1
|
Zhang W, He J, Wang Y, Jin H, Wang R. Scientific status analysis of exercise benefits for vascular cognitive impairment: Evidence of neuroinflammation. J Neuroimmunol 2025; 402:578574. [PMID: 40086400 DOI: 10.1016/j.jneuroim.2025.578574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Vascular cognitive impairment (VCI) is a syndrome characterized by cognitive decline resulting from insufficient perfusion to the entire brain or specific brain regions. The lack of a clear understanding of the mechanisms linking cerebrovascular disease to cognitive impairment has impeded the development of targeted treatments for VCI. Increasing evidence indicates that exercise may offer significant benefits for patients with VCI. This study explores how neuroinflammatory mechanisms mediate the effects of exercise on VCI, focusing on the broader biological processes involved. Exercise plays a crucial role in mitigating vascular risk factors, reducing oxidative stress, and promoting neurogenesis. Furthermore, exercise influences neuroinflammatory mediators and central immune cells via various signaling pathways. Different types and intensities of exercise, including resistance and endurance training, have been shown to differentially modulate neuroinflammation during the progression of VCI. This paper summarizes the current mechanisms of action and proposes exercise interventions targeting neuroinflammatory pathways, along with biomarker studies, to enhance our understanding of VCI pathogenesis and inform clinical practice. A more in-depth understanding of the inflammatory mechanisms underlying VCI may facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Wei Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing He
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuxin Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China; Beijing Institute of Major Brain Diseases, Beijing, China.
| |
Collapse
|
2
|
Carver JJ, Bunner WP, Denbrock RR, Yin C, Huang W, Szatmari EM, Didonna A. Loss of ADAP1/CentA1 Protects Against Autoimmune Demyelination. FASEB J 2025; 39:e70604. [PMID: 40326762 PMCID: PMC12054340 DOI: 10.1096/fj.202403078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
ArfGAP with dual PH domain-containing protein 1 (ADAP1), also known as Centaurin alpha-1 (CentA1), is an actin-binding protein highly expressed in the central nervous system (CNS) that was previously shown to regulate dendritic spine density and plasticity. In the context of disease, ADAP1/CentA1 has been linked to Alzheimer's disease (AD) pathogenesis, cancer progression, and human immunodeficiency virus (HIV) reactivation. Here, we document that ADAP1/CentA1 is also mechanistically involved in CNS autoimmunity. We show that ADAP1/CentA1 deficient mice exhibit partial resistance to developing experimental autoimmune encephalomyelitis (EAE), an in vivo disease model recapitulating several features of multiple sclerosis (MS) pathogenesis. MS is a chronic autoimmune disorder of the CNS characterized by focal immune cell infiltration, demyelination, and axonal injury. Its etiology is still elusive, but genetic and environmental factors contribute to disease risk. By combining detailed immunophenotyping and single-cell RNA sequencing (scRNA-seq), we demonstrate that ADAP1/CentA1 is necessary for mounting a sufficient autoimmune response for EAE initiation and progression. In particular, the current study highlights that ADAP1/CentA1 expression in the immune system mainly targets the functioning of regulatory T cells (Tregs), monocytes, and natural killer (NK) cells. In summary, our study defines a novel function for ADAP/CentA1 outside of the CNS and helps elucidate the early molecular events taking place in the peripheral immune system in response to encephalitogenic challenges.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Mice, Knockout
- Female
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Autoimmunity
Collapse
Affiliation(s)
- Jonathan J. Carver
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Wyatt P. Bunner
- Department of Physical Therapy, College of Allied Health SciencesEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Center for Immunotherapy & Precision Immuno‐OncologyCleveland ClinicClevelandOhioUSA
| | - Rachael R. Denbrock
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Changhong Yin
- Department of Pathology and Laboratory Medicine, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Erzsebet M. Szatmari
- Department of Physical Therapy, College of Allied Health SciencesEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
3
|
Träger C, Kaiser M, Freudenstein D, Heckscher S, Dettmer K, Oefner PJ, Liebisch G, Hiergeist A, Gessner A, Lee DH, Angstwurm K, Linker RA, Haase S. A probiotic approach identifies a Treg-centred immunoregulation via modulation of gut microbiota metabolites in people with multiple sclerosis and healthy individuals. EBioMedicine 2025; 116:105743. [PMID: 40359627 DOI: 10.1016/j.ebiom.2025.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Modulation of the gut microbiota composition has been suggested as a potential disease modifying therapy in immune-mediated diseases such as multiple sclerosis (MS). However, a conclusive mechanism linking gut microbiota modulation to peripheral immune responses has remained elusive so far. METHODS In this exploratory cohort study, people with MS (pwMS) and healthy controls (HC) supplemented a lactobacilli-rich probiotic for two or six weeks and were additionally investigated six weeks after the last intake. Immune cell phenotyping was performed in blood samples, complemented by mRNA expression analysis, serum cytokine measurements, and Treg suppression assays. Besides gut microbiota composition analysis, metabolite production was investigated in stool and serum. Links between metabolites and peripheral immune system were investigated in in vitro T cell differentiation assays. FINDINGS In peripheral blood, Treg cells increased in both groups, while Th1 cells were significantly reduced in pwMS. This promotion of a regulatory immunophenotype was complemented by increased concentrations of IL-10 in serum and higher expression of IL10 and CTLA4. Functional assays revealed an enhanced suppressive capacity of Treg cells due to the probiotic intervention. The tryptophan metabolite indole-3-acetate (IAA) increased in stool and serum samples of pwMS during the probiotic intake. In vitro, IAA specifically enhanced the formation of IL-10 secreting T cells together with CYP1a1 expression. This effect was blocked by addition of an aryl hydrocarbon receptor (AHR) inhibitor. INTERPRETATION A lactobacilli-enriched probiotic promotes a regulatory immunophenotype in pwMS, probably by enhancing AHR agonists in the gut. It may be of interest as add-on therapy in immune-mediated diseases such as MS. FUNDING This study has in part been funded by Novartis Pharma GmbH and BMBF grant no. 01EJ2202B.
Collapse
Affiliation(s)
- Constantin Träger
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Maria Kaiser
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - David Freudenstein
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Simon Heckscher
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Regensburg, Germany
| | - De-Hyung Lee
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Klemens Angstwurm
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Stefanie Haase
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
4
|
Archer D, Pérez-Muñoz ME, Tollenaar S, Veniamin S, Hotte N, Cheng CC, Nieves K, Oh JH, Morceli L, Muncner S, Barreda DR, Krishnamoorthy G, Power C, van Pijkeren JP, Walter J. A secondary metabolite of Limosilactobacillusreuteri R2lc drives strain-specific pathology in a spontaneous mouse model of multiple sclerosis. Cell Rep 2025; 44:115321. [PMID: 39985770 DOI: 10.1016/j.celrep.2025.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025] Open
Abstract
Limosilactobacillus reuteri is an immunomodulatory bacterium enriched in non-industrialized microbiomes, making it a therapeutic candidate for chronic diseases. However, effects of L. reuteri strains in mouse models of multiple sclerosis have been contradictory. Here, we show that treatment of spontaneous relapsing-remitting experimental autoimmune encephalomyelitis (EAE) mice with L. reuteri R2lc, a strain that activates the aryl hydrocarbon receptor (AhR) through the pks gene cluster, resulted in severe pathology. In contrast, a pks mutant and a pks-negative strain (PB-W1) failed to exacerbate EAE and exhibited reduced pathology compared to R2lc despite earlier disease onset in PB-W1 mice. Differences in pathology occurred in parallel with a pks-dependent downregulation of AhR-related genes, reduced occludin expression in the forebrain, and altered concentrations of immune cells. This work establishes a molecular foundation for strain-specific effects on autoimmunity, which has implications for our understanding of how microbes contribute to chronic conditions and the selection of microbial therapeutics.
Collapse
Affiliation(s)
- Dale Archer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - María Elisa Pérez-Muñoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Simona Veniamin
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Christopher C Cheng
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kristoff Nieves
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, County Cork, Ireland; School of Microbiology, University College Cork, Cork T12 K8AF, County Cork, Ireland; Department of Medicine, University College Cork, Cork T12 K8AF, County Cork, Ireland
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lilian Morceli
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Susan Muncner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; APC Microbiome Ireland, University College Cork, Cork T12 K8AF, County Cork, Ireland; School of Microbiology, University College Cork, Cork T12 K8AF, County Cork, Ireland; Department of Medicine, University College Cork, Cork T12 K8AF, County Cork, Ireland.
| |
Collapse
|
5
|
Allanach JR, Fettig NM, Hardman BK, Rosen AR, Fan V, Chung C, Goldberg EJ, Morse ZJ, Shanina I, Vorobeychik G, Osborne LC, Horwitz MS. Epstein-Barr virus infection promotes T cell dysregulation in a humanized mouse model of multiple sclerosis. SCIENCE ADVANCES 2025; 11:eadu5110. [PMID: 40043135 PMCID: PMC11881922 DOI: 10.1126/sciadv.adu5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/29/2025] [Indexed: 05/13/2025]
Abstract
Latent infection with Epstein-Barr virus (EBV) is a strong risk factor for the development of multiple sclerosis (MS), although the underlying mechanisms remain unclear. To investigate this association, we induced experimental autoimmune encephalomyelitis (EAE) in immunodeficient mice reconstituted with peripheral blood mononuclear cells (PBMCs) from individuals with or without a history of EBV infection and/or relapsing MS (RRMS). HuPBMC EAE mice generated from EBV-seronegative healthy donors were less susceptible to developing severe neurological symptoms than healthy EBV-seropositive and RRMS donor groups. Donor EBV seropositivity and RRMS diagnosis were associated with a significant increase in the number of central nervous system (CNS) infiltrating effector T cells due to enhanced proliferation of proinflammatory T cells and limited expansion of regulatory T cells. The data indicate that a history of EBV infection, further compounded by a diagnosis of RRMS, promotes T cell-mediated xenogeneic CNS disease in a humanized mouse model of MS.
