1
|
Hayek H, Hasan L, Amarin JZ, Qwaider YZ, Hamdan O, Rezende W, Dee KC, Chappell JD, Halasa NB. Vaccine Adjuvants in the Immunocompromised Host: Science, Safety, and Efficacy. Transpl Infect Dis 2025:e70053. [PMID: 40387162 DOI: 10.1111/tid.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
Vaccine adjuvants are essential for enhancing immune responses to vaccines, particularly in immunocompromised populations who typically demonstrate suboptimal responses to standard vaccination. This narrative review evaluates the safety and efficacy of approved and candidate adjuvants in immunocompromised hosts, with emphasis on solid organ and hematopoietic cell transplant recipients. We examine conventional aluminum-based adjuvants alongside modern adjuvant systems such as AS01B, MF59, and AS04, analyzing their mechanisms of action and clinical applications. The review synthesizes current evidence on the safety profiles of approved adjuvanted vaccines in immunocompromised individuals and explores emerging adjuvant candidates, including saponin complexes and toll-like receptor agonists. By examining factors that influence adjuvant immunogenicity and safety in these vulnerable populations, we identify critical knowledge gaps and future research priorities. This comprehensive analysis provides clinicians and researchers with an updated perspective on the rapidly evolving landscape of vaccine adjuvants and their specific applications in immunocompromised hosts.
Collapse
Affiliation(s)
- Haya Hayek
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lana Hasan
- Department of Infectious Disease, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Justin Z Amarin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Yasmeen Z Qwaider
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olla Hamdan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wanderson Rezende
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin C Dee
- Department of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natasha B Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Rinee KC, Patton ZE, Gillilan RE, Huang Q, Pingali SV, Heroux L, Xu AY. Elucidating the porous structure of aluminum adjuvants via in-situ small-angle scattering technique. Vaccine 2025; 50:126813. [PMID: 39914255 DOI: 10.1016/j.vaccine.2025.126813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/25/2025]
Abstract
Aluminum-based adjuvants are widely used in vaccine formulations due to their immunostimulatory properties and strong safety profile. Despite their effectiveness and safety, the exact mechanisms by which they enhance vaccine efficacy remain unclear. One proposed mechanism is that aluminum adjuvants form a depot that gradually releases antigens, thereby improving antigen uptake by antigen-presenting cells. This study investigates the porous structures of two commonly used aluminum adjuvants, aluminum hydroxide (AH) and aluminum phosphate (AP), using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). Our measurements reveal that AH nanoparticles, with their needle-like morphology, form smaller, interconnected pores within the aggregated architecture. In contrast, AP nanoparticles, with a plate-like shape, form more discrete, isolated porous structures. Both adjuvants have pore sizes within the range of commonly used vaccine antigens, supporting the depot theory. Our findings also reveal that antigen retention is prolonged when the antigen size is comparable to the average pore size of the adjuvant. This study highlights the utility of SAXS and SANS for in-situ characterization of adjuvant porosity and provides insights into how nanoparticle morphology affects antigen retention and release. By elucidating these structural details, our research underscores the importance of porous structure in adjuvant function and offers potential pathways for improving vaccine formulations through tailored adjuvant design.
Collapse
Affiliation(s)
- Khaleda C Rinee
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zoe E Patton
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Qingqiu Huang
- Cornell High Energy Synchrotron Source, Ithaca, NY 14853, USA
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Luke Heroux
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
3
|
Walter DL, Bian Y, Hu H, Hamid FA, Rostamizadeh K, Vigliaturo JR, DeHority R, Ehrich M, Runyon S, Pravetoni M, Zhang C. The immunological and pharmacokinetic evaluation of Lipid-PLGA hybrid nanoparticle-based oxycodone vaccines. Biomaterials 2025; 313:122758. [PMID: 39182328 PMCID: PMC11402561 DOI: 10.1016/j.biomaterials.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The current opioid epidemic is one of the most profound public health crises facing the United States. Despite that it has been under the spotlight for years, available treatments for opioid use disorder (OUD) and overdose are limited to opioid receptor ligands such as the agonist methadone and the overdose reversing drugs such as naloxone. Vaccines are emerging as an alternative strategy to combat OUD and prevent relapse and overdose. Most vaccine candidates consist of a conjugate structure containing the target opioid attached to an immunogenic carrier protein. However, conjugate vaccines have demonstrated some intrinsic shortfalls, such as fast degradation and poor recognition by immune cells. To overcome these challenges, we proposed a lipid-PLGA hybrid nanoparticle (hNP)-based vaccine against oxycodone (OXY), which is one of the most frequently misused opioid analgesics. The hNP-based OXY vaccine exhibited superior immunogenicity and pharmacokinetic efficacy in comparison to its conjugate vaccine counterpart. Specifically, the hNP-based OXY vaccine formulated with subunit keyhole limpet hemocyanin (sKLH) as the carrier protein and aluminum hydroxide (Alum) as the adjuvant (OXY-sKLH-hNP(Alum)) elicited the most potent OXY-specific antibody response in mice. The induced antibodies efficiently bound with OXY molecules in blood and suppressed their entry into the brain. In a following dose-response study, OXY-sKLH-hNP(Alum) equivalent to 60 μg of sKLH was determined to be the most promising OXY vaccine candidate moving forward. This study provides evidence that hybrid nanoparticle-based vaccines may be superior vaccine candidates than conjugate vaccines and will be beneficial in treating those suffering from OUD.
Collapse
Affiliation(s)
- Debra L Walter
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Yuanzhi Bian
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - He Hu
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Fatima A Hamid
- Departments of Pharmacology and Medicine, Medical School, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Jennifer R Vigliaturo
- Departments of Pharmacology and Medicine, Medical School, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Riley DeHority
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Scott Runyon
- RTI International, Research Triangle Park, NC, 27709, USA.
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Chenming Zhang
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
4
|
Herath HDW, Hu YS. Unveiling nanoparticle-immune interactions: how super-resolution imaging illuminates the invisible. NANOSCALE 2025; 17:1213-1224. [PMID: 39618290 PMCID: PMC12042815 DOI: 10.1039/d4nr03838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nanoparticles (NPs) have attracted considerable attention in nanomedicine, particularly in harnessing and manipulating immune cells. However, the current understanding of the interactions between NPs and immune cells at the nanoscale remains limited. Advancing this knowledge guides the design principles of NPs. This review offers a historical perspective on the synergistic evolution of immunology and optical microscopy, examines the current landscape of NP applications in immunology, and explores the advancements in super-resolution imaging techniques, which provide new insights into nanoparticle-immune cell interactions. Key findings from recent studies are discussed, along with challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Herath D W Herath
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| |
Collapse
|
5
|
Baskar Murthy A, Palaniappan V, Karthikeyan K. Aluminium in dermatology - Inside story of an innocuous metal. Indian J Dermatol Venereol Leprol 2024; 90:755-762. [PMID: 38595024 DOI: 10.25259/ijdvl_188_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/23/2023] [Indexed: 04/11/2024]
Abstract
Aluminium, the third most abundant element in the earth's crust, was long considered virtually innocuous to humans but has gained importance in the recent past. Aluminium is ubiquitous in the environment, with various sources of exposure like cosmetics, the food industry, occupational industries, the medical field, transport and electronics. Aluminium finds its utility in various aspects of dermatology as an effective haemostatic agent, anti-perspirant and astringent. Aluminium has a pivotal role to play in wound healing, calciphylaxis, photodynamic therapy and vaccine immunotherapy with diagnostic importance in Finn chamber patch testing and confocal microscopy. The metal also finds significance in cosmetic procedures like microdermabrasion and as an Nd:YAG laser component. It is important to explore the allergic properties of aluminium, as in contact dermatitis and vaccine granulomas. The controversial role of aluminium in breast cancer and breast cysts also needs to be evaluated by further studies.
Collapse
Affiliation(s)
- Aravind Baskar Murthy
- Department of Dermatology, Venereology and Leprosy, Sri Manakula Vinayagar Medical College and Hospital, Madagadipet, Puducherry, India
| | - Vijayasankar Palaniappan
- Department of Dermatology, Venereology and Leprosy, Sri Manakula Vinayagar Medical College and Hospital, Madagadipet, Puducherry, India
| | - Kaliaperumal Karthikeyan
- Department of Dermatology, Venereology and Leprosy, Sri Manakula Vinayagar Medical College and Hospital, Madagadipet, Puducherry, India
| |
Collapse
|
6
|
Su Z, Boucetta H, Shao J, Huang J, Wang R, Shen A, He W, Xu ZP, Zhang L. Next-generation aluminum adjuvants: Immunomodulatory layered double hydroxide NanoAlum reengineered from first-line drugs. Acta Pharm Sin B 2024; 14:4665-4682. [PMID: 39664431 PMCID: PMC11628803 DOI: 10.1016/j.apsb.2024.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/13/2024] Open
Abstract
Aluminum adjuvants (Alum), approved by the US Food and Drug Administration, have been extensively used in vaccines containing recombinant antigens, subunits of pathogens, or toxins for almost a century. While Alums typically elicit strong humoral immune responses, their ability to induce cellular and mucosal immunity is limited. As an alternative, layered double hydroxide (LDH), a widely used antacid, has emerged as a novel class of potent nano-aluminum adjuvants (NanoAlum), demonstrating advantageous physicochemical properties, biocompatibility and adjuvanticity in both humoral and cellular immune responses. In this review, we summarize and compare the advantages and disadvantages of Alum and NanoAlum in these properties and their performance as adjuvants. Moreover, we propose the key features for ideal adjuvants and demonstrate that LDH NanoAlum is a promising candidate by summarizing its current progress in immunotherapeutic cancer treatments. Finally, we conclude the review by offering our integrated perspectives about the remaining challenges and future directions for NanoAlum's application in preclinical/clinical settings.
Collapse
Affiliation(s)
- Zhenwei Su
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Hamza Boucetta
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiahui Shao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Jinling Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ran Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Aining Shen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhi Ping Xu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Lingxiao Zhang
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
7
|
Gogoi H, Mani R, Bhatnagar R. Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements. Int Rev Immunol 2024; 44:58-81. [PMID: 39310923 DOI: 10.1080/08830185.2024.2404095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/01/2023] [Accepted: 08/31/2024] [Indexed: 02/22/2025]
Abstract
Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4+ T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his "repository effect" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.
