1
|
Wang Y, Yang C, Shi Q, Zhang L, Liu H, You J, Zhang R, Sun A, Song S, Zhang Z, Shi X. Co-exposure to enrofloxacin and atrazine enhances the hepatotoxicity in Larimichthys crocea by targeting the hypothalamic-pituitary-thyroid and gut-liver axes. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137548. [PMID: 39952136 DOI: 10.1016/j.jhazmat.2025.137548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Enrofloxacin (ENR) and atrazine (ATZ) are common co-contaminants in marine environments. Although the immunosuppressive effects of ENR and the endocrine-disrupting properties of ATZ are well established, the combined effects of these pollutants on hepatotoxicity, particularly concerning the regulation of the hypothalamic-pituitary-thyroid (HPT) and gut-liver axes, remain poorly understood. In this study, Larimichthys crocea was exposed to ENR and ATZ at environmentally relevant concentrations, individually and in combination, to investigate the hepatotoxicity. Liver cell swelling, necrosis, oxidative stress, and elevated liver injury markers were observed, indicating hepatic damage, with co-exposure exacerbating liver injury. Decreased levels of thyrotropin-releasing hormone and thyroid-stimulating hormone, increased triiodothyronine and thyroxine, and altered expression of HPT axis-related genes demonstrated enhanced disruption of the HPT axis under co-exposure, which was strongly associated with oxidative stress and liver dysfunction. Molecular docking confirmed that ENR and ATZ inhibited thyroid hormone binding to target proteins, likely provoking the enhanced hepatotoxicity. Additionally, ATZ significantly intensified the intestinal bacterial disturbances induced by ENR, further aggravating hepatotoxicity through the gut-liver axis. This study is the first to reveal the increased risk associated with ENR and ATZ co-exposure, highlighting the need for attention to such co-contaminants.
Collapse
Affiliation(s)
- Yinan Wang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenxue Yang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Qiangqiang Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Liuquan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinjie You
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Aili Sun
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zeming Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xizhi Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Zhao J, Duan G, Chang J, Wang H, Zhu D, Li J, Zhu Y. Co-exposure to cyazofamid and polymyxin E: Variations in microbial community and antibiotic resistance in the soil-animal-plant system. ENVIRONMENTAL RESEARCH 2025; 273:121160. [PMID: 39986419 DOI: 10.1016/j.envres.2025.121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Human activity is accelerating the emergence of fungal pathogens, prompting substantial efforts to discover novel fungicides. Meanwhile, the runoff and spray drift from agricultural fields adversely affect aquatic and terrestrial nontarget organisms. However, few studies have examined the effects of co-contamination by agrochemical fungicides and pharmaceutical antibiotics on microorganisms and antibiotic resistance genes (ARGs) in the soil-animal-plant system. To further explore the mechanisms, an investigation was conducted into the individual and combined effects of a widely used fungicide (cyazofamid, CZF) and a last-resort antibiotic (colistin, polymyxin E, PME) in the soil-earthworm-tomato system. This study revealed that CZF and PME co-contamination exerted synergistic toxicity, significantly reducing earthworm survival and inhibiting tomato growth. This study found that the structure of microbial communities was more severely disturbed by the fungicide CZF than by the antibiotic PME, with the most severe impact being that of CZF + PME co-contamination. Fungicides and antibiotics had significantly distinct effects on bacterial functional pathways: CZF and CZF + PME treatments enhanced compound degradation, whereas PME treatments promoted biological nitrogen cycling. Moreover, co-contamination significantly increased the abundance of insertional and plasmid-associated genes and number of total ARGs in bulk and rhizosphere soil. In addition, the relationships between bacterial communities and the antibiotic resistome were investigated. The analysis revealed that Gram-positive bacteria (Sporosarcina, Bacillus, and Rhodococcus) capable of resistance and degradation, as well as the genes MexB (multidrug) and aadA2 (aminoglycoside) were enriched. Taken together, interactions between co-pollutants can significantly increase toxicity levels and the risk of ARG proliferation. The findings provide new insights into the potential impacts of co-contamination in complex real-life environments, such as soil-animal-plant systems.
Collapse
Affiliation(s)
- Jun Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guilan Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguan Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
3
|
Laptev GY, Tiurina DG, Yildirim EA, Gorfunkel EP, Ilina LA, Filippova VA, Dubrovin AV, Dubrovina AS, Brazhnik EA, Novikova NI, Melikidi VK, Sokolova KA, Ponomareva ES, Zaikin VA, Griffin DK, Romanov MN. Effects of glyphosate, antibiotics, and an anticoccidial drug on pancreatic gene expression and blood physiology in broilers. J Zhejiang Univ Sci B 2025; 26:185-199. [PMID: 40015937 PMCID: PMC11867781 DOI: 10.1631/jzus.b2300767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/01/2025]
Abstract
Drugs and pesticide residues in broiler feed can compromise the therapeutic and production benefits of antibiotic (ANT) application and affect gene expression. In this study, we analyzed the expression of 13 key pancreatic genes and blood physiology parameters after administering one maximum residue limit of herbicide glyphosate (GLY), two ANTs, and one anticoccidial drug (AD). A total of 260 Ross 308 broilers aged 1-40 d were divided into the following four groups of 65 birds each: control group, which was fed the main diet (MD), and three experimental groups, which were fed MD supplemented with GLY, GLY+ANTs (enrofloxacin and colistin methanesulfonate), and GLY+AD (ammonium maduramicin), respectively. The results showed that the addition of GLY, GLY+ANTs, and GLY+AD caused significant changes in the expression of several genes of physiological and economic importance. In particular, genes related to inflammation and apoptosis (interleukin 6 (IL6), prostaglandin-endoperoxide synthase 2 (PTGS2), and caspase 6 (CASP6)) were downregulated by up to 99.1%, and those related to antioxidant protection (catalase (CAT), superoxide dismutase 1 (SOD1) and peroxiredoxin 6 (PRDX6)) by up to 98.6%, compared to controls. There was also a significant decline in the values of immunological characteristics in the blood serum observed in the experimental groups, and certain changes in gene expression were concordant with changes in the functioning of the pancreas and blood. The changes revealed in gene expression and blood indices in response to GLY, ANTs, and AD provide insights into the possible mechanisms of action of these agents at the molecular level. Specifically, these changes may be indicative of physiological mechanisms to overcome the negative effects of GLY, GLY+ANTs, and GLY+AD in broilers.
Collapse
Affiliation(s)
- Georgi Yu Laptev
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Daria G Tiurina
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Elena A Yildirim
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia.
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University," Pushkin, St. Petersburg 196605, Russia.
| | - Elena P Gorfunkel
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Larisa A Ilina
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University," Pushkin, St. Petersburg 196605, Russia
| | - Valentina A Filippova
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University," Pushkin, St. Petersburg 196605, Russia
| | - Andrei V Dubrovin
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Alisa S Dubrovina
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Evgeni A Brazhnik
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Natalia I Novikova
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Veronika K Melikidi
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Kseniya A Sokolova
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Ekaterina S Ponomareva
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Vasiliy A Zaikin
- Molecular Genetics and Microbiomics Laboratory, BIOTROF+ Ltd., Pushkin, St. Petersburg 196602, Russia
| | - Darren K Griffin
- School of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Michael N Romanov
- Federal State Budgetary Educational Institution of Higher Education "St. Petersburg State Agrarian University," Pushkin, St. Petersburg 196605, Russia. ,
- School of Natural Sciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK. ,
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand. ,
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Oblast 142132, Russia. ,
| |
Collapse
|
4
|
Qiang X, Wang X, Liang S, Li S, Lv Y, Zhan J. Long-term effects of Nε-carboxymethyllysine intake on intestinal barrier permeability: Associations with gut microbiota and bile acids. Food Res Int 2025; 201:115543. [PMID: 39849698 DOI: 10.1016/j.foodres.2024.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/02/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Advanced glycation end products (AGEs) in processed foods are closely linked to intestinal injury. However, the long-term effects of exposure to free Nɛ-carboxymethyl lysine (CML), a prevalent AGE molecule, on intestinal barrier integrity have been rarely evaluated. This study investigated the temporal effects of CML exposure on intestinal barrier permeability in C57BL/6N mice at diet-related doses over 12, 14, and 16 weeks. No significant changes were observed at 12 weeks, but CML exposure significantly increased intestinal permeability at 14 and 16 weeks, accompanied by elevated serum LPS levels, colonic histological damage, and reduced tight junction protein expression at 16 weeks. CML exposure also altered gut microbiota composition and intestinal bile acid (BA) profiles, specifically reducing TDCA, GDCA, and GCDCA levels. Given the important role of colonic BA receptor signaling in maintaining the intestinal barrier integrity, the impact of CML on BA receptor signaling was assessed. CML exposure significantly downregulated BA receptor TGR5-YAP signaling in mice, while no significant effects were observed in vitro, suggesting that the changes observed in TGR5-YAP signaling in vivo may not result from the direct effects of CML. Spearman's correlation analysis revealed strong associations between altered gut microbiota, BA levels, TGR5-YAP signaling, and intestinal barrier injury. This study highlighted the chronic health risks of long-term CML intake and provided new insights into the links between CML-induced intestinal toxicity, gut microbiota, BA profiles, and BA receptor signaling.
Collapse
Affiliation(s)
- Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Shaogang Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
5
|
Aguzie IO, Oriaku CU, Agbo FI, Ukwueze VO, Asogwa CN, Ikele CB, Aguzie IJ, Ossai NI, Eyo JE, Nwani CD. Single and mixture exposure to atrazine and ciprofloxacin on Clarias gariepinus antioxidant defense status, hepatic condition and immune response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104523. [PMID: 39089401 DOI: 10.1016/j.etap.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Atrazine (ATRA) and ciprofloxacin (CPRO) are widely detected, persistent and co-existing aquatic pollutants. This study investigated effects of 14-day single and joint ATRA and CPRO exposure on juvenile Clarias gariepinus. Standard bioassay methods were used to determine responses of oxidative stress, hepatic condition, and immunological biomarkers on days 7 and 14. Seven groups were used: Control, CPROEC, CPROSubl, ATRAEC, ATRASubl, CPROEC+ATRAEC, and CPROSubl+ATRASubl. The test substances caused decreased activity of superoxide dismutase, catalase, and glutathione peroxidase. Lipid peroxidation was elevated, especially in CPRO-ATRA mixtures. Serum aminotransferases (ALT, and AST), and alkaline phosphatase activity increased significantly. Total protein, albumin, total immunoglobulin, and respiratory burst decreased significantly. Therefore, single and joint exposure to CPRO and ATRA poses adverse consequences on aquatic life.
