohydrate recognition domain sequence motif binding to beta-galactoside, and that rTsgal promotes larval invasion of intestinal epithelial cells. Galactomannan is an immunostimulatory polysaccharide composed of a mannan backbone with galactose residues. The aim of this study was to investigate whether galactomannan inhibits larval intrusion of intestinal epithelial cells and enhances antibody-dependent cellular cytotoxicity (ADCC), killing newborn larvae by polarizing macrophages to the M1 phenotype. The results showed that galactomannan specially binds to rTsgal, and abrogated rTsgal facilitation of larval invasion of intestinal epithelial cells. The results of qPCR, Western blotting, and flow cytometry showed that galactomannan and rTsgal activated macrophage M1 polarization, as demonstrated by high expression of iNOS (M1 marker) and M1 related genes (IL-1β, IL-6, and TNF-α), and increased CD86+ macrophages. Galactomannan and rTsgal also increased NO production. The killing ability of macrophage-mediated ADCC on larvae was also significantly enhanced in galactomannan- and rTsgal-treated macrophages. The results demonstrated that Tsgal may be considered a potential vaccine target molecule against T. spiralis invasion, and galactomannan may be a novel adjuvant therapeutic agent and potential vaccine adjuvant against T. spiralis infection.
Collapse
Affiliation(s)
- Ru Zhang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Yao Zhang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Shu Wei Yan
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Yong Kang Cheng
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Wen Wen Zheng
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Shao Rong Long
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Zhong Quan Wang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Jing Cui
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
9
|
Li J, Wang X, Wang Q, Hu Y, Wang S, Xu J, Ye J. Galectin from Trichinella spiralis alleviates DSS-induced colitis in mice by regulating the intestinal microbiota. Vet Res 2024; 55:3. [PMID: 38172977 PMCID: PMC10763409 DOI: 10.1186/s13567-023-01262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
According to numerous reports, Trichinella spiralis (T. spiralis) and its antigens can reduce intestinal inflammation by modulating regulatory immunological responses in the host to maintain immune homeostasis. Galectin has been identified as a protein that is produced by T. spiralis, and its characterization revealed this protein has possible immune regulatory activity. However, whether recombinant T. spiralis galectin (rTs-gal) can cure dextran sulfate sodium (DSS)-induced colitis remains unknown. Here, the ability of rTs-gal to ameliorate experimental colitis in mice with inflammatory bowel disease (IBD) as well as the potential underlying mechanism were investigated. The disease activity index (DAI), colon shortening, inflammatory cell infiltration, and histological damage were used as indicators to monitor clinical symptoms of colitis. The results revealed that the administration of rTs-gal ameliorated these symptoms. According to Western blotting and ELISA results, rTs-gal may suppress the excessive inflammatory response-mediated induction of TLR4, MyD88, and NF-κB expression in the colon. Mice with colitis exhibit disruptions in the gut flora, including an increase in gram-negative bacteria, which in turn can result in increased lipopolysaccharide (LPS) production. However, injection of rTs-gal may inhibit changes in the gut microbiota, for example, by reducing the prevalence of Helicobacter and Bacteroides, which produce LPS. The findings of the present study revealed that rTs-gal may inhibit signalling pathways that involve enteric bacteria-derived LPS, TLR4, and NF-κB in mice with DSS-induced colitis and attenuate DSS-induced colitis in animals by modulating the gut microbiota. These findings shed additional light on the immunological processes underlying the beneficial effects of helminth-derived proteins in medicine.
Collapse
Affiliation(s)
- Jianqing Li
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
- School of Pharmacy, Putian University, Putian, 351100, Fujian, China
| | - Xiangjiang Wang
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
| | - Qiuhui Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
- School of Pharmacy, Putian University, Putian, 351100, Fujian, China
| | - Yishen Hu
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
- School of Pharmacy, Putian University, Putian, 351100, Fujian, China
| | - Shouan Wang
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China
| | - Jia Xu
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China.
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China.
| | - Jianbin Ye
- School of Pharmacy, Fujian Medical University, Fuzhou, 350004, Fujian, China.
- School of Basic Medicine Science, Putian University, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian, 351100, Fujian, China.
- School of Pharmacy, Putian University, Putian, 351100, Fujian, China.
| |
Collapse
|
10
|
Han LL, Lu QQ, Zheng WW, Li YL, Song YY, Zhang XZ, Long SR, Liu RD, Wang ZQ, Cui J. A novel trypsin of Trichinella spiralis mediates larval invasion of gut epithelium via binding to PAR2 and activating ERK1/2 pathway. PLoS Negl Trop Dis 2024; 18:e0011874. [PMID: 38166153 PMCID: PMC10786404 DOI: 10.1371/journal.pntd.0011874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.
Collapse
Affiliation(s)
- Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Wen Wen Zheng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yang Li Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD, Cui J, Wang ZQ. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Res Vet Sci 2023; 165:105075. [PMID: 37931574 DOI: 10.1016/j.rvsc.2023.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
12
|
Ma KN, Zhang Y, Zhang ZY, Wang BN, Song YY, Han LL, Zhang XZ, Long SR, Cui J, Wang ZQ. Trichinella spiralis galectin binding to toll-like receptor 4 induces intestinal inflammation and mediates larval invasion of gut mucosa. Vet Res 2023; 54:113. [PMID: 38012694 PMCID: PMC10680189 DOI: 10.1186/s13567-023-01246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Previous studies showed that Trichinella spiralis galectin (Tsgal) facilitates larval invasion of intestinal epithelium cells (IECs). However, IEC proteins binding with Tsgal were not identified, and the mechanism by which Tsgal promotes larval invasion is not clear. Toll-like receptors (TLRs) are protein receptors responsible for recognition of pathogens. The aim of this study was to investigate whether recombinant Tsgal (rTsgal) binds to TLR-4, activates inflammatory pathway in gut epithelium and mediates T. spiralis invasion. Indirect immunofluorescence (IIF), GST pull-down and co-immunoprecipitation (Co-IP) assays confirmed specific binding between rTsgal and TLR-4 in Caco-2 cells. qPCR and Western blotting showed that binding of rTsgal with TLR-4 up-regulated the TLR-4 transcription and expression in Caco-2 cells, and activated p-NF-κB p65 and p-ERK1/2. Activation of inflammatory pathway TLR-4/MAPK-NF-κB by rTsgal up-regulated pro-inflammatory cytokines (IL-1β and IL-6) and down-regulated anti-inflammatory cytokine TGF-β in Caco-2 cells, and induced intestinal inflammation. TAK-242 (TLR-4 inhibitor) and PDTC (NF-κB inhibitor) significantly inhibited the activation of TLR-4 and MAPK-NF-κB pathway. Moreover, the two inhibitors also inhibited IL-1β and IL-6 expression, and increased TGF-β expression in Caco-2 cells. In T. spiralis infected mice, the two inhibitors also inhibited the activation of TLR-4/MAPK-NF-κB pathway, ameliorated intestinal inflammation, impeded larval invasion of gut mucosa and reduced intestinal adult burdens. The results showed that rTsgal binding to TLR-4 in gut epithelium activated MAPK-NF-κB signaling pathway, induced the expression of TLR-4 and pro-inflammatory cytokines, and mediated larval invasion. Tsgal might be regarded as a candidate molecular target of vaccine against T. spiralis enteral invasive stage.
