1
|
Abdul-Majeed Z, Al-Atrakji MQYMA. The potential effects of cranberry extract on indomethacin-induced gastric ulcer in rats. F1000Res 2025; 14:257. [PMID: 40469801 PMCID: PMC12134734 DOI: 10.12688/f1000research.158944.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2025] [Indexed: 06/29/2025] Open
Abstract
Background Indomethacin belongs to nonsteroidal anti-inflammatory drugs (NSAIDs) prescribed for treatment of rheumatoid diseases and linked to the development of gastric ulcers in many people. Cranberry is a rich source of polyphenols and flavonoids, which have powerful antioxidant and anti-inflammatory properties. Methods This study aimed to evaluate the activity of cranberry aqueous extract on indomethacin-induced gastric ulcers in albino rats. 20 adult male rats were sequentially assigned to four groups of 5 each. The control group consumes distilled water (DW) orally for 15 days. The induction group received a single oral dosage (60 mg/kg) of IND. The omeprazole group got 60 mg/kg of indomethacin as a single oral dose and then 20 mg/kg/day of omeprazole for 15 days. The cranberry group was given a single dose of indomethacin 60 mg/kg orally and subsequently 200 mg/kg/day of cranberry aqueous extract for 15 days. Rats were euthanized on day 15, and gastric tissues were removed for biochemical and histopathological evaluations. Results Cranberry extract considerably ameliorated the severity of indomethacin-induced gastric ulcerations and fixed histological deteriorations. Furthermore, indomethacin-exposed rats treated with cranberry extract exhibited dramatically lower serum levels of inflammatory biomarkers like TNF-α and IL-6, but higher levels of anti-oxidative biomarkers like SOD and GPx. The bioactive flavonoids and polyphenols content of cranberry extract could possibly account for its profound gastroprotective effects. The anti-oxidative and anti-inflammatory properties of cranberry extract could be a promising strategy for ameliorating the indomethacin-aggravated gastrotoxicity.
Collapse
Affiliation(s)
- Zaid Abdul-Majeed
- Department of Pharmacology, College of Medicine, University of Baghdad, Baghdad, Baghdad Governorate, +964, Iraq
| | | |
Collapse
|
2
|
Feng Y, Peng L, Liu X, Zheng Q, Qian M, Deng M, Peng J, Li Y, Lin L, Peng Q. Rutin-Associated Hepatoprotection: A Review of Mechanisms and Therapeutic Prospects. Basic Clin Pharmacol Toxicol 2025; 136:e70042. [PMID: 40357890 DOI: 10.1111/bcpt.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Liver disorders pose a considerable global health challenge, accompanied by rising mortality rates. Current therapeutic strategies, though effective, often face limitations due to adverse effects and therapeutic resistance, prompting the exploration of alternative treatments, particularly safer natural compounds. Rutin, a widely available bioflavonoid, has emerged as a promising candidate owing to its varied pharmacological properties. METHODS We conducted a comprehensive search on PubMed and Web of Science using the following keywords: 'rutin', 'liver diseases', 'hepatoprotection', 'clinical observations', 'mechanisms, pharmacology' and various combinations of these terms. RESULTS This review systematically examines rutin's therapeutic potential in hepatic disorders, focusing on its molecular mechanisms, particularly its effects on inflammatory pathways, oxidative stress and hepatocellular protection. CONCLUSION We analyse existing evidence supporting rutin's hepatoprotective efficacy, identify its cellular and molecular targets and evaluate its potential applications in various liver diseases. Our systematic analysis provides theoretical support for developing rutin-based therapies in hepatic disease management and identifies future research directions and clinical applications.
Collapse
Affiliation(s)
- Yanting Feng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lanchun Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohui Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qingzhu Zheng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Min Qian
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meiling Deng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jiangli Peng
- Hunan Engineering Technology Research Center Bioactivity Substance Discovery, Hunan University of Chinese Medicine, Changsha, China
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qiuxian Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, the School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Fahim JR, Samy MN, Ibrahem ES, Fawzy MA, Saber EA, Kamel MS, Sugimoto S, Matsunami K, Attia EZ. Hepatoprotective potential of Ceiba chodatii Hassl. Against carbon tetrachloride-induced chronic liver damage supported with phytochemical investigation. Fitoterapia 2025; 182:106466. [PMID: 40058657 DOI: 10.1016/j.fitote.2025.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Hepatic fibrosis is a major health concern that can develop into other life-threatening pathologies, with no fully effective treatments are available to date. Ceiba is a genus of multipurpose trees with diverse therapeutic applications, including liver ailments. Prior research has also unveiled the protecting role of Ceiba plants in chemical liver injuries via a number of in vitro and in vivo tests. Due to the crucial need for alternative therapies to prevent liver damage and stop its progress, the present work evaluates the protective effects of the total extract of Ceiba chodatii Hassl. flowers and its derived fractions (I-IV) against CCl4-induced chronic liver damage for the first time. The obtained results indicated the ability of C. chodatii flowers, particularly their chloroform- and ethyl acetate-soluble fractions (II and III), to alleviate liver damage in CCl4-intoxicated rats via normalizing high liver injury hallmarks (e.g., ALT, AST, albumin, and total bilirubin), preventing the build-up of malondialdehyde, enhancing the antioxidant capacity of hepatocytes, mitigating aberrant histopathological changes, and reducing extracellular matrix accumulation. Further mechanistic studies showed the aptitude of C. chodatii flowers to attenuate inflammatory, fibrotic, and apoptotic responses via counteracting the production of inflammatory cytokines (e.g., IL-6 and TNF-α), reducing the levels of cleaved caspase-3, and inhibiting JAK2/STAT3 and TGF-β/Smad signaling pathways. Interestingly, the liver-protecting actions of fractions II and III were also comparable to those of silymarin (50 mg/kg). Moreover, phytochemical investigation of C. chodatii flowers led to the isolation and identification of a group of flavonoid glycosides (1-10), with good antioxidant and liver supporting properties, suggesting their potential contribution to the anti-fibrotic properties of C. chodatii. These data highlight the multi-target hepatoprotective effects of C. chodatii and its potential as an alternative source to develop natural therapeutic agents against liver fibrosis.
Collapse
Affiliation(s)
- John Refaat Fahim
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Minia National University, 61111 New Minia, Egypt.
| | - Mamdouh Nabil Samy
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Minia National University, 61111 New Minia, Egypt
| | - Engy Saadalah Ibrahem
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt; Department of Biochemistry, Faculty of Pharmacy, Minia National University, 61111 New Minia, Egypt
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, 61519 Minia, Egypt; Department of Medical Science, Histology and Cell Biology, Deraya University, 61111 New Minia, Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Sachiko Sugimoto
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8553 Hiroshima, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8553 Hiroshima, Japan
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Minia National University, 61111 New Minia, Egypt
| |
Collapse
|
4
|
Sammari H, Abidi A, Jedidi S, Dhawefi N, Sebai H. Antioxidant activity and protective effect of phyto-active compounds of Crataegus azarolus berries decoction extract against acetic acid-induced hepatorenal injuries in male rats. Physiol Rep 2025; 13:e70240. [PMID: 39924696 PMCID: PMC11807846 DOI: 10.14814/phy2.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
The present study evaluated the hepato-nephronal protective properties of Crataegus azarolus berries decoction extract (CAB-DE) on acetic acid (AA)-induced oxidative stress and metabolic disorders in rats. Animals (60 rats) were randomly divided into six groups (n = 10), with groups 1 and 2 being controls and groups 3, 4, and 5 given increasing doses of CAB-DE, group 6 were given gallic acid until ulcerative colitis was induced and then intoxicated by an acute intra-rectal infusion of AA. Our results showed that CAB-DE-oral administration had no signs of toxicity or abnormal behavior in rats, with a LD50 higher than 3500 mg/kg bw. In addition, CAB-DE protected against AA-induced nephropathy and hepatic damage in rats, as determined by an increase in organ weights and an alteration in the renal and liver parameters and functions. Moreover, extract co-administration reduced AA-induced liver and kidney lipoperoxidation, maintained non-enzymatic contents such as sulfhydryl groups (-SH) and reduced glutathione (GSH), and restored antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Finally, CAB-DE might have a possible protective effect against AA-oxidative stress and dysfunction in the rat liver and kidney, suggesting that Crataegus azarolus berries may be beneficial for people suffering from liver issues and nephropathy.
Collapse
Affiliation(s)
- Houcem Sammari
- Laboratory of Functional Physiology and Valorization of Bio‐Resources, Department of Animal PhysiologyUniversity of Jendouba, Higher Institute of Biotechnology of BejaBejaTunisia
| | - Anouar Abidi
- Laboratory of Functional Physiology and Valorization of Bio‐Resources, Department of Animal PhysiologyUniversity of Jendouba, Higher Institute of Biotechnology of BejaBejaTunisia
| | - Saber Jedidi
- Laboratory of Functional Physiology and Valorization of Bio‐Resources, Department of Animal PhysiologyUniversity of Jendouba, Higher Institute of Biotechnology of BejaBejaTunisia
| | - Nourhen Dhawefi
- Laboratory of Functional Physiology and Valorization of Bio‐Resources, Department of Animal PhysiologyUniversity of Jendouba, Higher Institute of Biotechnology of BejaBejaTunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio‐Resources, Department of Animal PhysiologyUniversity of Jendouba, Higher Institute of Biotechnology of BejaBejaTunisia
| |
Collapse
|
5
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
6
|
Soares-Cardoso C, Leal S, Sá SI, Dantas-Barros R, Dinis-Oliveira RJ, Faria J, Barbosa J. Unraveling the Hippocampal Molecular and Cellular Alterations behind Tramadol and Tapentadol Neurobehavioral Toxicity. Pharmaceuticals (Basel) 2024; 17:796. [PMID: 38931463 PMCID: PMC11206790 DOI: 10.3390/ph17060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Tramadol and tapentadol are chemically related opioids prescribed for the analgesia of moderate to severe pain. Although safer than classical opioids, they are associated with neurotoxicity and behavioral dysfunction, which arise as a concern, considering their central action and growing misuse and abuse. The hippocampal formation is known to participate in memory and learning processes and has been documented to contribute to opioid dependence. Accordingly, the present study assessed molecular and cellular alterations in the hippocampal formation of Wistar rats intraperitoneally administered with 50 mg/kg tramadol or tapentadol for eight alternate days. Alterations were found in serum hydrogen peroxide, cysteine, homocysteine, and dopamine concentrations upon exposure to one or both opioids, as well as in hippocampal 8-hydroxydeoxyguanosine and gene expression levels of a panel of neurotoxicity, neuroinflammation, and neuromodulation biomarkers, assessed through quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of hippocampal formation sections showed increased glial fibrillary acidic protein (GFAP) and decreased cluster of differentiation 11b (CD11b) protein expression, suggesting opioid-induced astrogliosis and microgliosis. Collectively, the results emphasize the hippocampal neuromodulator effects of tramadol and tapentadol, with potential behavioral implications, underlining the need to prescribe and use both opioids cautiously.