Collapse
Affiliation(s)
- Ifeanyi O Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria.
| | | | - Faith I Agbo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Vera O Ukwueze
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chinweike N Asogwa
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chika B Ikele
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Ijeoma J Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Nelson I Ossai
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Joseph E Eyo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Christopher D Nwani
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| |
Collapse
|
6
|
Han S, Sun W, Sun X, Yue Y, Miao J, Dang X, Diao J, Teng M, Zhu W. Co-exposure to boscalid and amoxicillin inhibited the degradation of boscalid and aggravated the threat to the earthworm. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106022. [PMID: 39084781 DOI: 10.1016/j.pestbp.2024.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
The extensive application of pesticides and antibiotics in agricultural production makes it possible for them to coexist in farmland, and the interaction of the two pollutants can lead to changes in environmental behavior and toxicity, creating uncertainty risks to soil and soil organisms. In this study, we explored the environmental behavior and the effects of earthworms under co-exposure to amoxicillin and boscalid and further explored the accumulation and toxic effects on earthworms. The results showed that amoxicillin increased the adsorption of boscalid in soil and inhibited its degradation. In addition, we noticed that the co-exposure of amoxicillin and boscalid caused intestinal barrier damage, which increased the bioaccumulation of earthworms for boscalid and led to more severe oxidative stress and metabolic disorders in earthworms. In summary, our findings indicate that amoxicillin can increase the ecological risk of boscalid in the environment and imply that the encounter between antibiotics and pesticides in the environment can amplify the toxic effects of pesticides, which provides new insights into the ecological risks of antibiotics.
Collapse
Affiliation(s)
- Shihang Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinrui Dang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Zhai W, Guo Q, Wang N, Liu X, Liu D, Zhou Z, Wang P. Antibiotics alter the metabolic profile of metolachlor in soil-plant system by disturbing the detoxifying process and oxidative stress. BIORESOURCE TECHNOLOGY 2024; 406:130855. [PMID: 38851596 DOI: 10.1016/j.biortech.2024.130855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024]
Abstract
Antibiotics are widely detected in farmland, which may influence the environmental behavior and risks of the coexisting pesticide. In this work, the effects of antibiotics on metolachlor transformation in soil-pea and the risk of metolachlor to earthworm were assessed, and the mechanism was explored in view of detoxifying process and oxidative stress. Antibiotics affected not the degradation rate but the metabolic profile of metolachlor. In soil, the content of metabolites oxaloacetic acid (OA) and ethane sulfonic acid (ESA) was decreased and dechlorometolachlor (DCL) was increased by antibiotics. In pea, the accumulation of metolachlor, DCL and ESA was decreased, while OA was increased by antibiotics. The changed transformation of metolachlor affected the risk to earthworm according to risk quote assessment. In further research, it was found that cytochrome P450 (CYP450) enzyme was reduced by 12.3% - 30.4% in soil and 12.4% - 23.6% in pea, which might due to excessive ROS accumulation induced by antibiotics, thus affecting the transformation and metabolite profile of metolachlor in soil-plant system.
Collapse
Affiliation(s)
- Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Nan Wang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
8
|
Xia X, Liu BQ, Yu PH, Yu ZP, Zhang R, Luo GH, Fang JC. Antibiotic feeding changes the bacterial community of Chilo suppressalis and thereby affects its pesticide tolerance. BMC Microbiol 2024; 24:273. [PMID: 39044145 PMCID: PMC11265483 DOI: 10.1186/s12866-024-03421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Owing to the widespread use of chemical pesticides to control agricultural pests, pesticide tolerance has become a serious problem. In recent years, it has been found that symbiotic bacteria are related to pesticides tolerance. To investigate the potential role of microorganisms in the pesticide tolerance of Chilo suppressalis, this study was conducted. RESULTS The insect was fed with tetracycline and cefixime as the treatment group (TET and CFM, respectively), and did not add antibiotics in the control groups (CK). The 16S rDNA sequencing results showed that antibiotics reduced the diversity of C. suppressalis symbiotic microorganisms but did not affect their growth and development. In bioassays of the three C. suppressalis groups (TET, CFM, and CK), a 72 h LC50 fitting curve was calculated to determine whether long-term antibiotic feeding leads to a decrease in pesticide resistance. The CK group of C. suppressalis was used to determine the direct effect of antibiotics on pesticide tolerance using a mixture of antibiotics and pesticides. Indirect evidence suggests that antibiotics themselves did not affect the pesticide tolerance of C. suppressalis. The results confirmed that feeding C. suppressalis cefixime led to a decrease in the expression of potential tolerance genes to chlorantraniliprole. CONCLUSIONS This study reveals the impact of antibiotic induced changes in symbiotic microorganisms on the pesticide tolerance of C. suppressalis, laying the foundation for studying the interaction between C. suppressalis and microorganisms, and also providing new ideas for the prevention and control of C. suppressalis and the creation of new pesticides.
Collapse
Affiliation(s)
- Xue Xia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bing-Qian Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Pei-Han Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zheng-Ping Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ru Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guang-Hua Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
9
|
Lv N, Zhang X, Li R, Liu X, Liang P. Mesoporous silica nanospheres-mediated insecticide and antibiotics co-delivery system for synergizing insecticidal toxicity and reducing environmental risk of insecticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171984. [PMID: 38547983 DOI: 10.1016/j.scitotenv.2024.171984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) are efficient carriers of drugs, and are promising in developing novel pesticide formulations. The cotton aphids Aphis gossypii Glover is a world devastating insect pest. It has evolved high level resistance to various insecticides thus resulted in the application of higher doses of insecticides, which raised environmental risk. In this study, the MSNs based pesticide/antibiotic delivery system was constructed for co-delivery of ampicillin (Amp) and imidacloprid (IMI). The IMI@Amp@MSNs complexes have improved toxicity against cotton aphids, and reduced acute toxicity to zebrafish. From the 16S rDNA sequencing results, Amp@MSNs, prepared by loading ampicillin to the mesoporous of MSNs, greatly disturbed the gut community of cotton aphids. Then, the relative expression of at least 25 cytochrome P450 genes of A. gossypii was significantly suppressed, including CYP6CY19 and CYP6CY22, which were found to be associated with imidacloprid resistance by RNAi. The bioassay results indicated that the synergy ratio of ampicillin to imidacloprid was 1.6, while Amp@MSNs improved the toxicity of imidacloprid by 2.4-fold. In addition, IMI@Amp@MSNs significantly improved the penetration of imidacloprid, and contributed to the amount of imidacloprid delivered to A. gossypii increased 1.4-fold. Thus, through inhibiting the relative expression of cytochrome P450 genes and improving penetration of imidacloprid, the toxicity of IMI@Amp@MSNs was 6.0-fold higher than that of imidacloprid. The greenhouse experiments further demonstrated the enhanced insecticidal activity of IMI@Amp@MSNs to A. gossypii. Meanwhile, the LC50 of IMI@Amp@MSNs to zebrafish was 3.9-fold higher than that of IMI, and the EC50 for malformation was 2.8-fold higher than IMI, respectively, which indicated that the IMI@Amp@MSNs complexes significantly reduced the environmental risk of imidacloprid. These findings encouraged the development of pesticide/antibiotic co-delivery nanoparticles, which would benefit pesticide reduction and environmental safety.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xudong Zhang
- Analytical & Testing Center, Beihang University, Beijing 100191, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Bao X, Gu Y, Chen L, Wang Z, Pan H, Huang S, Meng Z, Chen X. Microplastics derived from plastic mulch films and their carrier function effect on the environmental risk of pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171472. [PMID: 38458459 DOI: 10.1016/j.scitotenv.2024.171472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Plastic film mulching can maintain soil water and heat conditions, promote plant growth and thus generate considerable economic benefits in agriculture. However, as they age, these plastics degrade and form microplastics (MPs). Additionally, pesticides are widely utilized to control organisms that harm plants, and they can ultimately enter and remain in the environment after use. Pesticides can also be sorbed by MPs, and the sorption kinetics and isotherms explain the three stages of pesticide sorption: rapid sorption, slow sorption and sorption equilibrium. In this process, hydrophobic and partition interactions, electrostatic interactions and valence bond interactions are the main sorption mechanisms. Additionally, small MPs, biodegradable MPs and aged conventional MPs often exhibit stronger pesticide sorption capacity. As environmental conditions change, especially in simulated biological media, pesticides can desorb from MPs. The utilization of pesticides by environmental microorganisms is the main factor controlling the degradation rate of pesticides in the presence of MPs. Pesticide sorption by MPs and size effects of MPs on pesticides are related to the internal exposure level of biological pesticides and changes in pesticide toxicity in the presence of MPs. Most studies have suggested that MPs exacerbate the toxicological effects of pesticides on sentinel species. Hence, the environmental risks of pesticides are altered by MPs and the carrier function of MPs. Based on this, research on the affinity between MPs and various pesticides should be systematically conducted. During agricultural production, pesticides should be cautiously selected and used plastic film to ensure human health and ecological security.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuntong Gu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Long Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zijian Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hui Pan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiran Huang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
11
|
Wang D, Zeng J, Wujin C, Ullah Q, Su Z. Lactobacillus reuteri derived from horse alleviates Escherichia coli-induced diarrhea by modulating gut microbiota. Microb Pathog 2024; 188:106541. [PMID: 38224920 DOI: 10.1016/j.micpath.2024.106541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Diarrhea is a prevalent health issue in farm animals and poses a significant challenge to the progress of animal husbandry. Recent evidence suggested that probiotics can alleviate diarrhea by maintaining gut microbial balance and enhancing the integrity of the intestinal barrier. However, there is a scarcity of studies investigating the efficacy of equine Lactobacillus reuteri in relieving E. coli-induced diarrhea. Hence, this study aimed to examine the potential of equine-derived Lactobacillus reuteri in alleviating E. coli diarrhea from the perspective of gut microbiota. Results demonstrated that supplementation of Lactobacillus reuteri had the potential to alleviate diarrhea induced by E. coli infection and restore the decline of tight junction genes, such as Claudin-1 and ZO-1. Additionally, Lactobacillus reuteri supplementation can restore the expression of inflammatory factors (IL-6, IL-10, TNF-α, and IFN-γ) and reduce colon inflammatory damage. Diversity analysis, based on amplicon sequencing, revealed a significant reduction in the diversity of gut microbiota during E. coli-induced diarrhea. Moreover, there were notable statistical differences in the composition and structure of gut microbiota among the different treatment groups. E. coli could induce gut microbial dysbiosis by decreasing the abundance of beneficial bacteria, including Lactobacillus, Bifidobacterium, Ligilactobacillus, Enterorhabdus, and Lachnospiraceae_UCG_001, in comparison to the control group. Conversely, supplementation with Lactobacillus reuteri could restore the abundance of beneficial bacteria and increase the diversity of the gut microbiota, thereby reshaping gut microbiota. Additionally, we also observed that supplementation with Lactobacillus reuteri alone improved the gut microbial composition and structure. In summary, the findings suggest that Lactobacillus reuteri can alleviate E. coli-induced diarrhea by preserving the integrity of the intestinal barrier and modulating the composition of the gut microbiota. These results not only contribute to understanding of the mechanism underlying the beneficial effects of Lactobacillus reuteri in relieving diarrhea, but also provide valuable insights for the development of probiotic products aimed at alleviating diarrheal diseases.