Collapse
Affiliation(s)
- Kai Ning Ma
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhao Yu Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Liu RD, Meng XY, Le Li C, Xu QY, Lin XZ, Dong BR, Ye CY, Miao TT, Si XY, Long SR, Cui J, Wang ZQ. Trichinella spiralis cathepsin L induces macrophage M1 polarization via the NF-κB pathway and enhances the ADCC killing of newborn larvae. Parasit Vectors 2023; 16:433. [PMID: 37993938 PMCID: PMC10666456 DOI: 10.1186/s13071-023-06051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND During the early stages of Trichinella spiralis infection, macrophages predominantly undergo polarization to the M1-like phenotype, causing the host's inflammatory response and resistance against T. spiralis infection. As the disease progresses, the number of M2-type macrophages gradually increases, contributing to tissue repair processes within the host. While cysteine protease overexpression is typically associated with inflammation, the specific role of T. spiralis cathepsin L (TsCatL) in mediating macrophage polarization remains unknown. The aim of this study was to assess the killing effect of macrophage polarization mediated by recombinant T. spiralis cathepsin L domains (rTsCatL2) on newborn larvae (NBL). METHODS rTsCatL2 was expressed in Escherichia coli strain BL21. Polarization of the rTsCatL2-induced RAW264.7 cells was analyzed by enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR), western blot, immunofluorescence and flow cytometry. The effect of JSH-23, an inhibitor of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), on rTsCatL2-induced M1 polarization investigated. Cytotoxic effects of polarized macrophages on NBL were observed using in vitro killing assays. RESULTS Following the co-incubation of rTsCatL2 with RAW264.7 murine macrophage cells, qPCR and ELISA revealed increased transcription and secretion levels of inducible nitric oxide synthase (iNOS), interleukin (IL)-6, IL-1β and tumor necrosis factor alpha (TNF-α) in macrophages. Western blot analysis showed a significant increase in iNOS protein expression, while the expression level of arginase-1 protein remained unchanged. Flow cytometry revealed a substantial increase in the number of CD86-labeled macrophages. The western blot results also indicated that rTsCatL2 increased the expression levels of phospho-NF-κB and phospho-nuclear factor-κB inhibitor alpha (IκB-α) proteins in a dose-dependent manner, while immunofluorescence revealed that rTsCatL2 induced nuclear translocation of the p65 subunit of NF-κB (NF-κB p65) protein in macrophages. The inhibitory effect of JSH-23 suppressed and abrogated the effect of rTsCatL2 in promoting M1 macrophage polarization. rTsCatL2 mediated polarization of macrophages to the M1-like phenotype and enhanced macrophage adhesion and antibody-dependent cell-mediated cytotoxicity (ADCC) killing of NBL. CONCLUSIONS The results indicated that rTsCatL2 induces macrophage M1 polarization via the NF-κB pathway and enhances the ADCC killing of NBL. This study provides a further understanding of the interaction mechanism between T. spiralis and the host.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Qiu Yi Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Zhi Lin
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Rang Dong
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chu Yan Ye
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Tian Tian Miao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Yi Si
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
14
|
Wang Z, Lu QQ, Weng MM, Li YL, Han LL, Song YY, Shi YL, Liu RD, Cui J, Wang ZQ. Binding of Trichinella spiralis C-type lectin with syndecan-1 on intestinal epithelial cells mediates larval invasion of intestinal epithelium. Vet Res 2023; 54:86. [PMID: 37784173 PMCID: PMC10546719 DOI: 10.1186/s13567-023-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023] Open
Abstract
C-type lectin (CTL) is a protein that binds to saccharides and plays an important role in parasite adhesion, host cell invasion and immune evasion. Previous studies showed that recombinant T. spiralis C-type lectin (rTsCTL) promotes larval invasion of intestinal epithelium cells (IEC), whereas anti-rTsCTL antibodies inhibits larval invasion. Syndecan-1 (SDC-1) is a member of the heparan sulfate proteoglycan family which is mainly expressed on the surface of IEC and in extracellular matrices where they interact with a plethora of ligands. SDC-1 has a principal role in maintaining cell morphogenesis, establishing cell-cell adhesions, and regulating the gut mucosal barrier. The aim of this study was to investigate whether rTsCTL binds to SDC-1 on IEC, and the binding of rTsCTL with SDC-1 promotes larval invasion and its mechanism. IFA results show that rTsCTL and SDC-1 co-localized on Caco-2 cell membrane. GST pull-down and Co-IP verified the direct interaction between rTsCTL and SDC-1 on Caco-2 cells. qPCR and Western blotting revealed that rTsCTL binding to SDC-1 increased the expression of SDC-1 and claudin-2, and reduced the expression of occludin and claudin-1 in Caco-2 cells incubated with rTsCTL via the STAT3 pathway. β-Xyloside (a syndecan-1 synthesis inhibitor) and Stattic (a STAT3 inhibitor) significantly inhibited rTsCTL binding to syndecan-1 in Caco-2 cells and activation of the STAT3 pathway, abrogated the effects of rTsCTL on the expression of gut tight junctions, and impeded larval invasion. The results demonstrate that binding of rTsCTL to SDC-1 on Caco-2 cells activated the STAT3 pathway, decreased gut tight junction expression, damaged the integrity of the gut epithelial barrier, and mediated T. spiralis invasion of the gut mucosa. TsCTL might be regarded as a candidate vaccine target against T. spiralis invasion and infection.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Min Min Weng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Li Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Long Shi
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Wang J, Jin X, Li C, Chen X, Li Y, Liu M, Liu X, Ding J. In vitro knockdown of TsDNase II-7 suppresses Trichinella spiralis invasion into the host's intestinal epithelial cells. PLoS Negl Trop Dis 2023; 17:e0011323. [PMID: 37289740 PMCID: PMC10249883 DOI: 10.1371/journal.pntd.0011323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/20/2023] [Indexed: 06/10/2023] Open
Abstract
Trichinella spiralis (T. spiralis) adult-specific deoxyribonuclease II-7 (TsDNase II-7), a member of the DNase II-like nuclease family with no DNase II activity, was identified in the excretory-secretory (ES) products of adult worms (AWs). However, its biological functions are still unclear. Our previous study revealed that TsDNase II-7 is located around the infection site in the intestinal tissue, speculating that it was involved in the T. spiralis invasion of host intestinal epithelial cells (IECs). This study aimed to use RNA interference to verify our speculation that TsDNase II-7 in 3-day old adult T. spiralis (Ad3) plays a role in intestinal invasion. TsDNase II-7-specific small interfering RNAs (siRNAs) were delivered into muscle larvae (MLs) to knockdown TsDNase II-7 expression by electroporation. Twenty-four hours later, the MLs transfected with 2 μM siRNA-841 exhibited decreased in TsDNase II-7 transcription and expression as compared to the control MLs. The knockdown of TsDNase II-7 expression did not affect ML viability, and the low expression of TsDNase II-7 still maintained in Ad3 recovered from TsDNase II-7-RNAi-ML infected mice, resulting in a weakened ability of Ad3 to invade intestinal epithelial cells (IECs). These results indicated that knockdown of TsDNase II-7 gene expression via RNA interference (RNAi) suppressed adult worm invasion and confirmed that TsDNase II-7 plays a crucial role during the intestinal phase of T. spiralis infections, which provided new candidate for vaccine development of T. spiralis.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chengyao Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinhui Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanfeng Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Ding
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
16
|
Hao HN, Lu QQ, Wang Z, Li YL, Long SR, Dan Liu R, Cui J, Wang ZQ. Mannose facilitates Trichinella spiralis expulsion from the gut and alleviates inflammation of intestines and muscles in mice. Acta Trop 2023; 241:106897. [PMID: 36931335 DOI: 10.1016/j.actatropica.2023.106897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/25/2022] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Trichinellosis is a major zoonotic parasitosis which is a vital risk to meat food safety. It is requisite to exploit new strategy to interdict food animal Trichinella infection and to obliterate Trichinella from food animals to ensure meat safety. Mannose is an oligosaccharide that specifically binds to the carbohydrate-recognition domain of C-type lectin; it has many physiological functions including reliving inflammation and regulating immune reaction. The purpose of this study was to investigate the suppressive role of mannose on T. spiralis larval invasion and infection, its effect on intestinal and muscle inflammation, and immune responses after challenge. The results showed that compared to the saline-treated infected mice, the mannose-treated infected mice had less intestinal adult and muscle worm burdens, mild inflammation of intestine and muscle of infected mice. The levels of specific anti-Trichinella IgG (IgG1/IgG2a), IgA and sIgA in mannose-treated infected mice were obviously inferior to saline-treated infected mice (P < 0.01). Furthermore, the levels of two cytokines (IFN-γ and IL-4) in mannose-treated infected mice were also significantly lower than the saline-treated infected mice (P < 0.01). The protective effect of the mannose against Trichinella infection might be not related to specific antibody and cellular immune responses. The above results demonstrated that mannose could be considered as a novel adjuvant therapeutic agent for anti-Trichinella drugs to block larval invasion at early stage of Trichinella infection.
Collapse
Affiliation(s)
- Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Li Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
17
|
Palomba M, Rughetti A, Mignogna G, Castrignanò T, Rahimi H, Masuelli L, Napoletano C, Pinna V, Giorgi A, Santoro M, Schininà ME, Maras B, Mattiucci S. Proteomic characterization of extracellular vesicles released by third stage larvae of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae). Front Cell Infect Microbiol 2023; 13:1079991. [PMID: 37009516 PMCID: PMC10050594 DOI: 10.3389/fcimb.2023.1079991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionAnisakis pegreffii is a sibling species within the A. simplex (s.l.) complex requiring marine homeothermic (mainly cetaceans) and heterothermic (crustaceans, fish, and cephalopods) organisms to complete its life cycle. It is also a zoonotic species, able to accidentally infect humans (anisakiasis). To investigate the molecular signals involved in this host-parasite interaction and pathogenesis, the proteomic composition of the extracellular vesicles (EVs) released by the third-stage larvae (L3) of A. pegreffii, was characterized.MethodsGenetically identified L3 of A. pegreffii were maintained for 24 h at 37°C and EVs were isolated by serial centrifugation and ultracentrifugation of culture media. Proteomic analysis was performed by Shotgun Analysis.Results and discussionEVs showed spherical shaped structure (size 65-295 nm). Proteomic results were blasted against the A. pegreffii specific transcriptomic database, and 153 unique proteins were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis predicted several proteins belonging to distinct metabolic pathways. The similarity search employing selected parasitic nematodes database revealed that proteins associated with A. pegreffii EVs might be involved in parasite survival and adaptation, as well as in pathogenic processes. Further, a possible link between the A. pegreffii EVs proteins versus those of human and cetaceans’ hosts, were predicted by using HPIDB database. The results, herein described, expand knowledge concerning the proteins possibly implied in the host-parasite interactions between this parasite and its natural and accidental hosts.
