1
|
Liu JY, Kuna RS, Pinheiro LV, Nguyen PTT, Welles JE, Drummond JM, Murali N, Sharma PV, Supplee JG, Shiue M, Zhao S, Farria AT, Kumar A, Ruchhoeft ML, Demetriadou C, Kantner DS, Chatoff A, Megill E, Titchenell PM, Snyder NW, Metallo CM, Wellen KE. Bempedoic acid suppresses diet-induced hepatic steatosis independently of ATP-citrate lyase. Cell Metab 2025; 37:239-254.e7. [PMID: 39471816 PMCID: PMC11711013 DOI: 10.1016/j.cmet.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
ATP citrate lyase (ACLY) synthesizes acetyl-CoA for de novo lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.
Collapse
Affiliation(s)
- Joyce Y Liu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramya S Kuna
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura V Pinheiro
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phuong T T Nguyen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaclyn E Welles
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack M Drummond
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nivitha Murali
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prateek V Sharma
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianna G Supplee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia Shiue
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee T Farria
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avi Kumar
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mauren L Ruchhoeft
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina Demetriadou
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daniel S Kantner
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Adam Chatoff
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Emily Megill
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Paul M Titchenell
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Christian M Metallo
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Espadas I, Cáliz‐Molina MÁ, López‐Fernández‐Sobrino R, Panadero‐Morón C, Sola‐García A, Soriano‐Navarro M, Martínez‐Force E, Venegas‐Calerón M, Salas JJ, Martín F, Gauthier BR, Alfaro‐Cervelló C, Martí‐Aguado D, Capilla‐González V, Martín‐Montalvo A. Hydroxycitrate delays early mortality in mice and promotes muscle regeneration while inducing a rich hepatic energetic status. Aging Cell 2024; 23:e14205. [PMID: 38760909 PMCID: PMC11488303 DOI: 10.1111/acel.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
ATP citrate lyase (ACLY) inhibitors have the potential of modulating central processes in protein, carbohydrate, and lipid metabolism, which can have relevant physiological consequences in aging and age-related diseases. Here, we show that hepatic phospho-active ACLY correlates with overweight and Model for End-stage Liver Disease score in humans. Wild-type mice treated chronically with the ACLY inhibitor potassium hydroxycitrate exhibited delayed early mortality. In AML12 hepatocyte cultures, the ACLY inhibitors potassium hydroxycitrate, SB-204990, and bempedoic acid fostered lipid accumulation, which was also observed in the liver of healthy-fed mice treated with potassium hydroxycitrate. Analysis of soleus tissue indicated that potassium hydroxycitrate produced the modulation of wound healing processes. In vivo, potassium hydroxycitrate modulated locomotor function toward increased wire hang performance and reduced rotarod performance in healthy-fed mice, and improved locomotion in mice exposed to cardiotoxin-induced muscle atrophy. Our findings implicate ACLY and ACLY inhibitors in different aspects of aging and muscle regeneration.
Collapse
Affiliation(s)
- Isabel Espadas
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - María Ángeles Cáliz‐Molina
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Raúl López‐Fernández‐Sobrino
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Concepción Panadero‐Morón
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Alejandro Sola‐García
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Mario Soriano‐Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | | | | | - Joaquin J. Salas
- Instituto de la Grasa (CSIC)Universidad Pablo de OlavideSevillaSpain
| | - Franz Martín
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| | - Benoit R. Gauthier
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| | - Clara Alfaro‐Cervelló
- Pathology Department, INCLIVA Health Research Institute, Clinic University HospitalUniversity of ValenciaValenciaSpain
| | - David Martí‐Aguado
- Digestive Disease Department, Clinic University HospitalINCLIVA Health Research InstituteValenciaSpain
- Division of Gastroenterology, Hepatology and NutritionCenter for Liver Diseases
| | - Vivian Capilla‐González
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Alejandro Martín‐Montalvo
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
3
|
Kumar S, Senapati S, Chang HC. Extracellular vesicle and lipoprotein diagnostics (ExoLP-Dx) with membrane sensor: A robust microfluidic platform to overcome heterogeneity. BIOMICROFLUIDICS 2024; 18:041301. [PMID: 39056024 PMCID: PMC11272220 DOI: 10.1063/5.0218986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The physiological origins and functions of extracellular vesicles (EVs) and lipoproteins (LPs) propel advancements in precision medicine by offering non-invasive diagnostic and therapeutic prospects for cancers, cardiovascular, and neurodegenerative diseases. However, EV/LP diagnostics (ExoLP-Dx) face considerable challenges. Their intrinsic heterogeneity, spanning biogenesis pathways, surface protein composition, and concentration metrics complicate traditional diagnostic approaches. Commonly used methods such as nanoparticle tracking analysis, enzyme-linked immunosorbent assay, and nuclear magnetic resonance do not provide any information about their proteomic subfractions, including active proteins/enzymes involved in essential pathways/functions. Size constraints limit the efficacy of flow cytometry for small EVs and LPs, while ultracentrifugation isolation is hampered by co-elution with non-target entities. In this perspective, we propose a charge-based electrokinetic membrane sensor, with silica nanoparticle reporters providing salient features, that can overcome the interference, long incubation time, sensitivity, and normalization issues of ExoLP-Dx from raw plasma without needing sample pretreatment/isolation. A universal EV/LP standard curve is obtained despite their heterogeneities.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
4
|
Li X, Liu C, Zhang R, Li Y, Ye D, Wang H, He M, Sun Y. Biosynthetic deficiency of docosahexaenoic acid causes nonalcoholic fatty liver disease and ferroptosis-mediated hepatocyte injury. J Biol Chem 2024; 300:107405. [PMID: 38788853 PMCID: PMC11231757 DOI: 10.1016/j.jbc.2024.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Exogenous omega-3 fatty acids, particularly docosahexaenoic acid (DHA), have shown to exert beneficial effects on nonalcoholic fatty liver disease (NAFLD), which is characterized by the excessive accumulation of lipids and chronic injury in the liver. However, the effect of endogenous DHA biosynthesis on the lipid homeostasis of liver is poorly understood. In this study, we used a DHA biosynthesis-deficient zebrafish model, elovl2 mutant, to explore the effect of endogenously biosynthesized DHA on hepatic lipid homeostasis. We found the pathways of lipogenesis and lipid uptake were strongly activated, while the pathways of lipid oxidation and lipid transport were inhibited in the liver of elovl2 mutants, leading to lipid droplet accumulation in the mutant hepatocytes and NAFLD. Furthermore, the elovl2 mutant hepatocytes exhibited disrupted mitochondrial structure and function, activated endoplasmic reticulum stress, and hepatic injury. We further unveiled that the hepatic cell death and injury was mainly mediated by ferroptosis, rather than apoptosis, in elovl2 mutants. Elevating DHA content in elovl2 mutants, either by the introduction of an omega-3 desaturase (fat1) transgene or by feeding with a DHA-rich diet, could strongly alleviate NAFLD features and ferroptosis-mediated hepatic injury. Together, our study elucidates the essential role of endogenous DHA biosynthesis in maintaining hepatic lipid homeostasis and liver health, highlighting that DHA deficiency can lead to NAFLD and ferroptosis-mediated hepatic injury.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengjie Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
5
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
6
|
Hanse M, Akbar S, Layeghkhavidaki H, Yen FT. Garcinia cambogia Extract Increased Hepatic Levels of Lipolysis-Stimulated Lipoprotein Receptor and Lipids in Mice on Normal Diet. Int J Mol Sci 2023; 24:16298. [PMID: 38003494 PMCID: PMC10671705 DOI: 10.3390/ijms242216298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Garcinia cambogia extract (GCE) is a popular weight-loss supplement that also lowers plasma triglyceride (TG) levels. We hypothesized that GCE-mediated inhibition of ATP citrate lyase and thereby hepatic TG production could lead to compensatory mechanisms, including increased hepatic TG uptake via lipoprotein receptors. GCE (20 mg/day) administered 40 days orally to female C57BL/6Rj mice on a standard chow diet led to a decrease in both plasma fasting and post-prandial TG-rich lipoprotein levels, but with no significant change in body weight gain. Lipolysis stimulated lipoprotein receptor (LSR) protein levels, but not those of LDL-receptor, were increased as compared to controls. Mouse Hepa1-6 cells treated with the GCE active ingredient, hydroxycitrate, also led to increased LSR protein levels. Hepatic total cholesterol, TG, and muscle TG contents were higher in GCE-treated animals as compared to controls, whereas adipose TG levels were unchanged. LSR and LDL-receptor protein levels were correlated with liver total cholesterol, but only LDL-receptor was associated with liver TG. These results show that GCE treatment in mice on a standard chow diet led to significantly increased liver and muscle lipids, with no significant change in adipose tissue TG levels, which should be considered in the long-term use of GCE.