Collapse
Affiliation(s)
- Cristiana Soares-Cardoso
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Sandra Leal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Susana I. Sá
- RISE-HEALTH, Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
| | - Rita Dantas-Barros
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN-Forensic Science Experts, Av. Dr. Mário Moutinho 33-A, 1400-136 Lisboa, Portugal
| | - Juliana Faria
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Joana Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
7
|
Pathak A, Singh SP, Tiwari A. Elucidating hepatoprotective potential of Cichorium intybus through multimodal assessment and molecular docking analysis with hepatic protective enzymes. Food Chem Toxicol 2024; 187:114595. [PMID: 38554841 DOI: 10.1016/j.fct.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This study employed a comprehensive approach to validate the hepatoprotective potential of phytoconstituents from Cichorium intybus leaves. In vitro, in vivo and in silico techniques were used to confirm the protective effects on liver enzymes. In vitro antioxidant assessment revealed the highest potential in the hydroethanolic leaf extract compared to aqueous and methanolic extracts. The study further investigated the ameliorative efficacy of the hydro-ethanolic extract (HECL) in male Wistar rats exposed to lead (50 mg/kg b wt.) and nickel (4.0 mg/kg b wt.) individually and in combination for 90 days. HECL at 250 mg/kg b wt. mitigated hepatic injury, oxidative stress, DNA fragmentation, ultrastructural and histopathological alterations induced by lead and nickel. Molecular docking explored the interaction of 28 phytoconstituents from C. intybus with hepatoprotective protein targets. Cyanidin and rutin exhibited the highest affinity for liver corrective enzymes among the screened phytoconstituents. These findings underscore the liver corrective potential of C. intybus leaf phytoconstituents, shedding light on their molecular interactions with hepatoprotective targets. This research contributes valuable insights into the therapeutic applications of C. intybus in liver protection.
Collapse
Affiliation(s)
- Abhishek Pathak
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, US Nagar, Uttarakhand, India.
| | - Satya Pal Singh
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, US Nagar, Uttarakhand, India
| | - Apoorv Tiwari
- College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, US Nagar, Uttarakhand, India
| |
Collapse
|
8
|
Anwar MM, Laila IMI. The ameliorating effect of Rutin on hepatotoxicity and inflammation induced by the daily administration of vortioxetine in rats. BMC Complement Med Ther 2024; 24:153. [PMID: 38581023 PMCID: PMC10996088 DOI: 10.1186/s12906-024-04447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Vortioxetine (VORTX) is a potent and selective type of selective serotonin reuptake inhibitor (SSRI) that is mainly prescribed for treating major depression along with mood disorders as the first drug of choice. Limited previous findings have indicated evidence of liver injury and hepatotoxicity associated with daily VORTX treatment. Rutin (RUT), which is known for its antioxidant properties, has demonstrated several beneficial health actions, including hepatoprotection. Therefore the current study aimed to evaluate and assess the ameliorative effect of RUT against the hepatotoxic actions of daily low and high-dose VORTX administration. METHODS The experimental design included six groups of rats, each divided equally. Control, rats exposed to RUT (25 mg/kg), rats exposed to VORTX (28 mg/kg), rats exposed to VORTX (28 mg/kg) + RUT (25 mg/kg), rats exposed to VORTX (80 mg/kg), and rats exposed to VORTX (80 mg/kg) + RUT (25 mg/kg). After 30 days from the daily exposure period, assessments were conducted for serum liver enzyme activities, hepatotoxicity biomarkers, liver antioxidant endogenous enzymes, DNA fragmentation, and histopathological studies of liver tissue. RESULTS Interestingly, the risk of liver damage and hepatotoxicity related to VORTX was attenuated by the daily co-administration of RUT. Significant improvements were observed among all detected liver functions, oxidative stress, and inflammatory biomarkers including aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), albumin, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione S-transferase (GST), total protein, acid phosphatase, N-Acetyl-/β-glucosaminidase (β-NAG), β-Galactosidase (β-Gal), alpha-fetoprotein (AFP), caspase 3, and cytochrom-C along with histopathological studies, compared to the control and sole RUT group. CONCLUSION Thus, RUT can be considered a potential and effective complementary therapy in preventing hepatotoxicity and liver injury induced by the daily or prolonged administration of VORTX.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt.
| | - Ibrahim M Ibrahim Laila
- Department of Biotechnology &Molecular drug evaluation, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
9
|
Atteia HH. MicroRNAs in Anticancer Drugs Hepatotoxicity: From Pathogenic Mechanism and Early Diagnosis to Therapeutic Targeting by Natural Products. Curr Pharm Biotechnol 2024; 25:1791-1806. [PMID: 38178678 DOI: 10.2174/0113892010282155231222071903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Patients receiving cancer therapies experience severe adverse effects, including hepatotoxicity, even at therapeutic doses. Consequently, monitoring patients on cancer therapy for hepatic functioning is necessary to avoid permanent liver damage. Several pathways of anticancer drug-induced hepatotoxicity involve microRNAs (miRNAs) via targeting mRNAs. These short and non-coding RNAs undergo rapid modulation in non-targeted organs due to cancer therapy insults. Recently, there has been an interest for miRNAs as useful and promising biomarkers for monitoring toxicity since they have conserved sequences across species and are cellular-specific, stable, released during injury, and simple to analyze. Herein, we tried to review the literature handling miRNAs as mediators and biomarkers of anticancer drug-induced hepatotoxicity. Natural products and phytochemicals are suggested as safe and effective candidates in treating cancer. There is also an attempt to combine anticancer drugs with natural compounds to enhance their efficiencies and reduce systemic toxicities. We also discussed natural products protecting against chemotherapy hepatotoxicity via modulating miRNAs, given that miRNAs have pathogenic and diagnostic roles in chemotherapy-induced hepatotoxicity and that many natural products can potentially regulate their expression. Future studies should integrate these findings into clinical trials by formulating suitable therapeutic dosages of natural products to target miRNAs involved in anticancer drug hepatotoxicity.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| |
Collapse
|
10
|
Al-Huqail AA, Bekhit AA, Ullah H, Ayaz M, Mostafa NM. Antimalarial and Antileishmanial Flavonoids from Calendula officinalis Flowers. AGRONOMY 2023; 13:2765. [DOI: 10.3390/agronomy13112765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Calendula officinalis L. (Asteraceae), commonly known as English or pot marigold, is an herbaceous plant with edible flowers. In this study, UPLC-ESI-MS/MS analysis was used for tentative identification of compounds in marigold flower methanol extract (MFE). In addition, RP-HPLC-DAD analysis was used to quantify the flavonoids hesperidin and rutin in MFE. The antileishmanial potentials of the crude extract and compounds were evaluated against Leishmania major promastigotes and amastigotes. Further, in vivo 4-day antimalarial testing of the extract and compounds was carried out at doses of 25 mg kg−1 per day using mice infected with ANKA strain of Plasmodium berghei, following standard procedure. Molecular docking studies were carried out to assess the binding mode of flavonoids against the vital targets of L. major, including pteridine reductase 1 and farnesyl diphosphate synthase enzymes. The in silico antimalarial potentials of flavonoids were evaluated against wild-type Plasmodium falciparum dihydrofolate reductase-thymidylate synthase and phosphoethanolamine methyltransferase enzymes. Twenty compounds were tentatively identified by UPLC-ESI-MS/MS analysis of MFE, of which, seven flavonoids, six saponins, three phenolic acids, three fatty acids, and a triterpene glycoside were identified. MFE phytochemical analysis revealed that hesperidin content was 36.17 mg g−1 extract, that is, 9.9-fold their content of rutin (3.65 mg g−1 extract). The method was validated to ensure reproducibility of the results. The tested samples exhibited antileishmanial potentials against L. major promastigotes, with IC50 values of 98.62, 118.86, and 104.74 ng µL−1 for hesperidin, rutin, and MFE, respectively. Likewise, hesperidin showed inhibitory potentials against L. major amastigote with an IC50 value of 108.44 ± 11.2 µM, as compared to miltefosine. The mean survival time, parasitemia, and suppression percentages showed similar results for the three samples against ANKA strain of P. berghei. The docking studies showed good binding affinities of rutin and hesperidin with numerous H-bonding and van der Waals interactions. Marigold flowers are nutraceuticals, presenting important sources of bioactive flavonoids with potential against neglected tropical diseases.
Collapse
Affiliation(s)
- Arwa A. Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq 32038, Bahrain
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
11
|
Shi L, Tianqi F, Zhang C, Deng X, Zhou Y, Wang J, Wang L. High-protein compound yogurt with quinoa improved clinical features and metabolism of high-fat diet-induced nonalcoholic fatty liver disease in mice. J Dairy Sci 2023; 106:5309-5327. [PMID: 37474360 DOI: 10.3168/jds.2022-23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 07/22/2023]
Abstract
Gut microbiota dysbiosis plays a crucial role in the occurrence and progression of nonalcoholic fatty liver disease (NAFLD), which may be influenced by nutritional supplementation. Quinoa, a type of pseudocereal, has gained prominence due to its high nutritional value and diverse applications. This study aimed to determine whether yogurt containing quinoa can ameliorate NAFLD and alleviate metabolic disorders by protecting against the divergence of gut microbiota. Our findings suggested that quinoa yogurt could significantly reduce the body weight gain and fat tissue weight of high-fat diet (HFD)-fed obese mice. In addition, quinoa yogurt significantly reduced liver steatosis and enhanced glucose homeostasis and insulin sensitivity. Additional research indicates that quinoa yogurt can reduce the levels of proinflammatory cytokines (i.e., tumor necrosis factor α, IL-1β, and IL-6) and inhibit endotoxemia and systemic inflammation. The characteristics of the gut microbiota were then determined by analyzing 16S rRNA. In addition, we discovered that the gut microbiota was disturbed by HFD consumption. Particularly, intestinal probiotics and beneficial intestinal secretions were increased, leading to the expression of glucagon-like peptide-1 in the colon, contributing to NAFLD. Furthermore, endotoxemia and systemic inflammation in HFD-fed mice were restored to the level of control mice when they were fed yogurt and quinoa. Therefore, yogurt containing quinoa can effectively alleviate NAFLD symptoms and may exert its effects via microbiome-gut-liver axis mechanisms. According to some research, the role of the enteric-liver axis may also influence metabolic disorders to reduce the development of NAFLD.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Fang Tianqi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Can Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yonglin Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Ghobrial DK, El-Nikhely N, Sheta E, Ragab HM, Rostom SAF, Saeed H, Wahid A. The Role of Pyrazolo[3,4-d]pyrimidine-Based Kinase Inhibitors in The Attenuation of CCl4-Induced Liver Fibrosis in Rats. Antioxidants (Basel) 2023; 12:antiox12030637. [PMID: 36978885 PMCID: PMC10045301 DOI: 10.3390/antiox12030637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Liver Fibrosis can be life-threatening if left untreated as it may lead to serious, incurable complications. The common therapeutic approach is to reverse the fibrosis while the intervention is still applicable. Celecoxib was shown to exhibit some antifibrotic properties in the induced fibrotic liver in rats. The present study aimed to investigate the possible antifibrotic properties in CCl4-induced liver fibrosis in male Sprague–Dawley rats compared to celecoxib of three novel methoxylated pyrazolo[3,4-d]pyrimidines. The three newly synthesized compounds were proved to be safe candidates. They showed a therapeutic effect against severe CCl4-induced fibrosis but at different degrees. The three compounds were able to partially reverse hepatic architectural distortion and reduce the fibrotic severity by showing antioxidant properties reducing MDA with increasing GSH and SOD levels, remodeling the extracellular matrix proteins and liver enzymes balance, and reducing the level of proinflammatory (TNF-α and IL-6) and profibrogenic (TGF-β) cytokines. The results revealed that the dimethoxy-analog exhibited the greatest activity in all the previously mentioned parameters compared to celecoxib and the other two analogs which could be attributed to the different methoxylation patterns of the derivatives. Collectively, the dimethoxy-derivative could be considered a safe promising antifibrotic candidate.
Collapse
Affiliation(s)
- Diana K. Ghobrial
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
- Correspondence: (D.K.G.); (A.W.)
