1
|
Naylor CN, Nagy G. Determining β-Monosaccharide Head Group Composition with High-Resolution Cyclic Ion Mobility Separations Coupled to Tandem Mass Spectrometry as a First Step for Unknown Cerebroside Analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2025; 514:117459. [PMID: 40365272 PMCID: PMC12068839 DOI: 10.1016/j.ijms.2025.117459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Cerebrosides, a class of biologically important lipids, are comprised of a monosaccharide head group along with their ceramide tail. However, their accurate characterization is challenging because of the isomerism in both the tail, from potential double bond positioning, or in the head from monosaccharide composition and αβ anomericity. In this work, we focused on tackling the identification of the β-monosaccharide head group, as either glucose or galactose, in various cerebroside isomers as well as demonstrating how our methodology could be applied to unknowns found in a porcine extract. To achieve this, we performed collision-induced dissociation prior to cyclic ion mobility separations to generate monosaccharide fragment ions from the starting cerebroside precursor ions. With this pre-cIMS CID approach, we observed that the cIMS separations of the fragment ions were diagnostic of the β-monosaccharide head group composition (i.e., glucose versus galactose), regardless of the ceramide tail length. From there, we demonstrated an example of how this methodology could also be applied to cerebrosides found in a porcine extract and a framework for how this approach could be added to existing workflows in developing collision cross section databases. Overall, we envision that our developed pre-cIMS CID-based approach will be a complementary and orthogonal tool to existing ones in glycolipidomics workflows.
Collapse
Affiliation(s)
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Felippe TVD, Toro DM, de Carvalho JCS, Nobre-Azevedo P, Rodrigues LFM, Oliveira BTM, da Silva-Neto PV, Vilela AFL, Almeida F, Faccioli LH, Sorgi CA. High-resolution targeted mass spectrometry for comprehensive quantification of sphingolipids: clinical applications and characterization of extracellular vesicles. Anal Biochem 2025; 698:115732. [PMID: 39622401 DOI: 10.1016/j.ab.2024.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Sphingolipids (SL), a class of membrane lipids, play important roles in numerous biological processes. Their significant structural diversity poses challenges for accurate quantification. To address this, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for sphingolipidomics, capable of profiling these lipids comprehensively. In this study, we utilized LC-MS/MS with high-resolution mass spectrometry (MRMHR) to develop a targeted method for the identification and quantification of various SL species. This method, based on validated parameters such as precursor/fragment ions (m/z) and retention time, demonstrated high sensitivity and accuracy, successfully identifying SL species across 12 distinct classes. Its open-panel design also facilitates the analysis of new SL-species targets. Notably, using this approach, we identified 40 SL species in plasma samples from COVID-19 patients, and we determined the influence of matrix metalloproteinase-3 (MMP-3) expression on the positive downstream of SL metabolism. Beyond plasma analysis, this method has potential applications in other biomedical contexts, such as extracellular vesicles (EVs), describing the cargo of sphingosine-1-phosphate (S1P) on macrophage-derived EVs. The establishment of this targeted workflow enabling precise quantification of a wide range of SL species, holds promise for identifying novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thiago V D Felippe
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Diana M Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Jonatan C S de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Pedro Nobre-Azevedo
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Luiz F M Rodrigues
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Bianca T M Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Pedro V da Silva-Neto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil
| | - Adriana F L Vilela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil
| | - Carlos A Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-901, SP, Brazil; Programa de Pós-Graduação em Imunologia Básica e Aplicada - PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas - UFAM, Manaus, 69080-900, AM, Brazil; Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo-USP, Ribeirão Preto, 14049-900, SP, Brazil; Centro de Excelência em Quantificação e Identificação de Lipídios (CEQIL), Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP, Universidade de São Paulo-USP, Ribeirão Preto, 14040-903, SP, Brazil.
| |
Collapse
|
3
|
Anh NK, Thu NQ, Tien NTN, Long NP, Nguyen HT. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024; 29:5934. [PMID: 39770023 PMCID: PMC11677340 DOI: 10.3390/molecules29245934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings. Nevertheless, challenges persist in areas such as sample collection, quantification, quality control, and data interpretation. This review summarizes recent advances in targeted metabolomics and lipidomics, emphasizing their applications in clinical research. Advancements, including microsampling, dynamic multiple reaction monitoring, and integration of ion mobility mass spectrometry, are highlighted. Additionally, the review discusses the critical importance of data standardization and harmonization for successful clinical implementation.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
4
|
Osinuga A, González Solís A, Cahoon RE, Alsiyabi A, Cahoon EB, Saha R. Deciphering sphingolipid biosynthesis dynamics in Arabidopsis thaliana cell cultures: Quantitative analysis amid data variability. iScience 2024; 27:110675. [PMID: 39297170 PMCID: PMC11409011 DOI: 10.1016/j.isci.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we obtained data with notable variations and developed a regularized and constraint-based dynamic metabolic flux analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Despite challenges posed by data variability, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna González Solís
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
5
|
Li X, Tian S, Riezman I, Qin Y, Riezman H, Feng S. A sensitive, expandable AQC-based LC-MS/MS method to measure amino metabolites and sphingolipids in cell and serum samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1245:124256. [PMID: 39094252 DOI: 10.1016/j.jchromb.2024.124256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Sphingolipids are a major lipid species found in all eukaryotes. Among structurally complex and diversified lipids, sphingoid bases have been heavily linked to various metabolic diseases. However, most current LC-MS-based methods lack the sensitivity to detect low-abundant sphingoid bases. The 6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization reagent, which efficiently forms covalent bonds with amino groups, has been widely used for amino acid detection. Nevertheless, the commonly used reverse-phase HPLC method for amino acid analysis is not suitable for amphipathic sphingolipids. To address this issue, we report a robust reverse-phase HPLC-MS/MS method capable of separating and detecting hydrophilic amino acids and sphingoid bases in a single run with high sensitivity. This method is also inclusive of other amino metabolites with an expandable target list. We tested this method under various conditions and samples, demonstrating its high reproducibility and sensitivity. Using this approach, we systematically analyzed human serum samples from healthy individuals, dyslipidemia, and type II diabetes mellitus (T2DM) patients, respectively. Two sphingolipids and five amino acids were identified with significant differences between the control and T2DM groups, highlighting the potential of this method in clinical studies.
Collapse
Affiliation(s)
- Xiaotian Li
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwei Tian
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 71000, Shanxi, China
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, CH-1206, Switzerland
| | - Yujiao Qin
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, CH-1206, Switzerland
| | - Suihan Feng
- Lipid Metabolism and Chemical Biology Unit, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
6
|
Timm T, Hild C, Liebisch G, Rickert M, Lochnit G, Steinmeyer J. Functional Insights into the Sphingolipids C1P, S1P, and SPC in Human Fibroblast-like Synoviocytes by Proteomic Analysis. Int J Mol Sci 2024; 25:8363. [PMID: 39125932 PMCID: PMC11313292 DOI: 10.3390/ijms25158363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The (patho)physiological function of the sphingolipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and sphingosylphosphorylcholine (SPC) in articular joints during osteoarthritis (OA) is largely unknown. Therefore, we investigated the influence of these lipids on protein expression by fibroblast-like synoviocytes (FLSs) from OA knees. Cultured human FLSs (n = 7) were treated with 1 of 3 lipid species-C1P, S1P, or SPC-IL-1β, or with vehicle. The expression of individual proteins was determined by tandem mass tag peptide labeling followed by high-resolution electrospray ionization (ESI) mass spectrometry after liquid chromatographic separation (LC-MS/MS/MS). The mRNA levels of selected proteins were analyzed using RT-PCR. The 3sphingolipids were quantified in the SF of 18 OA patients using LC-MS/MS. A total of 4930 proteins were determined using multiplex MS, of which 136, 9, 1, and 0 were regulated both reproducibly and significantly by IL-1β, C1P, S1P, and SPC, respectively. In the presence of IL-1ß, all 3 sphingolipids exerted ancillary effects. Only low SF levels of C1P and SPC were found. In conclusion, the 3 lipid species regulated proteins that have not been described in OA. Our results indicate that charged multivesicular body protein 1b, metal cation symporter ZIP14, glutamine-fructose-6-P transaminase, metallothionein-1F and -2A, ferritin, and prosaposin are particularly interesting proteins due to their potential to affect inflammatory, anabolic, catabolic, and apoptotic mechanisms.