Collapse
Affiliation(s)
- Marine Hanse
- EA 4422 Lipidomix Laboratory, University of Lorraine, 54505 Nancy, France
| | - Samina Akbar
- EA 4422 Lipidomix Laboratory, University of Lorraine, 54505 Nancy, France
- Quality of Diet and Aging Team, UR 3998 Animal and Functionality of Animal Products Laboratory, University of Lorraine, 54505 Nancy, France
| | - Hamed Layeghkhavidaki
- Quality of Diet and Aging Team, UR 3998 Animal and Functionality of Animal Products Laboratory, University of Lorraine, 54505 Nancy, France
| | - Frances T. Yen
- EA 4422 Lipidomix Laboratory, University of Lorraine, 54505 Nancy, France
- Quality of Diet and Aging Team, UR 3998 Animal and Functionality of Animal Products Laboratory, University of Lorraine, 54505 Nancy, France
| |
Collapse
|
7
|
Roglans N, Laguna JC, Alegret M. Bempedoic acid for nonalcoholic fatty liver disease: evidence and mechanisms of action. Curr Opin Lipidol 2023:00041433-990000000-00034. [PMID: 36942869 DOI: 10.1097/mol.0000000000000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent progressive condition that lacks a specific pharmacological treatment. ATP-citrate lyase (ACLY) is one of the emergent targets for the treatment of NAFLD. This review aims to summarize the role of ACLY in NAFLD, provide evidences of the beneficial effects of the ACLY inhibitor bempedoic acid (BemA) in NAFLD and discuss the mechanisms involved. RECENT FINDINGS BemA is effective in reducing hepatic steatosis in several animal models that recapitulate different stages of the disease. Thus, in a dietary model of simple hepatic steatosis in female rats, BemA abrogates the accumulation of liver fat. Apart from ACLY inhibition, BemA has several functions in the liver that contribute to the antisteatotic effect: inhibition of ketohexokinase, induction of patatin-like phospholipase domain-containing protein 3 and increases in both fatty acid β-oxidation activity and hepatic H2S production. In models of the advanced phases of NAFLD, BemA reduces not only steatosis, but also ballooning, lobular inflammation and hepatic fibrosis, by mechanisms involving both hepatocytes and hepatic stellate cells. SUMMARY BemA, an ACLY inhibitor currently approved for the treatment of hypercholesterolemia, may be a useful drug to treat NAFLD through its antisteatotic, anti-inflammatory and antifibrotic effects.
Collapse
Affiliation(s)
- Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science
- Institute of Biomedicine, University of Barcelona, Barcelona
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science
- Institute of Biomedicine, University of Barcelona, Barcelona
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science
- Institute of Biomedicine, University of Barcelona, Barcelona
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
8
|
Jiang H, Hou T, Han Y, Lu SB, Liu L, Li DX, Zhu YH, Huang H, Li WJ, Xue XY, Liu YF, Liang XM. Preparation and identification of isoquinoline alkaloids with ATP citrate lyase inhibitory activity from Dactylicapnos scandens. Fitoterapia 2023; 165:105397. [PMID: 36539068 DOI: 10.1016/j.fitote.2022.105397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Three new isoquinoline alkaloids including a morphine derivative (1), two aporphine alkaloids (2-3), together with five known alkaloids (4-8) were obtained from the extract of Dactylicapnos scandens (D.Don) Hutch. (D. scandens). Their structures and absolute configurations were elucidated by extensive spectroscopic data analysis including HRESIMS, NMR and electronic circular dichroism (ECD) and ECD calculation. Compounds 1-8 were evaluated for ATP Citrate Lyase (ACLY) inhibitory activity through an enzymatic assay. Among them, 2 and 3 showed the high ACLY inhibitory activity with an IC50 value of 10.48 ± 1.59 and 10.89 ± 4.89 μM.
Collapse
Affiliation(s)
- Hui Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Hou
- DICP-CMC Innovation Institute of Medicine, Taizhou 225300, PR China
| | - Yan Han
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Shu-Bin Lu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Lei Liu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Ding-Xiang Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Yun-Hui Zhu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Hang Huang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Wen-Jie Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xiang-Ya Xue
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China.
| | - Yan-Fang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China.
| | - Xin-Miao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| |
Collapse
|
9
|
Xie Z, Zhang M, Song Q, Cheng L, Zhang X, Song G, Sun X, Gu M, Zhou C, Zhang Y, Zhu K, Yin J, Chen X, Li J, Nan F. Development of the novel ACLY inhibitor 326E as a promising treatment for hypercholesterolemia. Acta Pharm Sin B 2023; 13:739-753. [PMID: 36873173 PMCID: PMC9979192 DOI: 10.1016/j.apsb.2022.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatic cholesterol accumulation is an important contributor to hypercholesterolemia, which results in atherosclerosis and cardiovascular disease (CVD). ATP-citrate lyase (ACLY) is a key lipogenic enzyme that converts cytosolic citrate derived from tricarboxylic acid cycle (TCA cycle) to acetyl-CoA in the cytoplasm. Therefore, ACLY represents a link between mitochondria oxidative phosphorylation and cytosolic de novo lipogenesis. In this study, we developed the small molecule 326E with an enedioic acid structural moiety as a novel ACLY inhibitor, and its CoA-conjugated form 326E-CoA inhibited ACLY activity with an IC50 = 5.31 ± 1.2 μmol/L in vitro. 326E treatment reduced de novo lipogenesis, and increased cholesterol efflux in vitro and in vivo. 326E was rapidly absorbed after oral administration, exhibited a higher blood exposure than that of the approved ACLY inhibitor bempedoic acid (BA) used for hypercholesterolemia. Chronic 326E treatment in hamsters and rhesus monkeys resulted in remarkable improvement of hyperlipidemia. Once daily oral administration of 326E for 24 weeks prevented the occurrence of atherosclerosis in ApoE-/- mice to a greater extent than that of BA treatment. Taken together, our data suggest that inhibition of ACLY by 326E represents a promising strategy for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qian Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gaolei Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chendong Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangming Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Burgeon Therapeutics Co., Ltd., Shanghai 201203, China
| | - Kexin Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaoyan Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
10
|
Petrosyan AS, Rud' RS, Polyakov PP, Kade AK, Zanin SA. The Pathogenetic Basis of the Action of Bempedoic Acid. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-12-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The modern cardiology has a wide range of medications which affect various pathogenetic links of atherosclerosis, but even the best of them still obtain disadvantages causing intolerance and medicine discontinuation. The development of new hypolipidemic medications will allow not only to introduce alternative therapies into the cardiology practice, but also to completely execute the strategy of residual risk reduction by utilizing rational combinations of medications. One of such alternatives could be bempedoic acid, which can have a positive effect on a number of endpoints as the results of third phase trials have shown. These effects are also confirmed in Mendelian randomization studies. The mechanism of action of bempedoic acid is presumably associated with inhibition of the activity of ATP citrate lyase – the enzyme responsible for the breakdown of citrate into acetyl-CoA and oxaloacetate. Acetyl-CoA, in turn, is used by the cell to synthesize cholesterol and fatty acids. Thus, bempedoic acid affects in the same metabolic pathway as statins, but at an earlier stage. According to this, it is possible that medications of these classes will have similar side effects and pleiotropic effects associated with modulation of the mevalonic pathway, such as prenylation regulatory proteins (small GTPases) or reduction of coenzyme Q synthesis. However, there are also some specific features of the pharmacodynamics and pharmacokinetics of bempedoic acid to be considered. In particular, once entered the body, it must be activated via esterification by very long-chain acyl-CoA synthetase-1. The enzyme isoform required for this process is expressed in a tissue-specific manner and, for example, is absent in skeletal myocytes. In addition, citrate, oxaloacetate, and acetyl-CoA are important regulators of many intracellular processes: metabolism, growth and proliferation, mechanotransduction, posttranslational modifications of histones and other proteins. The levels of all three substances are altered by bempedoic acid, although no firm conclusions about the effects of these changes can be drawn at this time. The mentioned features probably have a significant impact on the clinical profile of bempedoic acid and underlie the differences from statins already observed in third phase trials, including, for example, a reduced risk of the onset or worsening of diabetes mellitus while taking bempedoic acid.
Collapse
Affiliation(s)
| | - R. S. Rud'
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
11
|
Ismail A, Mokhlis HA, Sharaky M, Sobhy MH, Hassanein SS, Doghish AS, Salama SA, Mariee AD, Attia YM. Hydroxycitric Acid Reverses Tamoxifen resistance through Inhibition of ATP Citrate Lyase. Pathol Res Pract 2022; 240:154211. [DOI: 10.1016/j.prp.2022.154211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
12
|
Discovery and characterization of novel ATP citrate lyase inhibitors from natural products by a luminescence-based assay. Chem Biol Interact 2022; 367:110199. [PMID: 36174740 DOI: 10.1016/j.cbi.2022.110199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism with therapeutic prospect for treating hyperlipidemia and various cancers. Much effort has been put into discovering ACLY inhibitors. However, current screening approaches have limitations in sensitivity, portability and high-throughput. To develop a general screening assay, we investigated series of conditions affecting the enzymatic reaction based on the ADP-Glo luminescence assay. Bovine serum albumin (0.001%) added triggered strong and stable fluorescence signal. The optimized assay was validated and applied to screen our natural product library. Two novel inhibitors were identified with IC50 values of 3.86 ± 0.62 μM (2) and 15.48 ± 2.51 μM (4). Their aggregations and target specificities were also examined. 2 was characterized as a noncompetitive inhibitor of ACLY, while 4 was a competitive inhibitor of CoA, which was also elucidated by docking studies. In anticancer activity evaluation, 2 with higher inhibition potency did not exhibit anticancer effect, probably owing to its insufficient cell-permeability. 4 showed moderate inhibition in the proliferation of A549 and PC3 cells. This study not only developed a general approach for ACLY inhibitor discovery, but also identified a new scaffold ACLY inhibitor, which could be served as a hit compound in drug design.