Collapse
Affiliation(s)
- Dongjing Wang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Lhasa, Tibet, 850009, China
| | - Jiangyong Zeng
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Lhasa, Tibet, 850009, China
| | - Cuomu Wujin
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Lhasa, Tibet, 850009, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, 29111, Pakistan
| | - Zhonghua Su
- Tibet Autonomous Region Animal Disease Prevention and Control Center, Lhasa, Tibet, 850009, China.
| |
Collapse
|
12
|
Zhao J, Duan G, Zhu D, Li J, Zhu Y. Microbial-influenced pesticide removal co-occurs with antibiotic resistance gene variation in soil-earthworm-maize system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123010. [PMID: 38012967 DOI: 10.1016/j.envpol.2023.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Within human-influenced landscapes, pesticides cooccur with a variety of antibiotic stressors. However, the relationship between pesticides removal process and antibiotic resistance gene variation are not well understood. This study explored pesticide (topramezone, TPZ) and antibiotic (polymyxin E, PME) co-contamination using liquid chromatography-tandem mass spectrometry (LC-MS/MS), bacterial-16 S rRNA sequencing and high-throughput quantitative polymerase chain reaction (HT-qPCR) in a soil-earthworm-maize system. After incubating soil for 28 days with TPZ and PME (10 mg kg-1 dry weight), earthworm weight-gain, mortality rates, and maize plant weight-gain only differed slightly, but height-gain significantly decreased. PME significantly increased TPZ-removal in the soil. Accumulation of TPZ in earthworm's tissues may pose potential risks in the food chain. Combined pollution altered the microbial community structure and increased the abundance of functional microorganisms involved in aromatic compound degradation. Furthermore, maize rhizosphere can raise resistance genes, however earthworms can reduce resistance genes. Co-contamination increased absolute abundance of mobile genetic elements (MGEs) in bulk-soil samples, antibiotic resistance genes (ARGs) in skin samples and number of ARGs in bulk-soil samples, while decreased absolute abundance of transposase gene in bulk-soil samples and number of ARGs in rhizosphere-soil samples. Potential hosts harbouring ARGs may be associated with the antagonistic effect during resistance and detoxification of TPZ and PMB co-occurrence. These findings provide insights into the mechanism underlining pesticide removal regarding occurrence of ARGs in maize agroecosystem.
Collapse
Affiliation(s)
- Jun Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guilan Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongguan Zhu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
13
|
Wang HT, Gan QY, Li G, Zhu D. Effects of Zinc Thiazole and Oxytetracycline on the Microbial Metabolism, Antibiotic Resistance, and Virulence Factor Genes of Soil, Earthworm Gut, and Phyllosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:160-170. [PMID: 38148496 DOI: 10.1021/acs.est.3c06513] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pesticides and antibiotics are believed to increase the incidence of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), constituting a serious threat to global health. However, the impact of this combined pollution on the microbiome and that of the related ARGs and VFGs on soil-plant-animal systems remain unknown. In this study, a 60-day microcosm experiment was conducted to reveal the effects of zinc thiazole (ZT) and oxytetracycline (OTC) on microbial communities, antibiotic resistomes, and virulence factors in soil, earthworm gut, and phyllosphere samples using metagenomics. ZT exposure perturbed microbial communities and nutrient metabolism and increased the abundance of ARGs and VFGs in the gut. Combined exposure changed the profiles of ARGs and VFGs by decreasing microbial diversity in the phyllosphere. Host-tracking analysis identified some genera, such as Citrobacter and Aeromonas, as frequent hosts of ARGs and VFGs in the gut. Notably, some co-occurrence patterns of ARGs and MGEs were observed on the metagenome-assembled contigs. More importantly, ZT markedly increased the abundance of potentially drug-resistant pathogens Acinetobacter soli and Acinetobacter junii in the phyllosphere. Overall, this study expands our current understanding of the spread of ARGs and VFGs in soil-plant-animal systems under pollutant-induced stress and the associated health risks.
Collapse
Affiliation(s)
- Hong-Tao Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Qiu-Yu Gan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
14
|
Chang X, Fu F, Sun Y, Zhao L, Li X, Li Y. Coupling multifactor dominated the biochemical response and the alterations of intestinal microflora of earthworm Pheretima guillelmi due to typical herbicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94126-94137. [PMID: 37526832 DOI: 10.1007/s11356-023-29032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
The excessive application of herbicides on farmlands can substantially reduce labor costs and increase crop yields, but can also have undesirable effects on terrestrial ecosystems. To evaluate the ecological toxicity of herbicides, metolachlor and fomesafen, two typical herbicides that are extensively used worldwide were chosen as target pollutants, and the endogeic earthworm Pheretima guillelmi, which is widely distributed in China, was selected as the test organism. A laboratory-scale microcosmic experiment was set, and energy resources, enzymes, and the composition and connections of intestinal microorganisms in earthworms were determined. Both herbicides depleted the energy resources of the earthworms, especially glycogen contents; increased the levels of antioxidant enzymes; and inhibited acetylcholinesterase. Moreover, the richness and diversity of the intestinal bacterial community of the earthworms were suppressed. Additionally, the bacterial composition at the genus level changed greatly and the connections between dominant bacteria increased dramatically. Most interactions among the bacterial genera belonging to the same and different phyla showed mutualism and competition, respectively. Importantly, metolachlor with higher toxicity had a transitory effect on these indicators in earthworms, whereas fomesafen, with lower toxicity but stronger bioaccumulation potential, exerted a sustaining impact on earthworms. Collectively, these results indicate that the toxic effects of herbicides on terrestrial organisms should be comprehensively considered in combination with biological toxicity, persistence, bioaccumulation potential, and other factors.
Collapse
Affiliation(s)
- Xingping Chang
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Furong Fu
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Lixia Zhao
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Xiaojing Li
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
15
|
Zhang W, Teng M, Yan J, Chen L. Study effect and mechanism of levofloxacin on the neurotoxicity of Rana nigromaculata tadpoles exposed to imidacloprid based on the microbe-gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162098. [PMID: 36764551 DOI: 10.1016/j.scitotenv.2023.162098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Aquatic organisms may be simultaneously exposed to antibiotics and pesticides. After levofloxacin (LVFX), imidacloprid (IMI) exposure and co-exposure at environmental levels, we found LVFX and IMI had antagonistic effect on the neurotoxicity of tadpoles. IMI-induced neurotoxicity on tadpoles can be explained by oxidative stress and hormone levels in some degree. By regulating ornithine, l-asparagine, putrescine and tryptamine in the intestine, LVFX affected glutathione metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, tyrosine metabolism and aminoacyl tRNA biosynthesis, so then eased the neurotoxicity caused by IMI. More interestingly, Fusobacteriota and Cetobacterium might play an important role on easing the neurotoxicity caused by IMI. In addition, LVFX might have a laxation effect on the increased relative abundance of Bacteroidota caused by IMI. In conclusion, IMI not only affected oxidative stress and hormone levels in the brain, but also affected the synthesis of neurotransmitters in the intestine by regulating intestinal microbiota. In LVFX and IMI co-exposed groups, LVFX alleviated the neurotoxicity caused by IMI through regulating the intestinal microbiota, showing as an antagonistic effect. Our results provided a new perspective for aquatic ecological risk assessment under co-exposure of antibiotics and pesticides.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Chen
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Ibarra-Mendoza B, Gomez-Gil B, Betancourt-Lozano M, Raggi L, Yáñez-Rivera B. Microbial gut dysbiosis induced by xenobiotics in model organisms and the relevance of experimental criteria: a minireview. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e7. [PMID: 39295907 PMCID: PMC11406412 DOI: 10.1017/gmb.2023.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 09/21/2024]
Abstract
The gut microbiota is a dynamic ecosystem involved in multiple physiological processes that affect host health. Several factors affect intestinal microbial communities including dietary exposure to xenobiotics, which is highly concerning due to their widespread distribution. Current knowledge of this topic comes from culture-dependent methods, 16S rRNA amplicon fingerprinting, and metagenomics, but a standardised procedures framework remains lacking. This minireview integrates 45 studies from a systematic search using terms related to gut microbiota and its disruption. Only publications encompassing dietary-oral exposure and experimental gut microbiota assessments were included. The results were divided and described according to the biological model used and the disruption observed in the gut microbiota. An overall dysbiotic effect was unclear due to the variety of contaminants and hosts evaluated and the experimental gaps between publications. More standardised experimental designs, including WGS and physiological tests, are needed to establish how a particular xenobiotic can alter the gut microbiota and how the results can be extrapolated.
