1
|
Roy R, Sanyal D, Roychowdhury S, Chattopadhyay K. Studies of Protein Phase Separation Using Leishmania Kinetoplastid Membrane Protein-11. J Phys Chem B 2025; 129:814-824. [PMID: 39439298 DOI: 10.1021/acs.jpcb.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Despite the significant understanding of phase separation in proteins with intrinsically disordered regions, a considerable percentage of proteins without such regions also undergo phase separation, presenting an intriguing area for ongoing research across all kingdoms of life. Using a combination of spectroscopic and microscopic techniques, we report here for the first time that a low temperature and low pH can trigger the liquid-liquid phase separation (LLPS) of a parasitic protein, kinetoplastid membrane protein-11 (KMP-11). Electrostatic and hydrophobic forces are found to be essential for the formation and stability of phase-separated protein assemblies. We show further that the increase in the ionic strength beyond a threshold decreases the interchain electrostatic interactions acting between the alternate charged blocks, altering the propensity for phase separation. More interestingly, the addition of cholesterol inhibits LLPS by engaging the cholesterol recognition amino acid consensus (CRAC)-like domains present in the protein. This was further confirmed using a CRAC-deleted mutant with perturbed cholesterol binding, which did not undergo LLPS.
Collapse
Affiliation(s)
- Rajdip Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Dwipanjan Sanyal
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Sumangal Roychowdhury
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
2
|
Ghosh S, Chigicherla KV, Dasgupta S, Goto Y, Mukherjee B. Oxidative stress-driven enhanced iron production and scavenging through Ferroportin reorientation worsens anemia in antimony-resistant Leishmania donovani infection. PLoS Pathog 2025; 21:e1012858. [PMID: 39888953 PMCID: PMC11785346 DOI: 10.1371/journal.ppat.1012858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025] Open
Abstract
Despite the withdrawal of pentavalent-antimonials in treating Visceral leishmaniasis from India, recent clinical isolates of Leishmania donovani (LD) exhibit unresponsiveness towards pentavalent-antimony (LD-R). This antimony-unresponsiveness points towards a genetic adaptation that underpins LD-R's evolutionary persistence and dominance over sensitive counterparts (LD-S). This study highlights how LD evolutionarily tackled antimony exposure and gained increased potential of scavenging host-iron within its parasitophorous vacuoles (PV) to support its aggressive proliferation. Even though anti-leishmanial activity of pentavalent antimonials relies on triggering oxidative outburst, LD-R exhibits a surprising strategy of promoting reactive oxygen species (ROS) generation in infected macrophages. An inherent metabolic shift from glycolysis to Pentose Phosphate shunt allows LD-R to withstand elevated ROS by sustaining heightened levels of NADPH. Elevated ROS levels on the other hand trigger excess iron production, and LD-R capitalizes on this surplus iron by selectively reshuffling macrophage-surface iron exporter, Ferroportin, around its PV thereby gaining a survival edge as a heme-auxotroph. Higher iron utilization by LD-R leads to subsequent iron insufficiency, compensated by increased erythrophagocytosis through the breakdown of SIRPα-CD47 surveillance, orchestrated by a complex interplay of two proteases, Furin and ADAM10. Understanding these mechanisms is crucial for managing LD-R-infections and their associated complications like severe anemia, and may also provide valuable mechanistic insights into understanding drug unresponsiveness developed in other intracellular pathogens that rely on host iron.