Collapse
|
13
|
Yang H, Feng L, Xu L, Jiang D, Zhai F, Tong G, Xing Y. Intervention of Shugan Xiaozhi Decoction on Nonalcoholic Fatty Liver Disease via Mediating Gut-Liver Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4801695. [PMID: 35837380 PMCID: PMC9276511 DOI: 10.1155/2022/4801695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease with an increasing incidence rate but few therapies. Shugan Xiaozhi decoction (SX) has demonstrated beneficial effects in treating NAFLD with an unclear mechanism. This study was aimed at investigating the therapeutic mechanism of SX on high-fat diet-induced NAFLD rats via the gut-liver axis. Hepatic steatosis and integrity of intestinal mucosa in NAFLD rats were assessed by histopathological staining. The level of lipid and inflammation were estimated by enzyme-linked immunosorbent assay. Western Blotting was used to detect apolipoprotein (apo) B48 expression. 16S rRNA analysis was used to measure the changes of gut microbial composition after SX treatment. The expressions of zona occludens 1 protein (ZO-1), occludin, and secretory immunoglobulin A (sIgA) in the colon were detected by immunostaining to investigate the intestinal barrier function. Our study found that SX reduced hepatic steatosis, the levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol, and triglyceride and apoB48 expression but increased peroxisome proliferator activated receptor α (PPARα) level. Moreover, SX altered the diversity of gut microbiota, upregulating the relative abundance of f_Prevotellaceae, while downregulating f_Bacteroidales_ S24-7, f_Lachnospiraceae, f_Ruminococcaceae, f_Erysipelotrichaceae, and f_Desulfovibrionaceae. By increasing the expression of ZO-1 and occludin and decreasing the level of proinflammatory factors, including sIgA, lipopolysaccharide, tumor necrosis factor-α, interleukin-1β, monocyte chemotactic protein-1, and transforming growth factor-β1, SX improved intestinal mucosal integrity and barrier function. Our study illustrated that the gut-liver axis was a potential way for SX to ameliorate NAFLD, that is, by regulating the expression of PPARα, apoB48, and modulating gut microbiota to protect the intestinal barrier function, and thus alleviate lipid deposition and inflammatory response in the liver.
Collapse
Affiliation(s)
- Huili Yang
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Lian Feng
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Linyi Xu
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Dansheng Jiang
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Fenfen Zhai
- Shenzhen Futian Center for Chronic Disease Control, Shenzhen, Guangdong 518048, China
| | - Guangdong Tong
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
| | - Yufeng Xing
- Hepatology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
| |
Collapse
|
14
|
Velázquez AM, Bentanachs R, Sala-Vila A, Lázaro I, Rodríguez-Morató J, Sánchez RM, Laguna JC, Roglans N, Alegret M. KHK, PNPLA3 and PPAR as Novel Targets for the Anti-Steatotic Action of Bempedoic Acid. Biomedicines 2022; 10:biomedicines10071517. [PMID: 35884822 PMCID: PMC9312949 DOI: 10.3390/biomedicines10071517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Bempedoic acid (BemA) is an ATP-citrate lyase (ACLY) inhibitor used to treat hypercholesterolemia. We studied the anti-steatotic effect of BemA, and the mechanisms involved, in a model of fatty liver in female rats obtained through the administration of a high-fat diet supplemented with liquid fructose (HFHFr) for three months. In the third month, a group of rats was treated with BemA (30 mg/kg/day) by gavage. Plasma analytes, liver histology, adiposity, and the expression of key genes controlling fatty acid metabolism were determined, and PPAR agonism was explored by using luciferase reporter assays. Our results showed that, compared to HFHFr, BemA-treated rats exhibited lower body weight, higher liver/body weight, and reduced hepatic steatosis. In addition to ACLY inhibition, we found three novel mechanisms that could account for the anti-steatotic effect: (1) reduction of liver ketohexokinase, leading to lower fructose intake and reduced de novo lipogenesis; (2) increased expression of patatin-like phospholipase domain-containing protein 3, a protein related to the export of liver triglycerides to blood; and (3) PPARα agonist activity, leading to increased hepatic fatty acid β-oxidation. In conclusion, BemA may represent a novel approach to treat hepatic steatosis, and therefore to avoid progression to advanced stages of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ana Magdalena Velázquez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain; (A.M.V.); (R.B.); (R.M.S.); (J.C.L.)
| | - Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain; (A.M.V.); (R.B.); (R.M.S.); (J.C.L.)
| | - Aleix Sala-Vila
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (A.S.-V.); (I.L.)
| | - Iolanda Lázaro
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain; (A.S.-V.); (I.L.)
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader 88, 08003 Barcelona, Spain;
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Rosa María Sánchez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain; (A.M.V.); (R.B.); (R.M.S.); (J.C.L.)
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain; (A.M.V.); (R.B.); (R.M.S.); (J.C.L.)
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain; (A.M.V.); (R.B.); (R.M.S.); (J.C.L.)
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (N.R.); (M.A.)
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain; (A.M.V.); (R.B.); (R.M.S.); (J.C.L.)
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (N.R.); (M.A.)
| |
Collapse
|
15
|
Zang Y, Tai L, Hu Y, Wang Y, Sun H, Wen X, Yuan H, Dai L. Discovery of a Novel Macrocyclic ATP Citrate Lyase Inhibitor. J Chem Inf Model 2022; 62:3123-3132. [PMID: 35679529 DOI: 10.1021/acs.jcim.2c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP citrate lyase (ACLY) is an important metabolic enzyme involved in the synthesis of fatty acid and cholesterol. The inhibition of ACLY is considered as a promising therapeutic strategy for various metabolic diseases and numerous malignancies. In this study, a novel macrocyclic compound 2 has been identified as a potent ACLY inhibitor with the "ring closing" strategy for conformational restriction based on NDI-091143. It showed potent ACLY inhibitory activity and binding affinity comparable to the positive control. Furthermore, compared with the positive control (T1/2 = 3.36 min), the metabolic stability of 2 in HLMs (T1/2 = 531.22 min) was significantly improved. All of these results characterized 2 as a promising lead compound worthy of further study.
Collapse
Affiliation(s)
- Yongjun Zang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Luyang Tai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuanyang Hu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yu Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
16
|
Xu S, Wang Y, Li Z, Hua Q, Jiang M, Fan X. LncRNA GAS5 Knockdown Mitigates Hepatic Lipid Accumulation via Regulating MiR-26a-5p/PDE4B to Activate cAMP/CREB Pathway. Front Endocrinol (Lausanne) 2022; 13:889858. [PMID: 35957809 PMCID: PMC9361042 DOI: 10.3389/fendo.2022.889858] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) can be attributed to the dysregulation of hepatic lipid metabolism; however, its cellular and molecular mechanisms remain unclear. This study aims to explore the effect of long non-coding RNA growth arrest specific 5 (GAS5) on hepatic lipid metabolism in fatty liver models. METHODS Obese mice, high fat diet-fed mice and free fatty acid-stimulated cells were used for GAS5 expression detection. GAS5 overexpression or knockdown models were established to elucidate the regulatory function of GAS5 in de novo lipogenesis (DNL) and mitochondrial function. Bioinformatic analyses and dual luciferase assays were used to investigate the interaction between GAS5, miR-26a-5p and phosphodiesterase (PDE) 4B. The involvement of the cyclic adenosine monophosphate (cAMP)/cAMP-response element-binding protein (CREB) pathway was evaluated using H89 and forskolin treatment. RESULTS GAS5 was activated in vitro and in vivo fatty liver models. Knockdown of GAS5 reduced lipid droplet accumulation, DNL associated enzymes and preserved mitochondrial function, while GAS5 overexpression exacerbated hepatic lipid accumulation. Mechanistically, GAS5 sponged miR-26a-5p to increase PDE4B expression and subsequently modulated DNL and mitochondrial function via the cAMP/CREB pathway. CONCLUSION Downregulation of GAS5 can activate the cAMP/CREB pathway through miR-26a-5p/PDE4B axis to mitigate hepatic lipid accumulation. This study provides evidence that downregulation of GAS5 may be a potential therapeutic option for the treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Miao Jiang
- *Correspondence: Xiaoming Fan, ; Miao Jiang,
| | | |
Collapse
|
17
|
Hu Y, He W, Huang Y, Xiang H, Guo J, Che Y, Cheng X, Hu F, Hu M, Ma T, Yu J, Tian H, Tian S, Ji YX, Zhang P, She ZG, Zhang XJ, Huang Z, Yang J, Li H. Fatty Acid Synthase-Suppressor Screening Identifies Sorting Nexin 8 as a Therapeutic Target for NAFLD. Hepatology 2021; 74:2508-2525. [PMID: 34231239 DOI: 10.1002/hep.32045] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD is the most prevalent chronic liver disease without any Food and Drug Administration-approved pharmacological intervention in clinic. Fatty acid synthase (FASN) is one of the most attractive targets for NAFLD treatment because of its robust rate-limiting capacity to control hepatic de novo lipogenesis. However, the regulatory mechanisms of FASN in NAFLD and potential therapeutic strategies targeting FASN remain largely unknown. METHODS AND RESULTS Through a systematic interactomics analysis of FASN-complex proteins, we screened and identified sorting nexin 8 (SNX8) as a binding partner of FASN. SNX8 directly bound to FASN and promoted FASN ubiquitination and subsequent proteasomal degradation. We further demonstrated that SNX8 mediated FASN protein degradation by recruiting the E3 ligase tripartite motif containing 28 (TRIM28) and enhancing the TRIM28-FASN interaction. Notably, Snx8 interference in hepatocytes significantly deteriorated lipid accumulation in vitro, whereas SNX8 overexpression markedly blocked hepatocyte lipid deposition. Furthermore, the aggravating effect of Snx8 deletion on NAFLD was validated in vivo as hepatic steatosis and lipogenic pathways in the liver were significantly exacerbated in Snx8-knockout mice compared to wild-type controls. Consistently, hepatocyte-specific overexpression of Snx8 in vivo markedly suppressed high-fat, high-cholesterol diet (HFHC)-induced hepatic steatosis. Notably, the protective effect of SNX8 against NAFLD was largely dependent on FASN suppression. CONCLUSIONS These data indicate that SNX8 is a key suppressor of NAFLD that promotes FASN proteasomal degradation. Targeting the SNX8-FASN axis is a promising strategy for NAFLD prevention and treatment.