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21321, Egypt
| | - Hanan M. Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Sherif A. F. Rostom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
- Correspondence: (D.K.G.); (A.W.)
| |
Collapse
|
13
|
Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization. FERMENTATION 2022. [DOI: 10.3390/fermentation8090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Taiwan djulis (Chenopodium formosanum Koidz.) is a plant native to Taiwan and is a grain rich in nutrients, vitamins, and minerals with antioxidant properties. This paper aimed to use appropriate processing technology and incorporate probiotics, thus combining Taiwan’s high-quality milk sources to develop Taiwan djulis fermented dairy products. Later, FL83B cells have used to evaluate the glucose utilization ability after the administration of djulis. We first screened Lactiplantibacillus plantarum and combined it with the traditional yogurt strains Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for cultivation. Further, the fermentation process was optimized where 7.5% djulis and an inoculum of 107 colony forming unit/mL were fermented at 40 °C for 18 h. Compared to fermented milk without djulis, the analysis of various nutrients and active ingredients showed that free radical scavenging abilities of DPPH and ABTS reached 2.3 and 2.0 times (752.35 ± 29.29 µg and 771.52 ± 3.79 µg TE/g, respectively). The free phenol content increased 2.5 times (169.90 ± 14.59 mg gallic acid/g); the total flavonoid content enhanced 4.8 times (3.05 ± 0.03 mg quercetin/g), and the gamma-aminobutyric acid content was 3.07 ± 0.94 mg/g. In a co-culture of mouse liver cells with fermented products, 100 ppm ethanol extract of fermented products effectively improved glucose utilization with increased glucose transporter expression. This functional fermented dairy product can be developed into the high value added local agricultural products and enhance multiple applications including medical and therapeutic fields.
Collapse
|
14
|
Du Z, Huang D, Shi P, Dong Z, Wang X, Li M, Chen W, Zhang F, Sun L. Integrated Chemical Interpretation and Network Pharmacology Analysis to Reveal the Anti-Liver Fibrosis Effect of Penthorum chinense. Front Pharmacol 2022; 13:788388. [PMID: 35721129 PMCID: PMC9201443 DOI: 10.3389/fphar.2022.788388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis is a disease with complex pathological mechanisms. Penthorum chinense Pursh (P. chinense) is a traditional Chinese medicine (TCM) for liver injury treatment. However, the pharmacological mechanisms of P. chinense on liver fibrosis have not been investigated and clarified clearly. This study was designed to investigate the chemicals in P. chinense and explore its effect on liver fibrosis. First, we developed a highly efficient method, called DDA-assisted DIA, which can both broaden mass spectrometry (MS) coverage and MS2 quality. In DDA-assisted DIA, data-dependent acquisition (DDA) and data-independent acquisition (DIA) were merged to construct a molecular network, in which 1,094 mass features were retained in Penthorum chinense Pursh (P. chinense). Out of these, 169 compounds were identified based on both MS1 and MS2 analysis. After that, based on a network pharmacology study, 94 bioactive compounds and 440 targets of P. chinense associated with liver fibrosis were obtained, forming a tight compound–target network. Meanwhile, the network pharmacology experimental results showed that multiple pathways interacted with the HIF-1 pathway, which was first identified involved in P. chinense. It could be observed that some proteins, such as TNF-α, Timp1, and HO-1, were involved in the HIF-1 pathway. Furthermore, the pharmacological effects of P. chinense on these proteins were verified by CCl4-induced rat liver fibrosis, and P. chinense was found to improve liver functions through regulating TNF-α, Timp1, and HO-1 expressions. In summary, DDA-assisted DIA could provide more detailed compound information, which will help us to annotate the ingredients of TCM, and combination with computerized network pharmacology provided a theoretical basis for revealing the mechanism of P. chinense.
Collapse
Affiliation(s)
- Zenan Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Doudou Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengjie Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China.,Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Xiujuan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Mengshuang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| | - Wansheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lianna Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, China
| |
Collapse
|
15
|
Jiang YC, Han X, Dou JY, Yuan MH, Zhou MJ, Cui ZY, Lian LH, Nan JX, Zhang X, Wu YL. Protective role of Siberian onions against toxin-induced liver dysfunction: an insight into health-promoting effects. Food Funct 2022; 13:4678-4690. [PMID: 35377371 DOI: 10.1039/d1fo04404d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siberian onions (SOs) are delicious wild vegetables. Their taste is most unique, not only like scallions but also like leeks or garlic. They also have a traditional medicinal value for anti-inflammation, anti-oxidation, and anti-pyretic analgesia, particularly facilitating hepatoprotective effects. The current study investigates the potential mechanism of SOs against toxin-induced liver dysfunction. BALB/c mice were administrated with SO or silymarin by oral gavage for one week, followed by injecting carbon tetrachloride (CCl4) to induce hepatic fibrosis. The effect of SO against hepatic fibrosis was evaluated by examining the liver tissue for serum transaminase, oxidative stress, extracellular matrix, histological alterations, cytokine levels, and apoptosis. In vitro, HSC-T6 cells were cultured with the supernatant from Raw 264.7 cells stimulated with lipopolysaccharides, followed by SO extracts or Niclosamide (Signal Transducer and Activator of Transcription 3 (STAT3) inhibitor) at indicated time periods and doses. SO decreased serum transaminase levels and oxidative stress, and regulated the balance of ECM in CCl4-induced mice, including α-SMA, collagen-I and TIMP-1. SO reduced the release of inflammatory factors and regulated apoptosis-associated proteins, which is related to the inhibition of STAT3 phosphorylation. Moreover, SO reduced the positive expressions of α-SMA and NLRP3 by inhibiting STAT3 phosphorylation in activated HSCs. SO could show health-promoting effects for liver dysfunction by alleviating hepatic fibrogenesis, apoptosis and inflammation in the development of hepatic fibrosis potential depending on the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Xin Han
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Chinese Medicine Processing Centre, College of pharmacy, Zhejiang Chinese Medical University, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ming-Hui Yuan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Clinical Research Center, Affiliated Hospital of Yanbian University, Yanji, Jilin Province 133002, China
| | - Xian Zhang
- Agricultural College, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
16
|
Ghosh A, Sarmah P, Patel H, Mukerjee N, Mishra R, Alkahtani S, Varma RS, Baishya D. Nonlinear molecular dynamics of quercetin in Gynocardia odorata and Diospyros malabarica fruits: Its mechanistic role in hepatoprotection. PLoS One 2022; 17:e0263917. [PMID: 35313329 PMCID: PMC8936497 DOI: 10.1371/journal.pone.0263917] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
Liver performs number of critical physiological functions in human system. Intoxication of liver leads to accumulation of free radicals that eventually cause damage, fibrosis, cirrhosis and cancer. Carbon tetrachloride (CCl4) belongs to hepatotoxin is converted to a highly reactive free radical by cytochrome P450 enzymes that causes liver damage. Plant extracts derived quercetin has substantial role in hepatoprotection. This study highlights the possible mechanism by which quercetin plays significant role in hepatoprotection. HPLC analysis revealed the abundance of quercetin in the fruit extracts of Gynocardia odorata and Diospyros malabarica, were isolated, purified and subjected to liver function analysis on Wistar rats. Post quercetin treatment improved liver function parameters in the hepatotoxic Wistar rats by augmenting bilirubin content, SGOT and SGPT activity. Gene expression profile of quercetin treated rats revealed down regulation of HGF, TIMP1 and MMP2 expressed during CCl4 induction. In silico molecular mechanism prediction suggested that quercetin has a high affinity for cell signaling pathway proteins BCL-2, JAK2 and Cytochrome P450 Cyp2E1, which all play a significant role in CCl4 induced hepatotoxicity. In silico molecular docking and molecular dynamics simulation have shown that quercetin has a plausible affinity for major signaling proteins in liver. MMGBSA studies have revealed high binding of quercetin (ΔG) -41.48±11.02, -43.53±6.55 and -39.89±5.78 kcal/mol, with BCL-2, JAK2 and Cyp2E1, respectively which led to better stability of the quercetin bound protein complexes. Therefore, quercetin can act as potent inhibitor against CCl4 induced hepatic injury by regulating BCL-2, JAK2 and Cyp2E1.
Collapse
Affiliation(s)
- Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Pranjal Sarmah
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, India
| | - Harun Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharastra, India
| | - Nobendu Mukerjee
- Department of Microbiology; Ramakrishna Mission Vivekananda Centenary College, Khardaha, West Bengal, Kolkata, India
| | - Rajbardhan Mishra
- Laboratory of Immunotherapy, Institute of Microbiology v.v.i., Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Debabrat Baishya
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
17
|
Red Quinoa Bran Extract Prevented Alcoholic Fatty Liver Disease via Increasing Antioxidative System and Repressing Fatty Acid Synthesis Factors in Mice Fed Alcohol Liquid Diet. Molecules 2021; 26:molecules26226973. [PMID: 34834064 PMCID: PMC8624810 DOI: 10.3390/molecules26226973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Alcohol is metabolized in liver. Chronic alcohol abuse results in alcohol-induced fatty liver and liver injury. Red quinoa (Chenopodium formosanum) was a traditional staple food for Taiwanese aborigines. Red quinoa bran (RQB) included strong anti-oxidative and anti-inflammatory polyphenolic compounds, but it was usually regarded as the agricultural waste. Therefore, this study is to investigate the effect of water and ethanol extraction products of RQB on the prevention of liquid alcoholic diet-induced acute liver injury in mice. The mice were given whole grain powder of red quinoa (RQ-P), RQB ethanol extract (RQB-E), RQB water extract (RQB-W), and rutin orally for 6 weeks, respectively. The results indicated that RQB-E, RQB-W, and rutin decreased alcoholic diet-induced activities of aspartate aminotransferase and alanine aminotransferase, and the levels of serum triglyceride, total cholesterol, and hepatic triglyceride. Hematoxylin and eosin staining of liver tissues showed that RQB-E and RQB-W reduced lipid droplet accumulation and liver injury. However, ethanol extraction process can gain high rutin and antioxidative agents contents from red quinoa, that showed strong effects in preventing alcoholic fatty liver disease and liver injury via increasing superoxide dismutase/catalase antioxidative system and repressing the expressions of fatty acid synthesis enzyme acetyl-CoA carboxylase.
Collapse
|
18
|
Küçükler S, Kandemir FM, Özdemir S, Çomaklı S, Caglayan C. Protective effects of rutin against deltamethrin-induced hepatotoxicity and nephrotoxicity in rats via regulation of oxidative stress, inflammation, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62975-62990. [PMID: 34218375 DOI: 10.1007/s11356-021-15190-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Deltamethrin is a type-II pyrethroid synthetic insecticide that is extensively used for controlling mosquitoes, flies, pests, and insects worldwide. This study was carried out to evaluate the likelihood protective effects of rutin, a natural antioxidant, against deltamethrin-induced liver and kidney toxicities in rats. Hepatotoxicity and nephrotoxicity were evaluated after the rats were treated orally with deltamethrin (1.28 mg/kg b.w.) alone or with rutin (25 and 50 mg/kg b.w.) for 30 days. Deltamethrin administration caused an increase in lipid peroxidation level and a decrease in activities of SOD, CAT, GPx, and GSH levels in the both tissues. Deltamethrin also increased serum ALT, AST, ALP, urea, and creatinine levels, while reduced nephrine levels in rats. In addition, deltamethrin increased the activation of inflammatory and apoptotic pathways by decreasing Bcl-2 and increasing TNF-α, NF-κB, IL-1β, p38α MAPK, COX-2, iNOS, beclin-1, Bax, and caspase-3 protein levels and/or activities. Furthermore, deltamethrin increased mRNA expression levels of PARP-1, VEGF, and immunohistochemical expressions of c-fos in the tissues. Rutin treatment significantly improved all examined parameters and restored the liver and kidney histopathological and immunohistochemical alterations. These findings demonstrate that rutin could be used to ameliorate hepatotoxicity and nephrotoxicity associated with oxidative stress, inflammation, and apoptosis in deltamethrin-induced rats.