Collapse
Affiliation(s)
- Souradeepa Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | | - Shirin Dasgupta
- Dr B C Roy Multispeciality Medical Research Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
3
|
Sannigrahi A, Ghosh S, Pradhan S, Jana P, Jawed JJ, Majumdar S, Roy S, Karmakar S, Mukherjee B, Chattopadhyay K. Leishmania protein KMP-11 modulates cholesterol transport and membrane fluidity to facilitate host cell invasion. EMBO Rep 2024; 25:5561-5598. [PMID: 39482488 PMCID: PMC11624268 DOI: 10.1038/s44319-024-00302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
The first step of successful infection by any intracellular pathogen relies on its ability to invade its host cell membrane. However, the detailed structural and molecular understanding underlying lipid membrane modification during pathogenic invasion remains unclear. In this study, we show that a specific Leishmania donovani (LD) protein, KMP-11, forms oligomers that bridge LD and host macrophage (MΦ) membranes. This KMP-11 induced interaction between LD and MΦ depends on the variations in cholesterol (CHOL) and ergosterol (ERG) contents in their respective membranes. These variations are crucial for the subsequent steps of invasion, including (a) the initial attachment, (b) CHOL transport from MΦ to LD, and (c) detachment of LD from the initial point of contact through a liquid ordered (Lo) to liquid disordered (Ld) membrane-phase transition. To validate the importance of KMP-11, we generate KMP-11 depleted LD, which failed to attach and invade host MΦ. Through tryptophan-scanning mutagenesis and synthesized peptides, we develop a generalized mathematical model, which demonstrates that the hydrophobic moment and the symmetry sequence code at the membrane interacting protein domain are key factors in facilitating the membrane phase transition and, consequently, the host cell infection process by Leishmania parasites.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Souradeepa Ghosh
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Supratim Pradhan
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pulak Jana
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Junaid Jibran Jawed
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700156, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Syamal Roy
- Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
- INSA Senior Scientist, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Sanat Karmakar
- Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT-Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
4
|
Tabrez S, Akand SK, Ali R, Naqvi IH, Soleja N, Mohsin M, Ahmed MZ, Saleem M, Parvez S, Akhter Y, Rub A. Leishmania donovani modulates host miRNAs regulating cholesterol biosynthesis for its survival. Microbes Infect 2024; 26:105379. [PMID: 38885758 DOI: 10.1016/j.micinf.2024.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Cholesterol reduction by intracellular protozoan parasite Leishmania donovani (L. donovani), causative agent of leishmaniasis, impairs antigen presentation, pro-inflammatory cytokine secretion and host-protective membrane-receptor signaling in macrophages. Here, we studied the miRNA mediated regulation of cholesterol biosynthetic genes to understand the possible mechanism of L. donovani-induced cholesterol reduction and therapeutic importance of miRNAs in leishmaniasis. System-scale genome-wide microtranscriptome screening was performed to identify the miRNAs involved in the regulation of expression of key cholesterol biosynthesis regulatory genes through miRanda3.0. 11 miRNAs out of 2823, showing complementarity with cholesterol biosynthetic genes were finally selected for expression analysis. These selected miRNAs were differentially regulated in THP-1 derived macrophages and in primary human macrophages by L. donovani. Correlation of expression and target validation through luciferase assay suggested two key miRNAs, hsa-miR-1303 and hsa-miR-874-3p regulating the key genes hmgcr and hmgcs1 respectively. Inhibition of hsa-mir-1303 and hsa-miR-874-3p augmented the expression of targets and reduced the parasitemia in macrophages. This study will also provide the platform for the development of miRNA-based therapy against leishmaniasis.
Collapse
Affiliation(s)
- Shams Tabrez
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sajjadul Kadir Akand
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Rahat Ali
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Irshad Husain Naqvi
- Dr. M. A. Ansari Health Centre, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Neha Soleja
- Department of Bioscience, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohd Mohsin
- Department of Bioscience, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Saleem
- National Institute of Science Education and Research (NISER), Bhubaneswar, P.O Jatni, Khurda, Odisha, 752050, India
| | - Suhel Parvez
- Department of Toxicology, Jamia Hamdard, New Delhi-110062, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
5
|
Benaim G, Paniz-Mondolfi A. Unmasking the Mechanism behind Miltefosine: Revealing the Disruption of Intracellular Ca 2+ Homeostasis as a Rational Therapeutic Target in Leishmaniasis and Chagas Disease. Biomolecules 2024; 14:406. [PMID: 38672424 PMCID: PMC11047903 DOI: 10.3390/biom14040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.