Collapse
Affiliation(s)
- Yufeng Hu
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Wenzhi He
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yongping Huang
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Hui Xiang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Guo
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yan Che
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Cheng
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fengjiao Hu
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Manli Hu
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tengfei Ma
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Yu
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Juan Yang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongliang Li
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 2021; 50:101238. [PMID: 33892169 PMCID: PMC8324684 DOI: 10.1016/j.molmet.2021.101238] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease, or as recently proposed 'metabolic-associated fatty liver disease' (MAFLD), is characterized by pathological accumulation of triglycerides and other lipids in hepatocytes. This common disease can progress from simple steatosis to steatohepatitis, and eventually end-stage liver diseases. MAFLD is closely related to disturbances in systemic energy metabolism, including insulin resistance and atherogenic dyslipidemia. SCOPE OF REVIEW The liver is the central organ in lipid metabolism by secreting very low density lipoproteins (VLDL) and, on the other hand, by internalizing fatty acids and lipoproteins. This review article discusses recent research addressing hepatic lipid synthesis, VLDL production, and lipoprotein internalization as well as the lipid exchange between adipose tissue and the liver in the context of MAFLD. MAJOR CONCLUSIONS Liver steatosis in MAFLD is triggered by excessive hepatic triglyceride synthesis utilizing fatty acids derived from white adipose tissue (WAT), de novo lipogenesis (DNL) and endocytosed remnants of triglyceride-rich lipoproteins. In consequence of high hepatic lipid content, VLDL secretion is enhanced, which is the primary cause of complex dyslipidemia typical for subjects with MAFLD. Interventions reducing VLDL secretory capacity attenuate dyslipidemia while they exacerbate MAFLD, indicating that the balance of lipid storage versus secretion in hepatocytes is a critical parameter determining disease outcome. Proof of concept studies have shown that promoting lipid storage and energy combustion in adipose tissues reduces hepatic lipid load and thus ameliorates MAFLD. Moreover, hepatocellular triglyceride synthesis from DNL and WAT-derived fatty acids can be targeted to treat MAFLD. However, more research is needed to understand how individual transporters, enzymes, and their isoforms affect steatosis and dyslipidemia in vivo, and whether these two aspects of MAFLD can be selectively treated. Processing of cholesterol-enriched lipoproteins appears less important for steatosis. It may, however, modulate inflammation and consequently MAFLD progression.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Wang Z, Wang QA, Liu Y, Jiang L. Energy metabolism in brown adipose tissue. FEBS J 2021; 288:3647-3662. [PMID: 34028971 DOI: 10.1111/febs.16015] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Brown adipose tissue (BAT) is well known to burn calories through uncoupled respiration, producing heat to maintain body temperature. This 'calorie wasting' feature makes BAT a special tissue, which can function as an 'energy sink' in mammals. While a combination of high energy intake and low energy expenditure is the leading cause of overweight and obesity in modern society, activating a safe 'energy sink' has been proposed as a promising obesity treatment strategy. Metabolically, lipids and glucose have been viewed as the major energy substrates in BAT, while succinate, lactate, branched-chain amino acids, and other metabolites can also serve as energy substrates for thermogenesis. Since the cataplerotic and anaplerotic reactions of these metabolites interconnect with each other, BAT relies on its dynamic, flexible, and complex metabolism to support its special function. In this review, we summarize how BAT orchestrates the metabolic utilization of various nutrients to support thermogenesis and contributes to whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Institute for Advanced Studies, Wuhan University, China
| | - Lei Jiang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
20
|
Colivicchi F, Di Fusco SA, Scicchitano P, Caldarola P, Murrone A, Valente S, Urbinati S, Roncon L, Amodeo V, Aspromonte N, Cipriani M, Domenicucci S, Francese GM, Imazio M, Scotto di Uccio F, Di Lenarda A, Gulizia MM, Gabrielli D. Updated clinical evidence and place in therapy of bempedoic acid for hypercholesterolemia: ANMCO position paper. J Cardiovasc Med (Hagerstown) 2021; 22:162-171. [PMID: 32842050 DOI: 10.2459/jcm.0000000000001108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The central role of high low-density lipoprotein cholesterol levels in atherosclerotic cardiovascular disease has led to research focused on lipid-lowering agents for cardiovascular risk reduction. Bempedoic acid is an emerging treatment for hypercholesterolemia that has recently been approved for marketing in the United States and Europe. This review focuses on its mechanism of action and summarizes the main preclinical study findings. Furthermore, we report the clinical evidence supporting and guiding its use in hypercholesterolemia management.
Collapse
Affiliation(s)
- Furio Colivicchi
- Clinical and Rehabilitative Cardiology Unit, San Filippo Neri Hospital ASL Roma 1, Rome
| | | | | | - Pasquale Caldarola
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, School of Medicine, University of Bari, Bari
| | - Adriano Murrone
- Cardilogy-Intensive Care Unit, Ospedali di Città di Castello e Gubbio - Gualdo Tadino, Azienda USL Umbria 1, Perugia
| | | | | | - Loris Roncon
- Cardiology Unit, Ospedale Santa Maria della Misericordia, Rovigo
| | - Vincenzo Amodeo
- Cardiology-Intensive Care Unit, Santa Maria degli Ungheresi Hospital, Polistena, Reggio Calabria
| | - Nadia Aspromonte
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| | - Manlio Cipriani
- Cardiology Unit 2, ASST Grande Ospedale Metropolitano Niguarda Cà Granda, Milan
| | - Stefano Domenicucci
- Dipartimento Cardio-Toraco-Vascolare, Azienda Ligure della Sanità Regione Liguria
| | - Giuseppina Maura Francese
- Cardiology Division, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione 'Garibaldi', Catania
| | - Massimo Imazio
- Cardilogy Unit, Presidio Molinette, A.O.U. Città della Salute e della Scienza di Torino, Torino
| | | | - Andrea Di Lenarda
- Cardiovascular Center, University Hospital and Health Services of Trieste, Trieste
| | - Michele Massimo Gulizia
- Cardiology Division, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione 'Garibaldi', Catania
- Fondazione per il Tuo cuore; Heart Care Foundation, Florence
| | | |
Collapse
|
21
|
Tatsushima K, Hasuzawa N, Wang L, Hiasa M, Sakamoto S, Ashida K, Sudo N, Moriyama Y, Nomura M. Vesicular ATP release from hepatocytes plays a role in the progression of nonalcoholic steatohepatitis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166013. [PMID: 33212187 DOI: 10.1016/j.bbadis.2020.166013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is becoming a growing public health problem along with the increase of metabolic syndrome worldwide. Extracellular nucleotides are known to serve as a danger signal by initiating purinergic signaling in many inflammatory disorders, although the role of purinergic signaling in the progression of NASH remains to be clarified. Vesicular nucleotide transporter (VNUT) is a key molecule responsible for vesicular ATP release to initiate purinergic signaling. Here, we studied the role of VNUT in the progression of nonalcoholic steatohepatitis. VNUT was expressed in mouse hepatocytes and associated, at least in part, with apolipoprotein B (apoB)-containing vesicles. High glucose stimulation evoked release of appreciable amount of ATP from hepatocytes, which disappeared in hepatocytes of Vnut knockout (Vnut-/-) mice. Glucose treatment also stimulated triglyceride secretion from hepatocytes, which was inhibited by PPADS and MRS211, antagonists of P2Y receptors, and clodronate, a VNUT inhibitor, and was significantly reduced in Vnut-/- mice. In vivo, postprandial secretion of triglyceride from hepatocytes was observed, while the serum triglyceride level was significantly reduced in Vnut-/- mice. On a high-fat diet, the liver of wild type mice exhibited severe inflammation, fibrosis, and macrophage infiltration, which is similar to NASH in humans, while this NASH pathology was not observed in Vnut-/- mice. These results suggest that VNUT-mediated vesicular ATP release regulates triglyceride secretion and involves in chronic inflammation in hepatocytes. Since blockade of vesicular ATP release protects against progression of steatohepatitis, VNUT may be a pharmacological target for NASH.
Collapse
Affiliation(s)
- Keita Tatsushima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Endocrine Center, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Nao Hasuzawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Lixiang Wang
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Miki Hiasa
- Department of Membrane Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Shohei Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; Department of Membrane Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| |
Collapse
|
22
|
Shabgah AG, Norouzi F, Hedayati-Moghadam M, Soleimani D, Pahlavani N, Navashenaq JG. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2021; 18:22. [PMID: 33622377 PMCID: PMC7903707 DOI: 10.1186/s12986-021-00552-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most prevalent diseases worldwide without a fully-known mechanism is non-alcoholic fatty liver disease (NAFLD). Recently, long non-coding RNAs (lncRNAs) have emerged as significant regulatory molecules. These RNAs have been claimed by bioinformatic research that is involved in biologic processes, including cell cycle, transcription factor regulation, fatty acids metabolism, and-so-forth. There is a body of evidence that lncRNAs have a pivotal role in triglyceride, cholesterol, and lipoprotein metabolism. Moreover, lncRNAs by up- or down-regulation of the downstream molecules in fatty acid metabolism may determine the fatty acid deposition in the liver. Therefore, lncRNAs have attracted considerable interest in NAFLD pathology and research. In this review, we provide all of the lncRNAs and their possible mechanisms which have been introduced up to now. It is hoped that this study would provide deep insight into the role of lncRNAs in NAFLD to recognize the better molecular targets for therapy.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naseh Pahlavani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | | |
Collapse
|
23
|
Ismail A, Doghish AS, E M Elsadek B, Salama SA, Mariee AD. Hydroxycitric acid potentiates the cytotoxic effect of tamoxifen in MCF-7 breast cancer cells through inhibition of ATP citrate lyase. Steroids 2020; 160:108656. [PMID: 32439410 DOI: 10.1016/j.steroids.2020.108656] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Hydroxycitric acid (HCA), a dietary-derived weight loss supplement, competitively inhibits ATP citrate lyase (ACLY). Tamoxifen (TAM) is the most frequently used therapy for estrogen receptor (ER)-positive breast cancer patients, but its application was restricted due to efficacy related issues. Lipid metabolic reprogramming plays a key role in cancer progression and response to treatment. This study will test the hypothesis that targeting lipid metabolic enzymes could enhance TAM effect against breast cancer cells. MCF-7 ER-positive breast cancer cell line was used, and the cytotoxic effect of TAM treatment, alone and in combination with HCA was evaluated. Flowcytometric analysis of apoptosis following TAM and/or HCA treatment was additionally performed. Besides, the effects of TAM and/or HCA on ACLY, acetyl CoA carboxylase alpha (ACC-α) and fatty acid synthase (FAS) expression were investigated. Likewise, expression of ER-α protein through TAM and/or HCA treatment was examined. Cell contents of cholesterol and triglyceride were quantified. Treatment with TAM or HCA significantly reduced cell viability in a concentration-dependent manner whereas co-treatment synergistically reduced cell viability, promoted apoptosis, and decreased the expression of ACLY, ACC-α, and FAS. Intracellular triglyceride and cholesterol were accumulated in response to treatment with TAM and/or HCA. Moreover, either solitary TAM or TAM/ HCA co-treatment increased ER-α protein levels non significantly. Our results revealed that TAM effects on breast cancer are mediated, in part, through the regulation of key genes involved in lipid metabolism. Accordingly, inhibition of ACLY by HCA might be beneficial to enhance the therapeutic index of TAM against breast cancer.