Collapse
Affiliation(s)
- Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingöl University, 12000, Bingöl, Turkey.
| |
Collapse
|
19
|
Figueredo KC, Guex CG, da Silva ARH, Lhamas CL, Engelmann AM, Maciel RM, Danesi CC, Duarte T, Duarte MMMF, Lopes GHH, Bauermann LDF. In silico and in vivo protective effect of Morus nigra leaves on oxidative damage induced by iron overload. Drug Chem Toxicol 2021; 45:2814-2824. [PMID: 34663156 DOI: 10.1080/01480545.2021.1991946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Morus nigra L. is a plant popularly known as 'amoreira preta', very used in folk medicine. Iron overload (hemochromatosis) is a clinical condition that causes damage to various tissues due to oxidative stress. Therapy to control iron overload is still unsatisfactory. The protective effect on oxidative stress induced by iron overload was verified. Phytochemical characterization was evaluated by UHPLC-MS/MS. The in silico toxicity predictions of the main phytochemicals were performed via computer simulation. To induce iron overload, the animals received iron dextran (50 mg/kg/day). The test groups received doses of 500 and 1000 mg/kg of M. nigra extract for six weeks. Body weight, organosomatic index, serum iron, hepatic markers, cytokines, interfering factors in iron metabolism, enzymatic and histopathological evaluations were analyzed. Vanillic acid, caffeic acid, 6-hydroxycoumarin, p-coumaric acid, ferulic acid, rutin, quercitrin, resveratrol, apigenin and kaempferol were identified in the extract. In addition, in silico toxic predictions showed that the main compounds presented a low probability of toxic risk. The extract of M. nigra showed to control the mediators of inflammation and to reduce iron overload in several tissues. Our findings illustrate a novel therapeutic action of M. nigra leaves on hemochromatosis caused by iron overload.
Collapse
Affiliation(s)
- Kássia Caroline Figueredo
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Camille Gaube Guex
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Cibele Lima Lhamas
- Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | - Thiago Duarte
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | |
Collapse
|
20
|
Dehpour AR, Yousefi-Manesh H, Sheibani M, Sadeghi MA, Hemmati S, Noori T, Shirooie S. Evaluation of Anti-inflammatory and Antioxidant Effects of Sumatriptan on Carbon Tetrachloride-induced Hepatotoxicity in Rats. Drug Res (Stuttg) 2021; 72:41-46. [PMID: 34500479 DOI: 10.1055/a-1589-5395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The liver detoxifies and metabolizes many drugs and xenobiotics which may cause hepatotoxicity due to some toxic agents. Carbon tetrachloride (CCl4) is metabolized in cytochrome P450 and its reactive radical metabolites cause lipid peroxidation, cellular injury, and apoptosis. Sumatriptan (SUM), 5-HT1B/1D receptor agonist, had anti-inflammatory and anti-oxidant effects. In this research the effect of SUM pre-treatment against CCl4-induced hepatotoxicity was examined. Adult rats received SUM (0.1, 0.3 and 1 mg/kg; i.p.) for 3 consecutive days before CCl4 (2 ml/kg; i.p. on the 3rd day). The aminotransferases serum levels, tissue levels of anti-oxidant and pro-inflammatory markers and histopathological examination were evaluated. SUM (0.3 mg/kg) prevented significantly the elevation of aminotransferases versus the control group (CCl4 group) (P<0.0001) and also, reversed meaningfully the changes of the MPO, MDA, SOD and CAT, IL-1β and TNF-α levels. Additionally, CCl4-intoxication resulted to the disruption of lobular and cellular structures and inflammation in histopathological evaluation which is prevented by SUM (0.3 mg/kg). These data revealed that SUM (0.3 mg/kg), but no at doses 0.1 and 1 mg/kg, decreases the hepatotoxicity of induced by CCl4 in rats.
Collapse
Affiliation(s)
- Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Sadeghi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Hemmati
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Tvrdá E, Benko F, Slanina T, du Plessis SS. The Role of Selected Natural Biomolecules in Sperm Production and Functionality. Molecules 2021; 26:5196. [PMID: 34500629 PMCID: PMC8434568 DOI: 10.3390/molecules26175196] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence from in vivo as well as in vitro studies indicates that natural biomolecules may play important roles in the prevention or management of a wide array of chronic diseases. Furthermore, the use of natural compounds in the treatment of male sub- or infertility has been proposed as a potential alternative to conventional therapeutic options. As such, we aimed to evaluate the effects of selected natural biomolecules on the sperm production, structural integrity, and functional activity. At the same time, we reviewed their possible beneficial or adverse effects on male reproductive health. Using relevant keywords, a literature search was performed to collect currently available information regarding molecular mechanisms by which selected natural biomolecules exhibit their biological effects in the context of male reproductive dysfunction. Evidence gathered from clinical trials, in vitro experiments and in vivo studies suggest that the selected natural compounds affect key targets related to sperm mitochondrial metabolism and motion behavior, oxidative stress, inflammation, DNA integrity and cell death. The majority of reports emphasize on ameliorative, stimulating and protective effects of natural biomolecules on the sperm function. Nevertheless, possible adverse and toxic behavior of natural compounds has been indicated as well, pointing out to a possible dose-dependent impact of natural biomolecules on the sperm survival and functionality. As such, further research leading to a deeper understanding of the beneficial or adverse roles of natural compounds is necessary before these can be employed for the management of male reproductive dysfunction.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Filip Benko
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Tomáš Slanina
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| |
Collapse
|
22
|
Chen Y, Liu G, Wu Y, Cai H. Assessment of liver injury using indocyanine green fluorescence imaging. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1167. [PMID: 34430608 PMCID: PMC8350635 DOI: 10.21037/atm-21-3049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022]
Abstract
Background To investigate whether indocyanine green (ICG) fluorescence imaging can be used to evaluate chronic and acute liver injury induced by either a high-fat (HF) diet or carbon tetrachloride (CCl4). Methods Sprague-Dawley (SD) rats were randomly divided into three groups: control group, HF diet-induced model group, and CCl4-induced model group. The chronic and acute liver injury models were induced by a HF diet and intraperitoneal injection of CCl4, respectively. After HF feeding, the liver index, levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) of the rats were determined. The livers were also collected to evaluate histopathology damage by hematoxylin and eosin (H&E) staining. After in vitro perfusion of the liver and ICG administration, the liver fluorescence intensity and corresponding spectral value were measured by using real-image guided system (REAL-IGS). Results After HF feeding, the liver index and levels of serum ALT and AST were significantly increased, and the livers of the rats showed severe histopathological changes. Compared with the control group, the hepatic lobes of the model rats exhibited incomplete green fluorescence, and the corresponding spectral value was markedly reduced. Conclusions ICG fluorescence imaging can be used to evaluate liver injury induced by either a HF diet or CCl4.
Collapse
Affiliation(s)
- Yan Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ge Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulin Wu
- Nanjing Nuoyuan Medical Devices Co., Ltd., Nanjing, China
| | - Huiming Cai
- Nanjing Nuoyuan Medical Devices Co., Ltd., Nanjing, China
| |
Collapse
|
23
|
Ma JQ, Zhang YJ, Tian ZK. Anti-oxidant, anti-inflammatory and anti-fibrosis effects of ganoderic acid A on carbon tetrachloride induced nephrotoxicity by regulating the Trx/TrxR and JAK/ROCK pathway. Chem Biol Interact 2021; 344:109529. [PMID: 34029542 DOI: 10.1016/j.cbi.2021.109529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 04/03/2021] [Accepted: 05/14/2021] [Indexed: 01/18/2023]
Abstract
Ganoderic acid A (GAA), one of the major triterpenoid components extracted from Ganoderma mushroom has been shown to possess numerous important pharmacological activities. The present study was aimed to investigate the mechanisms of GAA on carbon tetrachloride (CCl4)-induced kidney inflammation, fibrosis and oxidative stress in mice. The male mice were treated with 25 and 50 mg/mg GAA after stimulated with CCl4. Our results showed that GAA improved renal damage by decreasing the serum levels of creatinine, urea, uric acid and alleviating kidney fibrosis. GAA ameliorated CCl4-induced indices of inflammation. GAA suppressed oxidative stress by regulating the glutathione antioxidant system and the thioredoxin antioxidant system. GAA increased the activations of thioredoxin reductase (TrxR), Trx, GSH, SOD, GPx. Furthermore, GAA supplementation inhibited the JAK and STAT3 pathway. GAA inhibited the activations of RhoA, ROCK, NF-κB, TGF-β and Smad3. Thus, this study demonstrated that GAA possesses immune-protective properties through regulating the Trx/TrxR, JAK2/STAT3 and RhoA/ROCK pathways.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- School of Chemistry Engineering, Sichuan University of Science and Engineering, No. 180, Huixing Road, 643000, Zigong City, Sichuan Province, PR China.