Collapse
Affiliation(s)
- Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana, India
| | - Rajesh Mani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Immunology and Molecular Genetics, University Kentucky College of Medicine, Lexington, KY, USA
| | - Rakesh Bhatnagar
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Shamseldin MM, Read KA, Hall JM, Tuazon JA, Brown JM, Guo M, Gupta YA, Deora R, Oestreich KJ, Dubey P. The adjuvant BcfA activates antigen presenting cells through TLR4 and supports T FH and T H1 while attenuating T H2 gene programming. Front Immunol 2024; 15:1439418. [PMID: 39267766 PMCID: PMC11390363 DOI: 10.3389/fimmu.2024.1439418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Adjuvants added to subunit vaccines augment antigen-specific immune responses. One mechanism of adjuvant action is activation of pattern recognition receptors (PRRs) on innate immune cells. Bordetella colonization factor A (BcfA); an outer membrane protein with adjuvant function, activates TH1/TH17-polarized immune responses to protein antigens from Bordetella pertussis and SARS CoV-2. Unlike other adjuvants, BcfA does not elicit a TH2 response. Methods To understand the mechanism of BcfA-driven TH1/TH17 vs. TH2 activation, we screened PRRs to identify pathways activated by BcfA. We then tested the role of this receptor in the BcfA-mediated activation of bone marrow-derived dendritic cells (BMDCs) using mice with germline deletion of TLR4 to quantify upregulation of costimulatory molecule expression and cytokine production in vitro and in vivo. Activity was also tested on human PBMCs. Results PRR screening showed that BcfA activates antigen presenting cells through murine TLR4. BcfA-treated WT BMDCs upregulated expression of the costimulatory molecules CD40, CD80, and CD86 and produced IL-6, IL-12/23 p40, and TNF-α while TLR4 KO BMDCs were not activated. Furthermore, human PBMCs stimulated with BcfA produced IL-6. BcfA-stimulated murine BMDCs also exhibited increased uptake of the antigen DQ-OVA, supporting a role for BcfA in improving antigen presentation to T cells. BcfA further activated APCs in murine lungs. Using an in vitro TH cell polarization system, we found that BcfA-stimulated BMDC supernatant supported TFH and TH1 while suppressing TH2 gene programming. Conclusions Overall, these data provide mechanistic understanding of how this novel adjuvant activates immune responses.
Collapse
Affiliation(s)
- Mohamed M. Shamseldin
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Departments of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University-Ain Helwan, Helwan, Egypt
| | - Kaitlin A. Read
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jesse M. Hall
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jasmine A. Tuazon
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jessica M. Brown
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Myra Guo
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Yash A. Gupta
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Rajendar Deora
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Departments of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Kenneth J. Oestreich
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Purnima Dubey
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Oyama K, Ueda T. Relationship between protein conformational stability and its immunogenicity when administering antigens to mice using adjuvants-Analysis employed the CH2 domain in human antibodies. PLoS One 2024; 19:e0307320. [PMID: 39038003 PMCID: PMC11262634 DOI: 10.1371/journal.pone.0307320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Antigen-presenting cells (APCs) play a crucial role in the immune system by breaking down antigens into peptide fragments that subsequently bind to major histocompatibility complex (MHC) molecules. Previous studies indicate that stable proteins can impede CD4+ T cell stimulation by hindering antigen processing and presentation. Conversely, certain proteins require stabilization in order to activate the immune response. Several factors, including the characteristics of the protein and the utilization of different adjuvants in animal experiments, may contribute to this disparity. In this study, we investigated the impact of adjuvants on antigen administration in mice, specifically focusing on the stability of the CH2 domain. Consequently, the CH2 domain induced a stronger IgG response in comparison to the stabilized one when using Alum and PBS (without adjuvant). On the other hand, animal experiment using Freund's adjuvant showed the opposite results. These findings indicate the significance of considering the intrinsic conformational stability of a protein when eliciting its immunogenicity, particularly within the context of vaccine development.
Collapse
Affiliation(s)
- Kosuke Oyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Guisasola-Serrano A, Bilbao-Arribas M, Varela-Martínez E, Abendaño N, Pérez M, Luján L, Jugo BM. Identifying transcriptomic profiles in ovine spleen after repetitive vaccination. Front Immunol 2024; 15:1386590. [PMID: 39076984 PMCID: PMC11284609 DOI: 10.3389/fimmu.2024.1386590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024] Open
Abstract
Aluminum hydroxide has long been employed as a vaccine adjuvant for its safety profile, although its precise mechanism of action remains elusive. In this study, we investigated the transcriptomic responses in sheep spleen following repetitive vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. Notably, this work represents the first exploration of the sheep spleen transcriptome in such conditions. Animals were splitted in 3 treatment groups: vaccine group, adjuvant alone group and control group. A total of 18 high-depth RNA-seq libraries were sequenced, resulting in a rich dataset which also allowed isoform-level analysis. The comparisons between vaccine-treated and control groups (V vs C) as well as between vaccine-treated and adjuvant-alone groups (V vs A) revealed significant alterations in gene expression profiles, including protein coding genes and long non-coding RNAs. Among the differentially expressed genes, many were associated with processes such as endoplasmic reticulum (ER) stress, immune response and cell cycle. The analysis of co-expression modules further indicated a correlation between vaccine treatment and genes related to ER stress and unfolded protein response. Surprisingly, adjuvant-alone treatment had little impact on the spleen transcriptome. Additionally, the role of alternative splicing in the immune response was explored. We identified isoform switches in genes associated with immune regulation and inflammation, potentially influencing protein function. In conclusion, this study provides valuable insights into the transcriptomic changes in sheep spleen following vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. These findings shed light on the molecular mechanisms underlying vaccine-induced immune responses and emphasize the significance of antigenic components in aluminum adjuvant mechanism of action. Furthermore, the analysis of alternative splicing revealed an additional layer of complexity in the immune response to vaccination in a livestock species.
Collapse
Affiliation(s)
- Aitor Guisasola-Serrano
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Martin Bilbao-Arribas
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Endika Varela-Martínez
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara Abendaño
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Pérez
- Animal Pathology Dpt., Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Lluís Luján
- Animal Pathology Dpt., Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| | - Begoña Marina Jugo
- Genetics, Physical Anthropology and Animal Physiology Dpt., Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
11
|
DeJong MA, Wolf MA, Bitzer GJ, Hall JM, Fitzgerald NA, Pyles GM, Huckaby AB, Petty JE, Lee K, Barbier M, Bevere JR, Ernst RK, Damron FH. BECC438b TLR4 agonist supports unique immune response profiles from nasal and muscular DTaP pertussis vaccines in murine challenge models. Infect Immun 2024; 92:e0022323. [PMID: 38323817 PMCID: PMC10929442 DOI: 10.1128/iai.00223-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024] Open
Abstract
The protection afforded by acellular pertussis vaccines wanes over time, and there is a need to develop improved vaccine formulations. Options to improve the vaccines involve the utilization of different adjuvants and administration via different routes. While intramuscular (IM) vaccination provides a robust systemic immune response, intranasal (IN) vaccination theoretically induces a localized immune response within the nasal cavity. In the case of a Bordetella pertussis infection, IN vaccination results in an immune response that is similar to natural infection, which provides the longest duration of protection. Current acellular formulations utilize an alum adjuvant, and antibody levels wane over time. To overcome the current limitations with the acellular vaccine, we incorporated a novel TLR4 agonist, BECC438b, into both IM and IN acellular formulations to determine its ability to protect against infection in a murine airway challenge model. Following immunization and challenge, we observed that DTaP + BECC438b reduced bacterial burden within the lung and trachea for both administration routes when compared with mock-vaccinated and challenged (MVC) mice. Interestingly, IN administration of DTaP + BECC438b induced a Th1-polarized immune response, while IM vaccination polarized toward a Th2 immune response. RNA sequencing analysis of the lung demonstrated that DTaP + BECC438b activates biological pathways similar to natural infection. Additionally, IN administration of DTaP + BECC438b activated the expression of genes involved in a multitude of pathways associated with the immune system. Overall, these data suggest that BECC438b adjuvant and the IN vaccination route can impact efficacy and responses of pertussis vaccines in pre-clinical mouse models.
Collapse
Affiliation(s)
- Megan A. DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - M. Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J. Bitzer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jesse M. Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Nicholas A. Fitzgerald
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Jonathan E. Petty
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Katherine Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
12
|
Georgopoulos AP, James LM. Anthrax Vaccines in the 21st Century. Vaccines (Basel) 2024; 12:159. [PMID: 38400142 PMCID: PMC10892718 DOI: 10.3390/vaccines12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccination against Bacillus anthracis is the best preventive measure against the development of deadly anthrax disease in the event of exposure to anthrax either as a bioweapon or in its naturally occurring form. Anthrax vaccines, however, have historically been plagued with controversy, particularly related to their safety. Fortunately, recent improvements in anthrax vaccines have been shown to confer protection with reduced short-term safety concerns, although questions about long-term safety remain. Here, we (a) review recent and ongoing advances in anthrax vaccine development, (b) emphasize the need for thorough characterization of current (and future) vaccines, (c) bring to focus the importance of host immunogenetics as the ultimate determinant of successful antibody production and protection, and (d) discuss the need for the systematic, active, and targeted monitoring of vaccine recipients for possible Chronic Multisymptom Illness (CMI).