Collapse
Affiliation(s)
| | - Bruno Gomez-Gil
- CIAD, A.C. Mazatlán Unit for Aquaculture and Environmental Management, Mazatlán, Mexico
| | | | - Luciana Raggi
- Universidad Michoacana de San Nicolás de Hidalgo - CONACYT, Mexico City, Mexico
| | - Beatriz Yáñez-Rivera
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Mexico
| |
Collapse
|
17
|
Hardy F, Takser L, Gillet V, Baccarelli AA, Bellenger JP. Characterization of childhood exposure to environmental contaminants using stool in a semi-urban middle-class cohort from eastern Canada. ENVIRONMENTAL RESEARCH 2023; 222:115367. [PMID: 36709028 DOI: 10.1016/j.envres.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Children are exposed to various environmental organic and inorganic contaminants with effects on health outcomes still largely unknown. Many matrices (e.g., blood, urine, nail, hair) have been used to characterize exposure to organic and inorganic contaminants. The sampling of feces presents several advantages; it is non-invasive and provides a direct evaluation of the gut microbiome exposure to contaminants. The gut microbiome is a key factor in neurological development through the brain-gut axis. Its composition and disturbances can affect the neurodevelopment of children. Characterization of children exposure to contaminants is often performed on vulnerable populations (e.g., from developing countries, low-income neighborhoods, and large urban centers). Data on the exposure of children from middle-class, semi-urban, and mid-size populations to contaminants is scarce despite representing a significant fraction of the population in North America. In this study, 73 organics compounds from different chemical classes and 22 elements were analyzed in 6 years old (n = 84) and 10 years old (n = 119) children's feces from a middle-class, semi-urban, mid-size population cohort from Eastern Canada. Results show that 67 out of 73 targeted organics compounds and all elements were at least detected in one child's feces. Only caffeine (97% & 80%) and acetaminophen (28% & 48%) were detected in more than 25% of the children's feces, whereas all elements besides titanium were detected in more than 50% of the children.
Collapse
Affiliation(s)
- Félix Hardy
- Department of Chemistry, Faculty of Sciences, Sherbrooke University, Quebec, Canada.
| | - Larissa Takser
- Department of Pediatrics, Faculty of Medicine, Sherbrooke University, Quebec, Canada
| | - Viginie Gillet
- Department of Pediatrics, Faculty of Medicine, Sherbrooke University, Quebec, Canada
| | | | | |
Collapse
|
18
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
19
|
Zhou L, Hu X, Han C, Niu X, Han L, Yu H, Pan G, Fu Z. Comprehensive investigation on the metabolism of emodin both in vivo and in vitro. J Pharm Biomed Anal 2023; 223:115122. [DOI: 10.1016/j.jpba.2022.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022]
|
20
|
Sharma T, Sirpu Natesh N, Pothuraju R, Batra SK, Rachagani S. Gut microbiota: a non-target victim of pesticide-induced toxicity. Gut Microbes 2023; 15:2187578. [PMID: 36919486 PMCID: PMC10026936 DOI: 10.1080/19490976.2023.2187578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The human gut microbiota can be potentially disrupted due to exposure of various environmental contaminants, including pesticides. These contaminants enter into non-target species in multiple ways and cause potential health risks. The gut microbiota-derived metabolites have a significant role in maintaining the host's health by regulating metabolic homeostasis. An imbalance in this homeostasis can result in the development of various diseases and their pathogenesis. Pesticides have hazardous effects on the host's gut microbiota, which is evident in a few recent studies. Therefore, there is an urgent need to explore the effect of pesticide on gut microbiota-mediated metabolic changes in the host, which may provide a better understanding of pesticide-induced toxicity. The present review summarizes the pesticide-induced effects on gut microbiota, which in turn, induces changes in the release of their secondary metabolites that could lead to various host health effects.
Collapse
Affiliation(s)
- Tusha Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagabhishek Sirpu Natesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| |
Collapse
|
21
|
Yan JT, Zhu YZ, Liang L, Feng XY. NE-activated β 2-AR/β-arrestin 2/Src pathway mediates duodenal hyperpermeability induced by water-immersion restraint stress. Am J Physiol Cell Physiol 2023; 324:C133-C141. [PMID: 36440855 DOI: 10.1152/ajpcell.00412.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress causes a rapid spike in norepinephrine (NE) levels, leading to gastrointestinal dysfunction. NE reduces the expression of tight junctions (TJs) and aggravates intestinal mucosal damage, but the regulatory mechanism is still unclear. The present study aimed to investigate the molecular mechanisms underlying the regulation of stress-associated duodenal hyperpermeability by NE. Fluorescein isothiocyanate-dextran permeability, transepithelial resistance, immunofluorescence, Western blot, and high-performance liquid chromatography analysis were used in water-immersion restraint stress (WIRS) rats in this study. The results indicate that the duodenal permeability, degradation of TJs, mucosal NE, and β2-adrenergic receptor (β2-AR) increased in WIRS rats. The duodenal intracellular cyclic adenosine monophosphate levels were decreased, whereas the expression of β-arrestin 2 negatively regulates G protein-coupled receptors signaling, was significantly increased. Src recruitment was mediated by β-arrestin; thus, the levels of Src kinase activation were enhanced in WIRS rats. NE depletion, β2-AR, or β-arrestin 2 blockade significantly decreased mucosal permeability and increased TJs expression, suggesting improved mucosal barrier function. Moreover, NE induced an increased duodenal permeability of normal rats with activated β-arrestin 2/Src signaling, which was significantly inhibited by β2-AR blockade. The present findings demonstrate that the enhanced NE induced an increased duodenal permeability in WIRS rats through the activated β2-AR/β-arrestin 2/Src pathway. This study provides novel insight into the molecular mechanism underlying the regulation of NE on the duodenal mucosal barrier and a new target for treating duodenal ulcers induced by stress.
Collapse
Affiliation(s)
- Jing-Ting Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Yin-Zhe Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liang Liang
- Grade 2020 Pediatrics, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9887012. [PMID: 36588535 PMCID: PMC9797298 DOI: 10.1155/2022/9887012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Background Scutellaria baicalensis Georgi (SBG) has significant anti-inflammatory and immune-modulating activities and is widely used in the treatment of inflammatory and autoimmune diseases. However, the mechanism of SBG in the treatment of ankylosing spondylitis (AS) remains to be elucidated. Methods Differentially expressed genes (DEGs) related to AS were analyzed based on two GEO gene chips. The DEGs were merged with the data derived from OMIM, GeneCards, and PharmGKB databases to ascertain AS-related targets. Active components of SBG and their targets were acquired from the TCMSP database. After overlapping the targets of AS and SBG, the action targets were acquired. Subsequently, protein-protein interaction (PPI) network and core target screening were conducted using the STRING database and Cytoscape software. Moreover, the DAVID platform was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of action targets. Finally, the affinity of major active components and core targets was validated with molecular docking. Results A total of 36 active components of SBG were acquired from TCMSP database. Among these, the main active components were baicalein, wogonin, and oroxylin A. The PPI network and screening showed TNF, IL-6, CXCL8, PTGS2, and VEGFA as core targets associated SBG against AS. GO and KEGG analyses indicated that SBG participated in various biological processes, via regulating IL-17, TNF, and NF-κB signaling pathways. Molecular docking results confirmed a strong binding activity between the main active components and the core targets. Conclusion The therapeutic mechanism of SBG associated with AS can be characterized as a multicomponent, multitarget, and multipathway mechanism. SBG may be a promising therapeutic candidate for AS.
Collapse
|
23
|
Wen Y, Kong Y, Peng Y, Cui X. Uptake, distribution, and depuration of emerging per- and polyfluoroalkyl substances in mice: Role of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158372. [PMID: 36041619 DOI: 10.1016/j.scitotenv.2022.158372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The bioaccumulation and fate in mammals of hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA), as major alternatives for perfluorooctanoate (PFOA), have rarely been reported. In addition, the role of gut microbiota was greatly understudied. In this study, the uptake, distribution, and depuration of HFPO-TA, HFPO-DA, and PFOA were investigated by exposure to mice for 14 days, followed by a clearance period of 7 days. The patterns of tissue distribution and depuration kinetics of HFPO-TA and PFOA were similar, but different from HFPO-DA. Liver was the main deposition organ for HFPO-TA and PFOA, making contributions of 58.8 % and 59.1 % to the total mass recovered on day 14. Depuration of HFPO-DA was more rapid than HFPO-TA and PFOA. Approximately 95.3 % of HFPO-DA in liver was eliminated on day 21 compared with day 14. While the clearance rates of HPFO-TA and PFOA were only 6.1 % and 13.9 % on day 21. The comparison between normal and pseudo germ-free mice (GM) was also conducted to investigate the effect of gut microbial on in vivo absorption of the three per- and polyfluoroalkyl substances (PFASs). Significantly higher (p < 0.05) concentrations of all the three PFASs were observed in most organs and tissues of GM compared with NC group. An analysis of gut microbiota showed that the higher absorption of PFASs in GM group may be attributed to the increase of intestinal permeability (as indicated by the decrease of tight junction protein expression), which were induced by the change of lachnospiraceae abundance. The result highlighted the importance of gut microbiota in absorption and health risk evaluation of emerging PFASs.