Collapse
Affiliation(s)
- Gustavo Benaim
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1080, Venezuela
- Laboratorio de Biofísica, Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1040, Venezuela
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Division of Microbiology, New York, NY 10029, USA;
| |
Collapse
|
6
|
Burgess V, Maya JD. Statin and aspirin use in parasitic infections as a potential therapeutic strategy: A narrative review. Rev Argent Microbiol 2023; 55:278-288. [PMID: 37019801 DOI: 10.1016/j.ram.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 04/05/2023] Open
Abstract
Infections, including zoonoses, constitute a threat to human health due to the spread of resistant pathogens. These diseases generate an inflammatory response controlled by a resolving mechanism involving specialized membrane lipid-derived molecules called lipoxins, resolvins, maresins, and protectins. The production of some of these molecules can be triggered by aspirin or statins. Thus, it is proposed that modulation of the host response could be a useful therapeutic strategy, contributing to the management of resistance to antiparasitic agents or preventing drift to chronic, host-damaging courses. Therefore, the present work presents the state of the art on the use of statins or aspirin for the experimental management of parasitic infections such as Chagas disease, leishmaniasis, toxoplasmosis or malaria. The methodology used was a narrative review covering original articles from the last seven years, 38 of which met the inclusion criteria. Based on the publications consulted, modulation of the resolution of inflammation using statins may be feasible as an adjuvant in the therapy of parasitic diseases. However, there was no strong experimental evidence on the use of aspirin; therefore, further studies are needed to evaluate its role inflammation resolution process in infectious diseases.
Collapse
Affiliation(s)
- Valentina Burgess
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile.
| |
Collapse
|
7
|
Das K, Nozaki T. Non-Vesicular Lipid Transport Machinery in Leishmania donovani: Functional Implications in Host-Parasite Interaction. Int J Mol Sci 2023; 24:10637. [PMID: 37445815 DOI: 10.3390/ijms241310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Eukaryotic cells have distinct membrane-enclosed organelles, each with a unique biochemical signature and specialized function. The unique identity of each organelle is greatly governed by the asymmetric distribution and regulated intracellular movement of two important biomolecules, lipids, and proteins. Non-vesicular lipid transport mediated by lipid-transfer proteins (LTPs) plays essential roles in intra-cellular lipid trafficking and cellular lipid homeostasis, while vesicular transport regulates protein trafficking. A comparative analysis of non-vesicular lipid transport machinery in protists could enhance our understanding of parasitism and basis of eukaryotic evolution. Leishmania donovani, the trypanosomatid parasite, greatly depends on receptor-ligand mediated signalling pathways for cellular differentiation, nutrient uptake, secretion of virulence factors, and pathogenesis. Lipids, despite being important signalling molecules, have intracellular transport mechanisms that are largely unexplored in L. donovani. We have identified a repertoire of sixteen (16) potential lipid transfer protein (LTP) homologs based on a domain-based search on TriTrypDB coupled with bioinformatics analyses, which signifies the presence of well-organized lipid transport machinery in this parasite. We emphasized here their evolutionary uniqueness and conservation and discussed their potential implications for parasite biology with regards to future therapeutic targets against visceral leishmaniasis.
Collapse
Affiliation(s)
- Koushik Das
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Martinković F, Popović M, Smolec O, Mrljak V, Eckersall PD, Horvatić A. Data Independent Acquisition Reveals In-Depth Serum Proteome Changes in Canine Leishmaniosis. Metabolites 2023; 13:metabo13030365. [PMID: 36984805 PMCID: PMC10059658 DOI: 10.3390/metabo13030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Comprehensive profiling of serum proteome provides valuable clues of health status and pathophysiological processes, making it the main strategy in biomarker discovery. However, the high dynamic range significantly decreases the number of detectable proteins, obstructing the insights into the underlying biological processes. To circumvent various serum enrichment methods, obtain high-quality proteome wide information using the next-generation proteomic, and study host response in canine leishmaniosis, we applied data-independent acquisition mass spectrometry (DIA-MS) for deep proteomic profiling of clinical samples. The non-depleted serum samples of healthy and naturally Leishmania-infected dogs were analyzed using the label-free 60-min gradient sequential window acquisition of all theoretical mass spectra (SWATH-MS) method. As a result, we identified 554 proteins, 140 of which differed significantly in abundance. Those were included in lipid metabolism, hematological abnormalities, immune response, and oxidative stress, providing valuable information about the complex molecular basis of the clinical and pathological landscape in canine leishmaniosis. Our results show that DIA-MS is a method of choice for understanding complex pathophysiological processes in serum and serum biomarker development.