Collapse
Affiliation(s)
- Marialetizia Palomba
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, Rome, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Hassan Rahimi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valentina Pinna
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Alessandra Giorgi
- Department of Biochemistry Science, Sapienza University of Rome, Rome, Italy
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, Rome, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Simonetta Mattiucci,
| |
Collapse
|
18
|
Xu YXY, Zhang XZ, Weng MM, Cheng YK, Liu RD, Long SR, Wang ZQ, Cui J. Oral immunization of mice with recombinant Lactobacillus plantarum expressing a Trichinella spiralis galectin induces an immune protection against larval challenge. Parasit Vectors 2022; 15:475. [PMID: 36539832 PMCID: PMC9764493 DOI: 10.1186/s13071-022-05597-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Trichinella spiralis is an important foodborne parasite that presents a severe threat to food safety. The development of an anti-Trichinella vaccine is an important step towards controlling Trichinella infection in food animals and thus ensure meat safety. Trichinella spiralis galectin (Tsgal) is a novel protein that has been identified on the surface of this nematode. Recombinant Tsgal (rTsgal) was found to participate in larval invasion of intestinal epithelium cells (IECs), whereas anti-rTsgal antibodies impeded the invasion. METHODS The rTsgal/pSIP409- pgsA' plasmid was constructed and transferred into Lactobacillus plantarum strain NC8, following which the in vitro biological properties of rTsgal/NC8 were determined. Five groups of mice were orally immunized three times, with a 2-week interval between immunizations, with recombinant NC8-Tsgal, recombinant NC8-Tsgal + α-lactose, empty NC8, α-lactose only or phosphate-buffered saline (PBS), respectively. The vaccinated mice were infected orally with T. spiralis larvae 2 weeks following the last vaccination. Systemic and intestinal local mucosal immune responses and protection were also assessed, as were pathological changes in murine intestine and skeletal muscle. RESULTS rTsgal was expressed on the surface of NC8-Tsgal. Oral immunization of mice with rTsgal vaccine induced specific forms of serum immunoglobulin G (IgG), namely IgG1/IgG2a, as well as IgA and gut mucosal secretion IgA (sIgA). The levels of interferon gamma and interleukin-4 secreted by cells of the spleen, mesenteric lymph nodes, Peyer's patches and intestinal lamina propria were significantly elevated at 2-6 weeks after immunization, and continued to rise following challenge. Immunization of mice with the oral rTsgal vaccine produced a significant immune protection against T. spiralis challenge, as demonstrated by a 57.28% reduction in the intestinal adult worm burden and a 53.30% reduction in muscle larval burden, compared to the PBS control group. Immunization with oral rTsgal vaccine also ameliorated intestinal inflammation, as demonstrated by a distinct reduction in the number of gut epithelial goblet cells and mucin 2 expression level in T. spiralis-infected mice. Oral administration of lactose alone also reduced adult worm and larval burdens and relieved partially inflammation of intestine and muscles. CONCLUSIONS Immunization with oral rTsgal vaccine triggered an obvious gut local mucosal sIgA response and specific systemic Th1/Th2 immune response, as well as an evident protective immunity against T. spiralis challenge. Oral rTsgal vaccine provided a prospective approach for control of T. spiralis infection.
Collapse
Affiliation(s)
- Yang Xiu Yue Xu
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xin Zhuo Zhang
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Min Min Weng
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yong Kang Cheng
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shao Rong Long
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- grid.207374.50000 0001 2189 3846Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
19
|
Bai SJ, Han LL, Liu RD, Long SR, Zhang X, Cui J, Wang ZQ. Oral vaccination of mice with attenuated Salmonella encoding Trichinella spiralis calreticulin and serine protease 1.1 confers protective immunity in BALB/c mice. PLoS Negl Trop Dis 2022; 16:e0010929. [PMID: 36445875 PMCID: PMC9707759 DOI: 10.1371/journal.pntd.0010929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Trichinella spiralis is a foodborne parasitic nematode which is a serious risk to meat safety. Development of anti-Trichinella vaccine is needed to control Trichinella infection in food animals. In this study, two novel T. spiralis genes (calreticulin and serine protease 1.1) in combination were used to construct oral DNA vaccines, and their induced protective immunity was evaluated in a murine model. METHODOLOGY/PRINCIPAL FINDINGS TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA were transformed into attenuated Salmonella typhimurium ΔcyaSL1344. Oral vaccination of mice with TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA vaccines elicited a gut local mucosal sIgA response and systemic Th1/Th2 mixed response. Oral vaccination with TsCRT+TsSP1.1 induced obviously higher level of serum specific antibodies, mucosal sIgA and cellular immune response than either of single TsCRT or TsSP1.1 DNA vaccination. Oral vaccination of mice with TsCRT+TsSP1.1 exhibited a 53.4% reduction of enteral adult worms and a 46.05% reduction of muscle larvae, conferred a higher immune protection than either of individual TsCRT (44.28 and 42.46%) or TsSP1.1 DNA vaccine (35.43 and 29.29%) alone. Oral vaccination with TsCRT+TsSP1.1, TsCRT and TsSP1.1 also obviously ameliorated inflammation of intestinal mucosa and skeletal muscles of vaccinated mice after challenge. CONCLUSIONS TsCRT and TsSP1.1 might be regarded the novel potential targets for anti-Trichinella vaccines. Attenuated Salmonella-delivered DNA vaccine provided a prospective approach to control T. spiralis infection in food animals.
Collapse
Affiliation(s)
- Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| |
Collapse
|
20
|
Yue WW, Yan SW, Zhang R, Cheng YK, Liu RD, Long SR, Zhang X, Wang ZQ, Cui J. Characterization of a novel pyruvate kinase from Trichinella spiralis and its participation in sugar metabolism, larval molting and development. PLoS Negl Trop Dis 2022; 16:e0010881. [PMID: 36315477 PMCID: PMC9621426 DOI: 10.1371/journal.pntd.0010881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Background Pyruvate kinase widely exists in many parasites and plays an important role in the energy production for the parasites. Pyruvate kinase might be a potential drug target for killing the parasites. The aim of the present study was to evaluate the biological characteristics and roles of T. spiralis pyruvate kinase M (TsPKM) in sugar metabolism, larval molting and development of T. spiralis. Methodology/Principal findings TsPKM has two functional domains of pyruvate kinase and the tertiary structure of TsPKM is tetramer which has the enzyme active site constituted by 8 amino-acid residues (Arg71, Asn73, Asp110, Phe241, Lys267, Glu269, Asp293 and Thr325). Recombinant TsPKM (rTsPKM) was expressed and purified. The rTsPKM had good immunogenicity. RT-PCR and Western blot showed that TsPKM was transcribed and expressed at various developmental stages in T. spiralis lifecycle. Immunofluorescence test showed that TsPKM was principally located in the cuticle, muscle, stichosome, intestine and the intrauterine embryos of female adults. rTsPKM catalyzed the reaction of phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) to produce pyruvic acid and adenosine triphosphate (ATP). TsPKM played an important role in the metabolism and energy production of T. spiralis. After silencing of TsPKM gene by specific dsRNA-TsPKM2, protein expression and enzyme activity of TsPKM decreased by 50.91 and 26.06%, respectively. After treatment with RNAi, natural TsPKM enzyme activity, larval molting, sugar metabolism, growth and development of T. spiralis were significantly reduced. Conclusions TsPKM participates in the larval molting, sugar metabolism, growth and development of T. spiralis and it might be a candidate target of therapeutic drug of trichinellosis. Pyruvate kinases belong to transferases and can transfer the high-energy phosphate bond of phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP) to produce pyruvic acid and adenosine triphosphate (ATP). Pyruvate kinases play a significant biological role in the parasite survival in hosts. Our results revealed that TsPKM was expressed at various T. spiralis developmental stages, and principally located in the cuticle, stichosome, intestine and the intrauterine embryos of female adults. rTsPKM catalyzed the reaction of phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) to produce pyruvic acid and adenosine triphosphate (ATP). TsPKM played an important role in the metabolism and energy production of T. spiralis. Protein expression and enzyme activity of TsPKM were decreased by 50.91 and 26.06% respectively through silencing of TsPKM gene using specific dsRNA-TsPKM2. After treatment with RNAi and inhibitor tannin, natural TsPKM activity, larval molting, sugar metabolism, growth and development of T. spiralis were obviously inhibited. Our results showed that TsPKM participates in T. spiralis molting, sugar metabolism and development, and it might be a candidate target for anti-Trichinella drugs.
Collapse
Affiliation(s)
- Wen Wen Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yong Kang Cheng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Republic of China,* E-mail: (ZQW); (JC)
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Republic of China,* E-mail: (ZQW); (JC)
| |
Collapse
|
21
|
Hao HN, Song YY, Ma KN, Wang BN, Long SR, Liu RD, Zhang X, Wang ZQ, Cui J. A novel C-type lectin from Trichinella spiralis mediates larval invasion of host intestinal epithelial cells. Vet Res 2022; 53:85. [PMID: 36258242 PMCID: PMC9580147 DOI: 10.1186/s13567-022-01104-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to investigate the characteristics of a novel type C lectin from Trichinella spiralis (TsCTL) and its role in larval invasion of intestinal epithelial cells (IECs). TsCTL has a carbohydrate recognition domain (CRD) of C-type lectin. The full-length TsCTL cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of qPCR, Western blotting and immunofluorescence assays (IFAs) showed that TsCTL was a surface and secretory protein that was highly expressed at the T. spiralis intestinal infective larva (IIL) stages and primarily located at the cuticle, stichosome and embryos of the parasite. rTsCTL could specifically bind with IECs, and the binding site was localized in the IEC nucleus and cytoplasm. The IFA results showed that natural TsCTL was secreted and bound to the enteral epithelium at the intestinal stage of T. spiralis infection. The rTsCTL had a haemagglutinating effect on murine erythrocytes, while mannose was able to inhibit the rTsCTL agglutinating effect for mouse erythrocytes. rTsCTL accelerated larval intrusion into the IECs, whereas anti-rTsCTL antibodies and mannose significantly impeded larval intrusion in a dose-dependent manner. The results indicated that TsCTL specifically binds to IECs and promotes larval invasion of intestinal epithelium, and it might be a potential target of vaccines against T. spiralis enteral stages.