Collapse
Affiliation(s)
- Jessica R. Allanach
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Naomi M. Fettig
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Blair K. Hardman
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Ariel R. Rosen
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Vina Fan
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Cynthia Chung
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Erin J. Goldberg
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Zachary J. Morse
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Galina Vorobeychik
- Fraser Health Multiple Sclerosis Clinic, Burnaby, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lisa C. Osborne
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Herrada AA, Rodríguez-Arriaza F, Olate-Briones A, Albornoz-Muñoz S, Faúndez-Acuña JY, Rojas-Henríquez V, Retamal-Quinteros L, Prado C, Escobedo N. Yerba Mate ( Ilex paraguariensis) Ameliorates Experimental Autoimmune Encephalomyelitis by Modulating Regulatory T Cell Function. Nutrients 2025; 17:897. [PMID: 40077767 PMCID: PMC11901674 DOI: 10.3390/nu17050897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: In Latin America, yerba mate (YM) is a popular infusion processed from the leaves and stems of Ilex paraguariensis. YM has been shown to have anti-inflammatory properties in several studies, although the effect of YM on multiple sclerosis (MS) remains elusive. The purpose of this study was to examine the effect of YM on the development of MS, by using the experimental autoimmune encephalomyelitis (EAE) mouse model while also evaluating its effect over infiltration of immune cells into the central nervous system (CNS) and regulatory T cell (Treg) function. Methods: YM or vehicle were administrated to mice daily by oral gavage for seven days prior to EAE induction and during the entire course of the disease. EAE score was recorded daily, and immune cell infiltration into the CNS was measured by flow cytometry and immunofluorescence. Results: Our results showed that YM administration decreases EAE symptoms and immune cell infiltration into the CNS, along with reducing demyelination, compared to the vehicle treatment. Moreover, an increase in the Treg population, immune cells capable of generating tolerance and decreased inflammation, was observed in mice receiving YM, together with improved Treg suppressive capabilities after YM treatment in vitro. Conclusions: In summary, we showed that YM promotes an immunosuppressive environment by modulating Treg function, reducing EAE symptoms and immune cell infiltration into the brain, and suggesting that YM consumption could be a good cost-effective treatment for MS.
Collapse
Affiliation(s)
- Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Francisca Rodríguez-Arriaza
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Alexandra Olate-Briones
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Sofía Albornoz-Muñoz
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Jorge Y. Faúndez-Acuña
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Victor Rojas-Henríquez
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Ledaliz Retamal-Quinteros
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| | - Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte #725, Huechuraba, Santiago 8580702, Chile;
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.R.-A.); (A.O.-B.); (S.A.-M.); (J.Y.F.-A.); (V.R.-H.); (L.R.-Q.)
| |
Collapse
|
7
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
8
|
Okamoto M, Kuratani A, Okuzaki D, Kamiyama N, Kobayashi T, Sasai M, Yamamoto M. IFN-γ-induced Th1-Treg polarization in inflamed brains limits exacerbation of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2024; 121:e2401692121. [PMID: 39560646 PMCID: PMC11621829 DOI: 10.1073/pnas.2401692121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most widely used rodent model for multiple sclerosis. Interferon-γ (IFN-γ) and regulatory T cells (Tregs) are individually well known to play beneficial roles in amelioration of EAE. However, little is known about the relationship between IFN-γ and Tregs during the disease. Here, we show that IFN-γ polarizes Tregs into T helper 1 (Th1)-type Tregs (Th1-Tregs) to recover from EAE. Single-cell RNA sequencing analysis revealed that brain Tregs showed signs of IFN-γ stimulation during EAE. Loss of IFN-γ signaling in Tregs and of T cell-derived IFN-γ impaired the Th1-Treg polarization and worsened the disease. Moreover, selective ablation of Th1-Tregs using an intersectional genetic method promoted proinflammatory features of macrophages in the inflamed brains and exacerbated the EAE. Taken together, our study highlights a critical role of T cell-derived IFN-γ for Th1-Treg polarization in inflamed brain to ameliorate EAE.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita879-5593, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita879-5593, Japan
- Division of Pathophysiology, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Oita879-5593, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Immunoparasitology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
9
|
Vukovic J, Abazovic D, Vucetic D, Medenica S. CAR-engineered T cell therapy as an emerging strategy for treating autoimmune diseases. Front Med (Lausanne) 2024; 11:1447147. [PMID: 39450112 PMCID: PMC11500465 DOI: 10.3389/fmed.2024.1447147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
CAR-T therapy has demonstrated great success in treating hematological malignancies, which has led to further research into its potential in treating other diseases. Autoimmune diseases have great potential to be treated with this therapy due to the possibility of specific targeting of pathological immune cells and cells that produce autoantibodies, which could lead to permanent healing and restoration of immunological tolerance. Several approaches are currently under investigation, including targeting and depleting B cells via CD19 in the early stages of the disease, simultaneously targeting B cells and memory plasma cells in later stages and refractory states, as well as targeting specific autoantigens through the chimeric autoantibody receptor (CAAR). Additionally, CAR-engineered T regulatory cells can be modified to specifically target the autoimmune niche and modulate the pathological immune response. The encouraging results from preclinical studies have led to the first successful use of CAR-T therapy in humans to treat autoimmunity. This paved the way for further clinical studies, aiming to evaluate the long-term safety and efficacy of these therapies, potentially revolutionizing clinical use.
Collapse
Affiliation(s)
- Jovana Vukovic
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dzihan Abazovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Vucetic
- Institute for Transfusiology and Hemobiology, Military Medical Academy, Belgrade, Serbia
| | - Sanja Medenica
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Department of Endocrinology, Internal Medicine Clinic, Clinical Center of Montenegro, Podgorica, Montenegro
| |
Collapse
|
10
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D, Oksenych V. The Role of Mesenchymal Stem Cells in Modulating Adaptive Immune Responses in Multiple Sclerosis. Cells 2024; 13:1556. [PMID: 39329740 PMCID: PMC11430382 DOI: 10.3390/cells13181556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.
Collapse
Affiliation(s)
- Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hossein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
11
|
Prins CA, de Oliveira FL, de Mello Coelho V, Dos Santos Ribeiro EB, de Almeida JS, Silva NMB, Almeida FM, Martinez AMB. Galectin-3 absence alters lymphocytes populations dynamics behavior and promotes functional recovery after spinal cord injury in mice. Exp Neurol 2024; 377:114785. [PMID: 38670250 DOI: 10.1016/j.expneurol.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.
Collapse
Affiliation(s)
- Caio Andrade Prins
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Leite de Oliveira
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valeria de Mello Coelho
- Laboratório de lmunofisiologia, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emanuela Bezerra Dos Santos Ribeiro
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Silva de Almeida
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Moraes Bechelli Silva
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Laboratório de Neurodegeneração e Reparo, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Anatomia Patológica, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Arellano G, Acuña E, Loda E, Moore L, Tichauer JE, Castillo C, Vergara F, Burgos PI, Penaloza-MacMaster P, Miller SD, Naves R. Therapeutic role of interferon-γ in experimental autoimmune encephalomyelitis is mediated through a tolerogenic subset of splenic CD11b + myeloid cells. J Neuroinflammation 2024; 21:144. [PMID: 38822334 PMCID: PMC11143617 DOI: 10.1186/s12974-024-03126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/05/2024] [Indexed: 06/02/2024] Open
Abstract
Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-β or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-β and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-β-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-β. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Interferon-gamma/metabolism
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Spleen/immunology
- Mice, Inbred C57BL
- CD11b Antigen/metabolism
- Female
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Myelin-Oligodendrocyte Glycoprotein/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Peptide Fragments/toxicity
- Peptide Fragments/pharmacology
- Transforming Growth Factor beta/metabolism
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/immunology
- Forkhead Transcription Factors/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Lindsay Moore
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Juan E Tichauer
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Castillo
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fabian Vergara
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US.
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US.