Collapse
Affiliation(s)
- Franjo Martinković
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Marin Popović
- Department of Safety and Protection, Karlovac University of Applied Sciences, Trg Josipa Juraja Strossmayera 9, HR-47000 Karlovac, Croatia
| | - Ozren Smolec
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Peter David Eckersall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, University of Murcia, 30100 Murcia, Spain
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
9
|
Leroux M, Luquain-Costaz C, Lawton P, Azzouz-Maache S, Delton I. Fatty Acid Composition and Metabolism in Leishmania Parasite Species: Potential Biomarkers or Drug Targets for Leishmaniasis? Int J Mol Sci 2023; 24:ijms24054702. [PMID: 36902138 PMCID: PMC10003364 DOI: 10.3390/ijms24054702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Fatty acids have received growing interest in Leishmania biology with the characterization of the enzymes allowing the complete fatty acid synthesis of this trypanosomatid parasite. This review presents a comparative analysis of the fatty acid profiles of the major classes of lipids and phospholipids in different species of Leishmania with cutaneous or visceral tropism. Specificities relating to the parasite forms, resistance to antileishmanial drugs, and host/parasite interactions are described as well as comparisons with other trypanosomatids. Emphasis is placed on polyunsaturated fatty acids and their metabolic and functional specificities, in particular, their conversion into oxygenated metabolites that are inflammatory mediators able to modulate metacyclogenesis and parasite infectivity. The impact of lipid status on the development of leishmaniasis and the potential of fatty acids as therapeutic targets or candidates for nutritional interventions are discussed.
Collapse
Affiliation(s)
- Marine Leroux
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Céline Luquain-Costaz
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
| | - Philippe Lawton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Samira Azzouz-Maache
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Isabelle Delton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
- Correspondence:
| |
Collapse
|
10
|
Guhe V, Ingale P, Tambekar A, Singh S. Systems biology of autophagy in leishmanial infection and its diverse role in precision medicine. Front Mol Biosci 2023; 10:1113249. [PMID: 37152895 PMCID: PMC10160387 DOI: 10.3389/fmolb.2023.1113249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Autophagy is a contentious issue in leishmaniasis and is emerging as a promising therapeutic regimen. Published research on the impact of autophagic regulation on Leishmania survival is inconclusive, despite numerous pieces of evidence that Leishmania spp. triggers autophagy in a variety of cell types. The mechanistic approach is poorly understood in the Leishmania parasite as autophagy is significant in both Leishmania and the host. Herein, this review discusses the autophagy proteins that are being investigated as potential therapeutic targets, the connection between autophagy and lipid metabolism, and microRNAs that regulate autophagy and lipid metabolism. It also highlights the use of systems biology to develop novel autophagy-dependent therapeutics for leishmaniasis by utilizing artificial intelligence (AI), machine learning (ML), mathematical modeling, network analysis, and other computational methods. Additionally, we have shown many databases for autophagy and metabolism in Leishmania parasites that suggest potential therapeutic targets for intricate signaling in the autophagy system. In a nutshell, the detailed understanding of the dynamics of autophagy in conjunction with lipids and miRNAs unfolds larger dimensions for future research.