Collapse
Affiliation(s)
- Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Kai Ning Ma
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
22
|
Zeng J, Zhang R, Ning Ma K, Han LL, Yan SW, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of a novel aminopeptidase P from Trichinella spiralis and its participation in the intrusion of intestinal epithelial cells. Exp Parasitol 2022; 242:108376. [PMID: 36089006 DOI: 10.1016/j.exppara.2022.108376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Aminopeptidases P are metalloproteases belonging to the M24 peptidase family. It specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids, and plays an important role in the nutrition, metabolism and growth of parasites. The aim of this study was to characterize a novel Trichinella spiralis aminopeptidase P (TsAPP) and to investigate its functions in the invasion of T. spiralis. TsAPP contained two domains of creatinase (a creatinase N and creatinase N2) and a domain of peptidase M24C and APP. The complete TsAPP sequence was cloned and expressed in Escherichia coli BL21 cells. The recombinantly produced TsAPP was used to raise polyclonal antibodies that were subsequently used to detect the expression of the protein in the different life stages of T. spiralis. TsAPP was expressed in various T. spiralis stages. TsAPP was primarily localized in the cuticle, stichosome and intrauterine embryos of this nematode. rTsAPP has an enzymatic activity of a natural aminopeptidase P to hydrolyze the substrate H-Ala-Pro-OH. rTsAPP promoted the larval intrusion of intestinal epithelium cells (IECs). The results showed that TsAPP is involved in the T. spiralis intrusion of IECs and it might be a potential candidate vaccine target against Trichinella infection.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kai Ning Ma
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
23
|
Ilic N, Bojic-Trbojevic Z, Lundström-Stadelmann B, Cujic D, Mitic I, Gruden-Movsesijan A. Immunomodulatory components of Trichinella spiralis excretory-secretory products with lactose-binding specificity. EXCLI JOURNAL 2022; 21:793-813. [PMID: 35949491 PMCID: PMC9360477 DOI: 10.17179/excli2022-4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
The immunomodulatory potential of Trichinella spiralis muscle larvae excretory-secretory products (ES L1) has been well documented in vitro on dendritic cells (DCs) and in animal models of autoimmune diseases. ES L1 products possess the potential to induce tolerogenic DCs and consequently trigger regulatory mechanisms that maintain immune homeostasis. The use of ES L1 as a potential treatment for various inflammatory disorders proved to be beneficial in animal models, although the precise immunomodulatory factors have not yet been identified. This study aimed at the isolation and characterization of ES L1 components that possess galectin family member properties. Galectin-1-like proteins (TsGal-1-like) were isolated from ES L1 based on the assumption of the existence of a lactose-specific carbohydrate-recognition domain and were recognized by anti-galectin-1 antibodies in Western blot. This TsGal-1-like isolate, similar to galectin-1, induced DCs with tolerogenic properties and hence, the capacity to polarize T cell response towards a regulatory type. This was reflected by a significantly increased percentage of CD4+CD25+Foxp3+ regulatory T cells and significantly increased expression of IL-10 and TGF-β within this cell population. Proteomic analysis of TsGal-1-like isolate by mass spectrometry identified nineteen proteins, seven with annotated function after blast analysis against a database for T. spiralis and the UniProt database. To our surprise, none of the identified proteins possesses homology with known galectin family members. Nevertheless, the isolated components of ES L1 possess certain galectin-1 properties, such as specific lactose binding and the potential to elicit a regulatory immune response, so it would be worth further investigating the structure of sugar binding within isolated proteins and its biological significance.
Collapse
Affiliation(s)
- Natasa Ilic
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia
| | - Zanka Bojic-Trbojevic
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Danica Cujic
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia
| | - Ivana Mitic
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia,*To whom correspondence should be addressed: Alisa Gruden-Movsesijan, University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia; Tel.: +381 641510389, E-mail:
| |
Collapse
|
24
|
Song YY, Lu QQ, Han LL, Yan SW, Zhang XZ, Liu RD, Long SR, Cui J, Wang ZQ. Proteases secreted by Trichinella spiralis intestinal infective larvae damage the junctions of the intestinal epithelial cell monolayer and mediate larval invasion. Vet Res 2022; 53:19. [PMID: 35255974 PMCID: PMC8900307 DOI: 10.1186/s13567-022-01032-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism of larval invasion of the gut epithelium is not fully elucidated. The aim of this study was to investigate whether the excretory/secretory proteins (ESPs) of T. spiralis intestinal infective larvae (IIL) degrade tight junction (TJ) proteins, to assess the main ESP proteases hydrolysing TJ proteins using various enzyme inhibitors and to define the key invasive factors in IIL invasion of the gut epithelium. The results of immunofluorescence, Western blot and Transwell assays showed that serine proteases and cysteine proteases in the ESPs played main roles in hydrolysing occludin, claudin-1 and E-cad and upregulating claudin-2 expression. Challenge infection results showed that IIL expulsion from the gut at 12 hpi was significantly higher in mice which were infected with muscle larvae (ML) treated with a single inhibitor (PMSF, E-64, 1,10-Phe or pepstatin) or various mixtures containing PMSF and E-64 than in mice in the PBS group or the groups treated with an inhibitor mixture not containing PMSF and E-64 (P < 0.0001). At 6 days post-infection, mice which were infected with ML treated with PMSF, E-64, 1,10-Phe or pepstatin exhibited 56.30, 64.91, 26.42 and 31.85% reductions in intestinal adult worms compared to mice in the PBS group (P < 0.0001). The results indicate that serine proteases and cysteine proteases play key roles in T. spiralis IIL invasion, growth and survival in the host and that they may be main candidate target molecules for vaccines against larval invasion and development.
Collapse
Affiliation(s)
- Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Qi Lu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
Zhang XZ, Yue WW, Bai SJ, Hao HN, Song YY, Long SR, Dan Liu R, Cui J, Wang ZQ. Oral immunization with attenuated Salmonella encoding an elastase elicits protective immunity against Trichinella spiralis infection. Acta Trop 2022; 226:106263. [PMID: 34879232 DOI: 10.1016/j.actatropica.2021.106263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Elastase belongs to the serine protease family. Previous studies showed that Trichinella spiralis elastase (TsE) was highly expressed in intestinal infective larvae (IIL). Recombinant TsE (rTsE) promoted the larval intrusion of enteral epithelium cells (IECs), whereas anti-rTsE antibodies and siRNA impeded larval intrusion. Subcutaneous vaccination of mice with rTsE showed a partial protective immunity, suggesting that TsE might be a promising vaccine target against Trichinella infection. In this study, complete TsE cDNA sequence was cloned into pcDNA3.1, and the rTsE DNA was transformed into attenuated S. typhimurium strain ΔcyaSL1344. Oral vaccination of mice with TsE DNA elicited a systemic Th1/Th2/Treg mixed immune response and gut local mucosal sIgA response. Immunized mice exhibited a significant immune protection against T. spiralis larval challenge, as demonstrated by a 52.48% reduction of enteral adult worms and a 69.43% reduction of muscle larvae. The protection might be related to the TsE-induced production of intestinal mucus, specific anti-TsE sIgA and IgG, and secretion of IFN-γ, IL-2, IL-4 and IL-10, which protected gut mucosa from larval intrusion, suppressed worm development and impeded female reproduction. The results demonstrated that attenuated Salmonella-delivered TsE DNA vaccine provided a prospective strategy for the control of Trichinella infection in food animals.
Collapse
|
26
|
Vaccination of mice with recombinant novel aminopeptidase P and cathepsin X alone or in combination induces protective immunity against Trichinella spiralis infection. Acta Trop 2021; 224:106125. [PMID: 34508714 DOI: 10.1016/j.actatropica.2021.106125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Trichinella spiralis is a major foodborne zoonotic parasitic nematode which has a serious threat to meat food safety. Development of anti-Trichinella vaccine is requisite for control and elimination of Trichinella infection in food animals to ensure meat safety. Aminopeptidase P (TsAPP) and cathepsin X (TsCX) are two novel proteins identified in T. spiralis intestinal infectious L1 larvae (IIL1). The objective of this study was to investigate the protective immunity elicited by immunization with TsAPP and TsCX alone and TsAPP-TsCX in combination in a mouse model. The results demonstrate that subcutaneous vaccination of mice with rTsAPP, rTsCX or rTsAPP + rTsCX elicited a systemic humoral response (high levels of serum IgG, IgG1/IgG2a and IgA) and significant local gut mucosal sIgA responses. The vaccination with rTsAPP, rTsCX or rTsAPP + rTsCX also induced a systemic and local mixed Th1/Th2 response, as demonstrated by clear elevation levels of IFN-γ and IL-4 in vaccinated mice. Vaccination of mice with rTsAPP+rTsCX exhibited a 63.99 % reduction of intestinal adult worms and 68.50% reduction of muscle larva burdens, alleviated inflammation of intestinal mucosal and muscle tissues, and provided a higher immune protection than that of vaccination with rTsAPP or rTsCX alone. The results demonstrated that TsAPP and TsCX might be considered novel candidate target molecules for anti-Trichinella vaccines.
Collapse
|
27
|
Ren HN, Bai SJ, Wang Z, Han LL, Yan SW, Jiang P, Zhang X, Wang ZQ, Cui J. A metalloproteinase Tsdpy31 from Trichinella spiralis participates in larval molting and development. Int J Biol Macromol 2021; 192:883-894. [PMID: 34656542 DOI: 10.1016/j.ijbiomac.2021.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/20/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023]
Abstract
Trichinellosis is a serious food-borne zoonotic parasitic disease with global distribution, causing serious harm to public health and food safety. Molting is prerequisite for intestinal larval development in the life cycle of T. spiralis. Metalloproteinases play an important role in the molting process of T. spiralis intestinal infective larvae (IIL). In this study, the metalloproteinase Tsdpy31 was cloned, expressed and characterized. The results revealed that the Tsdpy31 was expressed at various T. spiralis stages and it was principally located in cuticle, hypodermis and embryos of the nematode. Recombinant Tsdpy31 (rTsdpy31) had the catalytic activity of natural metalloproteinase. Silencing of Tsdpy31 increased the permeability of larval new cuticle. When the mice were orally challenged with dsRNA treated- muscle larvae, the burden of intestinal adult and muscle larvae in Tsdpy31 dsRNA treatment group was significantly reduced, compared with the control green fluorescent protein (GFP) dsRNA and PBS groups (P < 0.05). Tsdpy31 may play a major role in the new cuticle synthesis and old cuticle shedding. Tsdpy31 also participates in T. spiralis embryonic development. We conclude that Tsdpy31 could be a candidate vaccine target molecule against intestinal T. spiralis ecdysis and development.