Collapse
Affiliation(s)
- Apostolos P. Georgopoulos
- The Gulf War Illness Working Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA;
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lisa M. James
- The Gulf War Illness Working Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA;
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Domínguez-Odio A, Rodríguez Martínez E, Cala Delgado DL. Commercial vaccines used in poultry, cattle, and aquaculture: a multidirectional comparison. Front Vet Sci 2024; 10:1307585. [PMID: 38234985 PMCID: PMC10791835 DOI: 10.3389/fvets.2023.1307585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
|
14
|
Heidary R, Nikbakht Brujeni G, Lotfi M, Hajizadeh A, Yousefi AR. A Comparative Study of the Effects of Al(OH) 3 and AlPO 4 Adjuvants on the Production of Neutralizing Antibodies (NAbs) against Bovine parainfluenza Virus Type 3 (BPIV3) in Guinea Pigs. ARCHIVES OF RAZI INSTITUTE 2023; 78:1779-1786. [PMID: 38828184 PMCID: PMC11139405 DOI: 10.32592/ari.2023.78.6.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 06/05/2024]
Abstract
Aluminum-containing adjuvants are extensively used in inactive human and animal vaccines owing to their favorable immunostimulatory and safe properties. Nonetheless, there is controversy over the effects of different aluminum salts as an adjuvant for the bovine parainfluenza virus type 3 (BPIV3) vaccine. In order to find a suitable adjuvant, we studied the effects of two adjuvants (i.e., aluminum hydroxide [Al(OH)3] and aluminum potassium sulfate [AlPO4]) on the production of neutralizing antibodies (NAbs) for an experimental BPIV3 vaccine. The animals under study (Guinea pigs) were randomly assigned to five groups of experimental vaccines containing Al(OH)3 (AH), AlPO4 (AP), Al(OH)3-AlPO4 mixture (MIX), commercial vaccine (COM), and control (NS). The treatment groups were immunized with two doses of vaccine 21 days apart (on days 0 and 21), and the control group received normal saline under the same conditions. The animals were monitored for 42 days, and blood samples were then taken. The results indicated that all vaccines were able to induce the production of NAbs at levels higher than the minimum protective titer (0.6). An increase in titer was observed throughout the monitoring period. Moreover, an increase in both the level and mean titer of NAbs obtained from the vaccine containing Al(OH)3 adjuvant was significantly higher than in the other studied groups (P≤0.005). The comparison of NAbs titer in other groups did not display a significant difference. Considering the speed of rising and the optimal titer of NAbs production in the experimental vaccine, the Al(OH)3 adjuvant is a suitable candidate for preparing a vaccine against BPIV3 for immunization.
Collapse
Affiliation(s)
- R Heidary
- Department of Microbiology and immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - G Nikbakht Brujeni
- Department of Microbiology and immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Lotfi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A Hajizadeh
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - A R Yousefi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
15
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
16
|
Zahedipour F, Jamialahmadi K, Zamani P, Reza Jaafari M. Improving the efficacy of peptide vaccines in cancer immunotherapy. Int Immunopharmacol 2023; 123:110721. [PMID: 37543011 DOI: 10.1016/j.intimp.2023.110721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Peptide vaccines have shown great potential in cancer immunotherapy by targeting tumor antigens and activating the patient's immune system to mount a specific response against cancer cells. However, the efficacy of peptide vaccines in inducing a sustained immune response and achieving clinical benefit remains a major challenge. In this review, we discuss the current status of peptide vaccines in cancer immunotherapy and strategies to improve their efficacy. We summarize the recent advancements in the development of peptide vaccines in pre-clinical and clinical settings, including the use of novel adjuvants, neoantigens, nano-delivery systems, and combination therapies. We also highlight the importance of personalized cancer vaccines, which consider the unique genetic and immunological profiles of individual patients. We also discuss the strategies to enhance the immunogenicity of peptide vaccines such as multivalent peptides, conjugated peptides, fusion proteins, and self-assembled peptides. Although, peptide vaccines alone are weak immunogens, combining peptide vaccines with other immunotherapeutic approaches and developing novel approaches such as personalized vaccines can be promising methods to significantly enhance their efficacy and improve the clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Krishna SS, Farhana SA, T.P. A, Hussain SM, Viswanad V, Nasr MH, Sahu RK, Khan J. Modulation of immune response by nanoparticle-based immunotherapy against food allergens. Front Immunol 2023; 14:1229667. [PMID: 37744376 PMCID: PMC10515284 DOI: 10.3389/fimmu.2023.1229667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
The increasing prevalence of food allergies worldwide and the subsequent life-threatening anaphylactic reactions often have sparse treatment options, providing only symptomatic relief. Great strides have been made in research and in clinics in recent years to offer novel therapies for the treatment of allergic disorders. However, current allergen immunotherapy has its own shortcomings in terms of long-term efficacy and safety, due to the local side effects and the possibility of anaphylaxis. Allergen-specific immunotherapy is an established therapy in treating allergic asthma, allergic rhinitis, and allergic conjunctivitis. It acts through the downregulation of T cell, and IgE-mediated reactions, as well as desensitization, a process of food tolerance without any allergic events. This would result in a protective reaction that lasts for approximately 3 years, even after the withdrawal of therapy. Furthermore, allergen-specific immunotherapy also exploits several routes such as oral, sublingual, and epicutaneous immunotherapy. As the safety and efficacy of allergen immunotherapy are still under research, the exploration of newer routes such as intra-lymphatic immunotherapy would address unfulfilled needs. In addition, the existence of nanoparticles can be exploited immensely in allergen immunotherapy, which would lead to safer and efficacious therapy. This manuscript highlights a novel drug delivery method for allergen-specific immunotherapy that involves the administration of specific allergens to the patients in gradual increasing doses, to induce desensitization and tolerance, as well as emphasizing different routes of administration, mechanism, and the application of nanoparticles in allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Sivadas Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Science (AIMS) Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Ardra T.P.
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Science (AIMS) Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shalam M. Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Sciences, Al-Rayyan Medical College, Madinah, Saudi Arabia
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Science (AIMS) Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Muhammed Hassan Nasr
- Department of Clinical Pharmacy, Faculty of Health Sciences and Nursing, Al-Rayan Colleges, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| |
Collapse
|
18
|
Galiciolli MEA, Silva JF, Prodocimo MM, Laureano HA, Calado SLDM, Oliveira CS, Guiloski IC. Toxicological Effects of Thimerosal and Aluminum in the Liver, Kidney, and Brain of Zebrafish ( Danio rerio). Metabolites 2023; 13:975. [PMID: 37755255 PMCID: PMC10537066 DOI: 10.3390/metabo13090975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Vaccination programs in the first years of a child's life are effective and extremely important strategies for the successful eradication of diseases. However, as no intervention is without risks, the metal-based components of some vaccines, such as thimerosal (TMS), a preservative composed of ethylmercury, and aluminum (Al), have begun to generate distrust on the part of the population. Therefore, this study evaluated the effects of exposure to thimerosal and aluminum hydroxide (alone or in mixture) on Danio rerio (zebrafish) specimens. The fish were exposed to thimerosal and/or aluminum hydroxide intraperitoneally. The liver, kidney, and brain were removed for a biochemical biomarker analysis, histopathological analysis, and metal quantification. As a result, we observed changes in the activity of the analyzed enzymes (SOD, GST, GPx) in the kidney and brain of the zebrafish, a reduction in GSH levels in all analyzed tissues, and a reduction in MT levels in the kidney and liver as well as in the brain. Changes in AChE enzyme activity were observed. The biochemical results corroborate the changes observed in the lesion index and histomorphology sections. We emphasize the importance of joint research on these compounds to increase the population's safety against their possible toxic effects.
Collapse
Affiliation(s)
- Maria Eduarda Andrade Galiciolli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Juliana Ferreira Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Centro Politécnico, Avenida Cel. Francisco H. dos Santos, 100—Jardim das Américas, Curitiba—PR, Curitiba 81531-980, PR, Brazil;
| | - Henrique Aparecido Laureano
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | | | - Claudia Sirlene Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| |
Collapse
|
19
|
Silva AJD, de Sousa MMG, de Macêdo LS, de França Neto PL, de Moura IA, Espinoza BCF, Invenção MDCV, de Pinho SS, da Gama MATM, de Freitas AC. RNA Vaccines: Yeast as a Novel Antigen Vehicle. Vaccines (Basel) 2023; 11:1334. [PMID: 37631902 PMCID: PMC10459952 DOI: 10.3390/vaccines11081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023] Open
Abstract
In the last decades, technological advances for RNA manipulation enabled and expanded its application in vaccine development. This approach comprises synthetic single-stranded mRNA molecules that direct the translation of the antigen responsible for activating the desired immune response. The success of RNA vaccines depends on the delivery vehicle. Among the systems, yeasts emerge as a new approach, already employed to deliver protein antigens, with efficacy demonstrated through preclinical and clinical trials. β-glucans and mannans in their walls are responsible for the adjuvant property of this system. Yeast β-glucan capsules, microparticles, and nanoparticles can modulate immune responses and have a high capacity to carry nucleic acids, with bioavailability upon oral immunization and targeting to receptors present in antigen-presenting cells (APCs). In addition, yeasts are suitable vehicles for the protection and specific delivery of therapeutic vaccines based on RNAi. Compared to protein antigens, the use of yeast for DNA or RNA vaccine delivery is less established and has fewer studies, most of them in the preclinical phase. Here, we present an overview of the attributes of yeast or its derivatives for the delivery of RNA-based vaccines, discussing the current challenges and prospects of this promising strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (A.J.D.S.)
| |
Collapse
|
20
|
Ryan NM, Hess JA, Robertson EJ, Tricoche N, Turner C, Davis J, Petrovsky N, Ferguson M, Rinaldi WJ, Wong VM, Shimada A, Zhan B, Bottazzi ME, Makepeace BL, Gray SA, Carter D, Lustigman S, Abraham D. Adjuvanted Fusion Protein Vaccine Induces Durable Immunity to Onchocerca volvulus in Mice and Non-Human Primates. Vaccines (Basel) 2023; 11:1212. [PMID: 37515028 PMCID: PMC10385774 DOI: 10.3390/vaccines11071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Onchocerciasis remains a debilitating neglected tropical disease. Due to the many challenges of current control methods, an effective vaccine against the causative agent Onchocerca volvulus is urgently needed. Mice and cynomolgus macaque non-human primates (NHPs) were immunized with a vaccine consisting of a fusion of two O. volvulus protein antigens, Ov-103 and Ov-RAL-2 (Ov-FUS-1), and three different adjuvants: Advax-CpG, alum, and AlT4. All vaccine formulations induced high antigen-specific IgG titers in both mice and NHPs. Challenging mice with O. volvulus L3 contained within subcutaneous diffusion chambers demonstrated that Ov-FUS-1/Advax-CpG-immunized animals developed protective immunity, durable for at least 11 weeks. Passive transfer of sera, collected at several time points, from both mice and NHPs immunized with Ov-FUS-1/Advax-CpG transferred protection to naïve mice. These results demonstrate that Ov-FUS-1 with the adjuvant Advax-CpG induces durable protective immunity against O. volvulus in mice and NHPs that is mediated by vaccine-induced humoral factors.