Collapse
Affiliation(s)
- Ahmed Ismail
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11231, Nasr City, Cairo, Egypt.
| | - Ahmed S Doghish
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11231, Nasr City, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Bakheet E M Elsadek
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit Branch, P.O. Box 71524, Assuit, Egypt
| | - Salama A Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11231, Nasr City, Cairo, Egypt
| | - Amr D Mariee
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11231, Nasr City, Cairo, Egypt
| |
Collapse
|
24
|
Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A, Miller KD, Schug ZT, Snyder NW, Gade TP, Titchenell PM, Rabinowitz JD, Wellen KE. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 2020; 579:586-591. [PMID: 32214246 PMCID: PMC7416516 DOI: 10.1038/s41586-020-2101-7] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods1, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease2-4. Fructose intake triggers de novo lipogenesis in the liver4-6, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates7. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases8. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota9, and this supplies lipogenic acetyl-CoA independently of ACLY10. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.
Collapse
Affiliation(s)
- Steven Zhao
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joyce Liu
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Biochemistry & Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kahealani Uehara
- Biochemistry & Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael Gilbert
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Biochemistry & Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Luke Izzo
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xianfeng Zeng
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Sully Fernandez
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alessandro Carrer
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Katelyn D Miller
- Molecular and Cellular Oncogenesis, Wistar Institute, Philadelphia, PA, USA
| | - Zachary T Schug
- Molecular and Cellular Oncogenesis, Wistar Institute, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Terence P Gade
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul M Titchenell
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
25
|
The vital role of ATP citrate lyase in chronic diseases. J Mol Med (Berl) 2019; 98:71-95. [PMID: 31858156 DOI: 10.1007/s00109-019-01863-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.
Collapse
|
26
|
Application of a dye-based mitochondrion-thermometry to determine the receptor downstream of prostaglandin E 2 involved in the regulation of hepatocyte metabolism. Sci Rep 2018; 8:13065. [PMID: 30166566 PMCID: PMC6117307 DOI: 10.1038/s41598-018-31356-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
Temperature distributions inside a living cell reflect the thermodynamics and functions of cellular components. We used a newly-developed method of mitochondrial thermometry based on Rhodamine B methyl ester, which equilibrates as a thermosensitive mixture of nonfluorescent and fluorescent resonance forms. Prostaglandin E2 (PGE2) is released from hepatic non-parenchymal Kupffer cells and acts as an inflammatory factor to impact various functions of hepatocytes. The activity of PGE2 on energy mechanism of hepatocytes has not been fully elucidated and in particular, which PGE2 receptor mediates the functions has been elusive. We identified EP4 as the major receptor of PGE2 via our mitochondrion-thermometry approach and then substantiated this receptor's role in hepatic metabolism. We discovered that PGE2 is able to decrease intracellular temperature of hepatocytes, via increasing some lipogenic genes' expressions, hampering lipolysis and mitochondrial β-oxidation, reducing intracellular ATP level and elevating cAMP level through EP4 receptor. The redox status of hepatocytes represented by FAD vs FAD + NADH ratio is influenced by PGE2 in an EP4 receptor-dependent manner. Collectively, these data demonstrate that PGE2 regulates metabolism of hepatocytes mainly through EP4 receptor.
Collapse
|
27
|
Molusky MM, Hsieh J, Lee SX, Ramakrishnan R, Tascau L, Haeusler RA, Accili D, Tall AR. Metformin and AMP Kinase Activation Increase Expression of the Sterol Transporters ABCG5/8 (ATP-Binding Cassette Transporter G5/G8) With Potential Antiatherogenic Consequences. Arterioscler Thromb Vasc Biol 2018; 38:1493-1503. [PMID: 29853564 PMCID: PMC6039406 DOI: 10.1161/atvbaha.118.311212] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/16/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The mechanisms underlying the cardiovascular benefit of the anti-diabetic drug metformin are poorly understood. Recent studies have suggested metformin may upregulate macrophage reverse cholesterol transport. The final steps of reverse cholesterol transport are mediated by the sterol transporters, ABCG5 (ATP-binding cassette transporter G5) and ABCG8 (ATP-binding cassette transporter G8), which facilitate hepato-biliary transport of cholesterol. This study was undertaken to assess the possibility that metformin induces Abcg5 and Abcg8 expression in liver and to elucidate the underlying mechanisms. APPROACH AND RESULTS Metformin-treated mouse or human primary hepatocytes showed increased expression of Abcg5/8 and the bile salt export pump, Bsep. Administration of metformin to Western-type diet-fed mice showed significant upregulation of Abcg5/8 and Bsep. This resulted in increased initial clearance of 3H-cholesteryl ester HDL (high-density lipoprotein) from plasma. However, fecal 3H-cholesterol output was only marginally increased, possibly reflecting increased hepatic Ldlr (low-density lipoprotein receptor) expression, which would increase nonradiolabeled cholesterol uptake. Abcg5/8 undergo strong circadian variation. Available chromatin immunoprecipitation-Seq data suggested multiple binding sites for Period 2, a transcriptional repressor, within the Abcg5/8 locus. Addition of AMPK (5' adenosine monophosphate-activated protein kinase) agonists decreased Period 2 occupancy, suggesting derepression of Abcg5/8. Inhibition of ATP citrate lyase, which generates acetyl-CoA from citrate, also decreased Period 2 occupancy, with concomitant upregulation of Abcg5/8. This suggests a mechanistic link between feeding-induced acetyl-CoA production and decreased cholesterol excretion via Period 2, resulting in inhibition of Abcg5/8 expression. CONCLUSIONS Our findings provide partial support for the concept that metformin may provide cardiovascular benefit via increased reverse cholesterol transport but also indicate increased Ldlr expression as a potential additional mechanism. AMPK activation or ATP citrate lyase inhibition may mediate antiatherogenic effects through increased ABCG5/8 expression.
Collapse
Affiliation(s)
- Matthew M Molusky
- From the Division of Molecular Medicine, Department of Medicine (M.M.M, J.H., L.T., A.R.T.)
| | - Joanne Hsieh
- From the Division of Molecular Medicine, Department of Medicine (M.M.M, J.H., L.T., A.R.T.)
| | - Samuel X Lee
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons (S.X.L., R.A.H.)
| | | | - Liana Tascau
- From the Division of Molecular Medicine, Department of Medicine (M.M.M, J.H., L.T., A.R.T.)
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons (S.X.L., R.A.H.).,Department of Pathology and Cell Biology (R.A.H.)
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center (D.A.), Columbia University, New York
| | - Alan R Tall
- From the Division of Molecular Medicine, Department of Medicine (M.M.M, J.H., L.T., A.R.T.)
| |
Collapse
|
28
|
Luo B, Xiang D, Wu D, Liu C, Fang Y, Chen P, Hu YP. Hepatic PHD2/HIF-1α axis is involved in postexercise systemic energy homeostasis. FASEB J 2018; 32:4670-4680. [PMID: 29601782 DOI: 10.1096/fj.201701139r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exercise plays an important role in the prevention and treatment of chronic liver disease and associated metabolic disorders. A single bout of exercise induces tissue blood flow redistribution, which decreases splanchnic circulation and leads to physiologic hypoxia in the gastrointestinal system and liver. The transcription factor, hypoxia inducible factor-1α (HIF-1α), and its regulator, prolylhydroxylase 2 (PHD2), play pivotal roles in the response to oxygen flux by regulating downstream gene expression levels in the liver. We hypothesized that exercise increases the HIF-1α levels in the liver, and that the hepatic PHD2/HIF-1α axis is involved in postexercise restoration of systemic energy homeostasis. Through constant O2 consumption, CO2 production, food and water intake, and physical activity detection with metabolic chambers, we observed that one 30-min session of swimming exercise enhances systemic energy metabolism in mice. By using the noninvasive bioluminescence imaging ROSA26 oxygen-dependent domain Luc mouse model, we reveal that exercise increases in vivo HIFα levels in the liver. Intraperitoneal injections of the PHD inhibitor, dimethyloxalylglycine, mimicked exercise-induced HIFα increase, whereas the HIF-1α inhibitor, PX-478, blocked this effect. We next constructed liver-specific knockout (LKO) mouse models with albumin- Cre-mediated, hepatocyte-specific Hif1a and Phd2 deletion. Compared with their controls, Hif1a-LKO and Phd2-LKO mice exhibited distinct patterns of hepatic metabolism-related gene expression profiles. Moreover, Hif1a-LKO mice failed to restore systemic energy homeostasis after exercise. In conclusion, the current study demonstrates that a single bout of exercise disrupts systemic energy homeostasis, increasing the HIF-1α levels in the liver. These findings also provide evidence that the hepatic PHD2/HIF-1α axis is involved in postexercise systemic metabolic homeostasis.-Luo, B., Xiang, D., Wu, D., Liu, C., Fang, Y., Chen, P., Hu, Y.-P. Hepatic PHD2/HIF-1α axis is involved in postexercise systemic energy homeostasis.