| | - Yu-Jia Zhang
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Zhi-Kai Tian
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
24
|
Lv S, Yu H, Liu X, Gao X. The Study on the Mechanism of Hugan Tablets in Treating Drug-Induced Liver Injury Induced by Atorvastatin. Front Pharmacol 2021; 12:683707. [PMID: 34262454 PMCID: PMC8275032 DOI: 10.3389/fphar.2021.683707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023] Open
Abstract
Atorvastatin is a widely used lipid-lowering drug in the clinic. Research shows that taking long-term atorvastatin has the risk of drug-induced liver injury (DILI) in most patients. Hugan tablets, a commonly used drug for liver disease, can effectively lower transaminase and protect the liver. However, the underlying mechanism of Hugan tablets alleviating atorvastatin-induced DILI remains unclear. To address this problem, comprehensive chemical profiling and network pharmacology methods were used in the study. First, the strategy of "compound-single herb-TCM prescription" was applied to characterize the ingredients of Hugan tablets. Then, active ingredients and potential targets of Hugan tablets in DILI treatment were screened using network pharmacology, molecular docking, and literature research. In the end, the mechanism of Hugan tablets in treating atorvastatin-induced DILI was elucidated. The results showed that Hugan tablets can effectively alleviate DILI induced by atorvastatin in model rats, and 71 compounds were characterized from Hugan tablets. Based on these compounds, 271 potential targets for the treatment of DILI were predicted, and 10 key targets were chosen by characterizing protein-protein interactions. Then, 30 potential active ingredients were screened through the molecular docking with these 10 key targets, and their biological activity was explained based on literature research. Finally, the major 19 active ingredients of Hugan tablets were discovered. In addition, further enrichment analysis of 271 targets indicated that the PI3K-Akt, TNF, HIF-1, Rap1, and FoxO signaling pathways may be the primary pathways regulated by Hugan tablets in treating DILI. This study proved that Hugan tablets could alleviate atorvastatin-induced DILI through multiple components, targets, and pathways.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Unsal V, Cicek M, Sabancilar İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:279-295. [PMID: 32970608 DOI: 10.1515/reveh-2020-0048] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Several chemicals, including environmental toxicants and clinically useful drugs, cause severe cellular damage to different organs of our body through metabolic activation to highly reactive substances such as free radicals. Carbon tetrachloride is an organic compound of which chemical formula is CCl₄. CCl4 is strong toxic in the kidney, testicle, brain, heart, lung, other tissues, and particularly in the liver. CCl4 is a powerful hepatoxic, nephrotoxic and prooxidant agent which is widely used to induce hepatotoxicity in experimental animals and to create hepatocellular carcinoma, hepatic fibrosis/cirrhosis and liver injury, chemical hepatitis model, renal failure model, and nephrotoxicity model in recent years. The damage-causing mechanism of CCl4 in tissues can be explained as oxidative damage caused by lipid peroxidation which starts after the conversion of CCl4 to free radicals of highly toxic trichloromethyl radicals (•CCl₃) and trichloromethyl peroxyl radical (•CCl₃O2) via cytochrome P450 enzyme. Complete disruption of lipids (i.e., peroxidation) is the hallmark of oxidative damage. Free radicals are structures that contain one or more unpaired electrons in atomic or molecular orbitals. These toxic free radicals induce a chain reaction and lipid peroxidation in membrane-like structures rich in phospholipids, such as mitochondria and endoplasmic reticulum. CCl4-induced lipid peroxidation is the cause of oxidative stress, mitochondrial stress, endoplasmic reticulum stress. Free radicals trigger many biological processes, such as apoptosis, necrosis, ferroptosis and autophagy. Recent researches state that the way to reduce or eliminate these CCl4-induced negative effects is the antioxidants originated from natural sources. For normal physiological function, there must be a balance between free radicals and antioxidants. If this balance is in favor of free radicals, various pathological conditions occur. Free radicals play a role in various pathological conditions including Pulmonary disease, ischemia / reperfusion rheumatological diseases, autoimmune disorders, cardiovascular diseases, cancer, kidney diseases, hypertension, eye diseases, neurological disorders, diabetes and aging. Free radicals are antagonized by antioxidants and quenched. Antioxidants do not only remove free radicals, but they also have anti-inflammatory, anti-allergic, antithrombotic, antiviral, and anti-carcinogenic activities. Antioxidants contain high phenol compounds and antioxidants have relatively low side effects compared to synthetic drugs. The antioxidants investigated in CCI4 toxicity are usually antioxidants from plants and are promising because of their rich resources and low side effects. Data were investigated using PubMed, EBSCO, Embase, Web of Science, DOAJ, Scopus and Google Scholar, Carbon tetrachloride, carbon tetrachloride-induced toxicity, oxidative stress, and free radical keywords. This study aims to enlighten the damage-causing mechanism created by free radicals which are produced by CCl4 on tissues/cells and to discuss the role of antioxidants in the prevention of tissue/cell damage. In the future, Antioxidants can be used as a therapeutic strategy to strengthen effective treatment against substances with high toxicity such as CCl4 and increase the antioxidant capacity of cells.
Collapse
Affiliation(s)
- Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Mustafa Cicek
- Department of Anatomy, Faculty of Medicine, Kahramanmaraş Sütçü imam University, Kahramanmaraş, Turkey
| | - İlhan Sabancilar
- Department of Biochemistry, Health Sciences Institute, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
26
|
Imani A, Maleki N, Bohlouli S, Kouhsoltani M, Sharifi S, Maleki Dizaj S. Molecular mechanisms of anticancer effect of rutin. Phytother Res 2021; 35:2500-2513. [PMID: 33295678 DOI: 10.1002/ptr.6977] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Because of the extensive biological functions of natural substances such as bioflavonoids, and their high safety and low costs, they could have high priority application in the health care system. The antioxidant properties of rutin, a polyphenolic bioflavonoid, have been well documented and demonstrated a wide range of pharmacological applications in cancer research. Since chemotherapeutic drugs have a wide range of side effects and rutin is a safe anticancer agent with minor side effects so recent investigations are performed for study of mechanisms of its anticancer effect. Both in-vivo and in-vitro examinations on anticancer mechanisms of this natural agent have been widely carried out. Regulation of different cellular signaling pathways such as Wnt/β-catenin, p53-independent pathway, PI3K/Akt, JAK/STAT, MAPK, p53, apoptosis as well as NF-ĸB signaling pathways helps to mediate the anticancer impacts of this agent. This study tried to review the molecular mechanisms of rutin anticancer effect on various types of cancer. Deep exploration of these anticancer mechanisms can facilitate the development of this beneficial compound for its application in the treatment of different cancers.
Collapse
Affiliation(s)
- Amir Imani
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Maleki
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Ekpo DE, Joshua PE, Odiba AS, Nwodo OFC. Flavonoid-rich fraction of Lasianthera africana leaves alleviates hepatotoxicity induced by carbon tetrachloride in Wistar rats. Drug Chem Toxicol 2021; 45:1934-1950. [PMID: 33823729 DOI: 10.1080/01480545.2021.1892957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lasianthera africana P. Beauv. (Icacinaceae) is a good source of natural antioxidants, having the potential to protect against oxidative stress-related diseases and complications. This study investigated the antioxidant, hepatoprotective and curative effects of flavonoid-rich fraction of L. africana leaves (LAFRF) against carbon tetrachloride-induced hepatotoxicity in Wistar rats. Phytochemical, nutrient content, and in vitro antioxidant activity of LAFRF were determined by standard methods. Fifty Wistar rats were randomized into 10 groups (n = 5). Groups 1 and 2 served as normal and CCl4 controls, respectively. Groups 3A-6A constituted the protective study while groups 3B-6B represented the curative study. The effects of LAFRF at 3, 10, and 30 mg/kg body weight (b.w.) on lipid peroxidation, antioxidant status, liver enzymes activities, and histology of CCl4-intoxicated rats were assessed. LAFRF total flavonoids (281.05 ± 7.44 mg QE/g), indicated LD50 above 5000 mg/kg b.w., and scavenged ABTS*+ with an IC50 of 5.05 ± 0.00 µg/mL relative to butylated hydroxytoluene (4.16 ± 0.00 µg/mL), and a concentration-dependent increase in total antioxidant capacity. Carbon tetrachloride (1 mL/kg) triggered significant (p < 0.05) increases in malonedialdehyde concentration (2.67 ± 0.21 mg/mL), with a corresponding decline in antioxidant status, and increases in alkaline phosphatase, alanine and aspartate aminotransferase activities (68.00 ± 9.59 IU/L, 79.60 ± 5.03 IU/L and 81.80 ± 3.96 IU/L), respectively. LAFRF significantly (p < 0.05) lowered lipid peroxidation levels, liver enzyme activities, increased antioxidant status, and improved hepatic histo-architecture of pre- and post LAFRF-treated rats. This demonstrates its high antioxidative, hepatoprotective and curative effects, indicating its potential for future drug development.
Collapse
Affiliation(s)
- Daniel Emmanuel Ekpo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Federal Republic of Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Federal Republic of Nigeria
| | - Arome Solomon Odiba
- Department of Molecular Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Federal Republic of Nigeria.,Department of Biochemistry, College of Life Science and Technology, Guangxi University, Nanning, People's Republic of China.,National Engineering Research Centre for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, People's Republic of China
| | - Okwesilieze Fred Chiletugo Nwodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Federal Republic of Nigeria.,Department of Biochemistry, Faculty of Medical, Pharmaceutical and Health Sciences, University of Mkar, Mkar Gboko, Federal Republic of Nigeria
| |
Collapse
|
28
|
Paudel KR, Wadhwa R, Tew XN, Lau NJX, Madheswaran T, Panneerselvam J, Zeeshan F, Kumar P, Gupta G, Anand K, Singh SK, Jha NK, MacLoughlin R, Hansbro NG, Liu G, Shukla SD, Mehta M, Hansbro PM, Chellappan DK, Dua K. Rutin loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro. Life Sci 2021; 276:119436. [PMID: 33789146 DOI: 10.1016/j.lfs.2021.119436] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the major causes of cancer-related mortality globally. Despite the availability of therapeutic options, the improvement in patient survival is yet to be achieved. Recent advances in natural product (e.g., Rutin) research, therapeutic nanotechnology and especially the combination of both could aid in achieving significant improvements in the treatment or management of NSCLC. In this study, we explore the anti-cancer activity of Rutin-loaded liquid crystalline nanoparticles (LCNs) in an in vitro model where we have employed the A549 human lung epithelial carcinoma cell line. The anti-proliferative activity was determined by MTT and Trypan blue assays, whereas, the anti-migratory activity was evaluated by the scratch wound healing assay and a modified Boyden chamber assay. We also evaluated the anti-apoptotic activity by Annexin V-FITC staining, and the colony formation activity was studied using crystal violet staining. Here, we report that Rutin-LCNs showed promising anti-proliferative and anti-migratory activities. Furthermore, Rutin-LCNs also induced apoptosis in the A549 cells and inhibited colony formation. The findings warrant further detailed and in-depth anti-cancer mechanistic studies of Rutin-LCNs with a focus towards a potential therapeutic option for NSCLC. LCNs may help to enhance the solubility of Rutin used in the treatment of lung cancer and hence enhance the anticancer effect of Rutin.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xin Nee Tew
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Natalie Jia Xin Lau
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Farrukh Zeeshan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, 302017 Jaipur, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Nicole G Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Gang Liu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Shakti D Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Meenu Mehta
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
29
|
Protective Effect of Chemically Characterized Polyphenol-Rich Fraction from Apteranthes europaea (Guss.) Murb. subsp. maroccana (Hook.f.) Plowes on Carbon Tetrachloride-Induced Liver Injury in Mice. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apteranthes europaea (Guss.) Murb. subsp. maroccana (Hook.f.) Plowes (A. europaea) is a medicinal plant widely used in traditional medicines to treat various diseases including hepatic pathogenesis. This study was conducted to evaluate the protective effect of chemically characterized polyphenol-rich fraction from A. europaea on carbon tetrachloride-induced liver injury in mice. The chemical characterization of A. europaea polyphenol-rich fraction was carried out using HPLC-DAD (high-performance liquid chromatography (HPLC) with a diode-array detector (DAD)). Carbon tetrachloride (CCl4) was used to induce liver injuries in mice as described in previous works. A polyphenol-rich fraction from A. europaea was used at a dose of 50 mg/Kg to study its hepatoprotective effect. Next, histopathological and biochemical alterations were investigated. The HPLC analysis revealed the presence of several phenolic compounds: gallic acid, methyl gallate, rutin, ferulic acid, and resorcinol. Regarding the mice treated with a polyphenol-rich fraction from A. europaea up to 50 mg/Kg and carbon tetrachloride, no significant biochemical nor histological alterations occurred in their liver; meanwhile, serious biochemical and histopathological changes were noted for liver recovered from the mice treated with carbon tetrachloride only. In conclusion, A. europaea extract is a promising source of hepatoprotective agents against toxic liver injury.