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Increased EZH2 function in regulatory T cells promotes their capacity to suppress autoimmunity by driving effector differentiation prior to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588284. [PMID: 38645261 PMCID: PMC11030251 DOI: 10.1101/2024.04.05.588284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here we assessed whether increased EZH2 activity in Treg cells would improve Treg cell function. Using an Ezh2 gain-of-function mutation, Ezh2 Y641F , we found that Treg cells expressing Ezh2 Y641F displayed an increased effector Treg phenotype and were poised for improved homing to organ tissues. Expression of Ezh2 Y641F in Treg cells led to more rapid remission from autoimmunity. H3K27me3 profiling and transcriptomic analysis revealed a redistribution of H3K27me3, which prompted a gene expression profile in naïve Ezh2 Y641F Treg cells that recapitulated aspects of CD28-activated Ezh2 WT Treg cells. Altogether, increased EZH2 activity promotes the differentiation of effector Treg cells that can better suppress autoimmunity. Highlights EZH2 function promotes effector differentiation of Treg cells.EZH2 function promotes Treg cell migration to organ tissues.EZH2 function in Treg cells improves remission from autoimmunity.EZH2 function poises naïve Treg cells to adopt a CD28-activated phenotype.
Collapse
|
14
|
Chaudhuri SM, Weinberg SE, Wang D, Yalom LK, Montauti E, Iyer R, Tang AY, Torres Acosta MA, Shen J, Mani NL, Wang S, Liu K, Lu W, Bui TM, Manzanares LD, Dehghani Z, Wai CM, Gao B, Wei J, Yue F, Cui W, Singer BD, Sumagin R, Zhang Y, Fang D. Mediator complex subunit 1 architects a tumorigenic Treg cell program independent of inflammation. Cell Rep Med 2024; 5:101441. [PMID: 38428427 PMCID: PMC10983042 DOI: 10.1016/j.xcrm.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Collapse
Affiliation(s)
- Shuvam M Chaudhuri
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel E Weinberg
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dongmei Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lenore K Yalom
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy Y Tang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manuel A Torres Acosta
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikita L Mani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiyuan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Triet M Bui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura D Manzanares
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeinab Dehghani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ching Man Wai
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
16
|
Afzali AM, Nirschl L, Sie C, Pfaller M, Ulianov O, Hassler T, Federle C, Petrozziello E, Kalluri SR, Chen HH, Tyystjärvi S, Muschaweckh A, Lammens K, Delbridge C, Büttner A, Steiger K, Seyhan G, Ottersen OP, Öllinger R, Rad R, Jarosch S, Straub A, Mühlbauer A, Grassmann S, Hemmer B, Böttcher JP, Wagner I, Kreutzfeldt M, Merkler D, Pardàs IB, Schmidt Supprian M, Buchholz VR, Heink S, Busch DH, Klein L, Korn T. B cells orchestrate tolerance to the neuromyelitis optica autoantigen AQP4. Nature 2024; 627:407-415. [PMID: 38383779 PMCID: PMC10937377 DOI: 10.1038/s41586-024-07079-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.
Collapse
Affiliation(s)
- Ali Maisam Afzali
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Lucy Nirschl
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Christopher Sie
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Monika Pfaller
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Oleksii Ulianov
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Tobias Hassler
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christine Federle
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Elisabetta Petrozziello
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Hsin Hsiang Chen
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sofia Tyystjärvi
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Katja Lammens
- Department of Biochemistry at the Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Claire Delbridge
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Gönül Seyhan
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ole Petter Ottersen
- Division of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Anton Mühlbauer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | | | - Marc Schmidt Supprian
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sylvia Heink
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ludger Klein
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
17
|
Raineri D, Abreu H, Vilardo B, Kustrimovic N, Venegoni C, Cappellano G, Chiocchetti A. Deep Flow Cytometry Unveils Distinct Immune Cell Subsets in Inducible T Cell Co-Stimulator Ligand (ICOSL)- and ICOS-Knockout Mice during Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2024; 25:2509. [PMID: 38473756 DOI: 10.3390/ijms25052509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The inducible T cell co-stimulator ligand (ICOSL), expressed by antigen presenting cells, binds to the inducible T cell co-stimulator (ICOS) on activated T cells. Improper function of the ICOS/ICOSL pathway has been implicated in several autoimmune diseases, including multiple sclerosis (MS). Previous studies showed that ICOS-knockout (KO) mice exhibit severe experimental autoimmune encephalomyelitis (EAE), the animal model of MS, but data on ICOSL deficiency are not available. In our study, we explored the impact of both ICOS and ICOSL deficiencies on MOG35-55 -induced EAE and its associated immune cell dynamics by employing ICOSL-KO and ICOS-KO mice with a C57BL/6J background. During EAE resolution, MOG-driven cytokine levels and the immunophenotype of splenocytes were evaluated by ELISA and multiparametric flow cytometry, respectively. We found that both KO mice exhibited an overlapping and more severe EAE compared to C57BL/6J mice, corroborated by a reduction in memory/regulatory T cell subsets and interleukin (IL-)17 levels. It is noteworthy that an unsupervised analysis showed that ICOSL deficiency modifies the immune response in an original way, by affecting T central and effector memory (TCM, TEM), long-lived CD4+ TEM cells, and macrophages, compared to ICOS-KO and C57BL/6J mice, suggesting a role for other binding partners to ICOSL in EAE development, which deserves further study.
Collapse
Affiliation(s)
- Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Beatrice Vilardo
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Natasa Kustrimovic
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Chiara Venegoni
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
18
|
Martinez HA, Koliesnik I, Kaber G, Reid JK, Nagy N, Barlow G, Falk BA, Medina CO, Hargil A, Zihsler S, Vlodavsky I, Li JP, Pérez-Cruz M, Tang SW, Meyer EH, Wrenshall LE, Lord JD, Garcia KC, Palmer TD, Steinman L, Nepom GT, Wight TN, Bollyky PL, Kuipers HF. Regulatory T cells use heparanase to access IL-2 bound to extracellular matrix in inflamed tissue. Nat Commun 2024; 15:1564. [PMID: 38378682 PMCID: PMC10879116 DOI: 10.1038/s41467-024-45012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
Although FOXP3+ regulatory T cells (Treg) depend on IL-2 produced by other cells for their survival and function, the levels of IL-2 in inflamed tissue are low, making it unclear how Treg access this critical resource. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing monoclonal antibody-directed chimeric antigen receptor (mAbCAR) Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their ability to suppress neuroinflammation in vivo. Together, these data identify a role for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.
Collapse
Affiliation(s)
- Hunter A Martinez
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ievgen Koliesnik
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacqueline K Reid
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nadine Nagy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham Barlow
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ben A Falk
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Carlos O Medina
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aviv Hargil
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Svenja Zihsler
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Magdiel Pérez-Cruz
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sai-Wen Tang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Everett H Meyer
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucile E Wrenshall
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - James D Lord
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald T Nepom
- Immune Tolerance Network, Benaroya Research Institute, Seattle, WA, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Paul L Bollyky
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hedwich F Kuipers
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
19
|
Kazemi R, Yazdanpanah E, Esmaeili SA, Yousefi B, Baharlou R, Haghmorad D. Thymoquinone improves experimental autoimmune encephalomyelitis by regulating both pro-inflammatory and anti-inflammatory cytokines. Mol Biol Rep 2024; 51:256. [PMID: 38302802 DOI: 10.1007/s11033-023-09148-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Introduction Multiple sclerosis (MS) is an autoimmune condition marked by inflammation and the loss of myelin in the central nervous system (CNS). The aim of this research was to understand how Thymoquinone regulate the molecular and cellular processes involved in controlling experimental autoimmune encephalomyelitis (EAE), which is an animal model often used to study MS. Methods Female C57BL/6 mice were split into different groups receiving different doses (low, medium, and high) of Thymoquinone simultaneously with EAE induction. Clinical scores and other measurements were observed daily throughout the 25-day post immunization. We assessed lymphocyte infiltration and demyelination in the spinal cord through histological staining, analyzed T-cell profiles using ELISA, and quantified the expression levels of transcription factors in the CNS using Real-time PCR. Results Thymoquinone prevented the development of EAE. Histological experiments revealed only a small degree of leukocyte infiltration into the CNS. Thymoquinone resulted in a notable reduction in the generation of IFN-γ, IL-17, and IL-6, while simultaneously increasing the production of IL-4, IL-10, and TGF-β in Th2 and Treg cells. Results from Real-time PCR suggested Treatment with Thymoquinone decreased the expression of T-bet and ROR-γt while increasing the expression of Foxp3 and GATA3. Conclusion These findings showed that Thymoquinone could decrease both disease incidence and severity.