Collapse
Affiliation(s)
- Thomas Timm
- Protein Analytics Group, Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christiane Hild
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rickert
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Guenter Lochnit
- Protein Analytics Group, Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Juergen Steinmeyer
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
7
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Nandangiri R, T N S, Raj AK, Lokhande KB, Khunteta K, Hebale A, Kothari H, Patel V, Sarode SC, Sharma NK. Secretion of Sphinganine by Drug-Induced Cancer Cells and Modified Mimetic Sphinganine (MMS) as c-Src Kinase Inhibitor. Asian Pac J Cancer Prev 2024; 25:433-446. [PMID: 38415528 PMCID: PMC11077104 DOI: 10.31557/apjcp.2024.25.2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Cancer cells exhibit selective metabolic reprogramming to promote proliferation, invasiveness, and metastasis. Sphingolipids such as sphingosine and sphinganine have been reported to modulate cell death processes in cancer cells. However, the potential of extracellular sphinganine and its mimetic compounds as inducers of cancer cell death has not been thoroughly investigated. METHODS We obtained extracellular conditioned medium from HCT-116 cells treated with the previously reported anticancer composition, goat urine DMSO fraction (GUDF). The extracellular metabolites were purified using a novel and in-house developed vertical tube gel electrophoresis (VTGE) technique and identified through LC-HRMS. Extracellular metabolites such as sphinganine, sphingosine, C16 sphinganine, and phytosphingosine were screened for their inhibitory role against intracellular kinases using molecular docking. Molecular dynamics (MD) simulations were performed to study the inhibitory potential of a novel designed modified mimetic sphinganine (MMS) (Pubchem CID: 162625115) upon c-Src kinase. Furthermore, inhibitory potential and ADME profile of MMS was compared with luteolin, a known c-Src kinase inhibitor. RESULTS Data showed accumulation of sphinganine and other sphingolipids such as C16 sphinganine, phytosphingosine, and ceramide (d18:1/14:0) in the extracellular compartment of GUDF-treated HCT-116 cells. Molecular docking projected c-Src kinase as an inhibitory target of sphinganine. MD simulations projected MMS with strong (-7.1 kcal/mol) and specific (MET341, ASP404) binding to the inhibitory pocket of c-Src kinase. The projected MMS showed comparable inhibitory role and acceptable ADME profile over known inhibitors. CONCLUSION In summary, our findings highlight the significance of extracellular sphinganine and other sphingolipids, including C16 sphinganine, phytosphingosine, and ceramide (d18:1/14:0), in the context of drug-induced cell death in HCT-116 cancer cells. Furthermore, we demonstrated the importance of extracellular sphinganine and its modified mimetic sphinganine (MMS) as a potential inhibitor of c-Src kinase. These findings suggest that MMS holds promise for future applications in targeted and combinatorial anticancer therapy.
Collapse
Affiliation(s)
- Rasika Nandangiri
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Seethamma T N
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Ajay Kumar Raj
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Kiran B. Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India.
| | - Kratika Khunteta
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Ameya Hebale
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Haet Kothari
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Vaidehi Patel
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| |
Collapse
|
9
|
Grasso G, Sommella EM, Merciai F, Abouhany R, Shinde SA, Campiglia P, Sellergren B, Crescenzi C. Enhanced selective capture of phosphomonoester lipids enabling highly sensitive detection of sphingosine 1-phosphate. Anal Bioanal Chem 2023; 415:6573-6582. [PMID: 37736841 PMCID: PMC10567913 DOI: 10.1007/s00216-023-04937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Sphingolipids play crucial roles in cellular membranes, myelin stability, and signalling responses to physiological cues and stress. Among them, sphingosine 1-phosphate (S1P) has been recognized as a relevant biomarker for neurodegenerative diseases, and its analogue FTY-720 has been approved by the FDA for the treatment of relapsing-remitting multiple sclerosis. Focusing on these targets, we here report three novel polymeric capture phases for the selective extraction of the natural biomarker and its analogue drug. To enhance analytical performance, we employed different synthetic approaches using a cationic monomer and a hydrophobic copolymer of styrene-DVB. Results have demonstrated high affinity of the sorbents towards S1P and fingolimod phosphate (FTY-720-P, FP). This evidence proved that lipids containing phosphate diester moiety in their structures did not constitute obstacles for the interaction of phosphate monoester lipids when loaded into an SPE cartridge. Our suggested approach offers a valuable tool for developing efficient analytical procedures.
Collapse
Affiliation(s)
- Giuliana Grasso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Eduardo M Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Rahma Abouhany
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Sudhirkumar A Shinde
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
- School of Consciousness, Dr. Vishwanath Karad MIT World Peace University, 411038, Pune, India
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Börje Sellergren
- Biofilm Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 23014, Malmö, Sweden
| | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
10
|
Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med 2023; 55:1110-1130. [PMID: 37258585 PMCID: PMC10318102 DOI: 10.1038/s12276-023-01018-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.
Collapse
Affiliation(s)
- Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
11
|
Kovilakath A, Wohlford G, Cowart LA. Circulating sphingolipids in heart failure. Front Cardiovasc Med 2023; 10:1154447. [PMID: 37229233 PMCID: PMC10203217 DOI: 10.3389/fcvm.2023.1154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Lack of significant advancements in early detection and treatment of heart failure have precipitated the need for discovery of novel biomarkers and therapeutic targets. Over the past decade, circulating sphingolipids have elicited promising results as biomarkers that premonish adverse cardiac events. Additionally, compelling evidence directly ties sphingolipids to these events in patients with incident heart failure. This review aims to summarize the current literature on circulating sphingolipids in both human cohorts and animal models of heart failure. The goal is to provide direction and focus for future mechanistic studies in heart failure, as well as pave the way for the development of new sphingolipid biomarkers.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - George Wohlford
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Richmond Veteran's Affairs Medical Center, Richmond, VA, United States
| |
Collapse
|
12
|
Unveiling metabolome heterogeneity and new chemicals in 7 tomato varieties via multiplex approach of UHPLC-MS/MS, GC-MS, and UV-Vis in relation to antioxidant effects as analyzed using molecular networking and chemometrics. Food Chem 2023; 417:135866. [PMID: 36913868 DOI: 10.1016/j.foodchem.2023.135866] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/21/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Tomatoes show diverse phytochemical attributes that contribute to their nutritive and health values. This study comprehensively dissects primary and secondary metabolite profiles of seven tomato varieties. UHPLC-qTOF-MS assisted molecular networking was used to monitor 206 metabolites, 30 of which were first-time to be reported. Flavonoids, as valuable antioxidants, were enriched in light-colored tomatoes (golden sweet, sun gold, and yellow plum) versus high tomatoside A, an antihyperglycemic saponin, in cherry bomb and red plum varieties. UV-Vis analysis revealed similar results with a strong absorbance corresponding to rich phenolic content in light varieties. GC-MS unveiled monosaccharides as the main contributors to samples' segregation, found abundant in San Marzano tomato accounting for its sweet flavor. Fruits also demonstrated potential antioxidant activities in correlation to their flavonoids and phospholipids. This work provides a complete map of tomatoes' metabolome heterogeneity for future breeding programs and a comparative approach utilizing different metabolomic platforms for tomato analysis.
Collapse
|
13
|
Comparison of Workflows for Milk Lipid Analysis: Phospholipids. Foods 2022; 12:foods12010163. [PMID: 36613379 PMCID: PMC9818897 DOI: 10.3390/foods12010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Milk is a rich source of lipids, with the major components being triglycerides (TAG) and phospholipids (mainly phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI)). Liquid chromatography-mass spectrometry (LC-MS) is the predominant technique for lipid identification and quantification across all biological samples. While fatty acid (FA) composition of the major lipid classes of milk can be readily determined using tandem MS, elucidating the regio-distribution and double bond position of the FA remains difficult. Various workflows have been reported on the quantification of lipid species in biological samples in the past 20 years, but no standard or consensus methods are currently available for the quantification of milk phospholipids. This study will examine the influence of several common factors in lipid analysis workflow (including lipid extraction protocols, LC stationary phases, mobile phase buffers, gradient elution programmes, mass analyser resolution and isotope correction) on the quantification outcome of bovine milk phospholipids. The pros and cons of the current LC-MS methods as well as the critical problems to be solved will also be discussed.
Collapse
|
14
|
Wang D, Ho ES, Cotticelli MG, Xu P, Napierala JS, Hauser LA, Napierala M, Himes BE, Wilson RB, Lynch DR, Mesaros C. Skin fibroblast metabolomic profiling reveals that lipid dysfunction predicts the severity of Friedreich's ataxia. J Lipid Res 2022; 63:100255. [PMID: 35850241 PMCID: PMC9399481 DOI: 10.1016/j.jlr.2022.100255] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a triplet guanine-adenine-adenine (GAA) repeat expansion in intron 1 of the FXN gene, which leads to decreased levels of the frataxin protein. Frataxin is involved in the formation of iron-sulfur (Fe-S) cluster prosthetic groups for various metabolic enzymes. To provide a better understanding of the metabolic status of patients with FRDA, here we used patient-derived fibroblast cells as a surrogate tissue for metabolic and lipidomic profiling by liquid chromatography-high resolution mass spectrometry. We found elevated HMG-CoA and β-hydroxybutyrate-CoA levels, implying dysregulated fatty acid oxidation, which was further demonstrated by elevated acyl-carnitine levels. Lipidomic profiling identified dysregulated levels of several lipid classes in FRDA fibroblast cells when compared with non-FRDA fibroblast cells. For example, levels of several ceramides were significantly increased in FRDA fibroblast cells; these results positively correlated with the GAA repeat length and negatively correlated with the frataxin protein levels. Furthermore, stable isotope tracing experiments indicated increased ceramide synthesis, especially for long-chain fatty acid-ceramides, in FRDA fibroblast cells compared with ceramide synthesis in healthy control fibroblast cells. In addition, PUFA-containing triglycerides and phosphatidylglycerols were enriched in FRDA fibroblast cells and negatively correlated with frataxin levels, suggesting lipid remodeling as a result of FXN deficiency. Altogether, we demonstrate patient-derived fibroblast cells exhibited dysregulated metabolic capabilities, and their lipid dysfunction predicted the severity of FRDA, making them a useful surrogate to study the metabolic status in FRDA.