Collapse
Affiliation(s)
- Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhen Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
28
|
Bai Y, Ma KN, Sun XY, Dan Liu R, Long SR, Jiang P, Wang ZQ, Cui J. Molecular characterization of a novel cathepsin L from Trichinella spiralis and its participation in invasion, development and reproduction. Acta Trop 2021; 224:106112. [PMID: 34453915 DOI: 10.1016/j.actatropica.2021.106112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Cathepsin L is one member of cysteine protease superfamily and widely distributed in parasitic organisms, it plays the important roles in worm invasion, migration, nutrient intake, molting and immune evasion. The objective of this study was to investigate the biological characteristics of a novel cathepsin L from Trichinella spiralis (TsCL) and its role in larval invasion, development and reproduction. TsCL has a functional domain of C1 peptidase, which belongs to cathepsin L family. The complete TsCL sequence was cloned and expressed in Escherichia coli BL21. The rTsCL has good immunogenicity. RT-PCR and Western blotting analysis showed that TsCL was transcribed and expressed at different T. spiralis phases (e.g., muscle larvae, intestinal infectious larvae, adult worms and newborn larvae). Immunofluorescence test revealed that TsCL was principally localized in the cuticle, stichosome, midgut and female intrauterine embryos of the nematode. rTsCL has the capacity to specially bind with intestinal epithelial cells (IECs) and the binding sites was located in the cytoplasm. rTsCL promoted larval penetration into IEC, while anti-rTsCL antibodies inhibited the invasion. The silencing of TsCL gene by specific dsRNA significantly reduced the TsCL expression and enzyme activity, and also reduced larval invasive ability, development and female reproduction. The results showed that TsCL is an obligatory protease in T. spiralis lifecycle. TsCL participates in worm invasion, development and reproduction, and may be regarded as a potential candidate vaccine/drug target against T. spiralis infection.
Collapse
|
29
|
Zhuo TX, Wang Z, Song YY, Yan SW, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of a Novel Glutamine Synthetase From Trichinella spiralis and Its Participation in Larval Acid Resistance, Molting, and Development. Front Cell Dev Biol 2021; 9:729402. [PMID: 34616735 PMCID: PMC8488193 DOI: 10.3389/fcell.2021.729402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Trichinella spiralis is a major foodborne parasite worldwide. After the encapsulated muscle larvae (ML) in meat are ingested, the ML are liberated in the stomach of the host and activated into intestinal infectious larvae (IIL), which develop into adult worm after molting four times. A novel glutamine synthetase (TsGS) was identified from T. spiralis IIL at 10 h post-infection, but its biological role in T. spiralis life cycle is not clear. The aim of this study was to investigate the biological characteristics of TsGS and its functions in larval acid resistance, molting, and development. TsGS has a glutamine synthetase (GS) catalytic domain. Complete TsGS sequence was cloned and expressed in Escherichia coli BL21. rTsGS has good immunogenicity. qPCR and Western blotting showed that TsGS was highly expressed at IIL stage, and immunofluorescence revealed that TsGS was principally localized at the cuticle and intrauterine embryos of this nematode. rTsGS has enzymatic activity of natural GS to hydrolyze the substrate (Glu, ATP, and NH4+). Silencing of TsGS gene significantly reduced the IIL survival at pH 2.5, decreased the IIL burden, and impeded larval molting and development. The results demonstrated that TsGS participates in T. spiralis larval acid resistance, molting and development, and it might be a candidate vaccine target against Trichinella molting and development.
Collapse
Affiliation(s)
- Tong Xu Zhuo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhen Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Teladorsagia Circumcincta Galectin-Mucosal Interactome in Sheep. Vet Sci 2021; 8:vetsci8100216. [PMID: 34679046 PMCID: PMC8540209 DOI: 10.3390/vetsci8100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Teladorsagia circumcincta is the most important gastrointestinal parasite in the livestock industry in temperate regions around the world, causing great economic losses. The infective third-stage larvae (L3) of Teladorsagia circumcincta secrete a large number of excretory-secretory (E/S) molecules, some of which are likely to play critical roles in modulating the host immune response. One of the most abundant E/S molecules is a protein termed Tci-gal-1, which has similarity to mammalian galectins. Galectins are a family of carbohydrate-binding molecules, with characteristic domain organisation and affinity for β-galactosids that mediate a variety of important cellular functions including inflammation and immune responses. To understand the role of Tci-gal-1 at the host–parasite interface, we used a proteomics pull-down approach to identify Tc-gal-1 interacting proteins from sheep abomasal scrapes and whole tissue. A total of 135 unique proteins were identified from whole abomasal tissue samples, while 89 proteins were isolated from abomasal scrape samples. Of these proteins, 63 were present in both samples. Many of the host proteins identified, such as trefoil factors and mucin-like proteins, play critical roles in the host response. The identification of Tci-gal-1 binding partners provides new insights on host–parasite interactions and could lead to the development of new control strategies.
Collapse
|
31
|
Wang N, Wang JY, Pan TX, Jiang YL, Huang HB, Yang WT, Shi CW, Wang JZ, Wang D, Zhao DD, Sun LM, Yang GL, Wang CF. Oral vaccination with attenuated Salmonella encoding the Trichinella spiralis 43-kDa protein elicits protective immunity in BALB/c mice. Acta Trop 2021; 222:106071. [PMID: 34331898 DOI: 10.1016/j.actatropica.2021.106071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
A vaccine against Trichinella spiralis infection is urgently needed to interrupt its transmission from domestic animals to humans. However, no vaccine against T. spiralis is currently available. Our previous study demonstrated that the use of the 43-kDa glycoprotein present in excretory-secretory (ES) proteins of muscle larvae (ML) as an intramuscular DNA vaccine led to a 52.1% protection rate against T. spiralis infection. Attenuated Salmonella strains have the advantage of eliciting mucosal immunity, which is important for controlling T. spiralis infections at the intestinal stage and can be provided as vaccines via oral or intranasal routes. Therefore, in this study, complete 43-kDa glycoprotein (Ts43) sequences of T. spiralis were cloned into the vector pYA3681, and the recombinant plasmid pYA3681-Ts43 was transformed into the attenuated Salmonella typhimurium strain χ11802. The results showed that oral vaccination of mice with attenuated Salmonella carrying the recombinant plasmid pYA3681-Ts43 induced an evident elevation of the local intestinal mucosal sIgA and serum IgG antibody responses. The flow cytometry results showed that the percentages of CD4+ T cells and secreted IFN-γ, IL-4, and IL-17A in CD4+ T cells were significantly increased in the spleen and mesenteric lymph node (MLN) lymphocytes of the vaccinated groups. In addition, increased levels of the IFN-γ, IL-4, and IL-17A cytokines were also observed in the serum of the immunized groups. The above immune response results in the immunized groups demonstrated that protective immunity was elicited in this study. Finally, vaccinated mice demonstrated a significant 45.9% reduction in ML burden after infection with T. spiralis. This study demonstrated that oral vaccination with Ts43 delivered by attenuated Salmonella elicited local and systemic concurrent Th1/Th2/Th17 immune responses and provided partial protection against T. spiralis infection in BALB/c mice. This is a prospective strategy for the prevention and control of trichinellosis.
Collapse
|
32
|
Yan SW, Hu YY, Song YY, Ren HN, Shen JM, Liu RD, Long SR, Jiang P, Cui J, Wang ZQ. Characterization of a Trichinella spiralis cathepsin X and its promotion for the larval invasion of mouse intestinal epithelial cells. Vet Parasitol 2021; 297:109160. [PMID: 32522393 DOI: 10.1016/j.vetpar.2020.109160] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The aim of this study was to ascertain the characteristics of a Trichinella spiralis cathepsin X (TsCX) and its role on larval invasion of intestinal epithelial cells (IECs). The full-length of TsCX cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of RT-PCR, IFA and Western blot revealed that TsCX was expressed at T. spiralis muscle larvae (ML), intestinal infective larvae, adult worm and newborn larvae, and it was located in whole worm section. The results of Far western and confocal microscopy demonstrated that there was a specific binding of rTsCX and IEC, and the binding site was located within the IEC cytoplasm. rTsCX promoted T. spiralis larval invasion of mouse IECs while anti-rTsCX antibody inhibited larval invasion into the IECs. Silencing TsCX by specific siRNA reduced the TsCX expression and larval invasive capacity. These results indicated that TsCX specifically binds to IECs and promotes larval invasion of intestinal epithelia, and it might be a potential target of vaccines against enteral stages of T. spiralis.