Collapse
Affiliation(s)
- Yong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
24
|
Ranjan N, Singh PK, Maurya NS. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114220. [PMID: 36332401 DOI: 10.1016/j.ecoenv.2022.114220] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The wastewaters from pharmaceutical manufacturing units, hospitals, and domestic sewage contaminated with excretal matters of medicine users are the prime sources of pharmaceutical pollutants (PPs) in natural water bodies. In the present study, PPs have been considered one of the emerging pollutants (EPs) and a cause of concern in river health assessment. Beyond the reported increase in antibiotic-resistant bacteria (ABRB), PPs have been found adversely affecting the biotic diversity in such water environments. Considering Algae, Macroinvertebrates, and Fishes as three distinct trophic level indicators, the present study puts forward a framework for showing River Health Condition (RHC) based on the calculation of a River Health Index (RHI). The RHI is calculated using six Indicator Group Scores (IGS) which individually reflect river health in a defined category of water quality characteristics. While Dissolved Oxygen Related Parameters (DORP), Nutrients (NT), and PPs are taken as causative agents affecting RHCs, scores of Algal-Bacterial (AB) symbiosis, Macroinvertebrates (MI), and Fishes (F) are considered as an effect of such environmental conditions. Current wastewater treatment technologies are also not very effective in the removal of PPs. The objective of the present study is to review the harmful effects of PPs on the aquatic environment, particularly on the chemical and biotic indicators of river health. Based on predicted no-effect concentrations (PNEC) for algae, macroinvertebrates, and fishes in the aquatic environment and measured environmental concentration (MEC) in the river, the estimated risk quotient (RQ) for norfloxacin in the Isakavagu-Nakkavagu stream of river Godavari, Hyderabad is found 293 for algae, 39 for MI, and 335 for fish. Among PPs, in Indian rivers, the presence of caffeine is the most frequent, with algae at the highest level of risk (RQmax= 24.5). Broadly six PPs, including azithromycin, caffeine, diclofenac, naproxen, norfloxacin, and sulfamethoxazole are found above PNEC values in Indian rivers. The application of IGS and RHI in understanding and presenting the river health condition (RHC) through colored hexagons has been demonstrated for the river Ganga near Varanasi (India) as an example. Identification of critical indicator groups, based on IGS provides a scientific basis for planned intervention for river health restoration to achieve an acceptable category.
Collapse
Affiliation(s)
- Nitin Ranjan
- Department of Civil Engineering, IIT(BHU), Varanasi 221005, India.
| | | | | |
Collapse
|
25
|
Bonnechère B, Amin N, van Duijn C. What Are the Key Gut Microbiota Involved in Neurological Diseases? A Systematic Review. Int J Mol Sci 2022; 23:ijms232213665. [PMID: 36430144 PMCID: PMC9696257 DOI: 10.3390/ijms232213665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
There is a growing body of evidence highlighting there are significant changes in the gut microbiota composition and relative abundance in various neurological disorders. We performed a systematic review of the different microbiota altered in a wide range of neurological disorders (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and stroke). Fifty-two studies were included representing 5496 patients. At the genus level, the most frequently involved microbiota are Akkermansia, Faecalibacterium, and Prevotella. The overlap between the pathologies was strongest for MS and PD, sharing eight genera (Akkermansia, Butyricicoccus, Bifidobacterium, Coprococcus, Dorea, Faecalibacterium, Parabacteroides, and Prevotella) and PD and stroke, sharing six genera (Enterococcus, Faecalibacterium, Lactobacillus, Parabacteroides, Prevotella, and Roseburia). The identification signatures overlapping for AD, PD, and MS raise the question of whether these reflect a common etiology or rather common consequence of these diseases. The interpretation is hampered by the low number and low power for AD, ALS, and stroke with ample opportunity for false positive and false negative findings.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Correspondence:
| |
Collapse
|
26
|
Salazar-Flores J, Lomelí-Martínez SM, Ceja-Gálvez HR, Torres-Jasso JH, Torres-Reyes LA, Torres-Sánchez ED. Impacts of Pesticides on Oral Cavity Health and Ecosystems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11257. [PMID: 36141526 PMCID: PMC9517265 DOI: 10.3390/ijerph191811257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Pesticides are chemical substances used to control, prevent, or destroy agricultural, domestic, and livestock pests. These compounds produce adverse changes in health, and they have been associated with the development of multiple chronic diseases. This study aimed to present a detailed review of the effect of pesticides on the oral cavity and the oral microbiome. In the oral cavity, pesticides alter and/or modify tissues and the microbiome, thereby triggering imbalance in the ecosystem, generating an inflammatory response, and activating hydrolytic enzymes. In particular, the imbalance in the oral microbiome creates a dysbiosis that modifies the number, composition, and/or functions of the constituent microorganisms and the local response of the host. Pesticide exposure alters epithelial cells, and oral microbiota, and disrupts the homeostasis of the oral environment. The presence of pesticides in the oral cavity predisposes the appearance of pathologies such as caries, periodontal diseases, oral cancer, and odontogenic infections. In this study, we analyzed the effect of organochlorines, organophosphates, pyrethroids, carbamates, bipyridyls, and triazineson oral cavity health and ecosystems.
Collapse
Affiliation(s)
- Joel Salazar-Flores
- Department of Medical and Life Sciences, University Center of La Cienega (CUCIENEGA), University of Guadalajara, Ocotlan 47810, Jalisco, Mexico
| | - Sarah M. Lomelí-Martínez
- Department of Medical and Life Sciences, University Center of La Cienega (CUCIENEGA), University of Guadalajara, Ocotlan 47810, Jalisco, Mexico
- Department of Integral Dental Clinics, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Hazael R. Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Juan H. Torres-Jasso
- Department of Biological Sciences, University Center of La Costa (CUCOSTA), University of Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico
| | - Luis A. Torres-Reyes
- Department of Molecular Biology and Genomics, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Erandis D. Torres-Sánchez
- Department of Medical and Life Sciences, University Center of La Cienega (CUCIENEGA), University of Guadalajara, Ocotlan 47810, Jalisco, Mexico
| |
Collapse
|
27
|
Zhang Y, Gu Y, Jiang J, Cui X, Cheng S, Liu L, Huang Z, Liao R, Zhao P, Yu J, Wang J, Jia Y, Jin W, Zhou F. Stigmasterol attenuates hepatic steatosis in rats by strengthening the intestinal barrier and improving bile acid metabolism. NPJ Sci Food 2022; 6:38. [PMID: 36030278 PMCID: PMC9420112 DOI: 10.1038/s41538-022-00156-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stigmasterol (ST) has been shown to improve both lipid and bile acid (BA) metabolism. However, the mechanism(s) by which ST prevents dyslipidemia via BA metabolism, and the potential involvement of other regulatory mechanisms, remains unclear. Here, we found that ST treatment effectively alleviates lipid metabolism disorder induced by a high-fat diet (HFD). Moreover, we also show that fecal microbiota transplantation from ST-treated rats displays similar protective effects in rats fed on an HFD. Our data confirm that the gut microbiota plays a key role in attenuating HFD-induced fat deposition and metabolic disorders. In particular, ST reverses HFD-induced gut microbiota dysbiosis in rats by reducing the relative abundance of Erysipelotrichaceae and Allobaculum bacteria in the gut. In addition, ST treatment also modifies the serum and fecal BA metabolome profiles in rats, especially in CYP7A1 mediated BA metabolic pathways. Furthermore, chenodeoxycholic acid combined with ST improves the therapeutic effects in HFD-induced dyslipidemia and hepatic steatosis. In addition, this treatment strategy also alters BA metabolism profiles via the CYP7A1 pathway and gut microbiota. Taken together, ST exerts beneficial effects against HFD-induced hyperlipidemia and obesity with the underlying mechanism being partially related to both the reprogramming of the intestinal microbiota and metabolism of BAs in enterohepatic circulation. This study provides a theoretical basis for further study of the anti-obesity effects of ST and consideration of the gut microbiota as a potential target for the treatment of HFD-induced dyslipidemia.
Collapse
Affiliation(s)
- Yaxin Zhang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Yuyan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaobing Cui
- Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Linling Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiyong Huang
- Department of Otolaryngology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Rongxin Liao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Jieying Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wen Jin
- Department of Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China.
| | - Fenghua Zhou
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
28
|
Zhou Y, Wan Q, Bao H, Guo Y, Zhu S, Zhang H, Pang M, Wang R. Application of a novel lytic phage vB_EcoM_SQ17 for the biocontrol of Enterohemorrhagic Escherichia coli O157:H7 and Enterotoxigenic E. coli in food matrices. Front Microbiol 2022; 13:929005. [PMID: 35992713 PMCID: PMC9389114 DOI: 10.3389/fmicb.2022.929005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and Enterotoxigenic E. coli (ETEC) are important foodborne pathogens, causing serious food poisoning outbreaks worldwide. Bacteriophages, as novel antibacterial agents, have been increasingly exploited to control foodborne pathogens. In this study, a novel broad-host range lytic phage vB_EcoM_SQ17 (SQ17), was isolated, characterized, and evaluated for its potential to control bacterial counts in vitro and in three different food matrices (milk, raw beef, and fresh lettuce). Phage SQ17 was capable of infecting EHEC O157:H7, ETEC, and other E. coli strains. Morphology, one-step growth, and stability assay showed that phage SQ17 belongs to the Caudovirales order, Myoviridae family, and Mosigvirus genus. It has a short latent period of 10 min, a burst size of 71 PFU/infected cell, high stability between pH 4 to 12 as well as thermostability between 30°C and 60°C for 60 min. Genome sequencing analysis revealed that the genome of SQ17 does not contain any genes associated with antibiotic resistance, toxins, lysogeny, or virulence factors, indicating the potential safe application of phage SQ17 in the food industry. In Luria-Bertani (LB) medium, phage SQ17 significantly decreased the viable counts of EHEC O157:H7 by more than 2.40 log CFU/ml (p < 0.05) after 6 h of incubation at 37°C. Phage SQ17 showed great potential to be applied for biocontrol of EHEC O157:H7 in milk and raw beef. In fresh lettuce, treatment with SQ17 also resulted in significant reduction of viable cell counts of EHEC O157:H7 and ETEC at both 4°C and 25°C. Our results demonstrate that SQ17 is a good candidate for application as an EHEC O157:H7 and ETEC biocontrol agent in the processing stages of food production and food preservation.