Collapse
Affiliation(s)
- Dezhen Wang
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elaine S Ho
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peining Xu
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill S Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Lauren A Hauser
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Marek Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, Birmingham, Alabama, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David R Lynch
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research, Philadelphia, Pennsylvania, USA
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
15
|
GOLM1 depletion modifies cellular sphingolipid metabolism and adversely affects cell growth. J Lipid Res 2022; 63:100259. [PMID: 35948172 PMCID: PMC9475319 DOI: 10.1016/j.jlr.2022.100259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Golgi membrane protein 1 (GOLM1) is a Golgi-resident type 2 transmembrane protein known to be overexpressed in several cancers, including hepatocellular carcinoma (HCC), as well as in viral infections. However, the role of GOLM1 in lipid metabolism remains enigmatic. In this study, we employed siRNA-mediated GOLM1 depletion in Huh-7 HCC cells to study the role of GOLM1 in lipid metabolism. Mass spectrometric lipidomic analysis in GOLM1 knockdown cells showed an aberrant accumulation of sphingolipids, such as ceramides, hexosylceramides, dihexosylceramides, sphinganine, sphingosine, and ceramide phosphate, along with cholesteryl esters. Furthermore, we observed a reduction in phosphatidylethanolamines and lysophosphatidylethanolamines. In addition, Seahorse extracellular flux analysis indicated a reduction in mitochondrial oxygen consumption rate upon GOLM1 depletion. Finally, alterations in Golgi structure and distribution were observed both by electron microscopy imaging and immunofluorescence microscopy analysis. Importantly, we found that GOLM1 depletion also affected cell proliferation and cell cycle progression in Huh-7 HCC cells. The Golgi structural defects induced by GOLM1 reduction might potentially affect the trafficking of proteins and lipids leading to distorted intracellular lipid homeostasis, which may result in organelle dysfunction and altered cell growth. In conclusion, we demonstrate that GOLM1 depletion affects sphingolipid metabolism, mitochondrial function, Golgi structure, and proliferation of HCC cells.
Collapse
|
16
|
Gallion LA, Wang Y, Massaro A, Yao M, Petersen BV, Zhang Q, Huang W, Carr AJ, Zhang Q, Allbritton NL. "Fix and Click" for Assay of Sphingolipid Signaling in Single Primary Human Intestinal Epithelial Cells. Anal Chem 2022; 94:1594-1600. [PMID: 35020354 PMCID: PMC8931668 DOI: 10.1021/acs.analchem.1c03503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Capillary electrophoresis with fluorescence detection (CE-F) is a powerful method to measure enzyme activation in single cells. However, cellular enzymatic assays used in CE-F routinely utilize reporter substrates that possess a bulky fluorophore that may impact enzyme kinetics. To address these challenges, we describe a "fix and click" method utilizing an alkyne-terminated enzyme activation reporter, aldehyde-based fixation, and a click chemistry reaction to attach a fluorophore prior to analysis by single-cell CE-F. The "fix and click" strategy was utilized to investigate sphingolipid signaling in both immortalized cell lines and primary human colonic epithelial cells. When the sphingosine alkyne reporter was loaded into cells, this reporter was metabolized to ceramide (31.6 ± 3.3% peak area) without the production of sphingosine-1-phosphate. In contrast, when the reporter sphingosine fluorescein was introduced into cells, sphingosine fluorescein was converted to sphingosine-1-phosphate and downstream products (32.8 ± 5.7% peak area) without the formation of ceramide. Sphingolipid metabolism was measured in single cells from both differentiated and stem/proliferative human colonic epithelium using "fix and click" paired with CE-F to highlight the diversity of sphingosine metabolism in single cells from primary human colonic epithelium. This novel method will find widespread utility for the performance of single-cell enzyme assays by virtue of its ability to temporally and spatially separate cellular reactions with alkyne-terminated reporters, followed by the assay of enzyme activation at a later time and place.
Collapse
Affiliation(s)
- Luke A. Gallion
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27514, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Angelo Massaro
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Brae V. Petersen
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Quanzheng Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Chapel Hill, North Carolina, 27514, United States of America
| | - Weigang Huang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Chapel Hill, North Carolina, 27514, United States of America
| | - Adam J. Carr
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Chapel Hill, North Carolina, 27514, United States of America
| | - Qisheng Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Chapel Hill, North Carolina, 27514, United States of America
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| |
Collapse
|
17
|
Bioinformatics in Lipidomics: Automating Large-Scale LC-MS-Based Untargeted Lipidomics Profiling with SimLipid Software. Methods Mol Biol 2021. [PMID: 34786685 DOI: 10.1007/978-1-0716-1822-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) provides one of the most popular platforms for untargeted plant lipidomics analysis (Shulaev and Chapman, Biochim Biophys Acta 1862(8):786-791, 2017; Rupasinghe and Roessner, Methods Mol Biol 1778:125-135, 2018; Welti et al., Front Biosci 12:2494-506, 2007; Shiva et al., Plant Methods 14:14, 2018). We have developed SimLipid software in order to streamline the analysis of large-volume datasets generated by LC-MS-based untargeted lipidomics methods. SimLipid contains a customizable library of lipid species; graphical user interfaces (GUIs) for visualization of raw data; the identified lipid molecules and their associated mass spectra annotated with fragment ions and parent ions; and detailed information of each identified lipid species all in a single workbench enabling users to rapidly review the results by examining the data for confident identifications of lipid molecular species. In this chapter, we present the functionality of the software and workflow for automating large-scale LC-MS-based untargeted lipidomics profiling.
Collapse
|
18
|
Otify AM, Hammam AMM, Aly Farag M. Phoenix dactylifera L. date tree pollen fertility effects on female rats in relation to its UPLC-MS profile via a biochemometric approach. Steroids 2021; 173:108888. [PMID: 34237316 DOI: 10.1016/j.steroids.2021.108888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/04/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
Date palm (Phoenix dactylifera L.) is among the most ancient cultivated crops, of special value owing to its fruits high nutritive and economic benefits. Asides, date palm pollen is a high energy material that has been used traditionally used for fertility enhancement. In this study, effects of date palm pollen crude extract and its fractions viz., petroleum ether, methylene chloride, ethyl acetate and n-butanol on the female reproductive system were evaluated for the first time in relation to its metabolite fingerprint. Fertility activity was evaluated in immature female rats by assessing their FSH-, LH- and estrogen- activities. To pinpoint active hormonal agents in crude pollen extract and fractions, UPLC- MS analysis was employed for metabolites profiling, and in correlation to extract/fraction bioassays using multivariate OPLS analysis. Results revealed that both polar n-butanol and non-polar petroleum ether fractions exhibited the strongest activities; with a significant increase in FSH (25.7 mIU/ml in n-butanol group), estradiol (414.7 pg/ml in petroleum ether group) and progesterone levels (122.4 pg/ml in n-butanol group). Correlation between UPLC-MS and fraction bioassays was attempted using multivariate OPLS analysis to reveal for bioactive hits in these fractions. This study provides the first report on the fertility effect of date palm pollen in female rats and in relation to its metabolite fingerprint.
Collapse
Affiliation(s)
- Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | - Mohamed Aly Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
19
|
Glycosphingolipids with Very Long-Chain Fatty Acids Accumulate in Fibroblasts from Adrenoleukodystrophy Patients. Int J Mol Sci 2021; 22:ijms22168645. [PMID: 34445349 PMCID: PMC8395492 DOI: 10.3390/ijms22168645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022] Open
Abstract
Adrenoleukodystrophy (X-ALD) is an X-linked genetic disorder caused by mutation of the ATP-binding cassette subfamily D member 1 gene, which encodes the peroxisomal membrane protein, adrenoleukodystrophy protein (ALDP). ALDP is associated with the transport of very-long-chain fatty acids (VLCFAs; carbon chain length ≥ 24) into peroxisomes. Defective ALDP leads to the accumulation of saturated VLCFAs in plasma and tissues, which results in damage to myelin and the adrenal glands. Here, we profiled the glycosphingolipid (GSL) species in fibroblasts from X-ALD patients. Quantitative analysis was performed using liquid chromatography–electrospray ionization–tandem mass spectrometry with a chiral column in multiple reaction monitoring (MRM) mode. MRM transitions were designed to scan for precursor ions of long-chain bases to detect GSLs, neutral loss of hexose to detect hexosylceramide (HexCer), and precursor ions of phosphorylcholine to detect sphingomyelin (SM). Our results reveal that levels of C25 and C26-containing HexCer, Hex2Cer, NeuAc-Hex2Cer, NeuAc-HexNAc-Hex2Cer, Hex3Cer, HexNAc-Hex3Cer, and SM were elevated in fibroblasts from X-ALD patients. In conclusion, we precisely quantified SM and various GSLs in fibroblasts from X-ALD patients and determined structural information of the elevated VLCFA-containing GSLs.