Collapse
|
11
|
Lesani M, Gosmanov C, Paun A, Lewis MD, McCall LI. Impact of Visceral Leishmaniasis on Local Organ Metabolism in Hamsters. Metabolites 2022; 12:metabo12090802. [PMID: 36144206 PMCID: PMC9506185 DOI: 10.3390/metabo12090802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Leishmania is an intracellular parasite with different species pathogenic to humans and causing the disease leishmaniasis. Leishmania donovani causes visceral leishmaniasis (VL) that manifests as hepatosplenomegaly, fever, pancytopenia and hypergammaglobulinemia. If left without treatment, VL can cause death, especially in immunocompromised people. Current treatments have often significant adverse effects, and resistance has been reported in some countries. Determining the metabolites perturbed during VL can lead us to find new treatments targeting disease pathogenesis. We therefore compared metabolic perturbation between L. donovani-infected and uninfected hamsters across organs (spleen, liver, and gut). Metabolites were extracted, analyzed by liquid chromatography-mass spectrometry, and processed with MZmine and molecular networking to annotate metabolites. We found few metabolites commonly impacted by infection across all three sites, including glycerophospholipids, ceramides, acylcarnitines, peptides, purines and amino acids. In accordance with VL symptoms and parasite tropism, we found a greater overlap of perturbed metabolites between spleen and liver compared to spleen and gut, or liver and gut. Targeting pathways related to these metabolite families would be the next focus that can lead us to find more effective treatments for VL.
Collapse
Affiliation(s)
- Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Camil Gosmanov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
- Correspondence:
| |
Collapse
|
12
|
Tans R, Dey S, Dey NS, Cao JH, Paul PS, Calder G, O’Toole P, Kaye PM, Heeren RMA. Mass spectrometry imaging identifies altered hepatic lipid signatures during experimental Leishmania donovani infection. Front Immunol 2022; 13:862104. [PMID: 36003389 PMCID: PMC9394181 DOI: 10.3389/fimmu.2022.862104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Spatial analysis of lipids in inflammatory microenvironments is key to understand the pathogenesis of infectious disease. Granulomatous inflammation is a hallmark of leishmaniasis and changes in host and parasite lipid metabolism have been observed at the bulk tissue level in various infection models. Here, mass spectrometry imaging (MSI) is applied to spatially map hepatic lipid composition following infection with Leishmania donovani, an experimental mouse model of visceral leishmaniasis. Methods Livers from naïve and L. donovani-infected C57BL/6 mice were harvested at 14- and 20-days post-infection (n=5 per time point). 12 µm transverse sections were cut and covered with norhamane, prior to lipid analysis using MALDI-MSI. MALDI-MSI was performed in negative mode on a Rapiflex (Bruker Daltonics) at 5 and 50 µm spatial resolution and data-dependent analysis (DDA) on an Orbitrap-Elite (Thermo-Scientific) at 50 µm spatial resolution for structural identification analysis of lipids. Results Aberrant lipid abundances were observed in a heterogeneous distribution across infected mouse livers compared to naïve mouse liver. Distinctive localized correlated lipid masses were found in granulomas and surrounding parenchymal tissue. Structural identification revealed 40 different lipids common to naïve and d14/d20 infected mouse livers, whereas 15 identified lipids were only detected in infected mouse livers. For pathology-guided MSI imaging, we deduced lipids from manually annotated granulomatous and parenchyma regions of interests (ROIs), identifying 34 lipids that showed significantly different intensities between parenchyma and granulomas across all infected livers. Discussion Our results identify specific lipids that spatially correlate to the major histopathological feature of Leishmania donovani infection in the liver, viz. hepatic granulomas. In addition, we identified a three-fold increase in the number of unique phosphatidylglycerols (PGs) in infected liver tissue and provide direct evidence that arachidonic acid-containing phospholipids are localized with hepatic granulomas. These phospholipids may serve as important precursors for downstream oxylipin generation with consequences for the regulation of the inflammatory cascade. This study provides the first description of the use of MSI to define spatial-temporal lipid changes at local sites of infection induced by Leishmania donovani in mice.