Collapse
Affiliation(s)
- Nathan M Ryan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jessica A Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Erica J Robertson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | | | - Jenn Davis
- PAI Life Sciences Inc., Seattle, WA 98102, USA
| | | | | | | | | | - Ayako Shimada
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Sean A Gray
- PAI Life Sciences Inc., Seattle, WA 98102, USA
| | | | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
Lin HH, Wang CY, Hsieh FJ, Liao FZ, Su YK, Pham MD, Lee CY, Chang HC, Hsu HH. Nanodiamonds-in-oil emulsions elicit potent immune responses for effective vaccination and therapeutics. Nanomedicine (Lond) 2023; 18:1045-1059. [PMID: 37610004 DOI: 10.2217/nnm-2023-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Background: The use of nanodiamonds (NDs) and fluorescent nanodiamonds (FNDs) as nonallergenic biocompatible additives in incomplete Freund's adjuvant (IFA) to elicit immune responses in vivo was investigated. Methods: C57BL/6 mice were immunized with chicken egg ovalbumin (OVA) in IFA and also OVA-conjugated NDs (or OVA-conjugated FNDs) in IFA to produce antibodies. OVA-expressing E.G7 lymphoma cells and OVA-negative EL4 cells were inoculated in mice to induce tumor formation. Results: The new formulation significantly enhanced immune responses and thus disease resistance. It exhibited specific therapeutic activities, effectively inhibiting the growth of E.G7 tumor cells in mice over 35 days. Conclusion: The high biocompatibility and multiple functionalities of NDs/FNDs render them applicable as active and trackable vaccine adjuvants and antitumor agents.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Chih-Yen Wang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Feng-Jen Hsieh
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Fang-Zhen Liao
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Yu-Kai Su
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Minh Dinh Pham
- Institute of Biotechnology, Vietnam Academy of Science & Technology, Ha Noi 100000, Vietnam
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital & College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science & Technology, Taipei City 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei City 106, Taiwan
| | - Hsao-Hsun Hsu
- Department of Surgery, National Taiwan University Hospital & College of Medicine, National Taiwan University, Taipei 100, Taiwan
- National Taiwan University Cancer Center, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
22
|
Zhang T, He P, Guo D, Chen K, Hu Z, Zou Y. Research Progress of Aluminum Phosphate Adjuvants and Their Action Mechanisms. Pharmaceutics 2023; 15:1756. [PMID: 37376204 DOI: 10.3390/pharmaceutics15061756] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Although hundreds of different adjuvants have been tried, aluminum-containing adjuvants are by far the most widely used currently. It is worth mentioning that although aluminum-containing adjuvants have been commonly applied in vaccine production, their acting mechanism remains not completely clear. Thus far, researchers have proposed the following mechanisms: (1) depot effect, (2) phagocytosis, (3) activation of pro-inflammatory signaling pathway NLRP3, (4) host cell DNA release, and other mechanisms of action. Having an overview on recent studies to increase our comprehension on the mechanisms by which aluminum-containing adjuvants adsorb antigens and the effects of adsorption on antigen stability and immune response has become a mainstream research trend. Aluminum-containing adjuvants can enhance immune response through a variety of molecular pathways, but there are still significant challenges in designing effective immune-stimulating vaccine delivery systems with aluminum-containing adjuvants. At present, studies on the acting mechanism of aluminum-containing adjuvants mainly focus on aluminum hydroxide adjuvants. This review will take aluminum phosphate as a representative to discuss the immune stimulation mechanism of aluminum phosphate adjuvants and the differences between aluminum phosphate adjuvants and aluminum hydroxide adjuvants, as well as the research progress on the improvement of aluminum phosphate adjuvants (including the improvement of the adjuvant formula, nano-aluminum phosphate adjuvants and a first-grade composite adjuvant containing aluminum phosphate). Based on such related knowledge, determining optimal formulation to develop effective and safe aluminium-containing adjuvants for different vaccines will become more substantiated.
Collapse
Affiliation(s)
- Ting Zhang
- Sinovac Biotech Sciences Co., Ltd., Beijing 102601, China
| | - Peng He
- Division of Hepatitis Virus & Enterovirus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102619, China
| | - Dejia Guo
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Kaixi Chen
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| | - Zhongyu Hu
- Division of Hepatitis Virus & Enterovirus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102619, China
| | - Yening Zou
- Sinovac Life Sciences Co., Ltd., Beijing 102601, China
| |
Collapse
|
23
|
Maleki M, Hosseini SM, Farahmand B, Saleh M, Shokouhi H, Torabi A, Fotouhi F. Induction of Homosubtypic and Heterosubtypic Immunity to Influenza Viruses Using a Conserved Internal and External Proteins. Curr Microbiol 2023; 80:212. [PMID: 37191741 DOI: 10.1007/s00284-023-03331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
The immunogenicity and protective properties of the designed recombinant fusion peptide of 3M2e and truncated nucleoprotein (trNP), originating from Influenza A virus, were investigated in the BALB/c mice model in comparison with the Mix protein (3M2e + trNP). The results were evaluated by antibody response, cytokine production, lymphocyte proliferation assay, and mortality rate after challenge with homologous (H1N1) and heterologous (H3N2) influenza viruses in BALB/c mice. The animals that received the chimer protein with or without adjuvant had more specific antibody responses and elicited memory CD4 T cells, and cytokines of Th1 and Th2 cells compared to the Mix protein. Moreover, the Mix protein, like the recombinant chimer protein, provided equal and effective protection against both homologous and heterologous challenges in mice. Nevertheless, the chimer protein demonstrated superior immune protection compared to the Mix protein. The percentage of survived animals in the adjuvanted protein group (78.4%) was less than the non-adjuvanted one (85.7%). However, the Mix protein plus Alum could induce protective immunity in only 57.1% and 42.8% of homologous and heterologous virus-challenged mice, respectively. Regarding the sufficient immunogenicity and protectivity of the chimer protein construct against influenza viruses, the findings of the study suggest that the chimer protein without a requirement of adjuvant can be used as an adequate vaccine formulation to protect against a broad spectrum of influenza viruses.
Collapse
Affiliation(s)
- Mahnoosh Maleki
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Maryam Saleh
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Hadiseh Shokouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Ali Torabi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Tehran, 69, 1316943551, Iran.
| |
Collapse
|
24
|
Domínguez-Odio A, Delgado DLC. Global commercialization and research of veterinary vaccines against Pasteurella multocida: 2015-2022 technological surveillance. Vet World 2023; 16:946-956. [PMID: 37576757 PMCID: PMC10420726 DOI: 10.14202/vetworld.2023.946-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/31/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND AND AIM Pasteurella multocida can infect a multitude of wild and domesticated animals, bacterial vaccines have become a crucial tool in combating antimicrobial resistance (AMR) in animal production. The study aimed to evaluate the current status and scientific trends related to veterinary vaccines against Pasteurella multocida during the 2015-2022 period. MATERIAL AND METHODS The characteristics of globally marketed vaccines were investigated based on the official websites of 22 pharmaceutical companies. VOSviewer® 1.6.18 was used to visualize networks of coauthorship and cooccurrence of keywords from papers published in English and available in Scopus. RESULTS Current commercial vaccines are mostly inactivated (81.7%), adjuvanted in aluminum hydroxide (57.8%), and designed to immunize cattle (33.0%). Investigational vaccines prioritize the inclusion of attenuated strains, peptide fragments, recombinant proteins, DNA as antigens, aluminum compounds as adjuvants and poultry as the target species. CONCLUSION Despite advances in genetic engineering and biotechnology, there will be no changes in the commercial dominance of inactivated and aluminum hydroxide-adjuvanted vaccines in the short term (3-5 years). The future prospects for bacterial vaccines in animal production are promising, with advancements in vaccine formulation and genetic engineering, they have the potential to improve the sustainability of the industry. It is necessary to continue with the studies to improve the efficacy of the vaccines and their availability.
Collapse
Affiliation(s)
- Aníbal Domínguez-Odio
- Dirección de Ciencia e Innovación. Grupo Empresarial LABIOFAM. Avenida Independencia km 16½, Boyeros, La Habana, Cuba
| | - Daniel Leonardo Cala Delgado
- Animal Science Research Group, Universidad Cooperativa de Colombia, Sede Bucaramanga, Carrera 33 N°, 30ª-05 (4.162,49 km) 68000, Bucaramanga, Colombia
| |
Collapse
|
25
|
Varela-Martínez E, Bilbao-Arribas M, Abendaño N, Asín J, Pérez M, Luján L, Jugo BM. Identification and characterization of miRNAs in spleens of sheep subjected to repetitive vaccination. Sci Rep 2023; 13:6239. [PMID: 37069162 PMCID: PMC10107569 DOI: 10.1038/s41598-023-32603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Accumulative evidence has shown that short non-coding RNAs such as miRNAs can regulate the innate and adaptive immune responses. Aluminium hydroxide is a commonly used adjuvant in human and veterinary vaccines. Despite its extended use, its mechanism of action is not fully understood and very few in vivo studies have been done to enhance understanding at the molecular level. In this work, we took advantage of a previous long-term experiment in which lambs were exposed to three different treatments by parallel subcutaneous inoculations with aluminium-containing commercial vaccines, an equivalent dose of aluminium or mock injections. Spleen samples were used for miRNA-seq. A total of 46 and 16 miRNAs were found differentially expressed when animals inoculated with commercial vaccines or the adjuvant alone were compared with control animals, respectively. Some miRNAs previously related to macrophage polarization were found dysregulated exclusively by the commercial vaccine treatment but not in the aluminium inoculated animals. The dysregulated miRNAs in vaccine group let-7b-5p, miR-29a-3p, miR-27a and miR-101-3p are candidates for further research, since they may play key roles in the immune response induced by aluminium adjuvants added to vaccines. Finally, protein-protein interaction network analysis points towards leucocyte transendothelial migration as a specific mechanism in animals receiving adjuvant only.