Collapse
|
20
|
Chao HC, McLuckey SA. In-Depth Structural Characterization and Quantification of Cerebrosides and Glycosphingosines with Gas-Phase Ion Chemistry. Anal Chem 2021; 93:7332-7340. [PMID: 33957046 DOI: 10.1021/acs.analchem.1c01021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cerebrosides (n-HexCer) and glycosphingosines (n-HexSph) constitute two sphingolipid subclasses. Both are comprised of a monosaccharide headgroup (glucose or galactose in mammalian cells) linked via either an α- or β-glycosidic linkage to the sphingoid backbone (n = α or β, depending upon the nature of the linkage to the anomeric carbon of the sugar). Cerebrosides have an additional amide-bonded fatty acyl chain linked to the sphingoid backbone. While differentiating the multiple isomers (i.e. glucose vs galactose, α- vs β-linkage) is difficult, it is crucial for understanding their specific biological roles in health and disease states. Shotgun tandem mass spectrometry has been a powerful tool in both lipidomics and glycomics analysis but is often limited in its ability to distinguish isomeric species. This work describes a new strategy combining shotgun tandem mass spectrometry with gas-phase ion chemistry to achieve both differentiation and quantification of isomeric cerebrosides and glycosphingosines. Briefly, deprotonated cerebrosides, [n-HexCer-H]-, or glycosphingosines, [n-HexSph-H]-, are reacted with terpyridine (Terpy) magnesium complex dications, [Mg(Terpy)2]2+, in the gas phase to produce a charge-inverted complex cation, [n-HexCer-H+MgTerpy]+ or [n-HexSph-H+MgTerpy]+. The collision-induced dissociation (CID) of the charge-inverted complex cations leads to significant spectral differences between the two groups of isomers, α-GalCer, β-GlcCer, and β-GalCer for cerebrosides and α-GlcSph, α-GalSph, β-GlcSph, and β-GalSph for glycosphingosines, which allows for isomer distinction. Moreover, we describe a quantification strategy with the normalized percent area extracted from selected diagnostic ions that quantify either three isomeric cerebroside or four isomeric glycosphingosine mixtures. The analytical performance was also evaluated in terms of accuracy, repeatability, and interday precision. Furthermore, CID of the product ions resulting from 443 Da loss from the charge-inverted complex cations ([n-HexCer-H+MgTerpy]+) has been performed and demonstrated for localization of the double-bond position on the amide-bonded monounsaturated fatty acyl chain in the cerebroside structure. The proposed strategy was successfully applied to the analysis of total cerebroside extracts from the porcine brain, providing in-depth structural information on cerebrosides from a biological mixture.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Begou OA, Deda O, Karagiannidis E, Sianos G, Theodoridis G, Gika HG. Development and validation of a RPLC-MS/MS method for the quantification of ceramides in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122734. [PMID: 33991953 DOI: 10.1016/j.jchromb.2021.122734] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Ceramides are key-role lipids involved in numerous central cellular processes. A plethora of studies have demonstrated that the levels of ceramides in blood circulation are related to different disease states, such as type 2 diabetes, cardiovascular diseases, ovarian cancer, multiple sclerosis and others. Herein, a RPLC-MS/MS method for the rapid quantification of ceramides Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and Cer(d18:1/24:1) in human blood serum was developed and validated. Different sample preparation strategies including SLE, LLE and QuECheRS were tested with the aim to attain effective, accurate and reproducible determination of ceramides in serum samples. Intra and inter-day accuracy were found to be between 80.0-111% and 87.8-106%, respectively, for all ceramides, while intra and inter-day precision were found to vary from 0.05% to 10.2% %RSD and 2.2% to 14.0% %RSD, respectively. The lower limits of quantification were 2.3 ng/mL for Cer(d18:1/16:0) and Cer(d18:1/18:0) and 1.4 ng/mL for Cer(d18:1/24:0) and Cer(d18:1/24:1). The method was evaluated in accordance to bioanalytical method guidelines and was used for the determination of serum ceramides of patients with coronary artery disease to evaluate its utility in clinical analyses.
Collapse
Affiliation(s)
- Olga Angeliki Begou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece.
| | - Olga Deda
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece.
| | - Georgios Sianos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece.
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece.
| | - Helen G Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; Laboratory of Forensic Medicine & Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| |
Collapse
|
22
|
Qualitative distribution of endogenous phosphatidylcholine and sphingomyelin in serum using LC-MS/MS based profiling. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122289. [PMID: 32771970 DOI: 10.1016/j.jchromb.2020.122289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
Abstract
PCs and SMs are the major types of glycerophospholipids and sphingophospholipids, the two main categories of phospholipids (PLs). To study the qualitative distribution of serum phosphatidylcholine (PC) and sphingomyelin (SM) in human and three rodent species, liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap-MS/MS) was used to identify them comprehensively through the accurate mass measurement of both precursor ions and their corresponding product ions. Based on the fragmentation rules of standards, the product ions at m/z 184.0733 were filtered to maximally screen possible PC and SM molecules. For PC, the fatty acid at sn-1 and sn-2 of the glycerol backbone was identified based on the product ions in negative mode. A total of 91 PCs and 31 SMs molecular species, consisting of 166 PCs and 39 SMs regioisomers, were detected in human serum, which is the most comprehensive identification of PC and SM species in serum. The qualitative distributions of PC in rat and SM in golden hamster, respectively, were more similar with that of human from an overall perspective. Those results provided guidance regarding to the animal model selection for mimicking lipid related-syndromes or diseases in human.
Collapse
|
23
|
Chao HC, McLuckey SA. Differentiation and Quantification of Diastereomeric Pairs of Glycosphingolipids Using Gas-Phase Ion Chemistry. Anal Chem 2020; 92:13387-13395. [PMID: 32883073 PMCID: PMC7544660 DOI: 10.1021/acs.analchem.0c02755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycosphingolipids (GSLs), including lyso-glycosphingolipids (lyso-GSLs) and cerebrosides (HexCer), constitute a sphingolipid subclass. The diastereomerism between their monosaccharide head groups, glucose and galactose in mammalian cells, gives rise to an analytical challenge in the differentiation of their biological roles in healthy and disease states. Shotgun tandem mass spectrometry has been demonstrated to be a powerful tool in lipidomics analysis in which the differentiation of the diastereomeric pairs of GSLs could be achieved with offline chemical modifications. However, the limited number of standards, as well as the lack of the comprehensive coverage of the GSLs, complicates the qualitative and quantitative analysis of GSLs. In this work, we describe a novel strategy that couples shotgun tandem mass spectrometry with gas-phase ion chemistry to achieve both differentiation and quantification of the diastereomeric pairs of GSLs. In brief, deprotonated GSL anions, [GSL-H]-, and terpyridine-magnesium complex dications, [Mg(Terpy)2]2+, are sequentially injected and mutually stored in a linear ion trap to form charge-inverted complex cations, [GSL-H + MgTerpy]+. The collision-induced dissociation of the charge-inverted complex cations leads to significant spectral differences between the diastereomeric pairs of GSLs, which permits their distinction. Moreover, we describe a relative quantification strategy with the normalized %Area extracted from selected diagnostic ions in binary mixtures. Analytical performance with the selected pure-component pairs, lyso-GSLs and HexCer(d18:1/18:0), was also evaluated in terms of accuracy, repeatability, and interday precision. The pure components could be extended to different fatty acyl chains on cerebrosides with a limited error, which allows for the relative quantitation of the diastereomeric pairs without all standards. We successfully applied the presented method to identify and quantify, on a relative basis, the GSLs in commercially available total cerebroside extracts from the porcine brain.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Fujiwara Y, Hama K, Yokoyama K. Mass spectrometry in combination with a chiral column and multichannel-MRM allows comprehensive analysis of glycosphingolipid molecular species from mouse brain. Carbohydr Res 2020; 490:107959. [PMID: 32120021 DOI: 10.1016/j.carres.2020.107959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022]
Abstract
Glycosphingolipids (GSLs) exist exclusively in the outer leaflet of plasma membrane in mammalian cells and have diverse structures including different classes of sugars and various molecular species of ceramide moieties. Establishing methods that measure each molecular species in GSL classes should aid functional characterization of GSLs and reveal details about the mechanism of pathogenesis in glycosphingolipidoses. Using an IF-3 chiral column that has never been used for lipid analyses, we developed a liquid chromatography-mass spectrometry (LC-MS) method to separate various GSLs based on sugar and ceramide moieties. To examine GSLs in detail a multichannel-multiple reaction monitoring (multichannel-MRM) mode was used and covered a range of 500-2000 Da. Common fragment ions detected with higher collision energy in the positive ion mode were m/z 264 and 292, and are derived from d18:1 and d20:1 ions, respectively. Both species were used as product ions in the multichannel-MRM for the simultaneous measurement of neutral GSLs, gangliosides and sulfatides. Comprehensive analysis of GSLs in mouse brain using this method revealed that for gangliosides and LacCer, d18:1-C18:0 and d20:1-C18:0 were the major molecular species, whereas d18:1-C24:0 and d18:1-C24:1 were the major molecular species of sulfatides. The results revealed a diverse GSL fatty acid profile. In conclusion, by combining IF-3 chiral column and the multichannel-MRM method various molecular species of GSLs were detected successfully, and a metabolomics approach based on this LC-MS method should facilitate functional analysis of GSLs and the discovery of early biomarkers of glycosphingolipidoses at the molecular level.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Kotaro Hama
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
25
|
Buechler C, Aslanidis C. Role of lipids in pathophysiology, diagnosis and therapy of hepatocellular carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158658. [PMID: 32058031 DOI: 10.1016/j.bbalip.2020.158658] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and widespread cancer. Patients with liver cirrhosis of different aetiologies are at a risk to develop HCC. It is important to know that in approximately 20% of cases primary liver tumors arise in a non-cirrhotic liver. Lipid metabolism is variable in patients with chronic liver diseases, and lipid metabolites involved therein do play a role in the development of HCC. Of note, lipid composition of carcinogenic tissues differs from non-affected liver tissues. High cholesterol and low ceramide levels in the tumors protect the cells from oxidative stress and apoptosis, and do also promote cell proliferation. So far, detailed characterization of the mechanisms by which lipids enable the development of HCC has received little attention. Evaluation of the complex roles of lipids in HCC is needed to better understand the pathophysiology of HCC, the later being of paramount importance for the development of urgently needed therapeutic interventions. Disturbed hepatic lipid homeostasis has systemic consequences and lipid species may emerge as promising biomarkers for early diagnosis of HCC. The challenge is to distinguish lipids specifically related to HCC from changes simply related to the underlying liver disease. This review article discusses aberrant lipid metabolism in patients with HCC.