Collapse
Affiliation(s)
- Roel Tans
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Shoumit Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Nidhi Sharma Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Jian-Hua Cao
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Prasanjit S. Paul
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Grant Calder
- Department of Biology, University of York, York, United Kingdom
| | - Peter O’Toole
- Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
- *Correspondence: Paul M. Kaye, ; Ron M. A. Heeren,
| |
Collapse
|
13
|
Andrade-Neto VV, Manso PPDA, Pereira MG, de Cicco NNT, Atella GC, Pelajo-Machado M, Menna-Barreto RFS, Torres-Santos EC. Host cholesterol influences the activity of sterol biosynthesis inhibitors in Leishmania amazonensis. Mem Inst Oswaldo Cruz 2022; 117:e220407. [PMID: 35384972 PMCID: PMC8979231 DOI: 10.1590/0074-02760220407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
A significant percentage of exogenous cholesterol was found in promastigotes and amastigotes of all studied species of Leishmania, suggesting a biological role for this molecule. Previous studies have shown that promastigotes of Leishmania uptake more low-density lipoprotein (LDL) particles under pharmacological pressure and are more susceptible to ergosterol inhibition in the absence of exogenous sources of cholesterol. This work shows that the host’s LDL is available to intracellular amastigotes and that the absence of exogenous cholesterol enhances the potency of sterol biosynthesis inhibitors in infected macrophages. A complete understanding of cholesterol transport to the parasitophorous vacuole can guide the development of a new drug class to be used in combination with sterol biosynthesis inhibitors for the treatment of leishmaniases.
Collapse
Affiliation(s)
- Valter Viana Andrade-Neto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanossomatídeos, Rio de Janeiro, RJ, Brasil
| | - Pedro Paulo de Abreu Manso
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Patologia, Rio de Janeiro, RJ, Brasil
| | - Miria Gomes Pereira
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, Brasil
| | | | - Georgia Corrêa Atella
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, RJ, Brasil
| | - Marcelo Pelajo-Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Patologia, Rio de Janeiro, RJ, Brasil
| | | | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanossomatídeos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
14
|
Varela MG, de Oliveira Bezerra M, Santana FV, Gomes MC, de Jesus Almeida PR, Silveira da Cruz G, de Melo EV, de Oliveira Costa PR, de Oliveira FA, de Jesus AR, de Almeida RP. Association between Hypertriglyceridemia and Disease Severity in Visceral Leishmaniasis. Am J Trop Med Hyg 2022; 106:643-647. [PMID: 34814103 PMCID: PMC8832909 DOI: 10.4269/ajtmh.21-0260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023] Open
Abstract
Visceral leishmaniasis (VL) is a tropical disease endemic to Brazil. The clinical manifestations of the infection range from asymptomatic to severe. In VL, changes in lipid metabolism, such as hypocholesterolemia and hypertriglyceridemia, occur that are believed to be related to its progression and severity. This study investigated the associations between serum levels of cholesterol, triglycerides, and lipoproteins (high-density lipoprotein, low-density lipoprotein, and very low-density lipoprotein) with clinical and hematological parameters that predict severity in a case series of 83 VL patients. Severely ill patients had higher mean serum triglyceride levels than non-severely ill patients. There was a significant positive correlation between disease severity score and serum triglyceride levels, very low-density lipoprotein, international normalized ratio for prothrombin time test, total bilirubin, and age. An inverse correlation was detected between the disease severity score and mean platelet and neutrophil counts. Hypertriglyceridemia can be a prognostic indicator of severity in patients diagnosed with VL.