Collapse
|
30
|
Ali SA, Aly HF, Ibrahim NA, Al-Hady DA. Aegle marmelos extract (L.) against CCL4 toxicity. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
31
|
Sherif IO, Al-Shaalan NH. Hepatoprotective effect of Ginkgo biloba extract against methotrexate-induced hepatotoxicity via targeting STAT3/miRNA-21 axis. Drug Chem Toxicol 2020; 45:1723-1731. [DOI: 10.1080/01480545.2020.1862859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Iman O. Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nora H. Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Abdel-Salam EM, Faisal M, Alatar AA, Qahtan AA, Alam P. Genome-wide transcriptome variation landscape in Ruta chalepensis organs revealed potential genes responsible for rutin biosynthesis. J Biotechnol 2020; 325:43-56. [PMID: 33271156 DOI: 10.1016/j.jbiotec.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022]
Abstract
Ruta chalepensis L., most commonly known as 'fringed rue,' is an excellent and valuable bioactive plant that produces a range of complex flavonoids, of which rutin is the major compound present in this plant of great pharmaceutical and medicinal significance. The present study is a pioneering attempt to examine the changes in the transcriptomic landscape of leaf, stem, and root tissues and correlate this with rutin quantity in each tissue in order to identify the candidate genes responsible for rutin biosynthesis and to increase genomic resources in fringed rue. Comparative transcriptome sequencing of leaves, stems and roots were performed using the NovaSeq 6000 platform. The de novo transcriptome assembly generated 254,685 transcripts representing 154,018 genes with GC content of 42.60 % and N50 of 2280 bp. Searching assembled transcripts against UniRef90 and SwissProt databases annotated 79.7 % of them as protein coding. The leaf tissues had the highest rutin content followed by stems and roots. Several differentially expressed genes and transcripts relating to rutin biosynthesis were identified in leaves comparing with roots or stems comparing with roots. All the genes known to be involved in rutin biosynthesis showed up-regulation in leaves as compared with roots. These results were confirmed by gene ontology (GO) and pathway enrichment analyses. Up-regulated genes in leaves as compared with roots enriched GO terms with relation to rutin biosynthesis e.g. action of flavonol synthase, biosynthetic mechanism of malonyl-CoA, and action of monooxygenase. Phylogenetic analysis of the rhamnosyltransferase (RT) gene showed that it was highly homologues with RT sequence from Citrus species and all were located in the same clade. This transcriptomic dataset will serve as an important public resource for future genomics and transcriptomic studies in R. chalepensis and will act as a benchmark for the identification and genetic modification of genes involved in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Eslam M Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Qahtan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
33
|
Cai Y, Zheng Q, Sun R, Wu J, Li X, Liu R. Recent progress in the study of Artemisiae Scopariae Herba (Yin Chen), a promising medicinal herb for liver diseases. Biomed Pharmacother 2020; 130:110513. [DOI: 10.1016/j.biopha.2020.110513] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
|
34
|
Kumar A, Kaur V, Pandit K, Tuli HS, Sak K, Jain SK, Kaur S. Antioxidant Phytoconstituents From Onosma bracteata Wall. (Boraginaceae) Ameliorate the CCl 4 Induced Hepatic Damage: In Vivo Study in Male Wistar Rats. Front Pharmacol 2020; 11:1301. [PMID: 32973525 PMCID: PMC7472603 DOI: 10.3389/fphar.2020.01301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Onosma bracteata Wall. (Boraginaceae) is a highly valuable medicinal herb that is used for the treatment of fever, bronchitis, asthma, rheumatism, stomach irritation, and other inflammatory disorders. The present study aims to explore the hepatoprotective potential of ethanolic extract (Obeth) from O. bracteata aerial parts against carbon tetrachloride (CCl4) which causes hepatic damage in the male Wistar rats. Obeth showed effective radical quenching activity with an EC50 of 115.14 and 199.33 µg/mL in superoxide radical scavenging and lipid peroxidation analyses respectively along with plasmid DNA protective potential in plasmid nicking assay. The Obeth modulated mutagenicity of 2 Aminofluorine (2AF) in the pre-incubation mode of investigation (EC50 10.48 µg/0.1 mL/plate) in TA100 strain of Salmonella typhimurium. In in vivo studies, pretreatment of Obeth (50, 100, and 200 mg/kg) had the potential to normalize the biochemical markers aggravated by CCl4 (1mL/kg b.wt.) including liver antioxidative enzymes. Histopathological analysis also revealed the restoration of CCl4-induced liver histopathological alterations. Immunohistochemical studies showed that the treatment of Obeth downregulated the expression levels of p53 and cyclin D in hepatocytes. and downregulation in the Western blotting analysis revealed the downregulation of p-NF-kB, COX-2, and p53. HPLC data analysis showed the supremacy of major compounds namely, catechin, kaempferol, epicatechin, and Onosmin A in Obeth. The present investigation establishes the hepatoprotective and chemopreventive potential of O. bracteata against CCl4-induced hepatotoxicity via antioxidant defense system and modulation of the expression of proteins associated with the process of carcinogenesis in hepatic cells.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Varinder Kaur
- Indigenous Education and Research Centre, James Cook University, Townsville, QLD, Australia
| | - Kritika Pandit
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | | | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
35
|
Barros PP, Eisinger ABDC, GonÇalves GMS, Silva GHD. ORAL RUTIN SUSPENSION INTERVENE IN HEPATIC HYPERPLASIA IN RATS. ARQUIVOS DE GASTROENTEROLOGIA 2020; 57:296-299. [PMID: 33027481 DOI: 10.1590/s0004-2803.202000000-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rutin is a flavonol glycoside that can be found in a wide variety of vegetables and has activity, anti-cancer, anti-inflammatory and anti-diabetic properties. OBJECTIVE This study investigated the effect of rutin oral administration on Wistar rats submitted to hepatic hyperplasia after partial hepatectomy (PH). METHODS To achieve this, we considered the analysis of hepatic hyperplastic and plasma biochemical activity of Wistar rats, subjected to treatment with rutin 40 mg/kg/day for 10 days in group 1 (G1) or saline in group 2 (G2), followed by partial hepatectomy. RESULTS The results indicated an increase in the number of mitoses after 24 hours and 48 hours (P=0.0022 and P=0.0152, respectively) of PH in the group that received rutin, as well as an increase in AST serum levels after 24 hours (P=0.0159) and 48 hours (P=0.0158) and alkaline phosphatase after 24 hours (P=0.015) in the same group, in relation to the respective controls. The group that received rutin showed a more evident variation than the control group when comparing the 24 hour and 48 hour results regarding AST, number of mitoses and number of apoptosis (P<0.005). CONCLUSION It was concluded that rutin intervened in hepatic hyperplasia after 24 hours and 48 hours of PH, favoring hepatic hyperplasia.
Collapse
Affiliation(s)
- Pedro Paulo Barros
- Pontifícia Universidade Católica de Campinas, Faculdade de Ciências Farmacêuticas, Campinas, SP, Brasil
| | | | - Gisele Mara Silva GonÇalves
- Pontifícia Universidade Católica de Campinas, Programa de Pós Graduação em Ciências da Saúde, Campinas, SP, Brasil
| | - Gustavo Henrique da Silva
- Pontifícia Universidade Católica de Campinas, Faculdade de Ciências Farmacêuticas, Campinas, SP, Brasil
| |
Collapse
|
36
|
Fideles LDS, de Miranda JAL, Martins CDS, Barbosa MLL, Pimenta HB, Pimentel PVDS, Teixeira CS, Scafuri MAS, Façanha SDO, Barreto JEF, Carvalho PMDM, Scafuri AG, Araújo JL, Rocha JA, Vieira IGP, Ricardo NMPS, da Silva Campelo M, Ribeiro MENP, de Castro Brito GA, Cerqueira GS. Role of Rutin in 5-Fluorouracil-Induced Intestinal Mucositis: Prevention of Histological Damage and Reduction of Inflammation and Oxidative Stress. Molecules 2020; 25:molecules25122786. [PMID: 32560278 PMCID: PMC7356626 DOI: 10.3390/molecules25122786] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal mucositis, characterized by inflammatory and/or ulcerative processes in the gastrointestinal tract, occurs due to cellular and tissue damage following treatment with 5-fluorouracil (5-FU). Rutin (RUT), a natural flavonoid extracted from Dimorphandra gardneriana, exhibits antioxidant, anti-inflammatory, cytoprotective, and gastroprotective properties. However, the effect of RUT on inflammatory processes in the intestine, especially on mucositis promoted by antineoplastic agents, has not yet been reported. In this study, we investigated the role of RUT on 5-FU-induced experimental intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, RUT-50, RUT-100, RUT-200, Celecoxib (CLX), and CLX + RUT-200 groups. The mice were weighed daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis); malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH) concentrations; mast and goblet cell counts; and cyclooxygenase-2 (COX-2) activity, as well as to perform immunohistochemical analyses. RUT treatment (200 mg/kg) prevented 5-FU-induced histopathological changes and reduced oxidative stress by decreasing MDA concentrations and increasing GSH concentrations. RUT attenuated the inflammatory response by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. These results suggest that the COX-2 pathway is one of the underlying protective mechanisms of RUT against 5-FU-induced intestinal mucositis.
Collapse
Affiliation(s)
- Lázaro de Sousa Fideles
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - João Antônio Leal de Miranda
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
- Correspondence: ; Tel.: +55-85-3366-8492
| | - Conceição da Silva Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Maria Lucianny Lima Barbosa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Helder Bindá Pimenta
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Paulo Vitor de Souza Pimentel
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Claudio Silva Teixeira
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | | | | | - João Erivan Façanha Barreto
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
- Christus University Center (Unichristus), 133 Adolfo Gurgel Street, Fortaleza 63010-475, Brazil;
| | | | - Ariel Gustavo Scafuri
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
- Scafuri Institute of Human Sexuality, 1513 Republic of Lebanon Street, Varjota, Fortaleza 60175-222, Brazil;
| | - Joabe Lima Araújo
- Department of Genetics and Morphology, s/n Darcy Ribeiro University Campus, University of Brasília, Brasília-DF 70910-900, Brazil;
| | - Jefferson Almeida Rocha
- Medicinal Chemistry and Biotechnology Research Group (QUIMEBIO), Federal University of Maranhão (UFMA), São Bernardo/MA 65550-000, Brazil;
| | - Icaro Gusmão Pinto Vieira
- Technological Development Park, Federal University of Ceará, Humberto Monte Avenue, 2977, Pici Campus, Fortaleza 60440-900, Brazil;
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Gerly Anne de Castro Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Gilberto Santos Cerqueira
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| |
Collapse
|
37
|
Hepatoprotective Activity of BV-7310, a Proprietary Herbal Formulation of Phyllanthus niruri, Tephrosia purpurea, Boerhavia diffusa, and Andrographis paniculata, in Alcohol-Induced HepG2 Cells and Alcohol plus a Haloalkane, CCl 4, Induced Liver Damage in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6428906. [PMID: 32308713 PMCID: PMC7132358 DOI: 10.1155/2020/6428906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022]
Abstract
Excessive alcohol consumption is a worldwide threat with severe morbidity and mortality. Other than abstinence, there is still no FDA-approved drug for alcoholic liver disease (ALD). Liver is the primary site of ethanol metabolism and hence gets the most damage from excessive drinking. It triggers multiple signalling events including inflammation, leading to an array of hepatic lesions like steatosis, hepatitis, fibrosis, and cirrhosis. Similarly, when medications or xenobiotic compounds are ingested orally, the liver gets the highest exposure of those metabolites, which in turn can cause severe liver toxicity. BV-7310 is a standardized mixture of four Ayurvedic plants, namely, Phyllanthus niruri, Tephrosia purpurea, Boerhavia diffusa, and Andrographis paniculata. In different systems of traditional medicine, each of these plants has been known to have use in gastrointestinal disorders. We wanted to assess the combined effect of these plant extracts on alcohol-induced liver damage. First, we investigated the hepatoprotective activity of BV-7310 against alcohol-induced toxicity in human liver HepG2 cells. Ethanol treatment (120 mM for 48 hours) significantly showed toxicity (around 42%) in these cells, and coincubation with BV-7310 prevented ethanol-induced cell death in a dose-dependent manner. Interestingly, the formulation BV-7310 showed synergistic activity than any individual extract tested in this assay. BV-7310 also showed potent antioxidant activity in 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. Next, we induced hepatitis in Sprague–Dawley (SD) rats using repeated alcohol (40%) dosing, and carbon tetrachloride (CCl4) 24 hours before termination. Both oral doses of BV-7310 (250 and 500 mg/kg body weight) protected the alcohol-induced body weight loss and significantly improved the elevated levels of liver enzymes compared to the vehicle treated group. Thus, BV-7310 prevents alcohol-induced toxicity in both in-vitro and in-vivo models and could be beneficial for the treatment of ALD or other conditions, which may cause liver toxicity.