Collapse
Affiliation(s)
- Roya Kazemi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
20
|
Arneth B. Regulatory T Cells in Multiple Sclerosis Diagnostics-What Do We Know So Far? J Pers Med 2023; 14:29. [PMID: 38248730 PMCID: PMC10821144 DOI: 10.3390/jpm14010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disorder that affects the central nervous system (CNS) through inflammation. MS symptoms become acute if the disease progresses to the relapsing phase. AIM This review aimed to evaluate the role played by regulatory T cells (Tregs) in the pathogenesis of MS. METHODS This review used scholarly journal articles obtained from PubMed, PsycINFO, and CINAHL with different search parameters such as 'regulatory T cells', 'multiple sclerosis', and 'current knowledge'. The process of searching for articles was limited to those that had publication dates falling between 2010 and 2020. RESULTS Tregs play a role in the pathogenesis of MS. This conclusion is supported by animal disease models and environmental factors that can underlie Treg alterations in MS. Despite the knowledge of the role played by Tregs in MS pathogenesis, the specific subsets of Tregs involved in MS development remain incompletely understood. DISCUSSION This review provides an essential link between Tregs and MS activity. Targeting Tregs could be an efficient way to establish new treatment methods for MS management. CONCLUSION MS is a complex condition affecting many people worldwide. Research has shown that Tregs can influence MS development and progression. More investigations are needed to understand how Tregs affect the pathogenesis of MS.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Philipps University Marburg, 35043 Marburg, Germany;
- Institute of Laboratory Medicine and Pathobiochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Hospital of the Universities of Giessen and Marburg, 35392 Giessen, Germany
| |
Collapse
|
21
|
Johann L, Soldati S, Müller K, Lampe J, Marini F, Klein M, Schramm E, Ries N, Schelmbauer C, Palagi I, Karram K, Assmann JC, Khan MA, Wenzel J, Schmidt MH, Körbelin J, Schlüter D, van Loo G, Bopp T, Engelhardt B, Schwaninger M, Waisman A. A20 regulates lymphocyte adhesion in murine neuroinflammation by restricting endothelial ICOSL expression in the CNS. J Clin Invest 2023; 133:e168314. [PMID: 37856217 PMCID: PMC10721159 DOI: 10.1172/jci168314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
A20 is a ubiquitin-modifying protein that negatively regulates NF-κB signaling. Mutations in A20/TNFAIP3 are associated with a variety of autoimmune diseases, including multiple sclerosis (MS). We found that deletion of A20 in central nervous system (CNS) endothelial cells (ECs) enhances experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. A20ΔCNS-EC mice showed increased numbers of CNS-infiltrating immune cells during neuroinflammation and in the steady state. While the integrity of the blood-brain barrier (BBB) was not impaired, we observed a strong activation of CNS-ECs in these mice, with dramatically increased levels of the adhesion molecules ICAM-1 and VCAM-1. We discovered ICOSL to be expressed by A20-deficient CNS-ECs, which we found to function as adhesion molecules. Silencing of ICOSL in CNS microvascular ECs partly reversed the phenotype of A20ΔCNS-EC mice without reaching statistical significance and delayed the onset of EAE symptoms in WT mice. In addition, blocking of ICOSL on primary mouse brain microvascular ECs impaired the adhesion of T cells in vitro. Taken together, we propose that CNS EC-ICOSL contributes to the firm adhesion of T cells to the BBB, promoting their entry into the CNS and eventually driving neuroinflammation.
Collapse
Affiliation(s)
- Lisa Johann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Kristin Müller
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI)
- Research Center for Immunotherapy (FZI), and
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Eva Schramm
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Nathalie Ries
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Ilaria Palagi
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Julian C. Assmann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Mahtab A. Khan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany
| | - Mirko H.H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Department of Oncology, Hematology and Bone Marrow Transplantation, Hamburg, Germany
| | - Dirk Schlüter
- Hannover Medical School, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Geert van Loo
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), and
- Institute for Immunology, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | | | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), and
| |
Collapse
|
22
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alasmari AF, Shahid M, Al-Mazroua HA, Alomar HA, AsSobeai HM, Alshamrani AA, Attia SM. MAP kinase inhibitor PD98059 regulates Th1, Th9, Th17, and natural T regulatory cells in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Eur J Pharmacol 2023; 959:176086. [PMID: 37832863 DOI: 10.1016/j.ejphar.2023.176086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/09/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS), provides significant insights into the mechanisms that initiate and drive autoimmunity. MS is a chronic autoimmune disease of the central nervous system, characterized by inflammatory infiltration associated with demyelination. T lymphocyte cells play a crucial role in MS, whereas natural T regulatory (nTreg) cells prevent autoimmune inflammation by suppressing lymphocyte activity. This study sought to investigate the role of PD98059, a selective MAP kinase inhibitor, in Th1, Th9, Th17, and nTreg cells using the SJL/J mouse model of EAE. Following EAE development, the mice were intraperitoneally administered PD98059 (5 mg/kg for two weeks) daily. We evaluated the effects of PD98059 on Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγT), and nTreg (FoxP3 and Helios) cells in the spleen using flow cytometry. Moreover, we explored the effects of PD98059 on the IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγT, FoxP3, and Helios mRNA and protein levels in brain tissues using qRT-PCR and Western blot analyses. PD98059 treatment significantly decreased the proportion of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, CD4+RORγT+, CD4+IL-17A+, and CD4+RORγT+ cells while increasing that of CD4+FoxP3+ and CD4+Helios+ cells. In addition, PD98059 administration decreased the mRNA and protein levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, and RORγT but increased those of FoxP3 and Helios in the brain tissue of EAE mice. Our findings suggest that PD98059 corrects immune dysfunction in EAE mice, which is concurrent with the modulation of multiple signaling pathways.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Homood M AsSobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 PMCID: PMC11407427 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
24
|
Moorman CD, Yu S, Briseno CG, Phee H, Sahoo A, Ramrakhiani A, Chaudhry A. CAR-T cells and CAR-Tregs targeting conventional type-1 dendritic cell suppress experimental autoimmune encephalomyelitis. Front Immunol 2023; 14:1235222. [PMID: 37965348 PMCID: PMC10641730 DOI: 10.3389/fimmu.2023.1235222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
Conventional type 1 dendritic cells (DC1) contribute to the development of pathogenic T helper type 1 (Th1) cells in part via the production of the proinflammatory cytokine interleukin-12. Thus, depletion of DC1 has the potential to dampen autoimmune responses. Here, we developed X-C motif chemokine receptor 1 (XCR1)-specific chimeric antigen receptor (CAR)-T cells and CAR-Tregs that specifically targeted DC1. XCR1 CAR-T cells were successfully generated as CD4+ and CD8+ T cells, expressed XCR1 CAR efficiently, and induced XCR1-dependent activation, cytokine production and proliferation. XCR1 CAR-T cells selectively depleted DC1 when transferred into RAG2-/- mice with a compensatory increase in conventional type 2 DC (DC2) and plasmacytoid DC (pDC). XCR1 CAR-T cell-mediated depletion of DC1 modestly suppressed the onset of Th1-driven experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Diphtheria toxin-mediated DC1 depletion in XCR1-diphtheria toxin receptor mice also suppressed EAE, suggesting that DC1 depletion was responsible for EAE suppression. XCR1 CAR-Tregs were successfully generated and suppressed effector T cells in the presence of XCR1+ cells. Therapeutic treatment with XCR1 CAR-Tregs suppressed Th1-driven EAE. Therefore, we conclude that depletion of DC1 with XCR1 CAR-T cells or immune suppression with XCR1 CAR-Tregs can modestly suppress Th1-driven EAE.
Collapse
Affiliation(s)
- Cody D. Moorman
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Rego S, Sanchez G, Da Mesquita S. Current views on meningeal lymphatics and immunity in aging and Alzheimer's disease. Mol Neurodegener 2023; 18:55. [PMID: 37580702 PMCID: PMC10424377 DOI: 10.1186/s13024-023-00645-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related form of dementia associated with the accumulation of pathological aggregates of amyloid beta and neurofibrillary tangles in the brain. These phenomena are accompanied by exacerbated inflammation and marked neuronal loss, which altogether contribute to accelerated cognitive decline. The multifactorial nature of AD, allied to our still limited knowledge of its etiology and pathophysiology, have lessened our capacity to develop effective treatments for AD patients. Over the last few decades, genome wide association studies and biomarker development, alongside mechanistic experiments involving animal models, have identified different immune components that play key roles in the modulation of brain pathology in AD, affecting its progression and severity. As we will relay in this review, much of the recent efforts have been directed to better understanding the role of brain innate immunity, and particularly of microglia. However, and despite the lack of diversity within brain resident immune cells, the brain border tissues, especially the meninges, harbour a considerable number of different types and subtypes of adaptive and innate immune cells. Alongside microglia, which have taken the centre stage as important players in AD research, there is new and exciting evidence pointing to adaptive immune cells, namely T and B cells found in the brain and its meninges, as important modulators of neuroinflammation and neuronal (dys)function in AD. Importantly, a genuine and functional lymphatic vascular network is present around the brain in the outermost meningeal layer, the dura. The meningeal lymphatics are directly connected to the peripheral lymphatic system in different mammalian species, including humans, and play a crucial role in preserving a "healthy" immune surveillance of the CNS, by shaping immune responses, not only locally at the meninges, but also at the level of the brain tissue. In this review, we will provide a comprehensive view on our current knowledge about the meningeal lymphatic vasculature, emphasizing its described roles in modulating CNS fluid and macromolecule drainage, meningeal and brain immunity, as well as glial and neuronal function in aging and in AD.