Collapse
Affiliation(s)
- Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| | - Charalampos Aslanidis
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
26
|
Otify AM, El-Sayed AM, Michel CG, Farag MA. Metabolites profiling of date palm (Phoenix dactylifera L.) commercial by-products (pits and pollen) in relation to its antioxidant effect: a multiplex approach of MS and NMR metabolomics. Metabolomics 2019; 15:119. [PMID: 31456052 DOI: 10.1007/s11306-019-1581-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Phoenix dactylifera L. (date palm) is one of the most valued crops worldwide for its economical and nutraceutical applications of its date fruit (pericarp). Currently date pits, considered as a waste product, is employed as coffee substitute post roasting. Whereas, pollen represents another valuable by-product used as a dietary supplement. OBJECTIVES In this study, a large-scale comparative metabolomics approach was performed for the first characterization and standardization of date palm by-products viz., date pits and pollen. Moreover, roasting impact on date pit metabolite composition was also assessed. METHODS Metabolites profiling of pits and pollen was determined via a multiplex approach of UPLC-MS and NMR, coupled to multivariate analysis, in relation to its antioxidant activities. RESULTS Chemical analyses led to the identification of 67 metabolites viz., phenolic acids, flavonols, fatty acids, sphingolipids, steroids and saponins of which 10 are first time to be reported. The enrichment of steroids in date pollen accounts for its fertility promoting properties, whereas date pit was found a rich source for antioxidant polyphenols using metabolomics.
Collapse
Affiliation(s)
- Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aly M El-Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Camilia G Michel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
27
|
Calvano CD, Ventura G, Sardanelli AM, Losito I, Palmisano F, Cataldi TRI. Identification of neutral and acidic glycosphingolipids in the human dermal fibroblasts. Anal Biochem 2019; 581:113348. [PMID: 31251925 DOI: 10.1016/j.ab.2019.113348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
Skin fibroblasts are recognized as a valuable model of primary human cells able of mirroring the chronological and biological aging. Here, a lipidomic study of glycosphingolipids (GSL) occurring in the easily accessible human dermal fibroblasts (HDF) is presented. Reversed-phase liquid chromatography with negative electrospray ionization (RPLC-ESI) coupled to either orbitrap or linear ion-trap multiple-stage mass spectrometry was applied to characterize GSL in commercially adult and neonatal primary human fibroblast cells and in skin samples taken from an adult volunteer. Collision-induced dissociation in negative ion mode allowed us to get information on the monosaccharide number and ceramide composition, whereas tandem mass spectra on the ceramide anion was useful to identify the sphingoid base. Nearly sixty endogenous GSL species were successfully recognized, namely 33 hexosyl-ceramides (i.e., HexCer, Hex2Cer and Hex3Cer) and 24 gangliosides as monosialic acid GM1, GM2 and GM3, along with 5 globosides Gb4. An average content of GSLs was attained and the most representative GSL in skin fibroblasts were Hex3Cer, also known as Gb3Cer, followed by Gb4, HexCer and Hex2Cer , while gangliosides were barely quantifiable. The most abundant GSLs in the examined cell lines share the same ceramide base (i.e. d18:1) and the relative content was d18:1/24:1 > d18:1/24:0 > d18:1/16:0 > d18:1/22:0.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Italy; Department of Medicine, Campus Bio-Medico University of Rome, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
28
|
Cho HE, Maurer BJ, Reynolds CP, Kang MH. Hydrophilic interaction liquid chromatography-tandem mass spectrometric approach for simultaneous determination of safingol and D-erythro-sphinganine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1112:16-23. [PMID: 30836314 DOI: 10.1016/j.jchromb.2019.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
A simple and specific hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method was developed for the simultaneous determination of C18-L-threo-sphinganine (safingol, an anti-neoplastic in phase I trials) and its diastereomer, C18-D-erythro-sphinganine (sphinganine), in human plasma. Sample pretreatment involved a protein precipitation with methanol using 25 μL aliquots of plasma. Chromatographic separation of the diastereomers and C17-D-erythro-sphinganine, an internal standard, was achieved on a Xbridge HILIC (3.5 μm, 100 × 2.1 mm) using isocratic elution with the mobile phase of 2 mM ammonium bicarbonate in water (pH 8.3) and acetonitrile at a flow rate of 0.3 mL/min. Electrospray ionization (ESI) mass spectrometry was operated in the positive ion mode with multiple reaction monitoring (MRM). The calibration curves obtained were linear over the concentration range of 0.2-100 ng/mL with a lower limit of quantification of 0.2 ng/mL. The relative standard deviation of intra-day and inter-day precision was below 8.27%, and the accuracy ranged from 92.23 to 110.06%. The extraction recoveries were found to be higher than 93.22% and IS-normalized matrix effect was higher than 90.92%. The analytes were stable for the durations of the stability studies. The validated method was successfully applied to the analyses of pharmacokinetic samples from patients treated with safingol and all-trans-N-(4-hydroxyphenyl)retinamide; (fenretinide, 4-HPR) in a current phase I clinical trial (SPOC-2010-002, ClinicalTrials.gov Identifier: NCT01553071).
Collapse
Affiliation(s)
- Hwang Eui Cho
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Barry J Maurer
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - C Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
29
|
Matanes F, Twal WO, Hammad SM. Sphingolipids as Biomarkers of Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:109-138. [DOI: 10.1007/978-3-030-21162-2_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
|
31
|
Sulfatide decreases the resistance to stress-induced apoptosis and increases P-selectin-mediated adhesion: a two-edged sword in breast cancer progression. Breast Cancer Res 2018; 20:133. [PMID: 30400820 PMCID: PMC6219063 DOI: 10.1186/s13058-018-1058-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Background We have previously shown that galactosylceramide (GalCer) affects the tumourigenic and metastatic properties of breast cancer cells by acting as an anti-apoptotic molecule. Since GalCer is a precursor molecule in the synthesis of sulfatides, the present study was aimed to define the role of sulfatides in apoptosis and breast cancer progression. Methods Expression of GAL3ST1 in breast cancer cell lines and breast cancer tissue specimens was analysed using real-time PCR, western blotting and immunohistochemistry analysis. The amount of sulfatide, GalCer and ceramide was analysed by thin-layer chromatography binding assay and by the modified hydrophilic interaction liquid chromatography coupled with electrospray mass spectrometry methodology. The tumourigenicity of cancer cells was analysed by an in-vivo tumour growth assay. Apoptotic cells were detected based on caspase-3 activation and the TUNEL assay. The interaction of breast cancer cells with P-selectin or E-selectin was analysed using the flow adhesion assay. The ability of sulfatide-expressing cells to activate and aggregate platelets was studied using the flow-cytometry-based aggregation assay. Results Using two models of breast cancer, T47D cells with blocked synthesis of sulfatide and MDA-MB-231 cells with neosynthesis of this glycosphingolipid, we showed that high sulfatide levels resulted in increased sensitivity of cancer cells to apoptosis induced by hypoxia and doxorubicin in vitro, and decreased their tumourigenicity after transplantation into athymic nu/nu mice. Accordingly, a clinical study on GAL3ST1 expression in invasive ductal carcinoma revealed that its elevated level is associated with better prognosis. Using MDA-MB-231 cells with neosynthesis of sulfatide we also showed that sulfatide is responsible for adhesion of breast cancer cells to P-selectin-expressing cells, including platelets. Sulfatide also acted as an activating molecule, increasing the expression of P-selectin. Conclusions This study demonstrates that increased synthesis of sulfatide sensitises cancer cells to microenvironmental stress factors such as hypoxia and anticancer drugs such as doxorubicin. However, sulfatide is probably not directly involved in apoptotic cascades, because its increased synthesis by GAL3ST1 decreased the amounts of its precursor, GalCer, a known anti-apoptotic molecule. On the other hand, our data support the view that sulfatides are malignancy-related adhesive molecules involved in activating and binding P-selectin-expressing platelets to breast cancer cells. Electronic supplementary material The online version of this article (10.1186/s13058-018-1058-z) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Yu D, Rupasinghe TW, Boughton BA, Natera SH, Hill CB, Tarazona P, Feussner I, Roessner U. A high-resolution HPLC-QqTOF platform using parallel reaction monitoring for in-depth lipid discovery and rapid profiling. Anal Chim Acta 2018; 1026:87-100. [DOI: 10.1016/j.aca.2018.03.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023]
|
33
|
Kindt A, Liebisch G, Clavel T, Haller D, Hörmannsperger G, Yoon H, Kolmeder D, Sigruener A, Krautbauer S, Seeliger C, Ganzha A, Schweizer S, Morisset R, Strowig T, Daniel H, Helm D, Küster B, Krumsiek J, Ecker J. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat Commun 2018; 9:3760. [PMID: 30218046 PMCID: PMC6138742 DOI: 10.1038/s41467-018-05767-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
Interactions between the gut microbial ecosystem and host lipid homeostasis are highly relevant to host physiology and metabolic diseases. We present a comprehensive multi-omics view of the effect of intestinal microbial colonization on hepatic lipid metabolism, integrating transcriptomic, proteomic, phosphoproteomic, and lipidomic analyses of liver and plasma samples from germfree and specific pathogen-free mice. Microbes induce monounsaturated fatty acid generation by stearoyl-CoA desaturase 1 and polyunsaturated fatty acid elongation by fatty acid elongase 5, leading to significant alterations in glycerophospholipid acyl-chain profiles. A composite classification score calculated from the observed alterations in fatty acid profiles in germfree mice clearly differentiates antibiotic-treated mice from untreated controls with high sensitivity. Mechanistic investigations reveal that acetate originating from gut microbial degradation of dietary fiber serves as precursor for hepatic synthesis of C16 and C18 fatty acids and their related glycerophospholipid species that are also released into the circulation.