Collapse
|
38
|
Hou LS, Cui ZY, Sun P, Piao HQ, Han X, Song J, Wang G, Zheng S, Dong XX, Gao L, Zhu Y, Lian LH, Nan JX, Wu YL. Rutin mitigates hepatic fibrogenesis and inflammation through targeting TLR4 and P2X7 receptor signaling pathway in vitro and in vivo. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
39
|
Liu H, Jiang Y, Guan H, Li F, Sun-Waterhouse D, Chen Y, Li D. Enhancing the antioxidative effects of foods containing rutin and α-amino acids via the Maillard reaction: A model study focusing on rutin-lysine system. J Food Biochem 2019; 44:e13086. [PMID: 31646664 DOI: 10.1111/jfbc.13086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 11/28/2022]
Abstract
Rutin is a bioflavonoid found in many plants and derived foods, accordingly, rutin likely interacts with α-amino acids such as Lys, Ile, His or Glu to give Maillard reaction products (MRPs). The heated rutin-Lys system exhibited highest brown intensity and in vitro antioxidant activities. The 30-50 kDa rutin-Lys fraction had higher in vitro antioxidant activities than the other fractions, and at a dose of 0.4 mg/ml preserved over 90% cell viability for HepG2 cells exposed to H2 O2 . The dose-dependent protective effects against H2 O2 -induced oxidative stress of the rutin-Lys MRPs may involve the inhibition of reactive oxygen species generation, enhancement of the superoxide dismutase and catalase activities, along with the activation of the Nrf2-dependent pathway and upregulation of phase II antioxidant genes (including NQO1, HO-1, GCLG, and GCLM). PRACTICAL APPLICATIONS: Rutin is widely distributed in vegetables and grains. The Maillard reaction is a common reaction occurring during food processing, and produces Maillard reaction products (MRPs) with distinct processing and biological properties. This study shows that a 30-min thermal treatment at 120°C generates antioxidative MRPs in the rutin-Lys, rutin-His, rutin-Ile and rutin-Glu model systems, which can directly inhibit reactive oxygen species generation and enhance SOD and CAT activities while activating the Nrf2-dependent pathway and upregulating the expression of phase II detoxifying antioxidant genes. Therefore, for food systems containing phenolic antioxidants and proteins (such as rutin and Lys), one may enhance the antioxidant properties of these food systems through a 30-min thermal treatment at 120°C. Also, the resultant rutin-Lys MRPs may be isolated and used as commercial preparations of natural antioxidants.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yilun Chen
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, P.R. China
| |
Collapse
|
40
|
Fouad AA, Hafez HM, Hamouda A. Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum Exp Toxicol 2019; 39:77-85. [PMID: 31542963 DOI: 10.1177/0960327119877437] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methotrexate (MTX) is a commonly used anticancer and immunosuppressive agent. However, MTX can induce hepatotoxicity due to oxidative stress, inflammation, and apoptosis. Hydrogen sulfide (H2S), the endogenous gaseous molecule, has antioxidant, anti-inflammatory, and anti-apoptotic effects. The present work explored the probable protective effect of H2S against MTX hepatotoxicity in rats and also the possible mechanisms underlying this effect. MTX was given at a single intraperitoneal (i.p.) dose of 20 mg/kg. Sodium H2S (56 µmol /kg/day, i.p.), as H2S donor, was given for 10 days, starting 6 days before MTX administration. H2S significantly reduced serum alanine aminotransferase, hepatic malondialdehyde, interleukin 6, nuclear factor κB p65, cytosolic cytochrome c, phosphorylated signal transducer and activator of transcription 3, and Bax/Bcl-2 ratio and significantly increased hepatic total antioxidant capacity and endothelial nitric oxide synthase (eNOS) in rats received MTX. In addition, H2S minimized the histopathological injury and significantly decreased the expression of STAT3 in liver tissue of MTX-challenged rats. The effects of H2S were significantly antagonized by administration of glibenclamide as KATP channel blocker, Nω-nitro-l-arginine, as eNOS inhibitor, or ruthenium red, as transient receptor potential vanilloid 1 (TRPV1) antagonist. It was concluded that H2S provided significant hepatoprotection in MTX-challenged rats through its antioxidant, anti-inflammatory, anti-apoptotic effects. These effects are most probably mediated by the ability of H2S to act as IL-6/STAT3 pathway modulator, KATP channel opener, eNOS activator, and TRPV1 agonist.
Collapse
Affiliation(s)
- A A Fouad
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - H M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Aah Hamouda
- Department of Histology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
41
|
Khodarahmi A, Eshaghian A, Safari F, Moradi A. Quercetin Mitigates Hepatic Insulin Resistance in Rats with Bile Duct Ligation Through Modulation of the STAT3/SOCS3/IRS1 Signaling Pathway. J Food Sci 2019; 84:3045-3053. [DOI: 10.1111/1750-3841.14793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Ameneh Khodarahmi
- Dept. of Biochemistry, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| | - Azam Eshaghian
- Dept. of Biochemistry, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| | - Fatemeh Safari
- Dept. of Physiology, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| | - Ali Moradi
- Dept. of Biochemistry, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| |
Collapse
|
42
|
Development and Validation of Conditions for Extracting Flavonoids Content and Evaluation of Antioxidant and Cytoprotective Activities from Bougainvillea x buttiana Bracteas (var. Rose). Antioxidants (Basel) 2019; 8:antiox8080264. [PMID: 31374928 PMCID: PMC6720492 DOI: 10.3390/antiox8080264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
In this study the effect of the ethanol concentration of Bougainvillea x buttiana extracts on the flavonoids content, and its antioxidant and cytoprotective activities in vitro were determined and compared. For the elucidation of the chemical constituents, the high-performance liquid chromatography method (HPLC) was used, and verification of the antioxidant activity was carried out using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical method. The cytoprotective effects of extracts were determined by exposure to hydrogen peroxide. The HPLC analysis showed the presence of rutin, quercetin-3-glucoside and quercetin rhamnoside. Among the extracts investigated the best recuperation of the rutin content was observed in extracts with 80% ethanol (83 ± 5 mg/mL). The amounts of rutin present in all extracts contribute to the antioxidant capacity and the IC50 was 427.49 (0%), 275.41 (50%), 271.61 (80%), and 272.14 (100%) µg/mL. The lowest percentage of viability was found in the cultures exposed to 100% ethanol (92%). In cultures exposed to hydrogen peroxide the percentages of protection were 25%, 33%, 78%, and 65% for cultures treated for 72 h at 0%, 50%, 80%, and 100% ethanol, respectively. The ethanolic extract of B. x buttiana was confirmed to have high rutin content with potent antioxidant activity, low cytotoxic and strong cytoprotective effects.
Collapse
|
43
|
Kim Y, Allen E, Baird LA, Symer EM, Korkmaz FT, Na E, Odom CV, Jones MR, Mizgerd JP, Traber KE, Quinton LJ. NF-κB RelA Is Required for Hepatoprotection during Pneumonia and Sepsis. Infect Immun 2019; 87:e00132-19. [PMID: 31160364 PMCID: PMC6652780 DOI: 10.1128/iai.00132-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022] Open
Abstract
Pneumonia and sepsis are distinct but integrally linked public health concerns. The hepatic acute-phase response (APR), which is largely dependent on transcription factors NF-κB RelA and STAT3, is a hallmark of these pathologies and other injurious conditions. Inactivation of the APR can promote liver injury, a frequently observed organ dysfunction during sepsis. However, whether or how the acute-phase changes promote liver tissue resilience during infections is unclear. To determine the hepatoprotective role of the hepatic APR, we utilized mice bearing hepatocyte-specific deletions of either RelA or STAT3. Mice were challenged intratracheally (i.t.), intravenously (i.v.), or intraperitoneally (i.p.) with Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, lipopolysaccharide (LPS), or alpha-galactosylceramide (αGalCer) to induce pneumonia, sepsis, or NKT cell activation. Liver injury was observed in RelA-null (hepRelAΔ/Δ) mice but not STAT3-null (hepSTAT3Δ/Δ) mice during pneumonia. The absence of RelA resulted in hepatotoxicity across several models of pneumonia, sepsis, and NKT cell activation. Injury was associated with increased levels of activated caspase-3 and -8 and substantial alteration of the hepatic transcriptome. Hepatotoxicity in the absence of RelA could be reversed by neutralization of tumor necrosis factor alpha (TNF-α). These results indicate the requirement of RelA-dependent inducible hepatoprotection during pneumonia and sepsis. Further, the results demonstrate that RelA-dependent gene programs are critical for maintaining liver homeostasis against TNF-α-driven immunotoxicity.
Collapse
Affiliation(s)
- Yuri Kim
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Eri Allen
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lillia A Baird
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elise M Symer
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Filiz T Korkmaz
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Elim Na
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christine V Odom
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
44
|
El-Hawary SS, Ali ZY, Younis IY. Hepatoprotective potential of standardized Ficus species in intrahepatic cholestasis rat model: Involvement of nuclear factor-κB, and Farnesoid X receptor signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:262-274. [PMID: 30458280 DOI: 10.1016/j.jep.2018.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus is an important commercial crop not only for its nutritive value but also, for its medicinal value. Several Ficus species have been traditionally used in the Egypt, Indian and Chinese as carminative, astringent, antibacterial, hepatoprotective, and hypolipidemic agents. AIM OF THE STUDY To standardize and compare the possible hepatoprotective potential of the ethanolic extract of leaves of five tested Ficus species namely: Ficus mysorensis Roth ex Roem. & Schult, Ficus pyriformis Hook. & Arn., Ficus auriculata Lour., Ficus trigonata L., and Ficus spragueana Mildbr. & Burret in the intrahepatic cholestasis rat model induced by 17α-Ethinylestradiol (EE) and to explore the mechanism of action with respect to their phytochemical constituents. MATERIALS AND METHODS Determination of the total phenolic and flavonoid contents, chromatographic examination and acute oral toxicity test were performed on the tested Ficus extracts. Animals were divided into 8 groups. Group 1, served as control for 2 weeks. Group 2, untreated cholestatic rats. Groups 3-8, pretreated with Ficus extracts (100 mg/Kg/day, p.o) or ursodeoxycholic acid (as reference drug) for 2 weeks and injected by EE in the last 5 days. Serum liver function test, 5'-nucleotidase (5'-N), total bile acids (TBA), total cholesterol (T.C) and phospholipids were assayed. Also, hepatic Na+/K+-ATPase, nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), hepatocyte growth factor (HGF), hemeoxygenase-1 (HO-1), and markers of oxidative stress were investigated. Furthermore, molecular docking study was performed to explore the ability of the major constituents of Ficus to interact with Farnesoid X receptor (FXR). RESULTS Four phenolic compounds (gallic, chlorogenic acid, caffeic acids and rutin) were identified. Chlorogenic acid and rutin represented the major constituents of Ficus extracts. Simultaneous administration of Ficus extracts with EE effectively: i- preserved liver function, TBA, T.C and phospholipids, ii- suppressed the pro-inflammatory cytokines (NF-κB and TNF-α), iii- enhanced hepatic regeneration (HGF) and antioxidant defense system. Furthermore, molecular docking reveals that rutin and chlorogenic acid effectively act as FXR agonists. CONCLUSION Among the tested extracts, Ficus spragueana Mildbr. & Burret enriched with phenolics exhibited a pronounced hepatoprotective activity and may provide a new therapeutic approach for estrogen-induced cholestasis.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Zeinab Y Ali
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), 12553 Giza, Egypt
| | - Inas Y Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
45
|
Lin TA, Ke BJ, Cheng CS, Wang JJ, Wei BL, Lee CL. Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-β1 Pathway. Nutrients 2019; 11:nu11020395. [PMID: 30781895 PMCID: PMC6412755 DOI: 10.3390/nu11020395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
The late stages of liver fibrosis are considered to be irreversible. Red quinoa (Chenopodium formosanum Koidz), a traditional food for Taiwanese aborigines, was gradually developed as a novel supplemental food due to high dietary fibre and polyphenolic compounds. Its bran was usually regarded as the agricultural waste, but it contained a high concentration of rutin known as an antioxidant and anti-inflammatory agent. This study is to explore the effect of red quinoa bran extracts on the prevention of carbon tetrachloride (CCl4)-induced liver fibrosis. BALB/c mice were intraperitoneally injected CCl4 to induce liver fibrosis and treated with red quinoa whole seed powder, bran ethanol extracts, bran water extracts, and rutin. In the results, red quinoa powder provided more protection than rutin against CCl4-induced oxidative stress, pro-inflammatory factor expression and fibrosis development. However, the bran ethanol extract with high rutin content provided the most liver protection and anti-fibrosis effect via blocking the tumor necrosis factor alpha (TNF-α)/interleukin 6 (IL-6) pathway and transforming growth factor beta 1 (TGF-β1) pathway.