Collapse
Affiliation(s)
- Beibei Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Cell Biology, Second Military Medical University, Shanghai, China
| | - Dao Xiang
- Department of Diving Medicine, Naval Medical Research Institute, Second Military Medical University, Shanghai, China
| | - Die Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Changcheng Liu
- Department of Cell Biology, Second Military Medical University, Shanghai, China
| | - Yiqun Fang
- Department of Diving Medicine, Naval Medical Research Institute, Second Military Medical University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yi-Ping Hu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Cell Biology, Second Military Medical University, Shanghai, China
| |
Collapse
|
29
|
Cytosolic carnitine acetyltransferase as a source of cytosolic acetyl-CoA: a possible mechanism for regulation of cardiac energy metabolism. Biochem J 2018; 475:959-976. [PMID: 29438065 DOI: 10.1042/bcj20170823] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Abstract
The role of carnitine acetyltransferase (CrAT) in regulating cardiac energy metabolism is poorly understood. CrAT modulates mitochondrial acetyl-CoA/CoA (coenzyme A) ratios, thus regulating pyruvate dehydrogenase activity and glucose oxidation. Here, we propose that cardiac CrAT also provides cytosolic acetyl-CoA for the production of malonyl-CoA, a potent inhibitor of fatty acid oxidation. We show that in the murine cardiomyocyte cytosol, reverse CrAT activity (RCrAT, producing acetyl-CoA) is higher compared with the liver, which primarily uses ATP-citrate lyase to produce cytosolic acetyl-CoA for lipogenesis. The heart displayed a lower RCrAT Km for CoA compared with the liver. Furthermore, cytosolic RCrAT accounted for 4.6 ± 0.7% of total activity in heart tissue and 12.7 ± 0.2% in H9C2 cells, while highly purified heart cytosolic fractions showed significant CrAT protein levels. To investigate the relationship between CrAT and acetyl-CoA carboxylase (ACC), the cytosolic enzyme catalyzing malonyl-CoA production from acetyl-CoA, we studied ACC2-knockout mouse hearts which showed decreased CrAT protein levels and activity, associated with increased palmitate oxidation and acetyl-CoA/CoA ratio compared with controls. Conversely, feeding mice a high-fat diet for 10 weeks increased cardiac CrAT protein levels and activity, associated with a reduced acetyl-CoA/CoA ratio and glucose oxidation. These data support the presence of a cytosolic CrAT with a low Km for CoA, favoring the formation of cytosolic acetyl-CoA, providing an additional source to the classical ATP-citrate lyase pathway, and that there is an inverse relation between CrAT and the ratio of acetyl-CoA/CoA as evident in conditions affecting the regulation of cardiac energy metabolism.
Collapse
|
30
|
He Y, Gao M, Cao Y, Tang H, Liu S, Tao Y. Nuclear localization of metabolic enzymes in immunity and metastasis. Biochim Biophys Acta Rev Cancer 2017; 1868:359-371. [PMID: 28757126 DOI: 10.1016/j.bbcan.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolism is essential to all living organisms that provide cells with energy, regulators, building blocks, enzyme cofactors and signaling molecules, and is in tune with nutritional conditions and the function of cells to make the appropriate developmental decisions or maintain homeostasis. As a fundamental biological process, metabolism state affects the production of multiple metabolites and the activation of various enzymes that participate in regulating gene expression, cell apoptosis, cancer progression and immunoreactions. Previous studies generally focus on the function played by the metabolic enzymes in the cytoplasm and mitochondrion. In this review, we conclude the role of them in the nucleus and their implications for cancer progression, immunity and metastasis.
Collapse
Affiliation(s)
- Yuchen He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Menghui Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiqu Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
31
|
Abstract
Bempedoic acid (ETC-1002), a novel therapeutic approach for low-density lipoprotein cholesterol (LDL-C) lowering, inhibits ATP citrate lyase (ACL), an enzyme involved in fatty acid and cholesterol synthesis. Although rodent studies suggested potential effects of ACL inhibition on both fatty acid and cholesterol synthesis, studies in humans show an effect only on cholesterol synthesis. In phase 2 studies, ETC-1002 reduced LDL-C as monotherapy, combined with ezetimibe, and added to statin therapy, with LDL-C lowering most pronounced when ETC-1002 was combined with ezetimibe in patients who cannot tolerate statins. Whether clinically relevant favorable effects on other cardiometabolic risk factors such as hyperglycemia and insulin resistance occur in humans is unknown and requires further investigation. Promising phase 2 results have led to the design of a large phase 3 program to gain more information on efficacy and safety of ETC-1002 in combination with statins and when added to ezetimibe in statin-intolerant patients.
Collapse
Affiliation(s)
- Ozlem Bilen
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Christie M Ballantyne
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA. .,Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA. .,Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX, USA.
| |
Collapse
|
32
|
Qiu Y, Sui X, Cao S, Li X, Ning Y, Wang S, Yin L, Zhi X. Steroidogenic Acute Regulatory Protein (StAR) Overexpression Reduces Inflammation and Insulin Resistance in Obese Mice. J Cell Biochem 2017; 118:3932-3942. [DOI: 10.1002/jcb.26046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Yanyan Qiu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Xianxian Sui
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Shengxuan Cao
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Yanxia Ning
- Department of Internal Medicine School of Medicine, Virginia Commonwealth University Richmond Virginia
| | - Songmei Wang
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Lianhua Yin
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiuling Zhi
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW ATP-citrate lyase (ACLY) has re-emerged as a drug target for LDL cholesterol (LDL-C) lowering. We review ACLY as a therapeutic strategy, its genetics, its molecular and cellular biology, and also its inhibition. RECENT FINDINGS ACLY is a critical enzyme linking glucose catabolism to lipogenesis by providing acetyl-CoA from mitochondrial citrate for fatty acid and cholesterol biosynthesis. Human genetic variants have been associated with enhanced growth and survival of several cancers, and with attenuated plasma triglyceride responses to dietary fish oil. In mice, liver-specific Acly deficiency protects from hepatic steatosis and dyslipidemia, whereas adipose tissue-specific Acly deletion has no phenotype, supporting therapeutic inhibition of ACLY. A lipid-regulating compound, bempedoic acid, was discovered to potently inhibit ACLY, and in animal models, it prevents dyslipidemia and attenuates atherosclerosis. Phase 2 clinical trials revealed that bempedoic acid effectively lowers LDL-C as monotherapy, combined with ezetimibe, added to statin therapy and in statin-intolerant hypercholesterolemic patients. SUMMARY The efficacy of bempedoic acid as an LDL-C-lowering agent has validated ACLY inhibition as a therapeutic strategy. Positive results of phase 3 patient studies, together with long-term cardiovascular disease outcome trials, are required to establish ACLY as a major new target in cardiovascular medicine.
Collapse
Affiliation(s)
- Amy C Burke
- aDepartment of Biochemistry bDepartment of Medicine cRobarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
34
|
Calorie restriction prevents the development of insulin resistance and impaired lipid metabolism in gestational diabetes offspring. Pediatr Res 2017; 81:663-671. [PMID: 28024145 DOI: 10.1038/pr.2016.273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 12/04/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) has long-lasting influence on offspring, which is associated with increased risks of insulin resistance, obesity, and type II diabetes mellitus. Calorie restriction (CR) is one of the most common and available nutritional interventions to prevent obesity and diabetes. We are trying to explore the effect of CR on GDM offspring. METHODS The streptozotocin was used to stimulate C57BL/6J mice to develop GDM, a number of metabolic characteristics and related protein expressions were determined in GDM offspring that were fed ad-libitum or treated with calorie restriction. RESULTS CR reduced body weight and glucose levels in GDM offspring. CR modulated the lipid metabolism by decreasing triglyceride and cholesterol levels in plasma. We also found that the effect of CR on insulin sensitivity may involve in signaling pathway through the regulations of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and protein kinase B (Akt). CONCLUSION GDM is a high risk factor for GDM offspring to develop insulin resistance, while CR could ameliorate this adverse outcome. Moreover, the specific decrease in PTEN activation and increase in Akt phosphorylation in livers of GDM offspring with CR improved insulin sensitivity and lipid metabolism.
Collapse
|
35
|
Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun 2016; 7:13457. [PMID: 27892461 PMCID: PMC5133702 DOI: 10.1038/ncomms13457] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022] Open
Abstract
Despite widespread use of statins to reduce low-density lipoprotein cholesterol (LDL-C) and associated atherosclerotic cardiovascular risk, many patients do not achieve sufficient LDL-C lowering due to muscle-related side effects, indicating novel treatment strategies are required. Bempedoic acid (ETC-1002) is a small molecule intended to lower LDL-C in hypercholesterolemic patients, and has been previously shown to modulate both ATP-citrate lyase (ACL) and AMP-activated protein kinase (AMPK) activity in rodents. However, its mechanism for LDL-C lowering, efficacy in models of atherosclerosis and relevance in humans are unknown. Here we show that ETC-1002 is a prodrug that requires activation by very long-chain acyl-CoA synthetase-1 (ACSVL1) to modulate both targets, and that inhibition of ACL leads to LDL receptor upregulation, decreased LDL-C and attenuation of atherosclerosis, independently of AMPK. Furthermore, we demonstrate that the absence of ACSVL1 in skeletal muscle provides a mechanistic basis for ETC-1002 to potentially avoid the myotoxicity associated with statin therapy.