Collapse
Affiliation(s)
- Yan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Yan Zhou,
| | - Qiyang Wan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongduo Bao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yonghao Guo
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shujiao Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maoda Pang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Ran Wang,
| |
Collapse
|
29
|
Jiang W, Zhai W, Liu X, Wang F, Liu D, Yu X, Wang P. Co-exposure of Monensin Increased the Risks of Atrazine to Earthworms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7883-7894. [PMID: 35593893 DOI: 10.1021/acs.est.2c00226] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibiotics could enter farmlands through sewage irrigation or manure application, causing combined pollution with pesticides. Antibiotics may affect the environmental fate of pesticides and even increase their bioavailability. In this study, the influence of monensin on the degradation, toxicity, and availability of atrazine in soil-earthworm microcosms was investigated. Monensin inhibited the degradation of atrazine, changed the metabolite patterns in soil, and increased the bioavailability of atrazine in earthworms. Atrazine and monensin had a significant synergistic effect on earthworms in the acute toxic test. In long-term toxicity tests, co-exposure of atrazine and monensin also led to worse effects on earthworms including oxidative stress, energy metabolism disruption, and cocoon production compared to single exposure. The expression of tight junction proteins was down-regulated significantly by monensin, indicating that the intestinal barrier of earthworms was weakened, possibly causing the increased bioavailability of atrazine. The expressions of heat shock protein 70 (Hsp70) and reproductive and ontogenetic factors (ANN, TCTP) were all downregulated in binary exposure, indicating that the resilience and cocoon production of earthworms were further weakened under combined pollution. Monensin disturbed the energy metabolism and weakened the intestinal barrier of earthworms. These results showed that monensin increased the risks of atrazine in agricultural areas.
Collapse
Affiliation(s)
- Wenqi Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
- Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Wangjing Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Xiangyang Yu
- Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
30
|
Liu W, Li C, Li B, Shang Q, Han Z, Zhang Y, Liu X, Fan H, Zhang J, Chen Y, Zhang H. Lactiplantibacillus plantarum P9 improved gut microbial metabolites and alleviated inflammatory response in pesticide exposure cohorts. iScience 2022; 25:104472. [PMID: 35733791 PMCID: PMC9207661 DOI: 10.1016/j.isci.2022.104472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/17/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Multiple pesticide residue accumulations increase the probability of chronic metabolic diseases in humans. Thus, we applied multi-omics techniques to reveal how the gut microbiome responded to pesticide exposure. Then, we explored how probiotic Lactiplantibacillus plantarum P9 (P9) consumption impacted the gut microbiota and immune factors after high pesticide exposure. Multi-omics results indicated frequent exposure to pesticides did not alter the composition of the intestinal microbiota, but it did increase the abundance of Lipopolysaccharide in the gut, which might contribute to chronic inflammation. Supplementation with P9 maintained the homeostasis of the gut microbiota and reduced the abundance of pathogens in the high pesticide-exposed subjects. By detecting metabolites, we observed uridine and 5-oxoproline concentrations increased significantly after P9 consumption. Furthermore, P9 alleviated immune factors disorder and promoted pesticide residue excretion. Our findings provide new insights into the application of probiotics for pesticide detoxification, and suggest probiotics as daily supplements for pesticide exposure prevention. High-frequency pesticide exposure induced inflammatory responses to occur P9 maintained gut microbiota homeostasis in subjects with high pesticide exposure P9 significantly increased the level of beneficial metabolites in the subjects P9 reduced inflammatory response and promoted excretion of pesticide residues
Collapse
|
31
|
Silva TS, Araújo de Medeiros RDC, Silva DV, de Freitas Souza M, das Chagas PSF, Lins HA, da Silva CC, Souza CMM, Mendonça V. Interaction between herbicides applied in mixtures alters the conception of its environmental impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15127-15143. [PMID: 34628609 DOI: 10.1007/s11356-021-16644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Herbicide mixtures have often been used to control weeds in crops worldwide, but the behavior of these mixtures in the environment is still poorly understood. Laboratory and greenhouse tests have been conducted to study the interaction of the herbicides diuron, hexazinone, and sulfometuron-methyl which have been applied alone and in binary and ternary mixtures in the processes of sorption, desorption, half-life, and leaching in the soil. A new index of the risk of leaching of these herbicides has also been proposed. The sorption and desorption study has been carried out by the batch equilibrium method. The dissipation of the herbicides has been evaluated for 180 days to determine the half-life (t1/2). The leaching tests have been carried out on soil columns. The herbicides isolated and in mixtures have been quantified using ultra-high performance liquid chromatography coupled to the mass spectrometer. Diuron, hexazinone, and sulfometuron-methyl in binary and ternary mixtures have less sorption capacity and greater desorption when compared to these isolated herbicides. Dissipation of diuron alone is slower, with a half-life (t1/2) = 101 days compared to mixtures (t1/2 between 44 and 66 days). For hexazinone and sulfometuron-methyl, the dissipation rate is lower in mixtures (t1/2 over 26 and 16 days), with a more pronounced effect in mixtures with the presence of diuron (t1/2 = 47 and 56 and 17 and 22 days). The binary and ternary mixtures of diuron, hexazinone, and sulfometuron-methyl promoted more significant transport in depth (with the three herbicides quantified to depth P4, P7, and P7, respectively) compared to the application of these isolated herbicides (quantified to depth P2, P4, and P5). Considering the herbicides' desorption and solubility, the new index proposed to estimate the leaching potential allowed a more rigorous assessment concerning the risk of leaching these pesticides, with hexazinone and sulfometuron-methyl presenting a higher risk of contamination of groundwater.
Collapse
Affiliation(s)
- Tatiane Severo Silva
- Plant Science Center, Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Av. Francisco Mota, 572, Costa e Silva, Mailbox: 137, Mossoró, Rio Grande do Norte, CEP 59625-900, Brazil.
| | - Rita de Cássia Araújo de Medeiros
- Plant Science Center, Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Av. Francisco Mota, 572, Costa e Silva, Mailbox: 137, Mossoró, Rio Grande do Norte, CEP 59625-900, Brazil
| | - Daniel Valadão Silva
- Plant Science Center, Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Av. Francisco Mota, 572, Costa e Silva, Mailbox: 137, Mossoró, Rio Grande do Norte, CEP 59625-900, Brazil
| | - Matheus de Freitas Souza
- Plant Science Center, Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Av. Francisco Mota, 572, Costa e Silva, Mailbox: 137, Mossoró, Rio Grande do Norte, CEP 59625-900, Brazil
| | - Paulo Sergio Fernandes das Chagas
- Plant Science Center, Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Av. Francisco Mota, 572, Costa e Silva, Mailbox: 137, Mossoró, Rio Grande do Norte, CEP 59625-900, Brazil
| | - Hamurábi Anizio Lins
- Plant Science Center, Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Av. Francisco Mota, 572, Costa e Silva, Mailbox: 137, Mossoró, Rio Grande do Norte, CEP 59625-900, Brazil
| | - Cydianne Cavalcante da Silva
- Plant Science Center, Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Av. Francisco Mota, 572, Costa e Silva, Mailbox: 137, Mossoró, Rio Grande do Norte, CEP 59625-900, Brazil
| | - Carolina Malala Martins Souza
- Plant Science Center, Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Av. Francisco Mota, 572, Costa e Silva, Mailbox: 137, Mossoró, Rio Grande do Norte, CEP 59625-900, Brazil
| | - Vander Mendonça
- Plant Science Center, Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Av. Francisco Mota, 572, Costa e Silva, Mailbox: 137, Mossoró, Rio Grande do Norte, CEP 59625-900, Brazil
| |
Collapse
|
32
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of food contaminants and additives on gut microbiota as well as protective effects of dietary bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Wu Y, He F, Zhang C, Zhang Q, Su X, Zhu X, Liu A, Shi W, Lin W, Jin Z, Yang H, Lin J. Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyrate/GPR109A signaling pathway. J Nanobiotechnology 2021; 19:170. [PMID: 34092246 PMCID: PMC8182936 DOI: 10.1186/s12951-021-00915-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammatory osteolysis after total joint replacement (TJR) may cause implant failure, periprosthetic fractures, and be a severe threat to global public health. Our previous studies demonstrated that melatonin had a therapeutic effect on wear-particles induced osteolysis. Gut microbiota is closely related to bone homeostasis, and has been proven to be affected by melatonin. However, whether melatonin could play its anti-osteolysis effects through reprogramming gut microbiota remains elusive. RESULTS Here, we demonstrated that melatonin could alleviate Ti-particles induced osteolysis, while this therapeutic effect was blocked by antibiotic cocktail treatment. Interestingly, transplantation of fecal microbiota from mice treated with melatonin reappeared the same beneficial effect. Analysis of the 16S rRNA revealed that melatonin could reverse dysbacteriosis triggered by osteolysis, and elevate the relative abundance of some short chain fatty acid (SCFA) producing bacteria. Moreover, butyrate was enriched by exogenous melatonin administration, while acetate and propionate did not show an evident difference. This was consistent with the results of the metagenomic approach (PICRUSt2) analysis, which revealed a general increase in the synthetic enzymes of butyrate. More importantly, direct supplementation of butyrate could also recapitulate the anti-osteolysis effect of melatonin. Further analysis identified that butyrate alleviated osteolysis via activating its receptor GPR109A, and thus to suppress the activation of NLRP3 inflammasome triggered by Ti-particles. CONCLUSIONS Taken together, our results suggested that the benefits of melatonin mainly depend on the ability of modulating gut microbiota and regulating butyrate production.
Collapse
Affiliation(s)
- Yanglin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Fan He
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Chenhui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Qin Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xinlin Su
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xu Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Weidong Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Weifeng Lin
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Zhongqin Jin
- Department of Digestive, Children's Hospital Affiliated to Soochow University, Suzhou, China.
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, No. 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
34
|
Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicol Rep 2021; 8:1179-1192. [PMID: 34150527 PMCID: PMC8193068 DOI: 10.1016/j.toxrep.2021.06.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.