Collapse
Affiliation(s)
- Mariana Garcez Varela
- Immunology and Molecular Biology Laboratory, University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil;,Endocrinology Service from the University Hospital/EBSERH, Federal University of Sergipe, Aracaju, Sergipe, Brazil;,Heath Science Graduate Program, Aracaju, Brazil
| | - Mariana de Oliveira Bezerra
- Immunology and Molecular Biology Laboratory, University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Felipe Vieira Santana
- Immunology and Molecular Biology Laboratory, University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Marcos Couto Gomes
- Immunology and Molecular Biology Laboratory, University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | | | - Geydson Silveira da Cruz
- Heath Science Graduate Program, Aracaju, Brazil;,Hematology Service, University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Enaldo Vieira de Melo
- Pediatric Clinic, University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | | | - Fabrícia Alvisi de Oliveira
- Immunology and Molecular Biology Laboratory, University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil
| | - Amélia Ribeiro de Jesus
- Immunology and Molecular Biology Laboratory, University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil;,Heath Science Graduate Program, Aracaju, Brazil;,Immunology Investigative Institute, INCT, CNPq, São Paulo, Brazil
| | - Roque Pacheco de Almeida
- Immunology and Molecular Biology Laboratory, University Hospital, Federal University of Sergipe (HU-UFS), Aracaju, Sergipe, Brazil;,Heath Science Graduate Program, Aracaju, Brazil;,Immunology Investigative Institute, INCT, CNPq, São Paulo, Brazil,Address correspondence to Roque Pacheco de Almeida, Laboratório de Imunologia e Biologia Molecular, Hospital Universitário, Rua Claudio Batista, s/n, CEP 49060-100, Aracaju, Brazil. E-mail:
| |
Collapse
|
15
|
Hepatomegaly Associated with Non-Obstructive Sinusoidal Dilation in Experimental Visceral Leishmaniasis. Pathogens 2021; 10:pathogens10111356. [PMID: 34832512 PMCID: PMC8625948 DOI: 10.3390/pathogens10111356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most severe form of leishmaniasis caused by protozoan parasites of the genus Leishmania. Hepatomegaly is one of the most frequent clinical manifestations of VL, whereas immunopathology of the symptom has not been well investigated. Using our chronic model of experimental VL, we examined the influence of Leishmania donovani infection on the liver by clinical, histological, and biochemical analyses. The infected mice showed increased liver weight 24 weeks post-infection. Although an increase in serum ALT and inflammatory cell accumulation were observed in the livers of infected mice, no apparent parenchymal necrosis or fibrosis was observed. Tissue water content analyses demonstrated that increased liver weight was predominantly due to an increase in water weight. Together with the finding of hepatic sinusoidal dilation, these results suggested that edema associated with sinusoidal dilation causes hepatomegaly in L. donovani infection. Immunostaining of platelets and erythrocytes showed no thrombus formation or damage to the sinusoidal endothelium in the liver of infected mice. Taken together, these results suggest that hepatomegaly during experimental VL is caused by non-obstructive sinusoidal dilation.
Collapse
|
16
|
Zhang K. Balancing de novo synthesis and salvage of lipids by Leishmania amastigotes. Curr Opin Microbiol 2021; 63:98-103. [PMID: 34311265 PMCID: PMC8463422 DOI: 10.1016/j.mib.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Leishmania parasites replicate as flagellated, extracellular promastigotes in the sand fly vector and then differentiate into non-flagellated, intracellular amastigotes in the vertebrate host. Promastigotes rely on de novo synthesis to produce the majority of their lipids including glycerophospholipids, sterols and sphingolipids. In contrast, amastigotes acquire most of their lipids from the host although they retain some capacity for de novo synthesis. The switch from de novo synthesis to salvage reflects the transition of Leishmania from fast-replicating promastigotes to slow-growing, metabolically quiescent amastigotes. Future studies will reveal the uptake and remodeling of host lipids by amastigotes at the cellular and molecular levels. Blocking the lipid transfer from host to parasites may present a novel strategy to control Leishmania growth.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
17
|