Collapse
Affiliation(s)
- Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Yuan Yuan Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jia Ming Shen
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
33
|
Yang DQ, Liu F, Bai Y, Zeng J, Hao HN, Yue X, Hu CX, Long SR, Liu RD, Wang ZQ, Cui J. Functional characterization of a glutathione S-transferase in Trichinella spiralis invasion, development and reproduction. Vet Parasitol 2021; 297:109128. [PMID: 32402492 DOI: 10.1016/j.vetpar.2020.109128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to determine the biological function of a Trichinella spiralis glutathione S-transferase (TsGST) in larval invasion and development by RNA interference (RNAi). The TsGST-specific siRNA 366 was transfected into T. spiralis muscle larvae (ML) via electroporation. At 1 day following transfection, the larval TsGST mRNA and protein expressions were reduced by 40.09 and 65.22 % (P < 0.05), respectively. The enzymatic activity of natural TsGST in siRNA-transfected ML was also suppressed by 45% compared with PBS group (P < 0.05). Silencing of the TsGST significantly inhibited the ability of larvae to invade intestinal epithelium cells (IECs) and isolated intestine. After challenge with siRNA-366-treated ML, the infected mice exhibited a 62.82% reduction of intestinal adult worms, and 65.03 % reduction of muscle larvae compared to the PBS group. Besides, the length of adults, newborn larvae and muscle larvae was significantly shorter than that of control siRNA and PBS group; the female fecundity of siRNA 366 group was lower than those of control siRNA and PBS group (P < 0.05). The results revealed that the specific RNAi significantly reduced the expression and enzymatic activity of TsGST, inhibited the larval invasive and developmental capacity, and impaired the female fecundity. The results further confirmed that TsGST plays a crucial role in the T. spiralis life cycle and it might be a potential molecular target for anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Da Qi Yang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ying Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
34
|
Hu YY, Zhang R, Yan SW, Yue WW, Zhang JH, Liu RD, Long SR, Cui J, Wang ZQ. Characterization of a novel cysteine protease in Trichinella spiralis and its role in larval intrusion, development and fecundity. Vet Res 2021; 52:113. [PMID: 34446106 PMCID: PMC8390047 DOI: 10.1186/s13567-021-00983-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate the biological properties of a novel gut-specific cysteine protease in Trichinella spiralis (TsGSCP) and its role in larval intrusion, development and fecundity. TsGSCP has a functional C1 peptidase domain; C1 peptidase belongs to cathepsin B family. The TsGSCP gene cloned and expressed in Escherichia coli BL21 showed intensive immunogenicity. qPCR and Western blotting revealed that TsGSCP mRNA and protein were expressed at various T. spiralis stages, but their expression levels in intestinal infectious larvae (IIL) were clearly higher than those in muscle larvae (ML), adult worms (AWs) and new-born larvae (NBL). Indirect immunofluorescence (IIF) analysis showed that TsGSCP was primarily located at the outer cuticle and the intrauterine embryos of this parasite. rTsGSCP showed the ability to specifically bind with IECs, and the binding site is within the IEC cytoplasm. rTsGSCP accelerated larval intrusion into host intestinal epithelial cells (IECs), whereas anti-rTsGSCP antibodies suppressed larval intrusion; the acceleration and suppression was induced by rTsGSCP and anti-rTsGSCP antibodies, respectively, in a dose-dependent manner. When ML were transfected with TsGSCP-specific dsRNA, TsGSCP expression and enzymatic activity were reduced by 46.82 and 37.39%, respectively, and the capacity of the larvae to intrude into IECs was also obviously impeded. Intestinal AW burden and adult female length and fecundity were significantly decreased in the group of mice infected with dsRNA-transfected ML compared to the control dsRNA and PBS groups. The results showed that TsGSCP plays a principal role in gut intrusion, worm development and fecundity in the T. spiralis lifecycle and might be a candidate target for vaccine development against Trichinella intrusion and infection.
Collapse
Affiliation(s)
- Yuan Yuan Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Wen Wen Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jia Hang Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
35
|
Yan J, Huang S, Lu F. Galectin-Receptor Interactions Regulates Cardiac Pathology Caused by Trichinella spiralis Infection. Front Immunol 2021; 12:639260. [PMID: 34093526 PMCID: PMC8175896 DOI: 10.3389/fimmu.2021.639260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The parasitic nematode Trichinella spiralis causes trichinellosis, a serious food-borne parasitic zoonosis worldwide. Infection with T. spiralis may also cause myocarditis. In the present study, we used mouse models to assess the impact of blockage of galectin-receptor interactions by α-lactose on cardiac immunopathology during acute T. spiralis experimental infection. Our data demonstrated that, after T. spiralis infection, blockage of galectin-receptor interactions resulted in cardiac dysfunction detected by transthoracic conventional echocardiography, and increased serum Gal-3 level, a biomarker of myocardial damage. In addition, there were increased eosinophil number in peripheral blood, and increased eosinophil infiltration in the heart and spleen tissues accompanied with increased mRNA levels of eosinophil granule proteins (including eosinophil cationic protein (ECP) and eosinophil peroxidase (EPO)) and IL-5 in these organs; increased cardiac fibrosis accompanied with increased Gal-3 and collagen 1 expressions in the hearts of mice with blockage of galectin-receptor interactions after T. spiralis infection. Correlation analysis showed that significant positive correlations existed between the mRNA levels of Gal-3 and ECP/EPO/eosinophil major basic protein/IL-5/CCL11/CCR3/α-SMA/collagen 1 in the hearts of both T. spiralis-infected mice and T. spiralis-infected mice with blockage of galectin-receptor interactions. Our data suggest that galectin-receptor interactions play a pivotal role during acute T. spiralis infection, and lack of galectin-receptor interactions upregulates Gal-3 which, in turn, leads to elevated heart eosinophil recruitment, exacerbated heart pathology and fibrosis, and heart functional damage.
Collapse
Affiliation(s)
- Jinghai Yan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Donskow-Łysoniewska K, Maruszewska-Cheruiyot M, Stear M. The interaction of host and nematode galectins influences the outcome of gastrointestinal nematode infections. Parasitology 2021; 148:648-654. [PMID: 33461629 PMCID: PMC11010190 DOI: 10.1017/s003118202100007x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Galectins are a family of proteins that bind β-galactosides and play key roles in a variety of cellular processes including host defence. They have been well studied in hosts but less so in gastrointestinal nematodes. Both host and parasite galectins are present in the gastrointestinal tract following infection. Parasite galectins can both bind antibody, especially highly glycosylated IgE and be bound by antibody. Parasite galectins may act as molecular sponges that soak up antibody. Host galectins promote mast cell degranulation while parasite galectins inhibit degranulation. Host and parasite galectins can also bind mucins and influence mucus viscosity. As the protective response against gastrointestinal nematode infection is partly dependent on IgE mediated mast cell degranulation and mucus, the interactions between host and parasite galectins play key roles in determining the outcome of infection.
Collapse
Affiliation(s)
- Katarzyna Donskow-Łysoniewska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163Warsaw, Poland
| | - Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163Warsaw, Poland
| | - Michael Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora, VIC3086, Australia
| |
Collapse
|
37
|
Li C, Bai X, Liu X, Zhang Y, Liu L, Zhang L, Xu F, Yang Y, Liu M. Disruption of Epithelial Barrier of Caco-2 Cell Monolayers by Excretory Secretory Products of Trichinella spiralis Might Be Related to Serine Protease. Front Microbiol 2021; 12:634185. [PMID: 33815318 PMCID: PMC8013981 DOI: 10.3389/fmicb.2021.634185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
The physical barrier is composed of epithelial cells which are joined together through intercellular connections. It serves to prevent pathogenic microorganisms from departing the intestinal lumen to invade the host. The excretory secretory (ES) products of Trichinella spiralis are critical for invasion. However, whether ES products of T. spiralis can act on the intestinal barrier is still unknown. In this study, the role of ES products of T. spiralis muscle larvae (Ts-ML-ES) in host invasion was studied by establishing an in vitro cell monolayers model. Barrier integrity analysis by a transmembrane resistance test and a paracellular permeability assay revealed that the Ts-ML-ES was able to destroy barrier function. It occurred via a reduction in the expression of tight junction (TJ) proteins, which was induced by serine protease. Furthermore, Western bolt analysis indicated that Ts-ML-ES reduced the expression of TJ proteins via the MAPK signaling pathway. Based on these data, we conclude that serine protease are likely the main factors from Ts-ML-ES that affect host intestinal barrier integrity by reducing the expression of TJs via the P38-MAPK signaling pathway. Serine protease in Ts-ML-ES might be a key invasion factor in T. spiralis.
Collapse
Affiliation(s)
- Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lixiao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Fengyan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
38
|
Hu CX, Zeng J, Hao HN, Xu YXY, Liu F, Liu RD, Long SR, Wang ZQ, Cui J. Biological properties and roles of a Trichinella spiralis inorganic pyrophosphatase in molting and developmental process of intestinal larval stages. Vet Res 2021; 52:6. [PMID: 33413587 PMCID: PMC7791673 DOI: 10.1186/s13567-020-00877-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Inorganic pyrophosphatase (PPase) participates in energy cycle and plays a vital role in hydrolysis of inorganic pyrophosphate (PPi) into inorganic phosphate (Pi). The aim of this study was to investigate the biological properties of a Trichinella spiralis PPase (TsPPase) and its role in larval molting and developmental process. The predicted TsPPase consisted of 367 amino acids with a molecular mass of 41.48 kDa and a pI of 5.76. Amino acid sequence alignment and phylogenetic analysis showed that the TsPPase gene encodes a functional family I soluble PPase with the same characteristics as prokaryotic, plant and animal/fungal soluble PPase. The rTsPPase was expressed and purified, it has the activity to catalyze the hydrolysis of PPi to Pi, and the activity was dependent on Mg2+, pH and temperature. The enzymatic activity of rTsPPase was significantly inhibited after its metal binding sites mutation. TsPPase was transcribed and expressed in all T. spiralis phases, especially in muscle larvae (ML) and intestinal infective larvae (IIL). Immunofluorescence assay (IFA) revealed that TsPPase was mainly located in cuticle and stichosome. When the ML and IIL were treated with TsPPase-specific siRNA-279, TsPPase expression and enzymatic activity were obviously reduced, the larval molting and development were also impeded. Intestinal IIL as well as AW burden, IIL molting rates from mice infected with siRNA-treated ML were obviously suppressed. The results indicated that rTsPPase possesses the enzymatic activity of native inorganic pyrophosphatase, and TsPPase plays an important role in development and molting process of intestinal T. spiralis larval stages.