Collapse
Affiliation(s)
- Valeriya P. Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Elena N. Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V. Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A. Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
35
|
Giambò F, Teodoro M, Costa C, Fenga C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115510. [PMID: 34063879 PMCID: PMC8196593 DOI: 10.3390/ijerph18115510] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
In recent years, new targets have been included between the health outcomes induced by pesticide exposure. The gastrointestinal tract is a key physical and biological barrier and it represents a primary site of exposure to toxic agents. Recently, the intestinal microbiota has emerged as a notable factor regulating pesticides’ toxicity. However, the specific mechanisms related to this interaction are not well known. In this review, we discuss the influence of pesticide exposure on the gut microbiota, discussing the factors influencing gut microbial diversity, and we summarize the updated literature. In conclusion, more studies are needed to clarify the host–microbial relationship concerning pesticide exposure and to define new prevention interventions, such as the identification of biomarkers of mucosal barrier function.
Collapse
Affiliation(s)
- Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-2212052
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| |
Collapse
|
36
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
37
|
Li N, Li J, Zhang Q, Gao S, Quan X, Liu P, Xu C. Effects of endocrine disrupting chemicals in host health: Three-way interactions between environmental exposure, host phenotypic responses, and gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116387. [PMID: 33401209 DOI: 10.1016/j.envpol.2020.116387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) have gradually become a global health hazard in recent decades. Gut microbiota (GM) provides a crucial interface between the environment and the human body. A triad relationship may exist between EDCs exposure, host phenotypic background, and GM effects. In this review, we attempted to parse out the contribution of GM on the alteration of host phenotypic responses induced by EDCs, suggesting that GM intervention may be used as a therapeutic strategy to limit the expansion of pathogen. These studies can increase the understanding of pathogenic mechanisms, and help to identify the modifiable environmental factors and microbiota characteristics in people with underlying disease susceptibility for prevention and remediation.
Collapse
Affiliation(s)
- Na Li
- Pediatric Department, Ruijin Hospital, Shanghai Jiaotong University. School of Medicine, Shanghai, China; Institute of Tropical Medicine, Hainan Medical University, HaiKou, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, China
| | - Qingqing Zhang
- Pediatric Department, Ruijin Hospital, Shanghai Jiaotong University. School of Medicine, Shanghai, China
| | - Shenshen Gao
- Pediatric Department, Ruijin Hospital, Shanghai Jiaotong University. School of Medicine, Shanghai, China
| | - Xu Quan
- Pediatric Department, Ruijin Hospital, Shanghai Jiaotong University. School of Medicine, Shanghai, China
| | - Ping Liu
- Pediatric Department, Ruijin Hospital, Shanghai Jiaotong University. School of Medicine, Shanghai, China
| | - Chundi Xu
- Pediatric Department, Ruijin Hospital, Shanghai Jiaotong University. School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Yan S, Tian S, Meng Z, Teng M, Sun W, Jia M, Zhou Z, Bi S, Zhu W. Exposure to nitenpyram during pregnancy causes colonic mucosal damage and non-alcoholic steatohepatitis in mouse offspring: The role of gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116306. [PMID: 33360580 DOI: 10.1016/j.envpol.2020.116306] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/29/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollutants contribute to metabolic diseases. Recent studies have shown that exposure to environmental chemicals during pregnancy can cause obesity and other metabolic diseases in mouse offspring, and these effects have been linked to the changes in the gut microbiota. However, the mechanism of such effects has yet to be fully elucidated. In the present study, we aimed at assessing the metabolic effects of exposure to an environmental pollutant, like nitenpyram, during pregnancy on mouse offspring, and we further explored its potential mechanisms. Our results have demonstrated that exposure to nitenpyram (4 mg/kg/day body weight) in mice during pregnancy (from gestational day 6 to gestational day 19) can increase the count of Desulfovibrio strains (increased from 0.55% to 5.56%) and the concentration of H2S (increased from 28.98 to 41.31 nmol/g) in the gut of the offspring. These alterations can destroy colonic mucosa and increase intestinal inflammation and bacterial translocation, thus leading to non-alcoholic steatohepatitis (NASH). Overall, these results highlight the role of the gut microbiota in developing intestinal barrier dysfunction and liver inflammation and provide new insights into the pathophysiology of NASH.
Collapse
Affiliation(s)
- Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wei Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
39
|
Zhan J, Ma X, Liu D, Liang Y, Li P, Cui J, Zhou Z, Wang P. Gut microbiome alterations induced by tributyltin exposure are associated with increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115276. [PMID: 32835916 DOI: 10.1016/j.envpol.2020.115276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT), an organotin compound once widely used in agriculture and industry, has been reported to induce obesity and endocrine disruption. Gut microbiota has a strong connection with the host's physiology. Nevertheless, the influences of TBT exposure on gut microbiota and whether TBT-influenced gut microbiota is related to TBT-induced toxicity remain unclear. To fill these gaps, ICR (CD-1) mice were respectively exposed to TBT at NOEL (L-TBT) and tenfold NOEL (H-TBT) daily by gavage for 8 weeks in the current study. The results showed that TBT exposure significantly increased body weight as well as epididymal fat, and led to adipocyte hypertrophy, dyslipidemia and impaired glucose and insulin homeostasis in mice. Additionally, TBT exposure significantly decreased the levels of T4, T3 and testosterone in serum. Also of note, TBT exposure changed gut microbiota composition mainly by decreasing Bacteroidetes and increasing Firmicutes proportions. To confirm the role of gut microbiota in TBT-induced overweight and hormonal disorders, fecal microbiota transplantation was performed and the mice receiving gut microbiota from H-TBT mice had similar phenotypes with their donor mice including significant body weight and epididymal fat gain, glucose and insulin dysbiosis and hormonal disorders. These results suggested that gut microbiome altered by TBT exposure was involved in the TBT-induced increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice, providing significant evidence and a novel perspective for better understanding the mechanism by which TBT induces toxicity.
Collapse
Affiliation(s)
- Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Jingna Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China.
| |
Collapse
|
40
|
Luang-In V, Katisart T, Konsue A, Nudmamud-Thanoi S, Narbad A, Saengha W, Wangkahart E, Pumriw S, Samappito W, Ma NL. Psychobiotic Effects of Multi-Strain Probiotics Originated from Thai Fermented Foods in a Rat Model. Food Sci Anim Resour 2020; 40:1014-1032. [PMID: 33305285 PMCID: PMC7713776 DOI: 10.5851/kosfa.2020.e72] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
This work aimed to investigate the psychobiotic effects of six bacterial strains on the mind and behavior of male Wistar rats. The probiotic (PRO) group (n=7) were rats pre-treated with antibiotics for 7 days followed by 14-day probiotic administration, antibiotics (ANT) group (n=7) were rats treated with antibiotics for 21 days without probiotics. The control (CON) group (n=7) were rats that received sham treatment for 21 days. The six bacterial strains with probiotic properties were mostly isolated from Thai fermented foods; Pedicoccus pentosaceus WS11, Lactobacillus plantarum SK321, L. fermentum SK324, L. brevis TRBC 3003, Bifidobacterium adolescentis TBRC 7154 and Lactococcus lactis subsp. lactis TBRC 375. The probiotics were freeze-dried into powder (6×109 CFU/5 g) and administered to the PRO group via oral gavage. Behavioral tests were performed. The PRO group displayed significantly reduced anxiety level and increased locomotor function using a marble burying test and open field test, respectively and significantly improved short-term memory performance using a novel object recognition test. Antibiotics significantly reduced microbial counts in rat feces in the ANT group by 100 fold compared to the PRO group. Probiotics significantly enhanced antioxidant enzymatic and non-enzymatic defenses in rat brains as assessed using catalase activity and ferric reducing antioxidant power assay, respectively. Probiotics also showed neuroprotective effects with less pyknotic cells and lower frequency of vacuolization in cerebral cortex. This multi-strain probiotic formulation from Thai fermented foods may offer a potential to develop psychobiotic-rich functional foods to modulate human mind and behaviors.
Collapse
Affiliation(s)
- Vijitra Luang-In
- Natural Antioxidant Innovation Research
Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham
University, Khamriang, Kantarawichai, Maha Sarakham
44150, Thailand
| | - Teeraporn Katisart
- Department of Biology, Faculty of Science,
Mahasarakham University, Maha Sarakham 44150,
Thailand
| | - Ampa Konsue
- Applied Thai Traditional Medicine, Thai
Traditional Medicine Research Unit, Faculty of Medicine, Mahasarakham
University, Maha Sarakham 44000,
Thailand
| | - Sutisa Nudmamud-Thanoi
- Centre of Excellence in Medical
Biotechnology, Department of Anatomy, Faculty of Medical Science, Naresuan
University, Phitsanulok 65000,
Thailand
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich
Research Park, Colney, Norwich NR4 7UA,
UK
| | - Worachot Saengha
- Natural Antioxidant Innovation Research
Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham
University, Khamriang, Kantarawichai, Maha Sarakham
44150, Thailand
| | - Eakapol Wangkahart
- Research Unit of Excellence for Tropical
Fisheries and Technology, Division of Fisheries, Department of Agricultural
Technology, Faculty of Technology, Mahasarakham University,
Khamriang, Kantarawichai, Maha Sarakham 44150,
Thailand
| | - Supaporn Pumriw
- Department of Food Technology, Faculty of
Agricultural Technology, Kalasin University, Mueang
Kalasin, Kalasin 46000, Thailand
| | - Wannee Samappito
- Department of Food Technology, Faculty of
Technology, Mahasarakham University, Khamriang,
Kantarawichai, Maha Sarakham 44150, Thailand
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, Kuala Nerus,
Terengganu 21030, Malaysia
| |
Collapse
|
41
|
Chen B, Zhang N, Xie S, Zhang X, He J, Muhammad A, Sun C, Lu X, Shao Y. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. ENVIRONMENT INTERNATIONAL 2020; 143:105886. [PMID: 32623217 DOI: 10.1016/j.envint.2020.105886] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 05/26/2023]
Abstract
Organophosphate insecticides that are heavily used in agriculture for pest control have caused growing environmental problems and public health concerns worldwide. Ironically, insecticide resistance develops quickly in major lepidopteran pests, partially via their microbial symbionts. To investigate the possible mechanisms by which the microbiota confers insecticide resistance to Lepidoptera, the model organism silkworm Bombyx mori (Lepidoptera: Bombycidae) was fed different antibiotics to induce gut dysbiosis (microbiota imbalance). Larvae treated with polymyxin showed a significantly lower survival rate when exposed to chlorpyrifos. Through high-throughput sequencing, we found that the abundances of Stenotrophomonas and Enterococcus spp. changed substantially after treatment. To assess the roles played by these two groups of bacteria in chlorpyrifos resistance, a germ-free (GF) silkworm rearing protocol was established to avoid the influence of natural microbiota and antibiotics. Monoassociation of GF silkworms with Stenotrophomonas enhanced host resistance to chlorpyrifos, but not in Enterococcus-fed larvae, consistent with larval detoxification activity. GC-μECD detection of chlorpyrifos residues in feces indicated that neither Stenotrophomonas nor Enterococcus degraded chlorpyrifos directly in the gut. However, gut metabolomics analysis revealed a highly species-specific pattern, with higher levels of essential amino acid produced in the gut of silkworm larvae monoassociated with Stenotrophomonas. This critical nutrient provisioning significantly increased host fitness and thereby allowed larvae to circumvent the deleterious effects of these toxic chemicals more efficiently. Altogether, our study not only suggests a new mechanism for insecticide resistance in notorious lepidopteran pests but also provides a useful template for investigating the interplay between host and gut bacteria in complex environmental systems.