Collapse
|
36
|
Zagayko AL, Shkapo AI, Fylymonenko VP, Briukhanova TO. The impact of hydroxycitric acid on the lipid metabolism profile under experimental insulin resistance syndrome of syrian hamsters. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:78-82. [DOI: 10.15407/ubj88.03.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
37
|
Softic S, Cohen DE, Kahn CR. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Dig Dis Sci 2016; 61:1282-93. [PMID: 26856717 PMCID: PMC4838515 DOI: 10.1007/s10620-016-4054-0] [Citation(s) in RCA: 470] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome. Overconsumption of high-fat diet (HFD) and increased intake of sugar-sweetened beverages are major risk factors for development of NAFLD. Today the most commonly consumed sugar is high fructose corn syrup. Hepatic lipids may be derived from dietary intake, esterification of plasma free fatty acids (FFA) or hepatic de novo lipogenesis (DNL). A central abnormality in NAFLD is enhanced DNL. Hepatic DNL is increased in individuals with NAFLD, while the contribution of dietary fat and plasma FFA to hepatic lipids is not significantly altered. The importance of DNL in NAFLD is further established in mouse studies with knockout of genes involved in this process. Dietary fructose increases levels of enzymes involved in DNL even more strongly than HFD. Several properties of fructose metabolism make it particularly lipogenic. Fructose is absorbed via portal vein and delivered to the liver in much higher concentrations as compared to other tissues. Fructose increases protein levels of all DNL enzymes during its conversion into triglycerides. Additionally, fructose supports lipogenesis in the setting of insulin resistance as fructose does not require insulin for its metabolism, and it directly stimulates SREBP1c, a major transcriptional regulator of DNL. Fructose also leads to ATP depletion and suppression of mitochondrial fatty acid oxidation, resulting in increased production of reactive oxygen species. Furthermore, fructose promotes ER stress and uric acid formation, additional insulin independent pathways leading to DNL. In summary, fructose metabolism supports DNL more strongly than HFD and hepatic DNL is a central abnormality in NAFLD. Disrupting fructose metabolism in the liver may provide a new therapeutic option for the treatment of NAFLD.
Collapse
Affiliation(s)
- Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
- Department of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - David E Cohen
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
38
|
Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat Cell Biol 2015; 17:1099-111. [PMID: 26280538 PMCID: PMC4553131 DOI: 10.1038/ncb3217] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/02/2015] [Indexed: 12/15/2022]
Abstract
Pathological expansion of adipose tissue contributes to the metabolic syndrome. Distinct depots develop at various times under different physiological conditions. The transcriptional cascade mediating adipogenesis is established in vitro, and centers around a core program involving PPARγ and C/EBPα. We developed an inducible, adipocyte-specific knockout system to probe the requirement of key adipogenic transcription factors at various stages of adipogenesis in vivo. C/EBPα is essential for all white adipogenic conditions in the adult stage, such as adipose tissue regeneration, adipogenesis in muscle and unhealthy expansion of white adipose tissue during high fat feeding or due to leptin deficiency. Surprisingly, terminal embryonic adipogenesis is fully C/EBPα independent, does depend however on PPARγ; cold-induced beige adipogenesis is also C/EBPα independent. Moreover, C/EBPα is not vital for adipocyte survival in the adult stage. We reveal a surprising diversity of transcriptional signals required at different stages of adipogenesis in vivo.
Collapse
|
39
|
Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: More friend than foe? Mol Metab 2015; 4:367-77. [PMID: 25973385 PMCID: PMC4421107 DOI: 10.1016/j.molmet.2015.03.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 02/09/2023] Open
Abstract
Background An acute surplus of carbohydrates, and other substrates, can be converted and safely stored as lipids in adipocytes via de novo lipogenesis (DNL). However, in obesity, a condition characterized by chronic positive energy balance, DNL in non-adipose tissues may lead to ectopic lipid accumulation leading to lipotoxicity and metabolic stress. Indeed, DNL is dynamically recruited in liver during the development of fatty liver disease, where DNL is an important source of lipids. Nonetheless, a number of evidences indicates that DNL is an inefficient road for calorie to lipid conversion and that DNL may play an important role in sustaining metabolic homeostasis. Scope of review In this manuscript, we discuss the role of DNL as source of lipids during obesity, the energetic efficiency of this pathway in converting extra calories to lipids, and the function of DNL as a pathway supporting metabolic homeostasis. Major conclusion We conclude that inhibition of DNL in obese subjects, unless coupled with a correction of the chronic positive energy balance, may further promote lipotoxicity and metabolic stress. On the contrary, strategies aimed at specifically activating DNL in adipose tissue could support metabolic homeostasis in obese subjects by a number of mechanisms, which are discussed in this manuscript.
Collapse
Affiliation(s)
- Giovanni Solinas
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Abdul G Dulloo
- Division of Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
40
|
Lemus HN, Mendivil CO. Adenosine triphosphate citrate lyase: Emerging target in the treatment of dyslipidemia. J Clin Lipidol 2015; 9:384-9. [PMID: 26073398 DOI: 10.1016/j.jacl.2015.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 02/02/2023]
Abstract
Despite major advances in pharmacologic therapy over the last few decades, dyslipidemia remains a prevalent, insufficiently recognized, and undercontrolled risk factor for cardiovascular disease. Statins are the mainstay of hypercholesterolemia treatment, but because of adherence and tolerability issues that limit dose titration, there is a need for additional therapies with good efficacy and better tolerability. Adenosine triphosphate (ATP) citrate lyase, a cytoplasmic enzyme responsible for the generation of acetyl coenzyme A for the de novo synthesis of fatty acids and cholesterol, is a very interesting molecular target for the reduction of plasma lipids. Furthermore, ATP citrate lyase inhibition may be accompanied by activation of 5'-adenosine monophosphate-activated protein kinase, a key signaling molecule that acts a central hub in cellular metabolic regulation. ETC-1002 is a small molecule inhibitor of ATP citrate lyase that also activates 5'-adenosine monophosphate-activated protein kinase, effectively reducing low-density lipoprotein cholesterol and inducing some other positive metabolic changes. Recent evidence from phase I and II clinical trials in humans has shown a positive efficacy and safety profile of ETC-1002, with low-density lipoprotein cholesterol reductions similar to those attainable by usual doses of many statins and with no major apparent side effects. These results potentially introduce a new family of medications that may expand our therapeutic arsenal against hypercholesterolemia.
Collapse
Affiliation(s)
- Hernán N Lemus
- Universidad de los Andes Medical School, Bogotá, Colombia
| | - Carlos O Mendivil
- Universidad de los Andes Medical School, Bogotá, Colombia; Section of Endocrinology, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| |
Collapse
|
41
|
Xu J, Yin L, Xu Y, Li Y, Zalzala M, Cheng G, Zhang Y. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. PLoS One 2014; 9:e109663. [PMID: 25285996 PMCID: PMC4186840 DOI: 10.1371/journal.pone.0109663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1) is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL), an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yuanyuan Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Munaf Zalzala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Gang Cheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, United States of America
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Arya N, Kharjul MD, Shishoo CJ, Thakare VN, Jain KS. Some molecular targets for antihyperlipidemic drug research. Eur J Med Chem 2014; 85:535-68. [DOI: 10.1016/j.ejmech.2014.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
|
43
|
Pooya S, Liu X, Kumar VBS, Anderson J, Imai F, Zhang W, Ciraolo G, Ratner N, Setchell KDR, Yoshida Y, Yutaka Y, Jankowski MP, Dasgupta B. The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun 2014; 5:4993. [PMID: 25256100 DOI: 10.1038/ncomms5993] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/14/2014] [Indexed: 01/04/2023] Open
Abstract
A prerequisite to myelination of peripheral axons by Schwann cells (SCs) is SC differentiation, and recent evidence indicates that reprogramming from a glycolytic to oxidative metabolism occurs during cellular differentiation. Whether this reprogramming is essential for SC differentiation, and the genes that regulate this critical metabolic transition are unknown. Here we show that the tumour suppressor Lkb1 is essential for this metabolic transition and myelination of peripheral axons. Hypomyelination in the Lkb1-mutant nerves and muscle atrophy lead to hindlimb dysfunction and peripheral neuropathy. Lkb1-null SCs failed to optimally activate mitochondrial oxidative metabolism during differentiation. This deficit was caused by Lkb1-regulated diminished production of the mitochondrial Krebs cycle substrate citrate, a precursor to cellular lipids. Consequently, myelin lipids were reduced in Lkb1-mutant mice. Restoring citrate partially rescued Lkb1-mutant SC defects. Thus, Lkb1-mediated metabolic shift during SC differentiation increases mitochondrial metabolism and lipogenesis, necessary for normal myelination.
Collapse
Affiliation(s)
- Shabnam Pooya
- Department of Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Xiaona Liu
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - V B Sameer Kumar
- Department of Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Jane Anderson
- Department of Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Fumiyasu Imai
- Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Wujuan Zhang
- Department of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Georgianne Ciraolo
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Nancy Ratner
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Kenneth D R Setchell
- Department of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | | - Yoshida Yutaka
- Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Michael P Jankowski
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Biplab Dasgupta
- Department of Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| |
Collapse
|
44
|
Lai H, Jia X, Yu Q, Zhang C, Qiao J, Guan Y, Kang J. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome. Biol Reprod 2014; 91:127. [PMID: 25100714 DOI: 10.1095/biolreprod.114.120063] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS.