Collapse
Affiliation(s)
- Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Xiu Yue Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
39
|
Wu Z, Nagano I, Khueangchiangkhwang S, Maekawa Y. Proteomics of Trichinella. TRICHINELLA AND TRICHINELLOSIS 2021:103-183. [DOI: 10.1016/b978-0-12-821209-7.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Chen Y, Shao S, Huang J, Gu Y, Cheng Y, Zhu X. Therapeutic Efficacy of a Trichinella Spiralis Paramyosin-Derived Peptide Modified With a Membrane-Targeting Signal in Mice With Antigen-Induced Arthritis. Front Microbiol 2020; 11:608380. [PMID: 33424810 PMCID: PMC7785802 DOI: 10.3389/fmicb.2020.608380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Helminth-derived molecules have the ability to modulate the host immune system. Our previous study identified a tetradecapeptide derived from Trichinella spiralis paramyosin (Ts-pmy) that could bind to human complement component C9 to inhibit its polymerization, making the peptide a candidate therapeutic agent for complement-related immune disorders. Here, the peptide underwent an N-terminal modification with a membrane-targeting signal (a unique myristoylated peptide) to improve its therapeutic efficacy. We found that the modified peptide had a binding affinity to human C9 that was similar to that of the original peptide, as confirmed by microscale thermophoresis assays. The binding of the modified peptide to human C9 resulted in the inhibition of C9-related complement activation, as reflected by the decreased Zn2+-induced C9 polymerization and the decreased C9-dependent lysis of rabbit erythrocytes. In addition, the original and modified peptides could both bind to recombinant mouse C9 and inhibit the C9-dependent lysis of rabbit erythrocytes in normal mouse serum (NMS), which meant that the peptides could cross the species barrier to inhibit complement activity in mice. Further in vitro and in vivo analyses confirmed that the peptide modification increased the retention time of the peptide. Furthermore, intraarticular injection of the modified peptide markedly ameliorated knee swelling and joint damage in mice with antigen-induced arthritis (AIA), as assessed histologically. These results suggested that the Ts-pmy-derived peptide modified with a membrane-targeting signal was a reasonable candidate therapeutic agent for membrane attack complex (MAC)-related diseases [such as rheumatoid arthritis (RA)] and the study presented a new modification method to improve the potential therapeutic effects of the peptide.
Collapse
Affiliation(s)
- Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Xu J, Yue WW, Xu YXY, Hao HN, Liu RD, Long SR, Wang ZQ, Cui J. Molecular characterization of a novel aspartyl protease-1 from Trichinella spiralis. Res Vet Sci 2020; 134:1-11. [PMID: 33276221 DOI: 10.1016/j.rvsc.2020.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/28/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
The aim of this study was to characterize the biological properties of a novel aspartic protease-1 from Trichinella spiralis (TsASP1) and evaluate its potential in inducing immune response. TsASP1 gene was cloned and expressed in Escherichia coli BL21 (DE3). On Western blotting analysis with anti-rTsASP1 serum, native TsASP1 was detected in various T. spiralis phases other than newborn larvae (NBL). qPCR results showed that TsASP1 transcription was the highest in intestinal infective larvae (IIL) and the lowest in the NBL stage. Immunofluorescence test result shows that native TsASP1 was principally localized in stichosome, muscle cells of muscle larvae (ML) and IIL, and surrounded intrauterine embryos in female adult worms (AW). After silencing TsASP1 gene of the ML by siRNA, the worm development was significantly inhibited, showed by shorter AW and more wrinkles and longitudinal crack on epicuticle of AW on scanning electron microscopy; the AW and ML burdens were reduced by 41.82 and 56.36% respectively, compared with the control siRNA or PBS group (P < 0.001). Immunization of mice with rTsASP1 elicited an evident antibody response (serum IgG, IgG1/IgG2a and enteral sIgA), and systemic (spleen) and intestinal local mucosal (mesenteric lymph node) cellular immune response, demonstrated by a prominent elevation of IFN-γ and IL-4. The results suggested TsASP1 participated in T. spiralis development and survival in host, and immunization of mice with rTsASP1 induced systemic/intestinal local mucosal humoral and cellular immune response against Trichinella.
Collapse
Affiliation(s)
- Jia Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Wen Wen Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yang Xiu Yue Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
42
|
Hu CX, Zeng J, Yang DQ, Yue X, Dan Liu R, Long SR, Zhang X, Jiang P, Cui J, Wang ZQ. Binding of elastase-1 and enterocytes facilitates Trichinella spiralis larval intrusion of the host's intestinal epithelium. Acta Trop 2020; 211:105592. [PMID: 32565198 DOI: 10.1016/j.actatropica.2020.105592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022]
Abstract
Elastase-1 is one member of serine protease family, distributes in organisms widely and plays a crucial role in the invasion and development of Trichinella spiralis. In order to identify the binding of T. spiralis elastase-1 (TsEla) with host's intestinal epithelial cells (IECs) and its role in Trichinella larval intrusion, TsEla gene was cloned and expressed in our previous study. The recombinant TsEla (rTsEla) has the enzymatic activity to degrade specific peptide substrate. A specific binding between rTsEla and IECs was detected by Far Western blot and ELISA. In an in vitro invasion assay, rTsEla promoted the larval intrusion, whereas anti-rTsEla serum inhibited the larval penetration. The larval intrusion was also suppressed after the silencing of TsEla by siRNA. Silencing of TsEla gene by siRNA-291 meditated RNA interference suppressed TsEla protein expression, reduced the worm infectivity, development and reproductive capacity. These results indicated that TsEla plays an important role in the T. spiralis intrusion of host's intestinal epithelia, and it could be a prospective vaccine molecular target against T. spiralis infection.
Collapse
Affiliation(s)
- Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Da Qi Yang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, PR China.
| |
Collapse
|
43
|
Zhang XZ, Yuan Sun X, Bai Y, Wen Yue W, Yue X, Song YY, Cui J, Wang ZQ. Immune responses in mice vaccinated with a DNA vaccine expressing a new elastase from Trichinella spiralis. Folia Parasitol (Praha) 2020; 67. [DOI: 10.14411/fp.2020.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
|
44
|
Yue X, Sun XY, Liu F, Hu CX, Bai Y, Da Yang Q, Liu RD, Zhang X, Cui J, Wang ZQ. Molecular characterization of a Trichinella spiralis serine proteinase. Vet Res 2020; 51:125. [PMID: 32988413 PMCID: PMC7520982 DOI: 10.1186/s13567-020-00847-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the biological characteristics and functions of a Trichinella spiralis serine proteinase (TsSerp) during larval invasion and development in the host. The full-length TsSerp cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of RT-PCR, IFA and western blotting analyses showed that TsSerp was a secretory protein that was highly expressed at the T. spiralis intestinal infective larva and muscle larva stages and primarily located at the cuticle, stichosome and intrauterine embryos of the parasite. rTsSerp promoted the larval invasion of intestinal epithelial cells (IECs) and the enteric mucosa, whereas an anti-rTsSerp antibody impeded larval invasion; the promotion and obstruction roles were dose-dependently related to rTsSerp and the anti-rTsSerp antibodies, respectively. Vaccination of mice with rTsSerp elicited a remarkable humoral immune response (high levels of serum IgG, IgG1/IgG2a, IgE and IgM), and it also triggered both systemic (spleen) and local intestinal mucosal mesenteric lymph node (MLN) cellular immune responses, as demonstrated by a significant elevation in Th1 cytokines (IFN-γ) and Th2 cytokines (IL-4) after the spleen and MLN cells from vaccinated mice were stimulated with rTsSerp. Anti-TsSerp antibodies participated in the killing and destruction of newborn larvae via ADCC. The mice vaccinated with rTsSerp exhibited a 48.7% reduction in intestinal adult worms and a 52.5% reduction in muscle larvae. These results indicated that TsSerp participates in T. spiralis invasion and development in the host and might be considered a potential candidate target antigen to develop oral polyvalent preventive vaccines against Trichinella infection.
Collapse
Affiliation(s)
- Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yuan Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Da Yang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
45
|
Lei JJ, Hu YY, Liu F, Yan SW, Liu RD, Long SR, Jiang P, Cui J, Wang ZQ. Molecular cloning and characterization of a novel peptidase from Trichinella spiralis and protective immunity elicited by the peptidase in BALB/c mice. Vet Res 2020; 51:111. [PMID: 32891183 PMCID: PMC7487599 DOI: 10.1186/s13567-020-00838-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
In our previous studies, a novel T. spiralis peptidase (TsP) was identified among the excretory/secretory (ES) proteins of T. spiralis intestinal infective larvae (IIL) and T. spiralis at the adult worm (AW) stage using immunoproteomics, but the biological function of TsP in the life cycle of T. spiralis is not clear. The objective of this study was to investigate the biological properties and functions of TsP in larval intrusion and protective immunity induced by immunization with rTsP. The complete TsP cDNA sequence was cloned and expressed. The results of RT-PCR, indirect immunofluorescence assay (IIFA) and western blotting revealed that TsP is a surface and secretory protein expressed in T. spiralis at different stages (muscle larvae, IIL, AWs and newborn larvae) that is principally localized at the epicuticle of the nematode. rTsP facilitated the larval intrusion of intestinal epithelial cells (IECs) and intestinal mucosa, whereas anti-rTsP antibodies suppressed larval intrusion; these facilitative and suppressive roles were dose-dependently related to rTsP or anti-rTsP antibodies. Immunization of mice with rTsP triggered an obvious humoral immune response (high levels of IgG, IgG1/IgG2a, and sIgA) and also elicited systemic (spleen) and intestinal local mucosal (mesenteric lymph node) cellular immune responses, as demonstrated by an evident increase in the cytokines IFN-γ and IL-4. Immunization of mice with rTsP reduced the numbers of intestinal adult worms by 38.6% and muscle larvae by 41.93%. These results demonstrate that TsP plays a vital role in the intrusion, development and survival of T. spiralis in hosts and is a promising candidate target molecule for anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Jun Jun Lei
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yuan Yuan Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
46
|
Ayona D, Fournier PE, Henrissat B, Desnues B. Utilization of Galectins by Pathogens for Infection. Front Immunol 2020; 11:1877. [PMID: 32973776 PMCID: PMC7466766 DOI: 10.3389/fimmu.2020.01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Galectins are glycan-binding proteins which are expressed by many different cell types and secreted extracellularly. These molecules are well-known regulators of immune responses and involved in a broad range of cellular and pathophysiological functions. During infections, host galectins can either avoid or facilitate infections by interacting with host cells- and/or pathogen-derived glycoconjugates and less commonly, with proteins. Some pathogens also express self-produced galectins to interfere with host immune responses. This review summarizes pathogens which take advantage of host- or pathogen-produced galectins to establish the infection.