Collapse
Affiliation(s)
- Endika Varela-Martínez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena auzoa, 48940, Leioa, Spain
| | - Martin Bilbao-Arribas
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena auzoa, 48940, Leioa, Spain
| | - Naiara Abendaño
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena auzoa, 48940, Leioa, Spain
| | - Javier Asín
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Marta Pérez
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Lluís Luján
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Begoña M Jugo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena auzoa, 48940, Leioa, Spain.
| |
Collapse
|
26
|
Tavukcuoglu E, Yanik H, Parveen M, Uluturk S, Durusu-Tanriover M, Inkaya AC, Akova M, Unal S, Esendagli G. Human memory T cell dynamics after aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccination. Sci Rep 2023; 13:4610. [PMID: 36944716 PMCID: PMC10028771 DOI: 10.1038/s41598-023-31347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
This study evaluates the functional capacity of CD4+ and CD8+ terminally-differentiated effector (TEMRA), central memory (TCM), and effector memory (TEM) cells obtained from the volunteers vaccinated with an aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac). The volunteers were followed for T cell immune responses following the termination of a randomized phase III clinical trial. Seven days and four months after the second dose of the vaccine, the memory T cell subsets were collected and stimulated by autologous monocyte-derived dendritic cells (mDCs) loaded with SARS-CoV-2 spike glycoprotein S1. Compared to the placebo group, memory T cells from the vaccinated individuals significantly proliferated in response to S1-loaded mDCs. CD4+ and CD8+ memory T cell proliferation was detected in 86% and 78% of the vaccinated individuals, respectively. More than 73% (after a short-term) and 62% (after an intermediate-term) of the vaccinated individuals harbored TCM and/or TEM cells that responded to S1-loaded mDCs by secreting IFN-γ. The expression of CD25, CD38, 4-1BB, PD-1, and CD107a indicated a modulation in the memory T cell subsets. Especially on day 120, PD-1 was upregulated on CD4+ TEMRA and TCM, and on CD8+ TEM and TCM cells; accordingly, proliferation and IFN-γ secretion capacities tended to decline after 4 months. In conclusion, the combination of inactivated whole-virion particles with aluminum adjuvants possesses capacities to induce functional T cell responses.
Collapse
Affiliation(s)
- Ece Tavukcuoglu
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Hamdullah Yanik
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Mubaida Parveen
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Sila Uluturk
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey
| | - Mine Durusu-Tanriover
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ahmet Cagkan Inkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Serhat Unal
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
27
|
Desai N, Hasan U, K J, Mani R, Chauhan M, Basu SM, Giri J. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells. Acta Biomater 2023; 161:1-36. [PMID: 36907233 DOI: 10.1016/j.actbio.2023.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Immunotherapy involves the therapeutic alteration of the patient's immune system to identify, target, and eliminate cancer cells. Dendritic cells, macrophages, myeloid-derived suppressor cells, and regulatory T cells make up the tumor microenvironment. In cancer, these immune components (in association with some non-immune cell populations like cancer-associated fibroblasts) are directly altered at a cellular level. By dominating immune cells with molecular cross-talk, cancer cells can proliferate unchecked. Current clinical immunotherapy strategies are limited to conventional adoptive cell therapy or immune checkpoint blockade. Targeting and modulating key immune components presents an effective opportunity. Immunostimulatory drugs are a research hotspot, but their poor pharmacokinetics, low tumor accumulation, and non-specific systemic toxicity limit their use. This review describes the cutting-edge research undertaken in the field of nanotechnology and material science to develop biomaterials-based platforms as effective immunotherapeutics. Various biomaterial types (polymer-based, lipid-based, carbon-based, cell-derived, etc.) and functionalization methodologies for modulating tumor-associated immune/non-immune cells are explored. Additionally, emphasis has been laid on discussing how these platforms can be used against cancer stem cells, a fundamental contributor to chemoresistance, tumor relapse/metastasis, and failure of immunotherapy. Overall, this comprehensive review strives to provide up-to-date information to an audience working at the juncture of biomaterials and cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy possesses incredible potential and has successfully transitioned into a clinically lucrative alternative to conventional anti-cancer therapies. With new immunotherapeutics getting rapid clinical approval, fundamental problems associated with the dynamic nature of the immune system (like limited clinical response rates and autoimmunity-related adverse effects) have remained unanswered. In this context, treatment approaches that focus on modulating the compromised immune components within the tumor microenvironment have garnered significant attention amongst the scientific community. This review aims to provide a critical discussion on how various biomaterials (polymer-based, lipid-based, carbon-based, cell-derived, etc.) can be employed along with immunostimulatory agents to design innovative platforms for selective immunotherapy directed against cancer and cancer stem cells.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Uzma Hasan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Rajesh Mani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
28
|
Stillman ZS, Decker GE, Dworzak MR, Bloch ED, Fromen CA. Aluminum-based metal-organic framework nanoparticles as pulmonary vaccine adjuvants. J Nanobiotechnology 2023; 21:39. [PMID: 36737783 PMCID: PMC9896814 DOI: 10.1186/s12951-023-01782-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
The adoption of pulmonary vaccines to advantageously provide superior local mucosal protection against aerosolized pathogens has been faced with numerous logistical and practical challenges. One of these persistent challenges is the lack of effective vaccine adjuvants that could be well tolerated through the inhaled route of administration. Despite its widespread use as a vaccine adjuvant, aluminum salts (alum) are not well tolerated in the lung. To address this issue, we evaluated the use of porous aluminum (Al)-based metal-organic framework (MOF) nanoparticles (NPs) as inhalable adjuvants. We evaluate a suite of Al-based MOF NPs alongside alum including DUT-4, DUT-5, MIL-53 (Al), and MIL-101-NH2 (Al). As synthesized, MOF NPs ranged between ~ 200 nm and 1 µm in diameter, with the larger diameter MOFs matching those of commercial alum. In vitro examination of co-stimulatory markers revealed that the Al-based MOF NPs activated antigen presenting cells more effectively than alum. Similar results were found during in vivo immunizations utilizing ovalbumin (OVA) as a model antigen, resulting in robust mucosal humoral responses for all Al MOFs tested. In particular, DUT-5 was able to elicit mucosal OVA-specific IgA antibodies that were significantly higher than the other MOFs or alum dosed at the same NP mass. DUT-5 also was uniquely able to generate detectable IgG2a titers, indicative of a cellular immune response and also had superior performance relative to alum at equivalent Al dosed in a reduced dosage vaccination study. All MOF NPs tested were generally well-tolerated in the lung, with only acute levels of cellular infiltrates detected and no Al accumulation; Al content was largely cleared from the lung and other organs at 28 days despite the two-dose regime. Furthermore, all MOF NPs exhibited mass median aerodynamic diameters (MMADs) of ~ 1.5-2.5 µm when dispersed from a generic dry powder inhaler, ideal for efficient lung deposition. While further work is needed, these results demonstrate the great potential for use of Al-based MOFs for pulmonary vaccination as novel inhalable adjuvants.
Collapse
Affiliation(s)
- Zachary S Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Gerald E Decker
- Department of Chemistry and Biochemistry, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Michael R Dworzak
- Department of Chemistry and Biochemistry, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Eric D Bloch
- Department of Chemistry and Biochemistry, University of Delaware, 150 Academy St., Newark, DE, 19716, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE, 19716, USA.
| |
Collapse
|
29
|
Veneziani I, Alicata C, Moretta L, Maggi E. The Latest Approach of Immunotherapy with Endosomal TLR Agonists Improving NK Cell Function: An Overview. Biomedicines 2022; 11:biomedicines11010064. [PMID: 36672572 PMCID: PMC9855813 DOI: 10.3390/biomedicines11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the most well-defined pattern recognition receptors (PRR) of several cell types recognizing pathogens and triggering innate immunity. TLRs are also expressed on tumor cells and tumor microenvironment (TME) cells, including natural killer (NK) cells. Cell surface TLRs primarily recognize extracellular ligands from bacteria and fungi, while endosomal TLRs recognize microbial DNA or RNA. TLR engagement activates intracellular pathways leading to the activation of transcription factors regulating gene expression of several inflammatory molecules. Endosomal TLR agonists may be considered as new immunotherapeutic adjuvants for dendritic cell (DC) vaccines able to improve anti-tumor immunity and cancer patient outcomes. The literature suggests that endosomal TLR agonists modify TME on murine models and human cancer (clinical trials), providing evidence that locally infused endosomal TLR agonists may delay tumor growth and induce tumor regression. Recently, our group demonstrated that CD56bright NK cell subset is selectively responsive to TLR8 engagement. Thus, TLR8 agonists (loaded or not to nanoparticles or other carriers) can be considered a novel strategy able to promote anti-tumor immunity. TLR8 agonists can be used to activate and expand in vitro circulating or intra-tumoral NK cells to be adoptively transferred into patients.
Collapse
Affiliation(s)
- Irene Veneziani
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
30
|
Kurashova SS, Balovneva MV, Ishmukhametov AA, Teodorovich RD, Popova YV, Tkachenko EA, Dzagurova TK. Immune response evaluation in the guinea pigs after immunization with the experimental Puumala virus vaccine. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-ire-1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the Russian Federation, the vaccine against hemorrhagic fever with renal syndrome is at the stage of preclinical and clinical trials. The aim of the study was to analyze an effect of vaccine schedule on neutralizing antibodies (nAB) dynamics in guinea pig models applied with experimental Puumala virus based hantavirus vaccine (HV). Quantitative evaluation of neutralizing antibodies was presented as antibody titer geometric mean expressed in binary logarithms (log2) by the 50% reduction of focus-forming units (FRNT50) in Vero cell in the focus reduction neutralization test. The HV dual inoculation to guinea pigs was carried out in 14 day intervals, booster injection was applied on day 182 after the onset, in the thigh muscle tissue by using 0.3 ml undiluted (HV-u/d) and in the 1/10 dilution (HV-1/10). nAB titer on day 14 after the first HV-u/d and HV-1/10 injection was measured to be at titer of 5.50.3 and 4.80.3, respectively. After the second injection, the nAB peak was as high as 90.2 on day 42 after the first HV-u/f injection, and 6.50.2 on day 14 after the HV-1/10 injection. nAB decreased down to 6.20.3 and 50.3, respectively, on day 364 after the first injection. The booster HV-u/d and HV-1/10 injection induced increase in nAB up to 9.50.3 and 6.50.3, respectively. After the booster injection, it induced significantly higher nAB observed on day 238 after the first HV-u/d injection and delayed up to the 294 day for the HV-1/10. The results of the study indicated the early formation of the immune response, long-term nAB persistence and significantly enhanced immune response after the booster injection on day 182, which indicated a potential for the booster injection a year later. The immunological efficacy and protective activity of the vaccine schedule may be finally assessed according to the results of clinical trials.