Collapse
Affiliation(s)
- Shanon Rego
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guadalupe Sanchez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
26
|
Lei W, Cheng Y, Gao J, Liu X, Shao L, Kong Q, Zheng N, Ling Z, Hu W. Akkermansia muciniphila in neuropsychiatric disorders: friend or foe? Front Cell Infect Microbiol 2023; 13:1224155. [PMID: 37492530 PMCID: PMC10363720 DOI: 10.3389/fcimb.2023.1224155] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
An accumulating body of evidence suggests that the bacterium Akkermansia muciniphila exhibits positive systemic effects on host health, mainly by improving immunological and metabolic functions, and it is therefore regarded as a promising potential probiotic. Recent clinical and preclinical studies have shown that A. muciniphila plays a vital role in a variety of neuropsychiatric disorders by influencing the host brain through the microbiota-gut-brain axis (MGBA). Numerous studies observed that A. muciniphila and its metabolic substances can effectively improve the symptoms of neuropsychiatric disorders by restoring the gut microbiota, reestablishing the integrity of the gut mucosal barrier, regulating host immunity, and modulating gut and neuroinflammation. However, A. muciniphila was also reported to participate in the development of neuropsychiatric disorders by aggravating inflammation and influencing mucus production. Therefore, the exact mechanism of action of A. muciniphila remains much controversial. This review summarizes the proposed roles and mechanisms of A. muciniphila in various neurological and psychiatric disorders such as depression, anxiety, Parkinson's disease, Alzheimer's disease, multiple sclerosis, strokes, and autism spectrum disorders, and provides insights into the potential therapeutic application of A. muciniphila for the treatment of these conditions.
Collapse
Affiliation(s)
- Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University, Jinan, Shandong, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingming Kong
- School of Biological Engineering, Hangzhou Medical College, Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongxin Ling
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiming Hu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
27
|
Tichauer JE, Arellano G, Acuña E, González LF, Kannaiyan NR, Murgas P, Panadero-Medianero C, Ibañez-Vega J, Burgos PI, Loda E, Miller SD, Rossner MJ, Gebicke-Haerter PJ, Naves R. Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Front Immunol 2023; 14:1191838. [PMID: 37334380 PMCID: PMC10272814 DOI: 10.3389/fimmu.2023.1191838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Compelling evidence has shown that interferon (IFN)-γ has dual effects in multiple sclerosis and in its animal model of experimental autoimmune encephalomyelitis (EAE), with results supporting both a pathogenic and beneficial function. However, the mechanisms whereby IFN-γ may promote neuroprotection in EAE and its effects on central nervous system (CNS)-resident cells have remained an enigma for more than 30 years. In this study, the impact of IFN-γ at the peak of EAE, its effects on CNS infiltrating myeloid cells (MC) and microglia (MG), and the underlying cellular and molecular mechanisms were investigated. IFN-γ administration resulted in disease amelioration and attenuation of neuroinflammation associated with significantly lower frequencies of CNS CD11b+ myeloid cells and less infiltration of inflammatory cells and demyelination. A significant reduction in activated MG and enhanced resting MG was determined by flow cytometry and immunohistrochemistry. Primary MC/MG cultures obtained from the spinal cord of IFN-γ-treated EAE mice that were ex vivo re-stimulated with a low dose (1 ng/ml) of IFN-γ and neuroantigen, promoted a significantly higher induction of CD4+ regulatory T (Treg) cells associated with increased transforming growth factor (TGF)-β secretion. Additionally, IFN-γ-treated primary MC/MG cultures produced significantly lower nitrite in response to LPS challenge than control MC/MG. IFN-γ-treated EAE mice had a significantly higher frequency of CX3CR1high MC/MG and expressed lower levels of program death ligand 1 (PD-L1) than PBS-treated mice. Most CX3CR1highPD-L1lowCD11b+Ly6G- cells expressed MG markers (Tmem119, Sall2, and P2ry12), indicating that they represented an enriched MG subset (CX3CR1highPD-L1low MG). Amelioration of clinical symptoms and induction of CX3CR1highPD-L1low MG by IFN-γ were dependent on STAT-1. RNA-seq analyses revealed that in vivo treatment with IFN-γ promoted the induction of homeostatic CX3CR1highPD-L1low MG, upregulating the expression of genes associated with tolerogenic and anti-inflammatory roles and down-regulating pro-inflammatory genes. These analyses highlight the master role that IFN-γ plays in regulating microglial activity and provide new insights into the cellular and molecular mechanisms involved in the therapeutic activity of IFN-γ in EAE.
Collapse
Affiliation(s)
- Juan E. Tichauer
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luis F. González
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Nirmal R. Kannaiyan
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | | | - Jorge Ibañez-Vega
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula I. Burgos
- Department of Clinical Immunology and Rheumatology , School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Moritz J. Rossner
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter J. Gebicke-Haerter
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Vanni A, Carnasciali A, Mazzoni A, Russo E, Farahvachi P, Gloria LD, Ramazzotti M, Lamacchia G, Capone M, Salvati L, Calosi L, Bani D, Liotta F, Cosmi L, Amedei A, Ballerini C, Maggi L, Annunziato F. Musculin does not modulate the disease course of Experimental Autoimmune Encephalomyelitis and DSS colitis. Immunol Lett 2023; 255:21-31. [PMID: 36848960 DOI: 10.1016/j.imlet.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Previous evidences show that Musculin (Msc), a repressor member of basic helix-loop-helix transcription factors, is responsible in vitro for the low responsiveness of human Th17 cells to the growth factor IL-2, providing an explanation for Th17 cells rarity in inflammatory tissue. However, how and to what extent Musculin gene can regulate the immune response in vivo in an inflammatory context is still unknown. Here, exploiting two animal models of inflammatory diseases, the Experimental Autoimmune Encephalomyelitis (EAE) and the dextran sodium sulfate (DSS)-induced colitis, we evaluated the effect of Musculin gene knock-out on clinical course, performing also a deep immune phenotypical analysis on T cells compartment and an extended microbiota analysis in colitis-sick mice. We found that, at least during the early phase, Musculin gene has a very marginal role in modulating both the diseases. Indeed, the clinical course and the histological analysis showed no differences between wild type and Msc knock-out mice, whereas immune system appeared to give rise to a regulatory milieu in lymph nodes of EAE mice and in the spleen of DSS colitis-sick mice. Moreover, in the microbiota analysis, we found irrelevant differences between wild type and Musculin knock-out colitis-sick mice, with a similar bacterial strains' frequency and diversity after the DSS treatment. This work strengthened the idea of a negligible Msc gene involvement in these models.
Collapse
Affiliation(s)
- Anna Vanni
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Alberto Carnasciali
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Parham Farahvachi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Giulia Lamacchia
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy.
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| |
Collapse
|
29
|
Gupta S, Simic M, Sagan SA, Shepherd C, Duecker J, Sobel RA, Dandekar R, Wu GF, Wu W, Pak JE, Hauser SL, Lim W, Wilson MR, Zamvil SS. CAR-T Cell-Mediated B-Cell Depletion in Central Nervous System Autoimmunity. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200080. [PMID: 36657993 PMCID: PMC9853314 DOI: 10.1212/nxi.0000000000200080] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVES Anti-CD20 monoclonal antibody (mAb) B-cell depletion is a remarkably successful multiple sclerosis (MS) treatment. Chimeric antigen receptor (CAR)-T cells, which target antigens in a non-major histocompatibility complex (MHC)-restricted manner, can penetrate tissues more thoroughly than mAbs. However, a previous study indicated that anti-CD19 CAR-T cells can paradoxically exacerbate experimental autoimmune encephalomyelitis (EAE) disease. We tested anti-CD19 CAR-T cells in a B-cell-dependent EAE model that is responsive to anti-CD20 B-cell depletion similar to the clinical benefit of anti-CD20 mAb treatment in MS. METHODS Anti-CD19 CAR-T cells or control cells that overexpressed green fluorescent protein were transferred into C57BL/6 mice pretreated with cyclophosphamide (Cy). Mice were immunized with recombinant human (rh) myelin oligodendrocyte protein (MOG), which causes EAE in a B-cell-dependent manner. Mice were evaluated for B-cell depletion, clinical and histologic signs of EAE, and immune modulation. RESULTS Clinical scores and lymphocyte infiltration were reduced in mice treated with either anti-CD19 CAR-T cells with Cy or control cells with Cy, but not with Cy alone. B-cell depletion was observed in peripheral lymphoid tissue and in the CNS of mice treated with anti-CD19 CAR-T cells with Cy pretreatment. Th1 or Th17 populations did not differ in anti-CD19 CAR-T cell, control cell-treated animals, or Cy alone. DISCUSSION In contrast to previous data showing that anti-CD19 CAR-T cell treatment exacerbated EAE, we observed that anti-CD19 CAR-T cells ameliorated EAE. In addition, anti-CD19 CAR-T cells thoroughly depleted B cells in peripheral tissues and in the CNS. However, the clinical benefit occurred independently of antigen specificity or B-cell depletion.