Collapse
Affiliation(s)
- Alida Kindt
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333, Netherlands
| | - Gerhard Liebisch
- Institute of Clinical Chemistry, Universitätsklinikum Regensburg, Regensburg, 93053, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, Universitätsklinikum Aachen, Aachen, 52074, Germany.,ZIEL Institute for Food and Health, Technische Universität München (TUM), Freising, 85354, Germany
| | - Dirk Haller
- ZIEL Institute for Food and Health, Technische Universität München (TUM), Freising, 85354, Germany.,Ernährung und Immunologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Gabriele Hörmannsperger
- ZIEL Institute for Food and Health, Technische Universität München (TUM), Freising, 85354, Germany.,Ernährung und Immunologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Hongsup Yoon
- ZIEL Institute for Food and Health, Technische Universität München (TUM), Freising, 85354, Germany.,Ernährung und Immunologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Daniela Kolmeder
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Alexander Sigruener
- Institute of Clinical Chemistry, Universitätsklinikum Regensburg, Regensburg, 93053, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry, Universitätsklinikum Regensburg, Regensburg, 93053, Germany
| | - Claudine Seeliger
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Alexandra Ganzha
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Sabine Schweizer
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Rosalie Morisset
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Till Strowig
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Hannelore Daniel
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Dominic Helm
- Proteomics and Bioanalytics, Technische Universität München (TUM), Freising, 85354, Germany
| | - Bernhard Küster
- Proteomics and Bioanalytics, Technische Universität München (TUM), Freising, 85354, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany. .,German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany. .,Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, 10021, USA.
| | - Josef Ecker
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany.
| |
Collapse
|
34
|
Liu Z, Rochfort S, Cocks B. Milk lipidomics: What we know and what we don't. Prog Lipid Res 2018; 71:70-85. [DOI: 10.1016/j.plipres.2018.06.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
|
35
|
|
36
|
Montefusco DJ, Allegood JC, Spiegel S, Cowart LA. Non-alcoholic fatty liver disease: Insights from sphingolipidomics. Biochem Biophys Res Commun 2018; 504:608-616. [PMID: 29778532 DOI: 10.1016/j.bbrc.2018.05.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major clinical concern and its treatment consumes abundant resources. While accumulation of lipids in hepatocytes initiates the disease, this in itself is not necessarily harmful; rather, initiation of inflammation and subsequent fibrosis and cirrhosis are critical steps in NAFLD pathology. Mechanisms linking lipid overload to downstream disease progression are not fully understood; however, bioactive lipid metabolism may underlie instigation of proinflammatory signaling. With the advent of high-throughput, sensitive, and quantitative mass spectrometry-based methods for assessing lipid profiles in NAFLD, several trends have emerged, including that increases in specific sphingolipids correlate with the transition from the relatively benign condition of simple fatty liver to the much more concerning inflamed state. Continued studies that implement sphingolipid profiling will enable the extrapolations of candidate enzymes and pathways involved in NAFLD, either in biopsies or plasma from human samples, and also in animal models, from which data are much more abundant. While most data thus far are derived from targeted lipidomics approaches, unbiased, semi-quantitative approaches hold additional promise for furthering our understanding of sphingolipids as markers of and players in NAFLD.
Collapse
Affiliation(s)
- David J Montefusco
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|
37
|
Jeon J, Park SC, Her J, Lee JW, Han JK, Kim YK, Kim KP, Ban C. Comparative lipidomic profiling of the human commensal bacterium Propionibacterium acnes and its extracellular vesicles. RSC Adv 2018; 8:15241-15247. [PMID: 35541326 PMCID: PMC9080044 DOI: 10.1039/c7ra13769a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/05/2018] [Indexed: 12/27/2022] Open
Abstract
Propionibacterium acnes is a lipophilic commensal bacterium mainly found on the skin and in the gastrointestinal tract. Pathophysiological effects of P. acnes have recently been reported not only in acne progression but in various diseases. As an emerging mode of bacterial communication, extracellular vesicles (EVs) have been demonstrated to conduct critical pathophysiological functions. To provide information on P. acnes lipid composition for the first time, we conducted a comparative lipidomic analysis of P. acnes and P. acnes EVs and identified 214 lipids with high confidence using triplicated liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses. P. acnes EVs contained substantially more PCs, DGs, PAs, PEs, LPAs, LPCs, and MGs than P. acnes, and contained fewer PSs, SO1Ps, SA1Ps, LPGs, LPIs, and LPSs. Distinctively, P. acnes EVs possessed a markedly reduced amount of TG. These findings will provide useful clues for understanding the biological and pathophysiological mechanisms of P. acnes and for clinical applications such as vaccine development, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jinseong Jeon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH) 77, Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Seung Cheol Park
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University Yongin 17104 Republic of Korea
| | - Jin Her
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77, Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Jae Won Lee
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University Yongin 17104 Republic of Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH) 77, Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Yoon-Keun Kim
- Myeongdong Medical Woori Technology Building, World Cup buk-ro 56-gil 9, Mapo-gu Seoul 03923 Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University Yongin 17104 Republic of Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) 77, Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
38
|
Abstract
The state-of-art in the lipidomic analysis is summarized here to provide the overview of available sample preparation strategies, mass spectrometry (MS)-based methods for the qualitative analysis of lipids, and the quantitative MS approaches for high-throughput clinical workflows. Major challenges in terms of widely accepted best practices for lipidomic analysis, nomenclature, and standards for data reporting are discussed as well.
Collapse
Affiliation(s)
- Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology , University of Pardubice , Studentská 573 , 53210 Pardubice , Czech Republic
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine , University Hospital Regensburg , 93053 Regensburg , Germany
| | - Kim Ekroos
- Lipidomics Consulting Ltd. , 02230 Esbo , Finland
| |
Collapse
|
39
|
Calvano CD, Glaciale M, Palmisano F, Cataldi TRI. Glycosphingolipidomics of donkey milk by hydrophilic interaction liquid chromatography coupled to ESI and multistage MS. Electrophoresis 2018; 39:1634-1644. [PMID: 29460962 DOI: 10.1002/elps.201700475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 02/09/2018] [Indexed: 01/20/2023]
Abstract
Hydrophilic interaction liquid chromatography coupled to negative-ion electrospray linear ion-trap multiple-stage MS (HILIC-ESI-MSn , n = 2,3) was used to characterize polar lipids occurring in donkey milk. Besides the detection of abundant phospholipids, the structural characterization and content evaluation of minor glycosphingolipids (GSLs) were assessed. We report an unprecedented characterization of 11 hexosyl-ceramides (HexCer), 10 Hex2 Cer, and 4 Hex3 Cer. CID-MS/MS spectra in negative ion mode mainly afford information on the monosaccharide number and ceramide constitution (i.e., N-acyl residue and long-chain base), whereas MS/MS/MS spectra on the ceramide anions allow to recognize for each GSL the sphingoid base. The occurrence of sphingosine (S), sphinganine (DS), and phytosphingosine (P) was inferred from the fragmentation patterns. The milk samples exhibit a relatively high number of phytosphingosine substitutes, perhaps because of the feeding of donkeys, mainly based on pasture grass. However, the incidence of hydroxylated species on the α-carbon of the acyl chain was also revealed. The fatty acid composition of N-acyl chains showed high values of long-chain saturated fatty acids such as 20:0, 22:0, 23:0, and 24:0. An average content of GSL is also provided and three representative mono-, di-, and tri-HexCer in donkey milk are the following: HexCer 18:0/24:1 phytosphingosine nonhydroxylated [PN] at m/z 862.6 as chloride adduct [M+Cl]- , and content 225.9 ± 2.8 μg 100 mL-1 ; Hex2 Cer 18:0/16:0 sphinganine nonhydroxylated [DSN] at m/z 862.7 as deprotonated adduct [M-H]- , and content 70.8 ± 1.4 μg 100 mL-1 ; and Hex3 Cer 18:1/24:1 [SN] at m/z 1132.8 as [M-H]- , and content 38.5 ± 0.7 μg 100 mL-1 .