Collapse
Affiliation(s)
- Diyoly Ayona
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
- USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
47
|
Zhang Y, Zeng J, Song YY, Long SR, Liu RD, Jiang P, Zhang X, Cui J, Wang ZQ. Vaccination of Mice with a Novel Trypsin from Trichinella spiralis Elicits the Immune Protection against Larval Challenge. Vaccines (Basel) 2020; 8:E437. [PMID: 32764274 PMCID: PMC7564495 DOI: 10.3390/vaccines8030437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Trichinella spiralis is a major foodborne parasite and has a serious threat to meat safety. Development of anti-Trichinella vaccines is prospective to eliminate Trichinella infection in food animal. The aim of this study was to assess the biological properties of a novel T. spiralis trypsin (TsT) and its elicited immune protection against larval challenge. The cDNA sequence of TsT gene was cloned and expressed. Western blotting showed rTsT was identified by infection serum and anti-TsT serum. RT-PCR results revealed that TsT gene was transcribed at diverse T. spiralis lifecycle stages. The IIFT results showed that natural TsT was principally expressed at epicuticle of 5-6 day adult worms, indicating that TsT is a worm somatic antigen and adult-stage specific surface antigen. Vaccination of mice with rTsT triggered an evident humoral immune response (high levels of serum IgG, IgG1/IgG2a, and enteral sIgA), and it also induced the systemic and enteral local cellular immune response, demonstrated by an significantly elevation of cytokines IFN-γ and IL-4. The mice vaccinated with rTsT exhibited a 33.17% reduction of enteral adult worms and a 37.80% reduction of muscle larvae after larval challenge. The results showed that TsT might be considered as a candidate target antigen for anti-T. spiralis vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China; (Y.Z.); (J.Z.); (Y.Y.S.); (S.R.L.); (R.D.L.); (P.J.); (X.Z.); (J.C.)
| |
Collapse
|
48
|
Guo KX, Bai Y, Ren HN, Sun XY, Song YY, Liu RD, Long SR, Zhang X, Jiang P, Wang ZQ, Cui J. Characterization of a Trichinella spiralis aminopeptidase and its participation in invasion, development and fecundity. Vet Res 2020; 51:78. [PMID: 32539772 PMCID: PMC7296678 DOI: 10.1186/s13567-020-00805-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023] Open
Abstract
A Trichinella spiralis aminopeptidase (TsAP) has been identified in intestinal infectious larvae (IIL) and adult worms (AW), but its biological function in the T. spiralis life cycle is unknown. The aim of this study was to characterize TsAP and ascertain its functions in the invasion, development and fecundity of T. spiralis. Recombinant TsAP (rTsAP) was expressed and purified. rTsAP has strong immunogenicity. qPCR and western blotting show that TsAP was transcribed and expressed at all T. spiralis lifecycle stages, but the expression level of TsAP mRNA and proteins at IIL and AW stages was obviously higher than those in muscle larvae (ML) and newborn larvae (NBL). The IFT results reveal that TsAP was principally located at the cuticle and the intrauterine embryos of this nematode. rTsAP had the enzymatic activity of natural aminopeptidase to hydrolyze the substrate Leu-pNA with an optimal temperature of 50 °C and optimal pH of 8.0. rTsAP promoted the larval penetration into intestinal epithelial cells, whereas anti-rTsAP antibodies suppressed the larval intrusion; the promotion and suppression was dose-dependently related to rTsAP or anti-rTsAP antibodies. TsAP protein expression level and enzymatic activity were reduced by 50.90 and 49.72% through silencing of the TsAP gene by specific siRNA 842. Intestinal AW and muscle larval burdens, worm length and female reproductive capacity were significantly declined in mice infected with siRNA-transfected ML compared to the control siRNA and PBS group. These results indicate that TsAP participates in the invasion, development and fecundity of T. spiralis and it might be a candidate target for anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ying Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xiang Yuan Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
49
|
Xu J, Liu RD, Bai SJ, Hao HN, Yue WW, Xu YXY, Long SR, Cui J, Wang ZQ. Molecular characterization of a Trichinella spiralis aspartic protease and its facilitation role in larval invasion of host intestinal epithelial cells. PLoS Negl Trop Dis 2020; 14:e0008269. [PMID: 32339171 PMCID: PMC7205320 DOI: 10.1371/journal.pntd.0008269] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND T. spiralis aspartic protease has been identified in excretion/secretion (ES) proteins, but its roles in larval invasion are unclear. The aim of this study was to characterize T. spiralis aspartic protease-2 (TsASP2) and assess its roles in T. spiralis invasion into intestinal epithelial cells (IECs) using RNAi. METHODOLOGY/PRINCIPAL FINDINGS Recombinant TsASP2 (rTsASP2) was expressed and purified. The native TsASP2 of 43 kDa was recognized by anti-rTsASP2 serum in all worm stages except newborn larvae (NBL), and qPCR indicated that TsASP2 transcription was highest at the stage of intestinal infective larvae (IIL). IFA results confirmed that TsASP2 was located in the hindgut, midgut and muscle cells of muscle larvae (ML) and IIL and intrauterine embryos of the female adult worm (AW), but not in NBL. rTsASP2 cleaved several host proteins (human hemoglobin (Hb), mouse Hb, collagen and IgM). The proteolytic activity of rTsASP2 was host-specific, as it hydrolyzed mouse Hb more efficiently than human Hb. The enzymatic activity of rTsASP2 was significantly inhibited by pepstatin A. The expression levels of TsASP2 mRNA and protein were significantly suppressed by RNAi with 5 μM TsASP2-specific siRNA. Native aspartic protease activity in ML crude proteins was reduced to 54.82% after transfection with siRNA. Larval invasion of IECs was promoted by rTsASP2 and inhibited by anti-rTsASP2 serum and siRNA. Furthermore, cell monolayer damage due to larval invasion was obviously alleviated when siRNA-treated larvae were used. The adult worm burden, length of adult worms and female fecundity were clearly reduced in mice challenged using siRNA-treated ML relative to the PBS group. CONCLUSIONS rTsASP2 possesses the enzymatic activity of native aspartic protease and facilitates T. spiralis invasion of host IECs.
Collapse
Affiliation(s)
- Jia Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Wen Wen Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Yang Xiu Yue Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
- * E-mail: (JC); (ZQW)
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
- * E-mail: (JC); (ZQW)
| |
Collapse
|
50
|
Zhang XZ, Sun XY, Bai Y, Song YY, Hu CX, Li X, Cui J, Wang ZQ. Protective immunity in mice vaccinated with a novel elastase-1 significantly decreases Trichinella spiralis fecundity and infection. Vet Res 2020; 51:43. [PMID: 32169101 PMCID: PMC7071723 DOI: 10.1186/s13567-020-00767-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
Trichinella spiralis is an important foodborne parasitic nematode that represents an enormous threat to the food safety of pork meat. The development of a preventive vaccine is valuable for the prevention and control of Trichinella infection in domestic pigs to ensure pork safety. Elastase is a trypsin-like serine protease that hydrolyzes the host's diverse tissue components and participates in parasite penetration, and it might be a novel vaccine target molecule. The aim of this study was to assess the protective immunity produced by vaccination with a novel Trichinella spiralis elastase-1 (TsE) in a mouse model. The results demonstrate that subcutaneous vaccination of mice with rTsE elicited a systemic humoral response (high levels of serum IgG and subclass IgG1/IgG2a and IgA) and significant local enteral mucosal sIgA responses. Anti-rTsE IgG recognized the native TsE at the cuticle, stichosome of intestinal infective larvae and adult worm (AW), and intrauterine embryos of female AW. The rTsE vaccination also produced a systemic and local mixed Th1/Th2 response, as demonstrated by clear elevation levels of Th1 cytokines (IFN-γ, IL-2) and Th2 cytokines (IL-4, IL-10) after spleen, mesenteric lymph node and Peyer's patch cells from immunized mice were stimulated with rTsE. The immunized mice exhibited a 52.19% reduction in enteral AW and a 64.06% reduction in muscle larvae after challenge infection. The immune response triggered by rTsE vaccination protected enteral mucosa from larval intrusion, suppressed larval development and reduced female fecundity. The results indicate that TsE may represent a novel target molecule for anti-T. spiralis vaccines.
Collapse
Affiliation(s)
- Xin Zhuo Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiang Yuan Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Ying Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|