Collapse
Affiliation(s)
- Sasha Gupta
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Milos Simic
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Sharon A Sagan
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Chanelle Shepherd
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Jason Duecker
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Raymond A Sobel
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Ravi Dandekar
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Gregory F Wu
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Wesley Wu
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - John E Pak
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Stephen L Hauser
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Wendell Lim
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Michael R Wilson
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Scott S Zamvil
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA.
| |
Collapse
|
30
|
Locatelli G, Marques-Ferreira F, Katsoulas A, Kalaitzaki V, Krueger M, Ingold-Heppner B, Walthert S, Sankowski R, Prazeres da Costa O, Dolga A, Huber M, Gold M, Culmsee C, Waisman A, Bechmann I, Milchevskaya V, Prinz M, Tresch A, Becher B, Buch T. IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation. Glia 2023; 71:616-632. [PMID: 36394300 DOI: 10.1002/glia.24299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
In the central nervous system (CNS), insulin-like growth factor 1 (IGF-1) regulates myelination by oligodendrocyte (ODC) precursor cells and shows anti-apoptotic properties in neuronal cells in different in vitro and in vivo systems. Previous work also suggests that IGF-1 protects ODCs from cell death and enhances remyelination in models of toxin-induced and autoimmune demyelination. However, since evidence remains controversial, the therapeutic potential of IGF-1 in demyelinating CNS conditions is unclear. To finally shed light on the function of IGF1-signaling for ODCs, we deleted insulin-like growth factor 1 receptor (IGF1R) specifically in mature ODCs of the mouse. We found that ODC survival and myelin status were unaffected by the absence of IGF1R until 15 months of age, indicating that IGF-1 signaling does not play a major role in post-mitotic ODCs during homeostasis. Notably, the absence of IGF1R did neither affect ODC survival nor myelin status upon cuprizone intoxication or induction of experimental autoimmune encephalomyelitis (EAE), models for toxic and autoimmune demyelination, respectively. Surprisingly, however, the absence of IGF1R from ODCs protected against clinical neuroinflammation in the EAE model. Together, our data indicate that IGF-1 signaling is not required for the function and survival of mature ODCs in steady-state and disease.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Institute of Experimental Immunology, University of Zurich, Zurich.,Theodor Kocher Institute, University Bern, Bern, Switzerland
| | | | - Antonis Katsoulas
- Institute of Laboratory Animal Science, University of Zurich, Zurich
| | | | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Barbara Ingold-Heppner
- Institute of Pathology, Campus Mitte, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | | | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivia Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Amalia Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany.,Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Maike Gold
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Vladislava Milchevskaya
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Zurich.,Institute of Laboratory Animal Science, University of Zurich, Zurich.,Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| |
Collapse
|
31
|
Martinez HA, Koliesnik I, Kaber G, Reid JK, Nagy N, Barlow G, Falk BA, Medina CO, Hargil A, Vlodavsky I, Li JP, Pérez-Cruz M, Tang SW, Meyer EH, Wrenshall LE, Lord JD, Garcia KC, Palmer TD, Steinman L, Nepom GT, Wight TN, Bollyky PL, Kuipers HF. FOXP3 + regulatory T cells use heparanase to access IL-2 bound to ECM in inflamed tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.529772. [PMID: 36909599 PMCID: PMC10002643 DOI: 10.1101/2023.02.26.529772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
FOXP3+ regulatory T cells (Treg) depend on exogenous IL-2 for their survival and function, but circulating levels of IL-2 are low, making it unclear how Treg access this critical resource in vivo. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their tolerogenic function in vivo. Together, these data identify novel roles for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.
Collapse
Affiliation(s)
- Hunter A Martinez
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Ievgen Koliesnik
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Gernot Kaber
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Jacqueline K Reid
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary; Calgary, Canada
| | - Nadine Nagy
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Graham Barlow
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Ben A Falk
- Matrix Biology Program, Benaroya Research Institute; Seattle, USA
| | - Carlos O Medina
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Aviv Hargil
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Israel Vlodavsky
- Tumor Integrated Cancer Center, Technion-Israel Institute of Technology; Haifa, Israel
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University; Uppsala, Finland
| | - Magdiel Pérez-Cruz
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Sai-Wen Tang
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Everett H Meyer
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Lucile E Wrenshall
- Department of Surgery, Boonshoft School of Medicine, Wright State University; Dayton, USA
| | - James D Lord
- Translational Research Program, Benaroya Research Institute; Seattle, USA
| | - K Christopher Garcia
- Department of Molecular & Cellular Physiology, Stanford University; Stanford, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine; Stanford, USA
| | - Gerald T Nepom
- Immune Tolerance Network, Benaroya Research Institute; Seattle, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute; Seattle, USA
| | - Paul L Bollyky
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
| | - Hedwich F Kuipers
- Department of Medicine, Stanford University School of Medicine; Stanford, USA
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary; Calgary, Canada
| |
Collapse
|
32
|
Buttigieg E, Scheller A, El Waly B, Kirchhoff F, Debarbieux F. Contribution of Intravital Neuroimaging to Study Animal Models of Multiple Sclerosis. Neurotherapeutics 2023; 20:22-38. [PMID: 36653665 PMCID: PMC10119369 DOI: 10.1007/s13311-022-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a complex and long-lasting neurodegenerative disease of the central nervous system (CNS), characterized by the loss of myelin within the white matter and cortical fibers, axonopathy, and inflammatory responses leading to consequent sensory-motor and cognitive deficits of patients. While complete resolution of the disease is not yet a reality, partial tissue repair has been observed in patients which offers hope for therapeutic strategies. To address the molecular and cellular events of the pathomechanisms, a variety of animal models have been developed to investigate distinct aspects of MS disease. Recent advances of multiscale intravital imaging facilitated the direct in vivo analysis of MS in the animal models with perspective of clinical transfer to patients. This review gives an overview of MS animal models, focusing on the current imaging modalities at the microscopic and macroscopic levels and emphasizing the importance of multimodal approaches to improve our understanding of the disease and minimize the use of animals.
Collapse
Affiliation(s)
- Emeline Buttigieg
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Bilal El Waly
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Franck Debarbieux
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France.
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
33
|
Verreycken J, Baeten P, Broux B. Regulatory T cell therapy for multiple sclerosis: Breaching (blood-brain) barriers. Hum Vaccin Immunother 2022; 18:2153534. [PMID: 36576251 PMCID: PMC9891682 DOI: 10.1080/21645515.2022.2153534] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder causing demyelination and neurodegeneration in the central nervous system. MS is characterized by disturbed motor performance and cognitive impairment. Current MS treatments delay disease progression and reduce relapse rates with general immunomodulation, yet curative therapies are still lacking. Regulatory T cells (Tregs) are able to suppress autoreactive immune cells, which drive MS pathology. However, Tregs are functionally impaired in people with MS. Interestingly, Tregs were recently reported to also have regenerative capacity. Therefore, experts agree that Treg cell therapy has the potential to ameliorate the disease. However, to perform their local anti-inflammatory and regenerative functions in the brain, they must first migrate across the blood-brain barrier (BBB). This review summarizes the reported results concerning the migration of Tregs across the BBB and the influence of Tregs on migration of other immune subsets. Finally, their therapeutic potential is discussed in the context of MS.
Collapse
Affiliation(s)
- Janne Verreycken
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium,CONTACT Bieke Broux Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Martelarenlaan 42, Hasselt 3500, Belgium
| |
Collapse
|
34
|
Axisa PP, Yoshida TM, Lucca LE, Kasler HG, Lincoln MR, Pham GH, Del Priore D, Carpier JM, Lucas CL, Verdin E, Sumida TS, Hafler DA. A multiple sclerosis-protective coding variant reveals an essential role for HDAC7 in regulatory T cells. Sci Transl Med 2022; 14:eabl3651. [PMID: 36516268 DOI: 10.1126/scitranslmed.abl3651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies identifying hundreds of susceptibility loci for autoimmune diseases indicate that genes active in immune cells predominantly mediate risk. However, identification and functional characterization of causal variants remain challenging. Here, we focused on the immunomodulatory role of a protective variant of histone deacetylase 7 (HDAC7). This variant (rs148755202, HDAC7.p.R166H) was identified in a study of low-frequency coding variation in multiple sclerosis (MS). Through transcriptomic analyses, we demonstrate that wild-type HDAC7 regulates genes essential for the function of Foxp3+ regulatory T cells (Tregs), an immunosuppressive subset of CD4 T cells that is generally dysfunctional in patients with MS. Moreover, Treg-specific conditional hemizygous deletion of HDAC7 increased the severity of experimental autoimmune encephalitis (EAE), a mouse model of neuroinflammation. In contrast, Tregs transduced with the protective HDAC7 R166H variant exhibited higher suppressive capacity in an in vitro functional assay, mirroring phenotypes previously observed in patient samples. In vivo modeling of the human HDAC7 R166H variant by generation of a knock-in mouse model bearing an orthologous R150H substitution demonstrated decreased EAE severity linked to transcriptomic alterations of brain-infiltrating Tregs, as assessed by single-cell RNA sequencing. Our data suggest that dysregulation of epigenetic modifiers, a distinct molecular class associated with disease risk, may influence disease onset. Last, our approach provides a template for the translation of genetic susceptibility loci to detailed functional characterization, using in vitro and in vivo modeling.