Collapse
Affiliation(s)
- Ting-An Lin
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | - Bo-Jun Ke
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | | | - Jyh-Jye Wang
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 831, Taiwan.
| | - Bai-Luh Wei
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, Taitung 950, Taiwan.
| |
Collapse
|
46
|
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food Chem Toxicol 2019; 124:182-191. [PMID: 30529260 DOI: 10.1016/j.fct.2018.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
The liver is the most essential organ of the body performing vital functions. Hepatic disorders affect the physiological and biochemical functions of the body. These disorders include hepatitis B, hepatitis C, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver cirrhosis, hepatic failure and hepatocellular carcinoma (HCC). Drugs related hepatotoxicity is one of the major challenges facing by clinicians as it is a leading cause of liver failure. During post-marketing surveillance studies, detection and reporting of drug-induced hepatotoxicity may lead to drug withdrawal or warnings. Several mechanisms are involved in hepatotoxicity such as cell membrane disruption, initiating an immune response, alteration of cellular pathways of drug metabolism, accumulation of reactive oxygen species (ROS), lipid peroxidation and cell death. Curcumin, the active ingredient of turmeric and exhibits therapeutic potential for the treatment of diabetes, cardiovascular disorders and various types of cancers. Curcumin is strong anti-oxidant and anti-inflammatory effects and thus it possesses hepatoprotective properties. Despite its low bioavailability, its hepatoprotective effects have been studied in various protocols of hepatotoxicity including acetaminophen, alcohol, lindane, carbon tetrachloride (CCL4), diethylnitrosamine and heavy metals induced hepatotoxicities. This report reviews the hepatoprotective effects of curcumin with a focus on its mechanistic insights in various hepatotoxic protocols.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Awad A, Zaglool AW, Khalil SR. Immunohaematological status and mRNA expression of the genes encoding interleukin-6, nuclear-factor kappa B, and tumor-necrosis factor-α in the spleen of broilers supplemented with dietary rutin. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rutin, also known as vitamin P or rutoside, has been explored for many pharmacological activities. Apples, tea leaves, and many other plants contain rutin as one of the active constituents. Haematological, immunological indices and the expression of inflammatory cytokine genes in spleen tissue were assessed to investigate the influence of different levels of dietary rutin supplement (0.25, 0.5, or 1 g/kg diet) on the immune response of broilers. After 6 weeks, rutin-fed chickens showed an increase in the haematological indices, including the number of blood lymphocytes. Similarly, serum total protein and globulin were also elevated. By contrast, serum cholesterol, triglycerides and liver enzymes were lower in the experimental birds than in the control birds. Moreover, compared with the control birds, there was no significant change in the bilirubin concentration, either total or direct, and kidney-function indices in response to rutin supplementation in the experimental birds. Among the immune parameters examined, lysozyme activity, nitric oxide concentrations, and immunologlobulin M (IgM) production were significantly higher in rutin-fed birds than in the control birds; however, there was no significant effect of rutin at any concentration on the IgG and IgA concentrations and lymphoid organ weight. Of the cytokine-encoding genes studied, the genes encoding interleukin-6, nuclear-factor kappa B, and tumour-necrosis factor-α were upregulated in the spleen of the experimental birds, while the expression of interferon gamma-encoding gene was unaffected in the experimental birds. Here, rutin promoted the immune strength in birds mainly at 1 g/kg diet, suggesting that rutin is a promising feed additive for broilers.
Collapse
|
48
|
Lin IY, Chiou YS, Wu LC, Tsai CY, Chen CT, Chuang WC, Lee MC, Lin CC, Lin TT, Chen SC, Pan MH, Ma N. CCM111 prevents hepatic fibrosis via cooperative inhibition of TGF-β, Wnt and STAT3 signaling pathways. J Food Drug Anal 2019; 27:184-194. [PMID: 30648571 PMCID: PMC9298635 DOI: 10.1016/j.jfda.2018.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- In-Yu Lin
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan,
Taiwan
| | - Yi-Shiou Chiou
- Institute of Food Science and Technology, National Taiwan University, Taipei,
Taiwan
| | - Li-Ching Wu
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan,
Taiwan
| | - Chen-Yu Tsai
- Institute of Food Science and Technology, National Taiwan University, Taipei,
Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli,
Taiwan
| | | | - Ming-Chung Lee
- Brion Research Institute of Taiwan, New Taipei City,
Taiwan
| | - Ching-Che Lin
- Brion Research Institute of Taiwan, New Taipei City,
Taiwan
| | - Ting-Ting Lin
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan,
Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan,
Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei,
Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402,
Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung,
Taiwan
- Corresponding author. Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan. E-mail addresses: (M.-H. Pan), (N. Ma)
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan,
Taiwan
- Corresponding author. Department of Biomedical Sciences and Engineering, College of Health Sciences and Technology, National Central University, Taoyuan, Taiwan
| |
Collapse
|
49
|
Yao YF, Lin CZ, Liu FL, Zhang RJ, Zhang QY, Huang T, Zou YS, Wang MQ, Zhu CC. Identification and Pharmacokinetic Studies on Complanatuside and Its Major Metabolites in Rats by UHPLC-Q-TOF-MS/MS and LC-MS/MS. Molecules 2018; 24:molecules24010071. [PMID: 30585251 PMCID: PMC6337141 DOI: 10.3390/molecules24010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 02/07/2023] Open
Abstract
The metabolic and pharmacokinetic studies on complanatuside, a quality marker of a Chinese materia medicatonic, Semen Astragali Complanati, were carried out. The UHPLC-Q-TOF/MS (ultra-high performance liquid chromatography coupled with electrospray ionization tandem quadrupole-time-of-flight mass spectrometry) method was applied to identify the metabolites of complanatuside in rat plasma, bile, stool, and urine after oral administration at the dosage of 72 mg/kg. Up to 34 metabolites (parent, 2 metabolites of the parent drug, and 31 metabolites of the degradation products) were observed, including processes of demethylation, hydroxylation, glucuronidation, sulfonation, and dehydration. The results indicated glucuronidation and sulfonation as major metabolic pathways of complanatuside in vivo. Meanwhile, a HPLC-MS method to quantify complanatuside and its two major metabolites—rhamnocitrin 3-O-β-glc and rhamnocitrin—in rat plasma for the pharmacokinetic analysis was developed and validated. The Tmax (time to reach the maximum drug concentration) of the above three compounds were 1 h, 3 h, and 5.3 h, respectively, while the Cmax (maximum plasma concentrations)were 119.15 ng/mL, 111.64 ng/mL, and 1122.18 ng/mL, and AUC(0-t) (area under the plasma concentration-time curve) was 143.52 µg/L·h, 381.73 µg/L·h, and 6540.14 µg/L·h, accordingly. The pharmacokinetic characteristics of complanatuside and its two metabolites suggested that complanatuside rapidly metabolized in vivo, while its metabolites—rhamnocitrin—was the main existent form in rat plasma after oral administration. The results of intracorporal processes, existing forms, and pharmacokinetic characteristics of complanatuside in rats supported its low bioavailability.
Collapse
Affiliation(s)
- Yu-Feng Yao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Rd, Guangzhou 510405, China.
| | - Chao-Zhan Lin
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Rd, Guangzhou 510405, China.
| | - Fang-Le Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Rd, Guangzhou 510405, China.
| | - Run-Jing Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Rd, Guangzhou 510405, China.
| | - Qiu-Yu Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Rd, Guangzhou 510405, China.
| | - Tao Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Rd, Guangzhou 510405, China.
| | - Yuan-Sheng Zou
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Rd, Guangzhou 510405, China.
| | - Mei-Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Rd, Guangzhou 510405, China.
| | - Chen-Chen Zhu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Rd, Guangzhou 510405, China.
| |
Collapse
|
50
|
Jahan S, Munawar A, Razak S, Anam S, Ain QU, Ullah H, Afsar T, Abulmeaty M, Almajwal A. Ameliorative effects of rutin against cisplatin-induced reproductive toxicity in male rats. BMC Urol 2018; 18:107. [PMID: 30463555 PMCID: PMC6249881 DOI: 10.1186/s12894-018-0421-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cisplatin (CP) or cis-diammine dichloroplatinum (II) is a platinum based standard antineoplastic drug which is used against variety of solid tumors and neoplasms. The present study aimed to evaluate the shielding effects of rutin against CP induced testicular toxicity in rats. METHODS 28 male rats were divided into four groups. First group was given saline orally while second group received intra-peritoneal (i.p) injection of cisplatin (7 mg/kg) on day first and received saline for next 13 days. Third group received i.p injection of cisplatin at day one and treated with rutin (75 mg/kg) orally for next 13 days. Fourth group was treated with rutin orally for 13 days. Animals were sacrificed on 14th day and reproductive organs were analyzed for various parameters. RESULTS Cisplatin treatment resulted in a significant decrease in daily sperm production, decrease in head length and % DNA in head, reduction of epithelial cell height, tubular diameter, reduction of the number of spermatogonia, spermatocytes and spermatids, increase in the thiobarbituric acid reactive substances (TBARS) and oxidative stress in testicular tissues, and change of the intra-testicular testosterone concentrations. Rutin co-treatment resulted in reversing cisplatin effect on DNA damage, sperm count, histological and biochemical parameters. CONCLUSION These results indicated that rutin co-treatment could ameliorate cisplatin-induced reproductive toxicity in male rats.
Collapse
Affiliation(s)
- Sarwat Jahan
- Reproductive physiology laboratory, Department of animal sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asma Munawar
- Reproductive physiology laboratory, Department of animal sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suhail Razak
- Reproductive physiology laboratory, Department of animal sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sara Anam
- Reproductive physiology laboratory, Department of animal sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qurat Ul Ain
- Reproductive physiology laboratory, Department of animal sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hizb Ullah
- Reproductive physiology laboratory, Department of animal sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Biochemistry, Faculty of Biological SciencesQuaid-i-Azam University, Islamabad, Pakistan
| | - Mahmoud Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|