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.,Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Marco Glaciale
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.,Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.,Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
40
|
Kors L, Rampanelli E, Stokman G, Butter LM, Held NM, Claessen N, Larsen PWB, Verheij J, Zuurbier CJ, Liebisch G, Schmitz G, Girardin SE, Florquin S, Houtkooper RH, Leemans JC. Deletion of NLRX1 increases fatty acid metabolism and prevents diet-induced hepatic steatosis and metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2018. [PMID: 29514047 DOI: 10.1016/j.bbadis.2018.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NOD-like receptor (NLR)X1 (NLRX1) is an ubiquitously expressed inflammasome-independent NLR that is uniquely localized in mitochondria with as yet unknown effects on metabolic diseases. Here, we report that NLRX1 is essential in regulating cellular metabolism in non-immune parenchymal hepatocytes by decreasing mitochondrial fatty acid-dependent oxidative phosphorylation (OXPHOS) and promoting glycolysis. NLRX1 loss in mice has a profound impact on the prevention of diet-induced metabolic syndrome parameters, non-alcoholic fatty liver disease (NAFLD) progression, and renal dysfunction. Despite enhanced caloric intake, NLRX1 deletion in mice fed a western diet (WD) results in protection from liver steatosis, hepatic fibrosis, obesity, insulin resistance, glycosuria and kidney dysfunction parameters independent from inflammation. While mitochondrial content was equal, NLRX1 loss in hepatocytes leads to increased fatty acid oxidation and decreased steatosis. In contrast, glycolysis was decreased in NLRX1-deficient cells versus controls. Thus, although first implicated in immune regulation, we show that NLRX1 function extends to the control of hepatocyte energy metabolism via the restriction of mitochondrial fatty acid-dependent OXPHOS and enhancement of glycolysis. As such NLRX1 may be an attractive novel therapeutic target for NAFLD and metabolic syndrome.
Collapse
Affiliation(s)
- Lotte Kors
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Elena Rampanelli
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Geurt Stokman
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Loes M Butter
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ntsiki M Held
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Per W B Larsen
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Gerhard Liebisch
- Department of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Schoeman JC, Harms AC, van Weeghel M, Berger R, Vreeken RJ, Hankemeier T. Development and application of a UHPLC-MS/MS metabolomics based comprehensive systemic and tissue-specific screening method for inflammatory, oxidative and nitrosative stress. Anal Bioanal Chem 2018; 410:2551-2568. [PMID: 29497765 PMCID: PMC5857282 DOI: 10.1007/s00216-018-0912-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Oxidative stress and inflammation are underlying pathogenic mechanisms associated with the progression of several pathological conditions and immunological responses. Elucidating the role of signalling lipid classes, which include, among others, the isoprostanes, nitro fatty acids, prostanoids, sphingoid bases and lysophosphatidic acids, will create a snapshot of the cause and effect of inflammation and oxidative stress at the metabolic level. Here we describe a fast, sensitive, and targeted ultra-high-performance liquid chromatography-tandem mass spectrometry metabolomics method that allows the quantitative measurement and biological elucidation of 17 isoprostanes as well as their respective isomeric prostanoid mediators, three nitro fatty acids, four sphingoid mediators, and 24 lysophosphatidic acid species from serum as well as organ tissues, including liver, lung, heart, spleen, kidney and brain. Application of this method to paired mouse serum and tissue samples revealed tissue- and serum-specific stress and inflammatory readouts. Little correlation was found between localized (tissue) metabolite levels compared with the systemic (serum) circulation in a homeostatic model. The application of this method in future studies will enable us to explore the role of signalling lipids in the metabolic pathogenicity of stress and inflammation during health and disease.
Collapse
Affiliation(s)
- Johannes C Schoeman
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands. .,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands.
| | - Amy C Harms
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Michel van Weeghel
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands.,Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, Netherlands.,Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Ruud Berger
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Rob J Vreeken
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands.,Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| |
Collapse
|
42
|
Rein-Fischboeck L, Haberl EM, Pohl R, Schmid V, Feder S, Krautbauer S, Liebisch G, Buechler C. Alpha-syntrophin null mice are protected from non-alcoholic steatohepatitis in the methionine-choline-deficient diet model but not the atherogenic diet model. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:526-537. [PMID: 29474931 DOI: 10.1016/j.bbalip.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/23/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
Adipose tissue dysfunction contributes to the pathogenesis of non-alcoholic steatohepatitis (NASH). The adapter protein alpha-syntrophin (SNTA) is expressed in adipocytes. Knock-down of SNTA increases preadipocyte proliferation and formation of small lipid droplets, which are both characteristics of healthy adipose tissue. To elucidate a potential protective role of SNTA in NASH, SNTA null mice were fed a methionine-choline-deficient (MCD) diet or an atherogenic diet which are widely used as preclinical NASH models. MCD diet mediated loss of fat mass was largely improved in SNTA-/- mice compared to the respective wild type animals. Hepatic lipids were mostly unchanged while the oxidative stress marker malondialdehyde was only induced in the wild type mice. The expression of inflammatory markers and macrophage immigration into the liver were reduced in SNTA-/- animals. This protective function of SNTA loss was absent in atherogenic diet induced NASH. Here, hepatic expression of inflammatory and fibrotic genes was similar in both genotypes though mutant mice gained less body fat during feeding. Hepatic cholesterol and ceramide were strongly induced in both strains upon feeding the atherogenic diet, while hepatic sphingomyelin, phosphatidylserine and phosphatidylethanolamine levels were suppressed. SNTA deficient mice are protected from fat loss and NASH in the experimental MCD model. NASH induced by an atherogenic diet is not influenced by loss of SNTA. The present study suggests the use of different experimental NASH models to study the pathophysiological role of proteins like SNTA in NASH.
Collapse
Affiliation(s)
- Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Verena Schmid
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
43
|
Optimization of ultra-high pressure liquid chromatography – tandem mass spectrometry determination in plasma and red blood cells of four sphingolipids and their evaluation as biomarker candidates of Gaucher’s disease. J Chromatogr A 2017; 1525:116-125. [DOI: 10.1016/j.chroma.2017.10.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 11/23/2022]
|
44
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|
45
|
Cozma C, Iurașcu MI, Eichler S, Hovakimyan M, Brandau O, Zielke S, Böttcher T, Giese AK, Lukas J, Rolfs A. C26-Ceramide as highly sensitive biomarker for the diagnosis of Farber Disease. Sci Rep 2017; 7:6149. [PMID: 28733637 PMCID: PMC5522391 DOI: 10.1038/s41598-017-06604-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
Farber disease (FD) is a rare autosomal recessive disease caused by mutations in the acid ceramidase gene (ASAH1). Low ceramidase activity results in the accumulation of fatty substances, mainly ceramides. Hallmark symptoms at clinical level are periarticular nodules, lipogranulomas, swollen and painful joints and a hoarse voice. FD phenotypes are heterogeneous varying from mild to very severe cases, with the patients not surviving past their first year of life. The diagnostic aspects of FD are poorly developed due to the rarity of the disease. In the present study, the screening for ceramides and related molecules was performed in Farber affected patients (n = 10), carriers (n = 11) and control individuals (n = 192). This study has the highest number of enrolled Farber patients and carriers reported to present. Liquid chromatography multiple reaction mass spectrometry (LC/MRM-MS) studies revealed that the ceramide C26:0 and especially its isoform 1 is a highly sensitive and specific biomarker for FD (p < 0.0001). The new biomarker can be determined directly in the dried blood spot extracts with low sample consumption. This allows for easy sample preparation, high reproducibility and use in high throughput screenings.
Collapse
Affiliation(s)
- Claudia Cozma
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany.
| | | | | | | | - Oliver Brandau
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany
| | - Susanne Zielke
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Tobias Böttcher
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Anne-Katrin Giese
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany.,Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| |
Collapse
|
46
|
Sigruener A, Wolfrum C, Boettcher A, Kopf T, Liebisch G, Orsó E, Schmitz G. Lipidomic and metabolic changes in the P4-type ATPase ATP10D deficient C57BL/6J wild type mice upon rescue of ATP10D function. PLoS One 2017; 12:e0178368. [PMID: 28542499 PMCID: PMC5444826 DOI: 10.1371/journal.pone.0178368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/11/2017] [Indexed: 01/01/2023] Open
Abstract
Background Sequence variants near the human gene for P4-type ATPase, class V, type 10D (ATP10D) were shown to significantly associate with circulating hexosylceramide d18:1/16:0 and d18:1/24:1 levels, obesity, insulin resistance, plasma high density lipoprotein (HDL), coronary stenotic index and intracranial atherosclerotic index. In mice Atp10d is associated with HDL modulation and C57BL/6 mice expressing a truncated, non-functional form of ATP10D easily develop obesity and insulin resistance on high-fat diet. Results We analyzed metabolic differences of ATP10D deficient C57BL/6J wild type and ATP10D transgenic C57BL/6J BAC129 mice. ATP10D transgenic mice gain 25% less weight on high-fat diet concomitant with a reduced increase in fat cell mass but independent of adipocyte size change. ATP10D transgenic mice also had 26% lower triacylglycerol levels with approximately 76% bound to very low density lipoprotein while in ATP10D deficient wild type mice 57% are bound to low density lipoprotein. Furthermore increased oxygen consumption and CO2 production, 38% lower glucose and 69% lower insulin levels and better insulin sensitivity were observed in ATP10D transgenic mice. Besides decreased hexosylceramide species levels were detected. Part of these effects may be due to reduced hepatic stearoyl-CoA desaturase 1 (SCD1) expression in ATP10D transgenic mice, which was reflected by altered fatty acid and lipid species patterns. There was a significant decrease in the hepatic 18:1 to 18:0 free fatty acid ratio in transgenic mice. The ratio of 16:1 to 16:0 was not significantly different. Interestingly both ratios were significantly reduced in plasma total fatty acids. Summary In summary we found that ATP10D reduces high-fat diet induced obesity and improves insulin sensitivity. ATP10D transgenic mice showed altered hepatic expression of lipid-metabolism associated genes, including Scd1, along with changes in hepatic and plasma lipid species and plasma lipoprotein pattern.