Collapse
Affiliation(s)
- Pierre-Paul Axisa
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tomomi M Yoshida
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Liliana E Lucca
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Matthew R Lincoln
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Giang H Pham
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dante Del Priore
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jean-Marie Carpier
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
35
|
Cai Y, Schroeder JA, Jing W, Gurski C, Williams CB, Wang S, Dittel BN, Shi Q. Targeting transmembrane-domain-less MOG expression to platelets prevents disease development in experimental autoimmune encephalomyelitis. Front Immunol 2022; 13:1029356. [PMID: 36389708 PMCID: PMC9647046 DOI: 10.3389/fimmu.2022.1029356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system with no cure yet. Here, we report genetic engineering of hematopoietic stem cells (HSCs) to express myelin oligodendrocyte glycoprotein (MOG), specifically in platelets, as a means of intervention to induce immune tolerance in experimental autoimmune encephalomyelitis (EAE), the mouse model of MS. The platelet-specific αIIb promoter was used to drive either a full-length or truncated MOG expression cassette. Platelet-MOG expression was introduced by lentivirus transduction of HSCs followed by transplantation. MOG protein was detected on the cell surface of platelets only in full-length MOG-transduced recipients, but MOG was detected in transmembrane-domain-less MOG1-157-transduced platelets intracellularly. We found that targeting MOG expression to platelets could prevent EAE development and attenuate disease severity, including the loss of bladder control in transduced recipients. Elimination of the transmembrane domains of MOG significantly enhanced the clinical efficacy in preventing the onset and development of the disease and induced CD4+Foxp3+ Treg cells in the EAE model. Together, our data demonstrated that targeting transmembrane domain-deleted MOG expression to platelets is an effective strategy to induce immune tolerance in EAE, which could be a promising approach for the treatment of patients with MS autoimmune disease.
Collapse
Affiliation(s)
- Yuanhua Cai
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jocelyn A. Schroeder
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
| | - Weiqing Jing
- Blood Research Institute, Versiti, Milwaukee, WI, United States
| | - Cody Gurski
- Blood Research Institute, Versiti, Milwaukee, WI, United States
| | - Calvin B. Williams
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shaoyuan Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bonnie N. Dittel
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
- Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Midwest Athletes Against Childhood Cancer (MACC) Fund Research Center, Milwaukee, WI, United States
| |
Collapse
|
36
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
37
|
Metabolic regulation and function of T helper cells in neuroinflammation. Semin Immunopathol 2022; 44:581-598. [PMID: 36068310 DOI: 10.1007/s00281-022-00959-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022]
Abstract
Neuroinflammatory conditions such as multiple sclerosis (MS) are initiated by pathogenic immune cells invading the central nervous system (CNS). Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in MS and in other neuroinflammatory autoimmune diseases including animal models that have been developed for MS. T helper cells are classically categorized into different subsets, but heterogeneity exists within these subsets. Untangling the more complex regulation of these subsets will clarify their functional roles in neuroinflammation. Here, we will discuss how differentiation, immune checkpoint pathways, transcriptional regulation and metabolic factors determine the function of CD4+ T cell subsets in CNS autoimmunity. T cells rely on metabolic reprogramming for their activation and proliferation to meet bioenergetic demands. This includes changes in glycolysis, glutamine metabolism and polyamine metabolism. Importantly, these pathways were recently also implicated in the fine tuning of T cell fate decisions during neuroinflammation. A particular focus of this review will be on the Th17/Treg balance and intra-subset functional states that can either promote or dampen autoimmune responses in the CNS and thus affect disease outcome. An increased understanding of factors that could tip CD4+ T cell subsets and populations towards an anti-inflammatory phenotype will be critical to better understand neuroinflammatory diseases and pave the way for novel treatment paradigms.
Collapse
|
38
|
Negative effects of brain regulatory T cells depletion on epilepsy. Prog Neurobiol 2022; 217:102335. [PMID: 35931355 DOI: 10.1016/j.pneurobio.2022.102335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
The infiltration of immune cells is observed in the epileptogenic zone; however, the relationship between epilepsy and regulatory T cells (Tregs) remains only partially understood. We aimed to investigate brain-infiltrating Tregs to reveal their underlying role in epilepsy. We analyzed the infiltration of Tregs in the epileptogenic zones from patients with epilepsy and a pilocarpine-induced temporal lobe epilepsy (TLE) model. Next, we evaluated the effects of brain Treg depletion on neuroinflammation, neuronal loss, oxidative stress, seizure activity and behavioral changes in the pilocarpine model. We also explored the impact of Treg expansion in the brain on seizure activity. There were a large number of Tregs in the epileptogenic zones of human and experimental epilepsy. The number of brain Tregs was negatively correlated with the frequency of seizures in patients with epilepsy. Our further findings demonstrated that brain Treg depletion promoted astrocytosis, microgliosis, inflammatory cytokine production, oxidative stress, and neuronal loss in the hippocampus after status epilepticus (SE). Moreover, brain Treg depletion increased seizure activity and contributed to behavioral impairments in experimental chronic TLE. Interestingly, intracerebroventricular injection of CCL20 amplified Tregs in brain tissue, thereby inhibiting seizure activity. Taken together, our study highlights the therapeutic potential of regulating Tregs in epileptic brain tissue.
Collapse
|
39
|
Rad MJ, Navi Z, Heidari AR, Arab FL, Tabasi N, Rastin M, Khadem Rezaiyan M, Moghaddas E, Mahmoudi M. Evaluation of the immunoregulatory effect of
Dicrocoelium dendriticum
eggs on inflammatory and anti‐inflammatory cytokines in
EAE
model. Parasite Immunol 2022; 44:e12942. [DOI: 10.1111/pim.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Mozhdeh Jafari Rad
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Zahra Navi
- Department of Parasitology and Mycology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Reza Heidari
- Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Nafiseh Tabasi
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Rastin
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Khadem Rezaiyan
- Clinical Research Development Unit Mashhad University of Medical Sciences Mashhad Iran
| | - Elham Moghaddas
- Department of Parasitology and Mycology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mahmoud Mahmoudi
- Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center, Department of Immunology and Allergy, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
40
|
Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Rehman MU, Alanazi MM, Alhamed AS, Ibrahim KE, Albekairi NA, Ahmad SF. CCR1 antagonist J-113863 corrects the imbalance of pro- and anti-inflammatory cytokines in a SJL/J mouse model of relapsing-remitting multiple sclerosis. Immunobiology 2022; 227:152245. [PMID: 35868215 DOI: 10.1016/j.imbio.2022.152245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS), an immune-mediated and neurodegenerative disorder of the central nervous system (CNS), is characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model used to study MS. To explore the impact of chemokine receptor CCR1 blockade in EAE and the underlying mechanisms, we used CCR1 antagonist J-113863 in PLP139-151-induced EAE in SJL/J mice. Following EAE induction, mice were treated with J-113863 (10 mg/kg) daily from day 14 until day 25. We investigated the effect of J-113863 on expression levels of GM-CSF, IL-6, IL-10, IL-27 in CD4+ spleen cells, using flow cytometry. We also analyzed the effect of J-113863 on GM-CSF, IL-6, IL-10, IL-27 mRNA and protein expression levels using RT-PCR and Western blot analysis in brain tissues. J-113863 treatment decreased the populations of CD4+GM-CSF+ and CD4+IL-6+ cells and increased CD4+IL-27+ and CD4+IL-10+ cells in the spleen. J-113863 had a suppressive effect on the mRNA and protein expression levels of GM-CSF, and IL-6 in the brain tissue. On the other hand, J-113863 treatment increased the mRNA and protein expression of IL-10 and IL-27 in the brain tissue. Our results highlighted J-113863's potential role in suppressing pro-inflammatory expression and up-regulating anti-inflammatory mediators, which could represent a beneficial alternative approach to MS treatment.
Collapse
Affiliation(s)
- Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
41
|
Márquez AC, Croft C, Shanina I, Horwitz MS. Influence of Type I Interferons in Gammaherpesvirus-68 and Its Influence on EAE Enhancement. Front Immunol 2022; 13:858583. [PMID: 35874728 PMCID: PMC9301468 DOI: 10.3389/fimmu.2022.858583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) has been identified as a putative trigger of multiple sclerosis (MS). Previously, we reported that mice latently infected with murine gammaherpesvirus 68 (γHV-68), the murine homolog to EBV, and induced for experimental autoimmune encephalomyelitis (EAE), developed an enhanced disease more reminiscent of MS. These prior results showed that expression of CD40 on CD11b+CD11c+ cells in latently infected mice was required to prime the strong Th1 response driving disease as well as decreasing Treg frequencies in the periphery and CNS. Subsequent work demonstrated that transfer of B cells from latently infected mice was sufficient to enhance disease. Herein, we show that B cells from infected mice do not need type I IFN signaling to drive a strong Th1 response, yet are important in driving infiltration of the CNS by CD8+ T cells. Given the importance of type I IFNs in MS, we used IFNARko mice in order to determine if type I IFN signaling was important in the enhancement of EAE in latently infected mice. We found that while type I IFNs are important for the control of γHV-68 infection and maintenance of latency, they do not have a direct effect in the development of enhanced EAE.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- BC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Carys Croft
- Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marc Steven Horwitz,
| |
Collapse
|
42
|
Kiapour N, Wu B, Wang Y, Seyedsadr M, Kapoor S, Zhang X, Elzoheiry M, Kasimoglu E, Wan Y, Markovic-Plese S. Therapeutic Effect of Anti-CD52 Monoclonal Antibody in Multiple Sclerosis and Its Animal Models Is Mediated via T Regulatory Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:49-56. [PMID: 35750335 PMCID: PMC9458467 DOI: 10.4049/jimmunol.2100176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study is to determine the mechanism of action of anti-CD52 mAb treatment in patients with relapsing-remitting multiple sclerosis (RRMS). Experimental autoimmune encephalomyelitis (EAE), an animal model of the disease, was used to address the role of T regulatory cells (Tregs) in the anti-CD52 mAb-induced suppression of the disease. In vitro studies on PBMCs from RRMS patients and matched healthy controls determined the effect of IL-7 on the expansion of CD4+CD25+CD127- Tregs and induction of their suppressive phenotype. This study using EAE animal models of MS has shown that mouse anti-CD52 mAb suppression of clinical disease was augmented by coadministration of IL-7 and partially reversed by anti-IL-7 mAb. In vitro human studies showed that IL-7 induced expansion of CD4+CD25+CD127- Tregs and increased their FOXP3, GITIR, CD46, CTLA-4, granzyme B, and perforin expression. Anti-CD52 mAb treatment of mice with relapsing-remitting EAE induced expansion of Foxp3+CD4+ Tregs and the suppression of IL-17A+CD4+ and IFN-γ+CD4+ cells in peripheral immune organs and CNS infiltrates. The effect was detected immediately after the treatment and maintained over long-term follow-up. Foxp3+CD4+ Treg-mediated suppression of IL-17A+CD4+ and IFN-γ+CD4+ cells in the spinal cord infiltrates was reversed after inducible Foxp3 depletion. Our results demonstrated that the therapeutic effect of U.S. Food and Drug Administration-approved anti-CD52 mAb is dependent on the presence of Tregs.