Collapse
Affiliation(s)
- Bosheng Chen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Sen Xie
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiancui Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
42
|
Meng Z, Liu L, Yan S, Sun W, Jia M, Tian S, Huang S, Zhou Z, Zhu W. Gut Microbiota: A Key Factor in the Host Health Effects Induced by Pesticide Exposure? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10517-10531. [PMID: 32902962 DOI: 10.1021/acs.jafc.0c04678] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the past few decades, a large number of pesticides have been widely used for plant protection. Pesticides may enter non-target organisms through multiple ways and bring potential health risks. There is a dense and diverse microbial community in the intestines of mammals, which is called the gut microbiota. The gut microbiota and its metabolites play vital roles in maintaining the health of the host. Interestingly, many studies have shown that exposure to multiple pesticides could affect the gut microbiota of the host. However, the roles of gut microbiota and its related metabolites in the host health effects induced by pesticide exposure of non-target organisms need further study. We reviewed the relationships between pesticide exposure and host health effects as well as between the gut microbiota and host health effects. Importantly, we reviewed the latest research on the gut microbiota and its metabolites in the host health effects induced by pesticide exposure.
Collapse
Affiliation(s)
- Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Li Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wei Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shiran Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
43
|
Wu Y, Zheng Y, Chen Y, Wang S, Chen Y, Hu F, Zheng H. Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb Biotechnol 2020; 13:1201-1212. [PMID: 32338446 PMCID: PMC7264748 DOI: 10.1111/1751-7915.13579] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau-fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline-treated workers and untreated workers demonstrated that antibiotic-induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co-treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Yufei Zheng
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Yanan Chen
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Shuai Wang
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | | | - Fuliang Hu
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Huoqing Zheng
- College of Animal SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
44
|
Han L, Liu Y, Fang K, Zhang X, Liu T, Wang F, Wang X. Azoxystrobin dissipation and its effect on soil microbial community structure and function in the presence of chlorothalonil, chlortetracycline and ciprofloxacin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113578. [PMID: 31806458 DOI: 10.1016/j.envpol.2019.113578] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The residual characteristics and the adsorption-desorption behaviors of azoxystrobin (AZO) as well as the soil ecological effects in the individual repeated treatments of AZO and its combination with chlorothalonil (CTL), chlortetracycline (CTC) and ciprofloxacin (CIP) were systematically studied in organic manure (OM)-amended soil under laboratory conditions. The presence of CTL, CTC, and CIP, both individually and combined, decreased the sorption affinity of AZO with the Freundlich adsorption and desorption coefficient decreasing by 0.3-24.2%, and CTC and CIP exhibited greater adverse effects than CTL. AZO dissipated slowly and the residues significantly accumulated during ten repeated treatments. The dissipation of AZO was inhibited to different degrees in the combined treatments. Biolog analysis revealed that the soil microbial functional diversity in the OM-soil + AZO and OM-soil + AZO + CTL treatments was higher than that in the OM-soil treatment during the former three repeated treatments, but which was inhibited during the latter seven repeated treatments. The soil microbial functional diversity in the OM-soil + AZO + CTC, OM-soil + AZO + CIP and OM-soil + AZO + CTL + CTC + CIP treatments was inhibited during the ten repeated treatments compared with OM-soil treatment. Metagenomic results showed that all repeated treatments significantly increased the relative abundance of Actinobacteria, but significantly decreased that of Proteobacteria and Firmicutes during the ten repeated treatments. Furthermore, the relative abundance of soil dominant bacterial genera Rhodococcus, Mycobacterium and Arthrobacter in all the repeated treatments significantly increased by 1.5-1283.9% compared with the OM-soil treatment. It is concluded that coexistence of CTL, CTC and CIP, both individually and combined, with AZO can inhibit the dissipation of AZO, reduce the adsorption affinity of AZO on soil, and alter the soil microbial community structure and functional diversity.
Collapse
Affiliation(s)
- Lingxi Han
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiaolian Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Fenglong Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
45
|
Zhu Y, Liu K, Zhang J, Liu X, Yang L, Wei R, Wang S, Zhang D, Xie S, Tao F. Antibiotic body burden of elderly Chinese population and health risk assessment: A human biomonitoring-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113311. [PMID: 31813705 DOI: 10.1016/j.envpol.2019.113311] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Recently, the widespread use of antibiotic has raised concerns about the potential health risks associated with their microbiological effect. In the present study, we investigated 990 elderly individuals (age ≥ 60 years) from the Cohort of Elderly Health and Environment Controllable Factors in West Anhui, China. A total of 45 representative antibiotics and two antibiotic metabolites were monitored in urine samples through liquid chromatography electrospray tandem mass spectrometry. The results revealed that 34 antibiotics were detected in 93.0% of all urine samples and the detection frequencies of each antibiotic varied between 0.2% and 35.5%. The overall detection frequencies of seven human antibiotics (HAs), 10 veterinary antibiotics (VAs), three antibiotics preferred as HAs (PHAs), and 14 preferred as VAs (PVAs) in urines were 27.4%, 62.9%, 30.9% and 72.7%, respectively. Notably, the samples with concentrations of six PVAs (sulfamethoxazole, trimethoprim, oxytetracycline, danofloxacin, norfloxacin and lincomycin) above 5000 ng/mL accounted for 1.7% of all urine samples. Additionally, in 62.7% of urine samples, the total antibiotic concentration was in the range of the limits of detection to 20.0 ng/mL. Furthermore, the elderly individuals with the sum of estimated daily intakes of VAs and PVAs more than 1 μg/kg/day accounted for 15.2% of all participants, and a health risk related to change in gut microbiota under antibiotic stimulation was expected in 6.7% of the elderly individuals. Especially, ciprofloxacin was the foremost contributor to the health risk, and its hazard quotient value was more than one in 3.5% of all subjects. Taken together, the elderly Chinese people were extensively exposed to VAs, and some elderly individuals may have a health risk associated with dysbiosis of the gut microbiota.
Collapse
Affiliation(s)
- Yitian Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jingjing Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinji Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rong Wei
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, Hefei, 230032, China
| | - Shaoyu Xie
- Lu'an Center of Disease Control and Prevention, Lu'an, Anhui, 237000, PR China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
46
|
Zhang Q, Zhu D, Ding J, Zheng F, Zhou S, Lu T, Zhu YG, Qian H. The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. ENVIRONMENT INTERNATIONAL 2019; 131:104965. [PMID: 31284112 DOI: 10.1016/j.envint.2019.104965] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 05/21/2023]
Abstract
The use of pesticides to ensure global food security is the most important pest control strategy in modern agriculture but causes extensive soil pollution. This pollution involves potential risks to human health and ecosystems. In addition to soil animal growth, the adverse impact of pesticides on the gut microbiomes of nontarget soil fauna remains largely unknown. Here, the effect of the fungicide azoxystrobin (AZ) on soil and the gut microbiota of soil animals (Enchytraeus crypticus) was studied. The tested concentrations of AZ altered the bacterial community in the soil and E. crypticus gut and were slightly toxic with respect to E. crypticus adult mortality and reproduction. The most abundant bacterial phylum, Proteobacteria, significantly increased in response to the 2 and 5 mg/kg AZ treatments, which implied a disordered unhealthy gut bacterial community. Furthermore, bacterial community analysis between the soil and gut showed that the main effect of AZ on the gut microbiota was directly through AZ, not soil microbiota. In addition, AZ exposure significantly enhanced the number and total abundance of antibiotic resistance genes (ARGs) in the E. crypticus gut; these genes may enter the soil food web to affect higher trophic levels and cause a more serious ecological risk. Our study reported the effect of pesticides on the gut of soil animals and on the enrichment of ARGs as global emerging contaminants, revealing unknown potential impacts of fungicides on ecosystem services and sustainable food production.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Ding
- University of the Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Fei Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuyidan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
47
|
Yuan X, Pan Z, Jin C, Ni Y, Fu Z, Jin Y. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. CHEMOSPHERE 2019; 227:425-434. [PMID: 31003127 DOI: 10.1016/j.chemosphere.2019.04.088] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Pesticide pollution residues have become increasingly common health hazards over the last several decades because of the wide use of pesticides. The gastrointestinal tract is the first physical and biological barrier to contaminated food and is therefore the first exposure site. Interestingly, a number of studies have shown that the gut microbiota plays a key role in the toxicity of pesticides and has a profound relationship with environmental animal and human health. For instance, intake of the pesticide of chlorpyrifos can promote obesity and insulin resistance through influencing gut and gut microbiota of mice. In this review, we discussed the possible effects of different kinds of widely used pesticides on the gut microbiota in different experimental models and analyzed their possible subsequent effects on the health of the host. More and more studies indicated that the gut microbiota of animals played a very important role in pesticides-induced toxicity, suggesting that gut micriobita was also the unintended recipient of pesticides. We hope that more attention can focus on the relationship between pesticides, gut microbiota and environmental health risk assessment in near future.
Collapse
Affiliation(s)
- Xianling Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|