Collapse
|
31
|
Somanathan A, Mian SY, Chaddha K, Uchoi S, Bharti PK, Tandon R, Gaur D, Chauhan VS. Process development and preclinical evaluation of a major Plasmodium falciparum blood stage vaccine candidate, Cysteine-Rich Protective Antigen (CyRPA). Front Immunol 2022; 13:1005332. [PMID: 36211427 PMCID: PMC9535676 DOI: 10.3389/fimmu.2022.1005332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) is an essential, highly conserved merozoite antigen that forms an important multi-protein complex (RH5/Ripr/CyRPA) necessary for erythrocyte invasion. CyRPA is a promising blood-stage vaccine target that has been shown to elicit potent strain-transcending parasite neutralizing antibodies. Recently, we demonstrated that naturally acquired immune anti-CyRPA antibodies are invasion-inhibitory and therefore a correlate of protection against malaria. Here, we describe a process for the large-scale production of tag-free CyRPA vaccine in E. coli and demonstrate its parasite neutralizing efficacy with commonly used adjuvants. CyRPA was purified from inclusion bodies using a one-step purification method with high purity (>90%). Biochemical and biophysical characterization showed that the purified tag-free CyRPA interacted with RH5, readily detected by a conformation-specific CyRPA monoclonal antibody and recognized by sera from malaria infected individuals thus indicating that the recombinant antigen was correctly folded and retained its native conformation. Tag-free CyRPA formulated with Freund’s adjuvant elicited highly potent parasite neutralizing antibodies achieving inhibition of >90% across diverse parasite strains. Importantly, we identified tag-free CyRPA/Alhydrogel formulation as most effective in inducing a highly immunogenic antibody response that exhibited efficacious, cross-strain in vitro parasite neutralization achieving ~80% at 10 mg/ml. Further, CyRPA/Alhydrogel vaccine induced anti-parasite cytokine response in mice. In summary, our study provides a simple, scalable, cost-effective process for the production of tag-free CyRPA that in combination with human-compatible adjuvant induces efficacious humoral and cell-mediated immune response.
Collapse
Affiliation(s)
- Anjali Somanathan
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kritika Chaddha
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seemalata Uchoi
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Praveen K. Bharti
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Virander Singh Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- *Correspondence: Virander Singh Chauhan,
| |
Collapse
|
32
|
A Nonadjuvanted Whole-Inactivated Pneumococcal Vaccine Induces Multiserotype Opsonophagocytic Responses Mediated by Noncapsule-Specific Antibodies. mBio 2022; 13:e0236722. [PMID: 36125268 PMCID: PMC9600166 DOI: 10.1128/mbio.02367-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Streptococcus pneumoniae (Spn) remains a major cause of global mortality, with extensive antigenic diversity between capsular serotypes that poses an ongoing challenge for vaccine development. Widespread use of pneumococcal conjugate vaccines (PCVs) targeting Spn capsules has greatly reduced infections by vaccine-included serotypes but has led to increased infections by nonincluded serotypes. To date, high cost of PCVs has also limited their usefulness in low-income regions where disease burdens are highest. To overcome these limitations, serotype-independent vaccines are being actively researched. We have developed a whole-cell gamma-irradiated Spn vaccine (termed Gamma-PN) providing serotype-independent protection. We demonstrate that Gamma-PN immunization of mice or rabbits via the clinically relevant intramuscular route induces protein-specific antibodies able to bind numerous nonvaccine encapsulated serotypes, which mediate opsonophagocytic killing and protection against lethal challenges. Gamma-PN induced comparable or superior opsonophagocytic killing assay (OPKA) responses in rabbits to the licensed Prevnar 13 vaccine (PCV13) for vaccine-included serotypes, and a superior response to nonincluded serotypes, including emergent 22F and 35B. Additionally, despite a lower observed reactogenicity, administration of Gamma-PN without adjuvant resulted in higher OPKA responses and improved protection compared to adjuvanted Gamma-PN. To our knowledge, this has not been demonstrated previously for a whole-inactivated Spn vaccine. Eliminating the requirement for adjuvant comes with numerous benefits for clinical applications of this vaccine and poses interesting questions for the inclusion of adjuvant in similar vaccines in development.
Collapse
|
33
|
Heine S, Aguilar-Pimentel A, Russkamp D, Alessandrini F, Gailus-Durner V, Fuchs H, Ollert M, Bredehorst R, Ohnmacht C, Zissler UM, Hrabě de Angelis M, Schmidt-Weber CB, Blank S. Thermosensitive PLGA–PEG–PLGA Hydrogel as Depot Matrix for Allergen-Specific Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081527. [PMID: 35893787 PMCID: PMC9329805 DOI: 10.3390/pharmaceutics14081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the only currently available curative treatment option for allergic diseases. AIT often includes depot-forming and immunostimulatory adjuvants, to prolong allergen presentation and to improve therapeutic efficacy. The use of aluminium salts in AIT, which are commonly used as depot-forming adjuvants, is controversially discussed, due to health concerns and Th2-promoting activity. Therefore, there is the need for novel delivery systems in AIT with similar therapeutic efficacy compared to classical AIT strategies. In this study, a triblock copolymer (hydrogel) was assessed as a delivery system for AIT in a murine model of allergic asthma. We show that the hydrogel combines the advantages of both depot function and biodegradability at the same time. We further demonstrate the suitability of hydrogel to release different bioactive compounds in vitro and in vivo. AIT delivered with hydrogel reduces key parameters of allergic inflammation, such as inflammatory cell infiltration, mucus hypersecretion, and allergen-specific IgE, in a comparable manner to standard AIT treatment. Additionally, hydrogel-based AIT is superior in inducing allergen-specific IgG antibodies with potentially protective functions. Taken together, hydrogel represents a promising delivery system for AIT that is able to combine therapeutic allergen administration with the prolonged release of immunomodulators at the same time.
Collapse
Affiliation(s)
- Sonja Heine
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
| | - Dennis Russkamp
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 4354 Esch-Sur-Alzette, Luxembourg;
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, 5000 Odense, Denmark
| | - Reinhard Bredehorst
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany;
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
- Correspondence: ; Tel.: +49-89-318-726-25
| |
Collapse
|
34
|
Hidalgo T, Simón-Vázquez R, González-Fernández A, Horcajada P. Cracking the immune fingerprint of metal-organic frameworks. Chem Sci 2022; 13:934-944. [PMID: 35211258 PMCID: PMC8790785 DOI: 10.1039/d1sc04112f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
The human body is in a never-ending chess game against pathogens. When the immune system, our natural defence tool, is weakened, these organisms are able to escape, overcoming the body's contingency plan, which results in the body going into a pathological state. To overcome this checkmate status, emerging nanomedicines have been successfully employed as one of the best tactics for boosting the immune response, manipulating the body's defence tools for the specific recognition/elimination of pathological cells via the active ingredient delivery. However, the vast majority of these drug-delivery systems (DDS) are considered to be exclusively passive vehicles, with nanoscale metal-organic frameworks (nanoMOFs) attracting a great deal of attention due to their versatility and ability to carry and deliver exceptional drug payloads and to modulate their biological bypass. Nonetheless, their intrinsic immunogenicity character has been never addressed. Considering the immense possibilities that nanoMOFs offer as a treatment platform, the present study aimed to unveil the immunological fingerprint of MOFs, including an in-deep evaluation of the cellular oxidation balance, the inflammation and recruitment of immune cells and the precise Th1/Th2 cytokine profile that is triggered. This study aims to gain insights that will make more feasible the design of customized immune-active MOF nanoplatforms according to targeted diseases, as the next ace up immune system sleeve.
Collapse
Affiliation(s)
- T Hidalgo
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute Av. Ramón de la Sagra 3 28935 Móstoles-Madrid Spain
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines 45 Av. des Etats-Unis 78035 Versailles Cedex France
| | - R Simón-Vázquez
- CINBIO, Immunology Group, Universidade de Vigo 36310 Vigo Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO Spain
| | - A González-Fernández
- CINBIO, Immunology Group, Universidade de Vigo 36310 Vigo Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO Spain
| | - P Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute Av. Ramón de la Sagra 3 28935 Móstoles-Madrid Spain
| |
Collapse
|
35
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
36
|
Martens PJ, Ellis D, Bruggeman Y, Viaene M, Laureys J, Teyton L, Mathieu C, Gysemans C. Preventing type 1 diabetes in late-stage pre-diabetic NOD mice with insulin: A central role for alum as adjuvant. Front Endocrinol (Lausanne) 2022; 13:1023264. [PMID: 36339431 PMCID: PMC9630573 DOI: 10.3389/fendo.2022.1023264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Restoration of immune tolerance to disease-relevant antigens is an appealing approach to prevent or arrest an organ-specific autoimmune disease like type 1 diabetes (T1D). Numerous studies have identified insulin as a key antigen of interest to use in such strategies, but to date, the success of these interventions in humans has been inconsistent. The efficacy of antigen-specific immunotherapy may be enhanced by optimising the dose, timing, and route of administration, and perhaps by the inclusion of adjuvants like alum. The aim of our study was to evaluate the effect of an insulin peptide vaccine formulated with alum to prevent T1D development in female non-obese diabetic (NOD) mice when administered during late-stage pre-diabetes. METHODS Starting at 10 weeks of age, female NOD mice received four weekly subcutaneous injections of an insulin B:8-24 (InsB:8-24) peptide with (Ins+alum) or without Imject® alum (Ins) as adjuvant. Diabetes incidence was assessed for up to 30 weeks of age. Insulin autoantibodies and C-peptide concentrations were measured in plasma and flow cytometric analysis was performed on pancreatic-draining lymph nodes (PLN) and pancreas using an InsB:12-20-reactive tetramer. RESULTS InsB:8-24 peptide formulated in alum reduced diabetes incidence (39%), compared to mice receiving the InsB:8-24 peptide without alum (71%, P < 0.05), mice receiving alum alone (76%, P < 0.01), or mice left untreated (70%, P < 0.01). This was accompanied by reduced insulitis severity, and preservation of C-peptide. Ins+alum was associated with reduced frequencies of pathogenic effector memory CD4+ and CD8+ T cells in the pancreas and increased frequencies of insulin-reactive FoxP3+ Tregs in the PLN. Of interest, insulin-reactive Tregs were enriched amongst populations of Tregs expressing markers indicative of stable FoxP3 expression and enhanced suppressive function. CONCLUSION An InsB:8-24 peptide vaccine prevented the onset of T1D in late-stage pre-diabetic NOD mice, but only when formulated in alum. These findings support the use of alum as adjuvant to optimise the efficacy of antigen-specific immunotherapy in future trials.