Collapse
Affiliation(s)
- Alexander Sigruener
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
- * E-mail:
| | - Christian Wolfrum
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Alfred Boettcher
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Thomas Kopf
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Evelyn Orsó
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Medical Center, Regensburg, Germany
| |
Collapse
|
47
|
Tafelmeier M, Fischer A, Orsó E, Konovalova T, Böttcher A, Liebisch G, Matysik S, Schmitz G. Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of pro-coagulant platelet extracellular vesicles. J Steroid Biochem Mol Biol 2017; 169:176-188. [PMID: 27163393 DOI: 10.1016/j.jsbmb.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/17/2023]
Abstract
Stored platelet concentrates (PLCs) for therapeutic purpose, develop a platelet storage lesion (PSL), characterized by impaired platelet (PLT) viability and function, platelet extracellular vesicle (PL-EV) release and profound lipidomic changes. Whereas oxidized low-density lipoprotein (oxLDL) activates PLTs and promotes atherosclerosis, effects linked to oxidized high-density lipoprotein (oxHDL) are poorly characterized. PLCs from blood donors were treated with native (nHDL) or mildly oxidized HDL (moxHDL) for 5days under blood banking conditions. Flow cytometry, nanoparticle tracking analysis (NTA), aggregometry, immunoblot analysis and mass spectrometry were carried out to analyze PL-EV and platelet exosomes (PL-EX) release, PLT aggregation, protein expression, and PLT and plasma lipid composition. In comparison to total nHDL, moxHDL significantly decreased PL-EV release by -36% after 5days of PLT storage and partially reversed agonist-induced PLT aggregation. PL-EV release positively correlated with PLT aggregation. MoxHDL improved PLT membrane lipid homeostasis through enhanced uptake of lysophospholipids and their remodeling to corresponding phospholipid species. This also appeared for sphingomyelin (SM) and d18:0/d18:1 sphingosine-1-phosphate (S1P) at the expense of ceramide (Cer) and hexosylceramide (HexCer) leading to reduced Cer/S1P ratio as PLT-viability indicator. This membrane remodeling was associated with increased content of CD36 and maturation of scavenger receptor-B1 (SR-B1) protein in secreted PL-EVs. MoxHDL, more potently than nHDL, improves PLT-membrane lipid homeostasis, partially antagonizes PL-EV release and agonist-induced PLT aggregation. Altogether, this may be the result of more efficient phospho- and sphingolipid remodeling mediated by CD36 and SR-B1 in the absence of ABCA1 on PLTs. As in vitro supplement in PLCs, moxHDL has the potential to improve PLC quality and to prolong storage.
Collapse
Affiliation(s)
- M Tafelmeier
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg Franz-Josef-Strauss-Allee 11, D-93052 Regensburg, Germany
| | - A Fischer
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg Franz-Josef-Strauss-Allee 11, D-93052 Regensburg, Germany
| | - E Orsó
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg Franz-Josef-Strauss-Allee 11, D-93052 Regensburg, Germany
| | - T Konovalova
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg Franz-Josef-Strauss-Allee 11, D-93052 Regensburg, Germany
| | - A Böttcher
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg Franz-Josef-Strauss-Allee 11, D-93052 Regensburg, Germany
| | - G Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg Franz-Josef-Strauss-Allee 11, D-93052 Regensburg, Germany
| | - S Matysik
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg Franz-Josef-Strauss-Allee 11, D-93052 Regensburg, Germany
| | - G Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic of Regensburg Franz-Josef-Strauss-Allee 11, D-93052 Regensburg, Germany.
| |
Collapse
|
48
|
Jurowski K, Kochan K, Walczak J, Barańska M, Piekoszewski W, Buszewski B. Analytical Techniques in Lipidomics: State of the Art. Crit Rev Anal Chem 2017; 47:418-437. [PMID: 28340309 DOI: 10.1080/10408347.2017.1310613] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current studies related to lipid identification and determination, or lipidomics in biological samples, are one of the most important issues in modern bioanalytical chemistry. There are many articles dedicated to specific analytical strategies used in lipidomics in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to a comprehensive review of the actual analytical methodologies used in lipidomics. The aim of this article is to characterize the lipidomics methods used in modern bioanalysis according to the methodological point of view: (1) chromatography/separation methods, (2) spectroscopic methods and (3) mass spectrometry and also hyphenated methods. In the first part, we discussed thin layer chromatography (TLC), high-pressure liquid chromatography (HPLC), gas chromatography (GC) and capillary electrophoresis (CE). The second part includes spectroscopic techniques such as Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). The third part is a synthetic review of mass spectrometry, matrix-assisted laser desorption/ionization (MALDI), hyphenated methods, which include liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and also multidimensional techniques. Other aspects are the possibilities of the application of the described methods in lipidomics studies. Due to the fact that the exploration of new methods of lipidomics analysis and their applications in clinical and medical studies are still challenging for researchers working in life science, we hope that this review article will be very useful for readers.
Collapse
Affiliation(s)
- Kamil Jurowski
- a Kraków Higher School of Health Promotion , Krakow , Poland
| | - Kamila Kochan
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,c Centre for Biospectroscopy and School of Chemistry , Monash University , Clayton , Victoria , Australia
| | - Justyna Walczak
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| | - Małgorzata Barańska
- b Jagiellonian Centre for Experimental Therapeutics (JCET) , Jagiellonian University in Cracow , Cracow , Poland.,e Department of Chemical Physics, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland
| | - Wojciech Piekoszewski
- f Department of Analytical Chemistry, Faculty of Chemistry , Jagiellonian University in Cracow , Cracow , Poland.,g School of Biomedicine , Far Eastern Federal University , Vladivostok , Russia
| | - Bogusław Buszewski
- d Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
| |
Collapse
|
49
|
Lee JW, Mok HJ, Lee DY, Park SC, Kim GS, Lee SE, Lee YS, Kim KP, Kim HD. UPLC-QqQ/MS-Based Lipidomics Approach To Characterize Lipid Alterations in Inflammatory Macrophages. J Proteome Res 2017; 16:1460-1469. [DOI: 10.1021/acs.jproteome.6b00848] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jae Won Lee
- Department
of Applied Chemistry, The Institute of Natural Science, College of
Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Hyuck Jun Mok
- Department
of Applied Chemistry, The Institute of Natural Science, College of
Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dae Young Lee
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Seung Cheol Park
- Department
of Applied Chemistry, The Institute of Natural Science, College of
Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Geum-Soog Kim
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Seung-Eun Lee
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Young-Seob Lee
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Kwang Pyo Kim
- Department
of Applied Chemistry, The Institute of Natural Science, College of
Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyung Don Kim
- Department
of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
- Department
of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
50
|
Schonauer S, Körschen HG, Penno A, Rennhack A, Breiden B, Sandhoff K, Gutbrod K, Dörmann P, Raju DN, Haberkant P, Gerl MJ, Brügger B, Zigdon H, Vardi A, Futerman AH, Thiele C, Wachten D. Identification of a feedback loop involving β-glucosidase 2 and its product sphingosine sheds light on the molecular mechanisms in Gaucher disease. J Biol Chem 2017; 292:6177-6189. [PMID: 28258214 DOI: 10.1074/jbc.m116.762831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
The lysosomal acid β-glucosidase GBA1 and the non-lysosomal β-glucosidase GBA2 degrade glucosylceramide (GlcCer) to glucose and ceramide in different cellular compartments. Loss of GBA2 activity and the resulting accumulation of GlcCer results in male infertility, whereas mutations in the GBA1 gene and loss of GBA1 activity cause the lipid-storage disorder Gaucher disease. However, the role of GBA2 in Gaucher disease pathology and its relationship to GBA1 is not well understood. Here, we report a GBA1-dependent down-regulation of GBA2 activity in patients with Gaucher disease. Using an experimental approach combining cell biology, biochemistry, and mass spectrometry, we show that sphingosine, the cytotoxic metabolite accumulating in Gaucher cells through the action of GBA2, directly binds to GBA2 and inhibits its activity. We propose a negative feedback loop, in which sphingosine inhibits GBA2 activity in Gaucher cells, preventing further sphingosine accumulation and, thereby, cytotoxicity. Our findings add a new chapter to the understanding of the complex molecular mechanism underlying Gaucher disease and the regulation of β-glucosidase activity in general.
Collapse
Affiliation(s)
- Sophie Schonauer
- From the Minerva Max Planck Research Group, Molecular Physiology, and
| | - Heinz G Körschen
- the Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Anke Penno
- the Department of Cell Biology of Lipids, LIMES Institute, University of Bonn, Bonn, Germany
| | - Andreas Rennhack
- the Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), 53175 Bonn, Germany
| | - Bernadette Breiden
- the LIMES Institute, c/o Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Konrad Sandhoff
- the LIMES Institute, c/o Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Katharina Gutbrod
- the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Peter Dörmann
- the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Diana N Raju
- From the Minerva Max Planck Research Group, Molecular Physiology, and
| | - Per Haberkant
- the Proteomic Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Mathias J Gerl
- the Biochemie-Zentrum (BZH), Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Britta Brügger
- the Biochemie-Zentrum (BZH), Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Hila Zigdon
- the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel, and
| | - Ayelet Vardi
- the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel, and
| | - Anthony H Futerman
- the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel, and
| | - Christoph Thiele
- the Department of Cell Biology of Lipids, LIMES Institute, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- From the Minerva Max Planck Research Group, Molecular Physiology, and .,the Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|