Collapse
Affiliation(s)
- Hao Lai
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xiao Jia
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Qiuxiao Yu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Chenglu Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jihong Kang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
45
|
Voluntary exercise under a food restriction condition decreases blood branched-chain amino acid levels, in addition to improvement of glucose and lipid metabolism, in db mice, animal model of type 2 diabetes. Environ Health Prev Med 2014; 19:339-47. [PMID: 25085431 DOI: 10.1007/s12199-014-0400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/13/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Exercise is effective for preventing the onset and development of type 2 diabetes mellitus (T2DM) in human cases; however, the effect of exercise on the pathophysiology using animal models of T2DM has not been fully evaluated. METHODS We applied voluntary exercise under pair-fed (P) conditions in db mice, an animal model of T2DM. Exercising (Ex) and sedentary (Se) mice were placed in a cage, equipped with a free or locked running wheel, for 4 weeks, respectively. The amount of food consumed by ad libitum-fed wild-type mice under the Se condition (ad-WT) was supplied to all mice, except ad libitum db mice (ad-db). Blood parameters and expression of the genes involved in nutrient metabolism were analyzed. RESULTS PEx-db (pair-fed and exercising) mice showed significantly lower HbA1c, body weight and liver weight than PSe-db and ad-db mice. Decreased hepatic triglycerides in PEx-db mice corresponded to a lower expression of lipogenic enzyme genes in the liver. Moreover, PEx-db mice showed significantly lower plasma branched-chain amino acids (BCAA), arginine, proline, and tyrosine, in addition to increased skeletal muscle (SM) weight, than PSe-db and ad-db mice, in spite of little influence on the expression of the BCAA transaminase gene, in SM and WAT. CONCLUSION We found that exercise under a food restriction condition decreases several amino acids, including BCAA, and may improve insulin sensitivity more than mere food restriction. We propose that the decreased concentration of blood amino acids may be a valuable marker evaluating the effects of exercise on diabetic conditions.
Collapse
|
46
|
Kuivenhoven JA, Hegele RA. Mining the genome for lipid genes. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1993-2009. [PMID: 24798233 DOI: 10.1016/j.bbadis.2014.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022]
Abstract
Mining of the genome for lipid genes has since the early 1970s helped to shape our understanding of how triglycerides are packaged (in chylomicrons), repackaged (in very low density lipoproteins; VLDL), and hydrolyzed, and also how remnant and low-density lipoproteins (LDL) are cleared from the circulation. Gene discoveries have also provided insights into high-density lipoprotein (HDL) biogenesis and remodeling. Interestingly, at least half of these key molecular genetic studies were initiated with the benefit of prior knowledge of relevant proteins. In addition, multiple important findings originated from studies in mouse, and from other types of non-genetic approaches. Although it appears by now that the main lipid pathways have been uncovered, and that only modulators or adaptor proteins such as those encoded by LDLRAP1, APOA5, ANGPLT3/4, and PCSK9 are currently being discovered, genome wide association studies (GWAS) in particular have implicated many new loci based on statistical analyses; these may prove to have equally large impacts on lipoprotein traits as gene products that are already known. On the other hand, since 2004 - and particularly since 2010 when massively parallel sequencing has become de rigeur - no major new insights into genes governing lipid metabolism have been reported. This is probably because the etiologies of true Mendelian lipid disorders with overt clinical complications have been largely resolved. In the meantime, it has become clear that proving the importance of new candidate genes is challenging. This could be due to very low frequencies of large impact variants in the population. It must further be emphasized that functional genetic studies, while necessary, are often difficult to accomplish, making it hazardous to upgrade a variant that is simply associated to being definitively causative. Also, it is clear that applying a monogenic approach to dissect complex lipid traits that are mostly of polygenic origin is the wrong way to proceed. The hope is that large-scale data acquisition combined with sophisticated computerized analyses will help to prioritize and select the most promising candidate genes for future research. We suggest that at this point in time, investment in sequence technology driven candidate gene discovery could be recalibrated by refocusing efforts on direct functional analysis of the genes that have already been discovered. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Jan Albert Kuivenhoven
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Section Molecular Genetics, Antonius Deusinglaan 1, 9713GZ Groningen, The Netherlands
| | - Robert A Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
47
|
Sahar S, Masubuchi S, Eckel-Mahan K, Vollmer S, Galla L, Ceglia N, Masri S, Barth TK, Grimaldi B, Oluyemi O, Astarita G, Hallows WC, Piomelli D, Imhof A, Baldi P, Denu JM, Sassone-Corsi P. Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1. J Biol Chem 2014; 289:6091-7. [PMID: 24425865 DOI: 10.1074/jbc.m113.537191] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The circadian clock regulates a wide range of physiological and metabolic processes, and its disruption leads to metabolic disorders such as diabetes and obesity. Accumulating evidence reveals that the circadian clock regulates levels of metabolites that, in turn, may regulate the clock. Here we demonstrate that the circadian clock regulates the intracellular levels of acetyl-CoA by modulating the enzymatic activity of acetyl-CoA Synthetase 1 (AceCS1). Acetylation of AceCS1 controls the activity of the enzyme. We show that acetylation of AceCS1 is cyclic and that its rhythmicity requires a functional circadian clock and the NAD(+)-dependent deacetylase SIRT1. Cyclic acetylation of AceCS1 contributes to the rhythmicity of acetyl-CoA levels both in vivo and in cultured cells. Down-regulation of AceCS1 causes a significant decrease in the cellular acetyl-CoA pool, leading to reduction in circadian changes in fatty acid elongation. Thus, a nontranscriptional, enzymatic loop is governed by the circadian clock to control acetyl-CoA levels and fatty acid synthesis.
Collapse
Affiliation(s)
- Saurabh Sahar
- From the Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, California 92697
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Migita T, Okabe S, Ikeda K, Igarashi S, Sugawara S, Tomida A, Soga T, Taguchi R, Seimiya H. Inhibition of ATP citrate lyase induces triglyceride accumulation with altered fatty acid composition in cancer cells. Int J Cancer 2013; 135:37-47. [PMID: 24310723 DOI: 10.1002/ijc.28652] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/16/2013] [Accepted: 11/19/2013] [Indexed: 01/17/2023]
Abstract
De novo lipogenesis is activated in most cancers and several lipogenic enzymes have been implicated as therapeutic targets. Here, we demonstrate a novel function of the lipogenic enzyme, ATP citrate lyase (ACLY), in lipid metabolism in cancer cells. ACLY depletion by small interfering RNAs caused growth suppression and/or apoptosis in a subset of cancer cell lines. To investigate the effect of ACLY inhibition on lipid metabolism, metabolome and transcriptome analysis was performed. ACLY depletion blocks the fatty acid chain elongation from C16 to C18 in triglyceride (TG), but not in other lipid classes. Meanwhile, wild-type ACLY overexpression enhanced fatty acid elongation of TG, whereas an inactive mutant ACLY did not change it. ACLY depletion-mediated blockade of fatty acid elongation was coincident with downregulation of long-chain fatty acid elongase ELOVL6, which resides in endoplasmic reticulum (ER). Paradoxically, ACLY depletion-mediated growth suppression was associated with TG accumulation. ACLY depletion downregulated the expression of carnitine palmitoyltransferase 1A, which is a mitochondrial fatty acid transporter. Consistent with this finding, metabolome analysis revealed that ACLY positively regulates the carnitine system, which plays as an essential cofactor for fatty acid transport across mitochondrial membrane. AICAR, an activator of mitochondrial fatty acid oxidation (FAO), significantly reduced ACLY depletion-mediated TG accumulation. These data indicate that inhibition of ACLY might affect both fatty acid elongation in ER and FAO in mitochondria, thereby explaining the TG accumulation with altered fatty acid composition. This phenotype may be a hallmark of growth suppression mediated by ACLY inhibition.
Collapse
Affiliation(s)
- Toshiro Migita
- Division of Molecular Biotherapy Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cho Y, Chung JH, Do HJ, Jeon HJ, Jin T, Shin MJ. Effects of fisetin supplementation on hepatic lipogenesis and glucose metabolism in Sprague–Dawley rats fed on a high fat diet. Food Chem 2013; 139:720-7. [DOI: 10.1016/j.foodchem.2013.01.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 02/06/2023]
|
50
|
Zhang Y, Xu D, Huang H, Chen S, Wang L, Zhu L, Jiang X, Ruan X, Luo X, Cao P, Liu W, Pan Y, Wang Z, Chen Y. Regulation of glucose homeostasis and lipid metabolism by PPP1R3G-mediated hepatic glycogenesis. Mol Endocrinol 2013; 28:116-26. [PMID: 24264575 DOI: 10.1210/me.2013-1268] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Liver glycogen metabolism plays an important role in glucose homeostasis. Glycogen synthesis is mainly regulated by glycogen synthase that is dephosphorylated and activated by protein phosphatase 1 (PP1) in combination with glycogen-targeting subunits or G subunits. There are seven G subunits (PPP1R3A to G) that control glycogenesis in different organs. PPP1R3G is a recently discovered G subunit whose expression is changed along the fasting-feeding cycle and is proposed to play a role in postprandial glucose homeostasis. In this study, we analyzed the physiological function of PPP1R3G using a mouse model with liver-specific overexpression of PPP1R3G. PPP1R3G overexpression increases hepatic glycogen accumulation, stimulates glycogen synthase activity, elevates fasting blood glucose level, and accelerates postprandial blood glucose clearance. In addition, the transgenic mice have a reduced fat composition, together with decreased hepatic triglyceride level. Fasting-induced hepatic steatosis is relieved by PPP1R3G overexpression. In addition, PPP1R3G overexpression is able to elevate glycogenesis in primary hepatocytes. The glycogen-binding domain is indispensable for the physiological activities of PPP1R3G on glucose metabolism and triglyceride accumulation in the liver. Cumulatively, these data indicate that PPP1R3G plays a critical role in postprandial glucose homeostasis and liver triglyceride metabolism via its regulation on hepatic glycogenesis.
Collapse
Affiliation(s)
- Yongxian Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|