Collapse
Affiliation(s)
- Nazanin Kiapour
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bing Wu
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Frontier Science Center for Immunology and Metabolism of Medical Research Institute, Wuhan University, Wuhan, China
| | - Yan Wang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA; and
| | | | - Sahil Kapoor
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Xin Zhang
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
- Duke Molecular Physiology Institute, Department of Orthopedic Surgery, Duke University, Durham, NC
| | - Manal Elzoheiry
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA; and
| | - Ezgi Kasimoglu
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA; and
| | - Yisong Wan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Silva Markovic-Plese
- Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC;
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA; and
| |
Collapse
|
43
|
das Neves SP, Serre-Miranda C, Sousa JC, Costa P, Sousa N, Cerqueira JJ, Marques F. Lipocalin-2 does not influence EAE clinical score but it increases inflammation in central nervous system. J Neuroimmunol 2022; 368:577872. [DOI: 10.1016/j.jneuroim.2022.577872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
44
|
Janeiro MH, Ramírez MJ, Solas M. Dysbiosis and Alzheimer's Disease: Cause or Treatment Opportunity? Cell Mol Neurobiol 2022; 42:377-387. [PMID: 33400081 PMCID: PMC11441293 DOI: 10.1007/s10571-020-01024-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
Recent investigations have increased the interest on the connection between the microorganisms inhabiting the gut (gut microbiota) and human health. An imbalance of the intestinal bacteria representation (dysbiosis) could lead to different diseases, ranging from obesity and diabetes, to neurological disorders including Alzheimer's disease (AD). The term "gut-brain axis" refers to a crosstalk between the brain and the gut involving multiple overlapping pathways, including the autonomic, neuroendocrine, and immune systems as well as bacterial metabolites and neuromodulatory molecules. Through this pathway, microbiota can influence the onset and progression of neuropathologies such as AD. This review discusses the possible interaction between the gut microbiome and AD, focusing on the role of gut microbiota in neuroinflammation, cerebrovascular degeneration and Aβ clearance.
Collapse
Affiliation(s)
- Manuel H Janeiro
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
45
|
Jacobelli J, Buser AE, Heiden DL, Friedman RS. Autoimmunity in motion: Mechanisms of immune regulation and destruction revealed by in vivo imaging. Immunol Rev 2022; 306:181-199. [PMID: 34825390 PMCID: PMC9135487 DOI: 10.1111/imr.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022]
Abstract
Autoimmunity arises when mechanisms of immune tolerance fail. Here we discuss mechanisms of T cell activation and tolerance and the dynamics of the autoimmune response at the site of disease. Live imaging of autoimmunity provides the ability to analyze immune cell dynamics at the single-cell level within the complex intact environment where disease occurs. These analyses have revealed mechanisms of T cell activation and tolerance in the lymph nodes, mechanisms of T cell entry into sites of autoimmune disease, and mechanisms leading to pathogenesis or protection in the autoimmune lesions. The overarching conclusions point to stable versus transient T cell antigen presenting cell interactions dictating the balance between T cell activation and tolerance, and T cell restimulation as a driver of pathogenesis at the site of autoimmunity. Findings from models of multiple sclerosis and type 1 diabetes are highlighted, however, the results have implications for basic mechanisms of T cell regulation during immune responses, tumor immunity, and autoimmunity.
Collapse
Affiliation(s)
- Jordan Jacobelli
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alan E. Buser
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dustin L. Heiden
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rachel S. Friedman
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
46
|
Zorzella-Pezavento SFG, Mimura LAN, Denadai MB, de Souza WDF, Fraga-Silva TFDC, Sartori A. Is there a window of opportunity for the therapeutic use of vitamin D in multiple sclerosis? Neural Regen Res 2022; 17:1945-1954. [PMID: 35142671 PMCID: PMC8848597 DOI: 10.4103/1673-5374.335139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis is an autoimmune treatable but not curable disease. There are a multiplicity of medications for multiple sclerosis therapy, including a class entitled disease-modifying drugs that are mainly indicated to reduce the number and severity of disease relapses. Not all patients respond well to these therapies, and minor to severe adverse effects have been reported. Vitamin D, called sunshine vitamin, is being studied as a possible light at the end of the tunnel. In this review, we recapitulated the similar immunopathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis, the immunomodulatory and neuroprotective potential of vitamin D and the state-of-art concerning its supplementation to multiple sclerosis patients. Finally, based on our and other groups’ experimental findings, we analyzed the need to consider the relevance of the route and the different time-point administration aspects for a more rational indication of this vitamin to multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marina Bonifácio Denadai
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - William Danilo Fernandes de Souza
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
47
|
Chen Z, Fan R, Liang J, Xiao Z, Dang J, Zhao J, Weng R, Zhu C, Zheng SG, Jiang Y. NFIL3 deficiency alleviates EAE through regulating different immune cell subsets. J Adv Res 2021; 39:225-235. [PMID: 35777910 PMCID: PMC9263648 DOI: 10.1016/j.jare.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Zhigang Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong 519000, PR China; Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Rong Fan
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of General Intensive Care Unit of Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Jie Liang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Zexiu Xiao
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Jun Zhao
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Ruihui Weng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of Neurology, The Third People's Hospital of Shenzhen, No. 29, Bulan Road, Longgang district, Shenzhen, Guangdong 518112, PR China
| | - Cansheng Zhu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Song Guo Zheng
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
48
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
49
|
Hemmers S, Schizas M, Rudensky AY. T reg cell-intrinsic requirements for ST2 signaling in health and neuroinflammation. J Exp Med 2021; 218:211487. [PMID: 33095261 PMCID: PMC7590508 DOI: 10.1084/jem.20201234] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
ST2, the receptor for the alarmin IL-33, is expressed by a subset of regulatory T (T reg) cells residing in nonlymphoid tissues, and these cells can potently expand upon provision of exogenous IL-33. Whether the accumulation and residence of T reg cells in tissues requires their cell-intrinsic expression of and signaling by ST2, or whether indirect IL-33 signaling acting on other cells suffices, has been a matter of contention. Here, we report that ST2 expression on T reg cells is largely dispensable for their accumulation and residence in nonlymphoid organs, including the visceral adipose tissue (VAT), even though cell-intrinsic sensing of IL-33 promotes type 2 cytokine production by VAT-residing T reg cells. In addition, we uncovered a novel ST2-dependent role for T reg cells in limiting the size of IL-17A–producing γδT cells in the CNS in a mouse model of neuroinflammation, experimental autoimmune encephalomyelitis (EAE). Finally, ST2 deficiency limited to T reg cells led to disease exacerbation in EAE.
Collapse
Affiliation(s)
- Saskia Hemmers
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, New York, NY.,Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Michail Schizas
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, New York, NY.,Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, New York, NY.,Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
50
|
Shao Q, Gu J, Zhou J, Wang Q, Li X, Deng Z, Lu L. Tissue Tregs and Maintenance of Tissue Homeostasis. Front Cell Dev Biol 2021; 9:717903. [PMID: 34490267 PMCID: PMC8418123 DOI: 10.3389/fcell.2021.717903] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) specifically expressing Forkhead box P3 (Foxp3) play roles in suppressing the immune response and maintaining immune homeostasis. After maturation in the thymus, Tregs leave the thymus and migrate to lymphoid tissues or non-lymphoid tissues. Increasing evidence indicates that Tregs with unique characteristics also have significant effects on non-lymphoid peripheral tissues. Tissue-resident Tregs, also called tissue Tregs, do not recirculate in the blood or lymphatics and attain a unique phenotype distinct from common Tregs in circulation. This review first summarizes the phenotype, function, and cytokine expression of these Tregs in visceral adipose tissue, skin, muscle, and other tissues. Then, how Tregs are generated, home, and are attracted to and remain resident in the tissue are discussed. Finally, how an increased understanding of these tissue Tregs might guide clinical treatment is discussed.
Collapse
Affiliation(s)
- Qing Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiangyu Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenhua Deng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|