Collapse
Affiliation(s)
- Pieter-Jan Martens
- Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Ylke Bruggeman
- Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Marijke Viaene
- Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Jos Laureys
- Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Luc Teyton
- Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, United States
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Leuven, Belgium
- *Correspondence: Conny Gysemans,
| |
Collapse
|
37
|
Akache B, Stark FC, Agbayani G, Renner TM, McCluskie MJ. Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods Mol Biol 2022; 2412:179-231. [PMID: 34918246 DOI: 10.1007/978-1-0716-1892-9_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Tyler M Renner
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
38
|
Ariawan AD, van Eersel J, Martin AD, Ke YD, Ittner LM. Recent progress in synthetic self-adjuvanting vaccine development. Biomater Sci 2022; 10:4037-4057. [DOI: 10.1039/d2bm00061j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccination is a proven way to protect individuals against many infectious diseases, as currently highlighted in the global COVID-19 pandemic. Peptides- or small molecule antigen-based vaccination offer advantages over the...
Collapse
|
39
|
Safety and Seroconversion of Immunotherapies against SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis of Clinical Trials. Pathogens 2021; 10:pathogens10121537. [PMID: 34959492 PMCID: PMC8706687 DOI: 10.3390/pathogens10121537] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Clinical trials evaluating the safety and antibody response of strategies to manipulate prophylactic and therapeutic immunity have been launched. We aim to evaluate strategies for augmentation of host immunity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. We searched clinical trials registered at the National Institutes of Health by 25 May 2021 and conducted analyses on inoculated populations, involved immunological processes, source of injected components, and trial phases. We then searched PubMed, Embase, Scopus, and the Cochrane Central Register of Controlled Trials for their corresponding reports published by 25 May 2021. A bivariate, random-effects meta-analysis was used to derive the pooled estimate of seroconversion and adverse events (AEs). A total of 929,359 participants were enrolled in 389 identified trials. The working mechanisms included heterologous immunity, active immunity, passive immunity, and immunotherapy, with 62.4% of the trials on vaccines. A total of 9072 healthy adults from 27 publications for 22 clinical trials on active immunity implementing vaccination were included for meta-analyses. The pooled odds ratios (ORs) of seroconversion were 13.94, 84.86, 106.03, and 451.04 (all p < 0.01) for vaccines based on protein, RNA, viral vector, and inactivated virus, compared with that of respective placebo/control treatment or pre-vaccination sera. The pooled ORs for safety, as defined by the inverse of systemic adverse events (AEs) were 0.53 (95% CI = 0.27–1.05; p = 0.07), 0.35 (95% CI = 0.16–0.75; p = 0.007), 0.32 (95% CI = 0.19–0.55; p < 0.0001), and 1.00 (95% CI = 0.73–1.36; p = 0.98) for vaccines based on protein, RNA, viral vector, and inactivated virus, compared with that of placebo/control treatment. A paradigm shift from all four immune-augmentative interventions to active immunity implementing vaccination was observed through clinical trials. The efficacy of immune responses to neutralize SARS-CoV-2 for these vaccines was promising, although systemic AEs were still evident for RNA-based and viral vector-based vaccines.
Collapse
|
40
|
Development of an Inactivated Vaccine against SARS CoV-2. Vaccines (Basel) 2021; 9:vaccines9111266. [PMID: 34835197 PMCID: PMC8624180 DOI: 10.3390/vaccines9111266] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022] Open
Abstract
The rapid spread of SARS-CoV-2 with its mutating strains has posed a global threat to safety during this COVID-19 pandemic. Thus far, there are 123 candidate vaccines in human clinical trials and more than 190 candidates in preclinical development worldwide as per the WHO on 1 October 2021. The various types of vaccines that are currently approved for emergency use include viral vectors (e.g., adenovirus, University of Oxford/AstraZeneca, Gamaleya Sputnik V, and Johnson & Johnson), mRNA (Moderna and Pfizer-BioNTech), and whole inactivated (Sinovac Biotech and Sinopharm) vaccines. Amidst the emerging cases and shortages of vaccines for global distribution, it is vital to develop a vaccine candidate that recapitulates the severe and fatal progression of COVID-19 and further helps to cope with the current outbreak. Hence, we present the preclinical immunogenicity, protective efficacy, and safety evaluation of a whole-virion inactivated SARS-CoV-2 vaccine candidate (ERUCoV-VAC) formulated in aluminium hydroxide, in three animal models, BALB/c mice, transgenic mice (K18-hACE2), and ferrets. The hCoV-19/Turkey/ERAGEM-001/2020 strain was used for the safety evaluation of ERUCoV-VAC. It was found that ERUCoV-VAC was highly immunogenic and elicited a strong immune response in BALB/c mice. The protective efficacy of the vaccine in K18-hACE2 showed that ERUCoV-VAC induced complete protection of the mice from a lethal SARS-CoV-2 challenge. Similar viral clearance rates with the safety evaluation of the vaccine in upper respiratory tracts were also positively appreciable in the ferret models. ERUCoV-VAC has been authorized by the Turkish Medicines and Medical Devices Agency and has now entered phase 3 clinical development (NCT04942405). The name of ERUCoV-VAC has been changed to TURKOVAC in the phase 3 clinical trial.
Collapse
|
41
|
Identification of sheep lncRNAs related to the immune response to vaccines and aluminium adjuvants. BMC Genomics 2021; 22:770. [PMID: 34706639 PMCID: PMC8554944 DOI: 10.1186/s12864-021-08086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are involved in several immune processes, including the immune response to vaccination, but most of them remain uncharacterised in livestock species. The mechanism of action of aluminium adjuvants as vaccine components is neither not fully understood. Results We built a transcriptome from sheep PBMCs RNA-seq data in order to identify unannotated lncRNAs and analysed their expression patterns along protein coding genes. We found 2284 novel lncRNAs and assessed their conservation in terms of sequence and synteny. Differential expression analysis performed between animals inoculated with commercial vaccines or aluminium adjuvant alone and the co-expression analysis revealed lncRNAs related to the immune response to vaccines and adjuvants. A group of co-expressed genes enriched in cytokine signalling and production highlighted the differences between different treatments. A number of differentially expressed lncRNAs were correlated with a divergently located protein-coding gene, such as the OSM cytokine. Other lncRNAs were predicted to act as sponges of miRNAs involved in immune response regulation. Conclusions This work enlarges the lncRNA catalogue in sheep and puts an accent on their involvement in the immune response to repetitive vaccination, providing a basis for further characterisation of the non-coding sheep transcriptome within different immune cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08086-z.
Collapse
|
42
|
Mohammadi A, Abtahi Froushani SM, DelireZh N, Ownagh A. Alum and metoclopramide synergistically enhance cellular and humoral immunity after immunization with heat-killed Salmonella typhimurium vaccine. Int Immunopharmacol 2021; 101:108185. [PMID: 34607234 DOI: 10.1016/j.intimp.2021.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
Typically, the killed form of microorganisms in combination with alum does not produce strong cellular immune responses. A recent investigation has indicated the role of dopamine D2 receptor antagonists like metoclopramide in reducing the polarization of immune responses toward Th2 immunity. This study was performed to evaluate the effects of a combination of alum and metoclopramide on the induction of cellular and humoral immunity in response to a heat-killed preparation ofSalmonella typhimurium(HKST). Wistar rats were immunized with the HKST vaccine alone or in combination with alum, metoclopramide, or the alum-metoclopramide mixture twice with a two-week interval. Fourteen days after the last vaccination, immune responses against S. typhimurium and the protective potential of the vaccines were assessed. The combination of alum and metoclopramide as an adjuvant augmented the potential of the HKST vaccine to enhance lymphocyte proliferation, delayed-type hypersensitivity reaction, and antibody titer. These results were concurrent with the polarization of immune response towards the Th1 response and improving protective immunity against S. typhimurium. Overall, the combination of alum and metoclopramide as an adjuvant synergistically enhanced cellular and humoral immunity after immunization with the HKST vaccine.
Collapse
Affiliation(s)
- Ahmad Mohammadi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Nouroz DelireZh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Abdolghaffar Ownagh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
43
|
Ritzau-Jost J, Hutloff A. T Cell/B Cell Interactions in the Establishment of Protective Immunity. Vaccines (Basel) 2021; 9:vaccines9101074. [PMID: 34696182 PMCID: PMC8536969 DOI: 10.3390/vaccines9101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) are the T cell subset providing help to B cells for the generation of high-affinity antibodies and are therefore of key interest for the development of vaccination strategies against infectious diseases. In this review, we will discuss how the generation of Tfh cells and their interaction with B cells in secondary lymphoid organs can be optimized for therapeutic purposes. We will summarize different T cell subsets including Tfh-like peripheral helper T cells (Tph) capable of providing B cell help. In particular, we will highlight the novel concept of T cell/B cell interaction in non-lymphoid tissues as an important element for the generation of protective antibodies directly at the site of pathogen invasion.
Collapse
|
44
|
Sughra F, Rahman MHU, Abbas F, Altaf I. Evaluation of three alum-precipitated Aeromonas hydrophila vaccines administered to Labeo rohita, Cirrhinus mrigala and Ctenopharyngodon idella: immunokinetics, immersion challenge and histopathology. BRAZ J BIOL 2021; 83:e249913. [PMID: 34550293 DOI: 10.1590/1519-6984.249913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Aeromonas hydrophila is a cause of infectious disease outbreaks in carp species cultured in South Asian countries including Pakistan. This bacterium has gained resistance to a wide range of antibiotics and robust preventive measures are necessary to control its spread. No prior use of fish vaccines has been reported in Pakistan. The present study aims to develop and evaluate inactivated vaccines against local strain of A. hydrophila in Pakistan with alum-precipitate as adjuvant. The immunogenic potential of vaccine was evaluated in two Indian major carps (Rohu: Labeo rohita, Mori: Cirrhinus mrigala) and a Chinese carp (Grass carp: Ctenopharyngodon idella). Fish were vaccinated intraperitoneally followed by a challenge through immersion. Fish with an average age of 4-5 months were randomly distributed in three vaccinated groups with three vaccine concentrations of 108, 109 and 1010 colony forming unit (CFU)/ml and a control group. Fixed dose of 0.1ml was applied to each fish on 1st day and a booster dose at 15 days post-vaccination (DPV). Blood samples were collected on 14, 28, 35, 48 and 60 DPV to determine antibody titers in blood serum using compliment fixation test (CFT). Fish were challenged at 60 DPV with infectious A. hydrophila with 108 CFU/ml through immersion. Significantly higher levels of antibody titers were observed from 28 DPV in all vaccinated groups as compared to those in the control group. In challenge experiment the average RPS (relative percent survivability) was 71% for groups vaccinated with 109 and 1010 CFU/ml and 86% for 108 CFU/ml. Vaccine with 108 CFU/ml induced highest immune response followed by 109 and 1010 CFU/ml. The immune response of L. rohita and C. idella was better than that of C. mrigala. In general, normal histopathology was observed in different organs of vaccinated fish whereas minor deteriorative changes were found in fish vaccinated with higher concentrations of the vaccine.
Collapse
Affiliation(s)
- F Sughra
- University of Veterinary and Animal Sciences, Department of Fisheries and Aquaculture, Lahore, Pakistan
| | - M Hafeez-Ur Rahman
- University of Veterinary and Animal Sciences, Department of Fisheries and Aquaculture, Lahore, Pakistan
| | - F Abbas
- University of Veterinary and Animal Sciences, Department of Fisheries and Aquaculture, Lahore, Pakistan
| | - I Altaf
- University of Veterinary and Animal Sciences, Quality Operations Laboratory, Lahore, Pakistan
| |
Collapse
|
45
|
Suresh MK, Vasudevan AK, Biswas L, Biswas R. Protective efficacy of Alum adjuvanted Amidase protein vaccine against Staphylococcus aureus infection in multiple mouse models. J Appl Microbiol 2021; 132:1422-1434. [PMID: 34487603 DOI: 10.1111/jam.15291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
AIMS Staphylococcus aureus is an opportunistic pathogen of humans. No commercial vaccine is available to combat S. aureus infections. In this study, we have investigated the protective immune response generated by S. aureus non-covalently associated cell wall surface protein N-acetylmuramoyl-L-alanine amidase (AM) in combination with Alum (Al) and heat-killed S. aureus (hkSA) using murine models. METHODS AND RESULTS BALB/c mice were immunized with increasing concentrations of AM antigen or hkSA to determine their optimum concentration for vaccination. Fifty micrograms of AM and hkSA each were found to generate maximum anti-AM IgG antibody production. BALB/c mice were immunized next with 50 µg of AM, 50 µg of hKSA and 1 mg Al vaccine formulation. Vaccine efficacy was validated by challenging immunized BALB/c mice with S. aureus Newman and three clinical methicillin-resistant S. aureus strains. AM-hkSA-Al-immunized mice generated high anti-AM IgG antibody response with IgG1 and IgG2b as the predominant immunoglobulin subtypes. Increased survival (60%-90%) with decreased clinical disease symptoms was observed in the vaccinated BALB/c mice group. A significantly lower bacterial load and decreased kidney abscess formation was observed following the challenge with S. aureus in the vaccinated BALB/c mice group. Furthermore, the efficacy of AM-hkSA-Al vaccine was also validated using C57 BL/6 and Swiss albino mice. CONCLUSIONS Using murine infection models, we have demonstrated that AM-hkSA-Al vaccine would be effective in preventing S. aureus infections. SIGNIFICANCE AND IMPACT OF STUDY AM-hkSA-Al vaccine elicited strong immune response and may be considered for future vaccine design against S. aureus infections.
Collapse
Affiliation(s)
- Maneesha K Suresh
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Anil Kumar Vasudevan
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, India
| | - Lalitha Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
46
|
Haupt RE, Harberts EM, Kitz RJ, Strohmeier S, Krammer F, Ernst RK, Frieman MB. Novel TLR4 adjuvant elicits protection against homologous and heterologous Influenza A infection. Vaccine 2021; 39:5205-5213. [PMID: 34362603 DOI: 10.1016/j.vaccine.2021.06.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Influenza A virus (IAV) is a leading cause of respiratory disease worldwide often resulting in hospitalization or death. In this study, TLR4 immunostimulatory molecules, Bacterial Enzymatic Combinatorial Chemistry (BECC) 438 and BECC470 were found to be superior IAV vaccine adjuvants when compared to the classic adjuvant alhydrogel (alum) and Phosphorylated Hexa-Acyl Disaccharide (PHAD), a synthetic TLR4 agonist. BECC molecules allow for antigen sparing of a recombinant HA (rHA) protein, elicit a more balanced IgG1/IgG2a response, and were protective in a prime only dosing schedule. Importantly, BECC molecules afford protection from a heterologous IAV strain demonstrating that a cross-protective influenza vaccine is possible when the antigen is effectively adjuvanted.
Collapse
Affiliation(s)
- Robert E Haupt
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Erin M Harberts
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Robert J Kitz
- Department of Pathology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shirin Strohmeier
- Department of Pathology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine, New York, NY, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - Matthew B Frieman
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
47
|
Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol 2021; 12:701501. [PMID: 34322129 PMCID: PMC8311925 DOI: 10.3389/fimmu.2021.701501] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus 19 Disease (COVID-19) originating in the province of Wuhan, China in 2019, is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), whose infection in humans causes mild or severe clinical manifestations that mainly affect the respiratory system. So far, the COVID-19 has caused more than 2 million deaths worldwide. SARS-CoV-2 contains the Spike (S) glycoprotein on its surface, which is the main target for current vaccine development because antibodies directed against this protein can neutralize the infection. Companies and academic institutions have developed vaccines based on the S glycoprotein, as well as its antigenic domains and epitopes, which have been proven effective in generating neutralizing antibodies. However, the emergence of new SARS-CoV-2 variants could affect the effectiveness of vaccines. Here, we review the different types of vaccines designed and developed against SARS-CoV-2, placing emphasis on whether they are based on the complete S glycoprotein, its antigenic domains such as the receptor-binding domain (RBD) or short epitopes within the S glycoprotein. We also review and discuss the possible effectiveness of these vaccines against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adolfo Cruz-Reséndiz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Aguirre-Sampieri
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
48
|
Maleki M, Salouti M. Immunization effect of lipopolysaccharide antigen in conjugation with PLGA nanoparticles as a nanovaccine against Brucella melitensis infection. Biologicals 2021; 72:10-17. [PMID: 34167853 DOI: 10.1016/j.biologicals.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
Brucella is an infectious disease with difficult treatment faced with drug resistance and recurrence of infection. Despite advances in the development of effective vaccines against brucellosis infections, there is still a need for more effective vaccine against brucellosis. In this study, we developed a nanovaccine for delivery of lipopolysaccharide Brucella melitensis antigen to the immune system using PLGA nanoparticles to prevent Brucella infection, which is associated with the stimulation of both humoral and cellular immune systems. In particular, we determined the rate of produced immunoglobulines and their functional effectiveness on the immune system by carring out opsonophagocytosis and challenge tests. According to the results, it was determined that PLGA improve the delivery of LPS antigen to the immune system to enhance the production of immunoglobulins levels and their efficiency to remove Brucella bacteria.
Collapse
Affiliation(s)
- Masoud Maleki
- Dept. of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Mojtaba Salouti
- Nanobiotechnology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| |
Collapse
|
49
|
Burn OK, Pankhurst TE, Painter GF, Connor LM, Hermans IF. Harnessing NKT cells for vaccination. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab013. [PMID: 36845569 PMCID: PMC9914585 DOI: 10.1093/oxfimm/iqab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand
| | - Theresa E Pankhurst
- The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone 5046, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lisa M Connor
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand,Correspondence address. Malaghan Institute of Medical Research, Wellington, New Zealand. Tel: +64 4 4996914; E-mail: (I.F.H.)
| |
Collapse
|
50
|
Kumar M, Kumari N, Thakur N, Bhatia SK, Saratale GD, Ghodake G, Mistry BM, Alavilli H, Kishor DS, Du X, Chung SM. A Comprehensive Overview on the Production of Vaccines in Plant-Based Expression Systems and the Scope of Plant Biotechnology to Combat against SARS-CoV-2 Virus Pandemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:1213. [PMID: 34203729 PMCID: PMC8232254 DOI: 10.3390/plants10061213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 12/23/2022]
Abstract
Many pathogenic viral pandemics have caused threats to global health; the COVID-19 pandemic is the latest. Its transmission is growing exponentially all around the globe, putting constraints on the health system worldwide. A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes this pandemic. Many candidate vaccines are available at this time for COVID-19, and there is a massive international race underway to procure as many vaccines as possible for each country. However, due to heavy global demand, there are strains in global vaccine production. The use of a plant biotechnology-based expression system for vaccine production also represents one part of this international effort, which is to develop plant-based heterologous expression systems, virus-like particles (VLPs)-vaccines, antiviral drugs, and a rapid supply of antigen-antibodies for detecting kits and plant origin bioactive compounds that boost the immunity and provide tolerance to fight against the virus infection. This review will look at the plant biotechnology platform that can provide the best fight against this global pandemic.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Nisha Kumari
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Nishant Thakur
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, Dongguk University, Seoul 10326, Korea;
| | - Bhupendra M. Mistry
- Department of Food Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (G.D.S.); (B.M.M.)
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - D. S. Kishor
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Xueshi Du
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea; (M.K.); (D.S.K.); (X.D.)
| |
Collapse
|