The Inflammatory Effects of Dietary Lipids Regulate Growth of Parasites during Visceral Leishmaniasis. mSphere 2021; 6:e0042321. [PMID: 34259561 PMCID: PMC8386445 DOI: 10.1128/msphere.00423-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Visceral leishmaniasis is a potentially fatal disease caused by the protozoon Leishmania donovani or L. infantum (Li). Although previous studies revealed that high lipid intake reduces parasite burdens in Leishmania donovani-infected mice, the specific contributions of dietary lipids to Li-associated pathogenesis are not known. To address this, we evaluated parasite growth, liver pathology, and transcriptomic signatures in Li-infected BALB/c mice fed either a control, high-fat, high-cholesterol, or high-fat–high-cholesterol diet. Using quantitative PCR (qPCR), we observed significantly reduced liver parasite burdens in mice fed the high-fat–high-cholesterol diet compared to mice fed the control diet. In contrast to the liver, parasite expansion occurred earlier in the spleens of mice fed the experimental diets. Histological examination revealed an intense inflammatory cell infiltrate in livers predominantly composed of neutrophils caused by the high-fat–high-cholesterol diet specifically. After 8 weeks of infection (12 weeks of diet), Illumina microarrays revealed significantly increased expression of transcripts belonging to immune- and angiogenesis-related pathways in livers of both uninfected and Li-infected mice fed the high-fat–high-cholesterol diet. These data suggest that increased fat and cholesterol intake prior to Li infection leads to a hepatic inflammatory environment and thus reduces the parasite burden in the liver. Defining inflammatory signatures as well as pathology in the liver may reveal opportunities to modify the therapeutic approach to Li infection. IMPORTANCE Leishmaniasis is a spectrum of diseases caused by Leishmania species protozoa that is most common in warm climates, coinciding with impoverished regions. Visceral leishmaniasis is a potentially fatal disease in which parasites infect reticuloendothelial organs and cause progressive wasting and immunocompromise. The distribution and demographics of visceral leishmaniasis have changed over recent years, coinciding with modernizing societies and the increased availability of Western diets rich in lipid content. We report here that increased dietary fat and cholesterol intake affected disease pathogenesis by increasing inflammation and reducing localized parasite burdens in the liver. These diet-induced changes in disease pathogenesis might explain in part the changing epidemiology of visceral leishmaniasis. A relationship between diet and inflammatory responses may occur in leishmaniasis and other microbial or immune-mediated diseases, possibly revealing opportunities to modify the therapeutic approach to microbial infections.
Collapse
|
18
|
Pradhan S, Ghosh S, Hussain S, Paul J, Mukherjee B. Linking membrane fluidity with defective antigen presentation in leishmaniasis. Parasite Immunol 2021; 43:e12835. [PMID: 33756007 DOI: 10.1111/pim.12835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Hampering-surface presentation of immunogenic peptides by class I/II MHCs is a key strategy opted by several intracellular protozoan pathogens including Leishmania to escape CD8/CD4 mediated host-protective T-cell response. Although Leishmania parasites (LP) primarily hijack/inhibit host lysosomal/proteasomal pathways to hamper antigen-processing/presentation machinery, recent pieces of evidence have linked host-membrane fluidity as a major cause of defective antigen presentation in leishmaniasis. Increased membrane fluidity severely compromised peptide-MHC stability in the lipid raft regions, thereby abrogating T-cell mediated-signalling in the infected host. LP primarily achieves this by quenching host cholesterol, which acts as cementing material in maintaining the membrane fluidity. In this review, we have particularly focused on several strategies opted by LP to hijack-host cholesterol resulting in lipid droplets accumulation around leishmania-containing parasitophorous vacuole favouring intracellular survival of LP. In fact, LP infection can result in altered cholesterol and lipid metabolism in the infected host, thereby favouring the establishment and progression of the infection. From our analysis of two genome-wide transcriptomics data sets of LP infected host, we propose a possible molecular network that connects these interrelated events of altered lipid metabolism with eventual compromised antigen presentation, still existing as a gap in our current understanding of Leishmania infection.
Collapse
Affiliation(s)
- Supratim Pradhan
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Souradeepa Ghosh
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Shahbaj Hussain
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Joydeep Paul
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | | |
Collapse
|
19
|
Feminò R, Feminò G, Cavezzi A, Troiani E. PCSK9 inhibition, LDL and lipopolysaccharides: a complex and "dangerous" relationship. INT ANGIOL 2021; 40:248-260. [PMID: 33739075 DOI: 10.23736/s0392-9590.21.04632-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Literature concerning the causative factors of atherosclerotic cardiovascular disease shows complex and sometimes contrasting evidence. Most guidelines suggest a strategy aimed at lowering circulating low density lipoproteins (LDL) and ApoB lipoprotein levels. The use of statins and of cholesteryl ester transfer protein inhibitors has led to a number of controversial outcomes, generating a certain degree of concern about the real efficacy and especially safety of these drugs. Literature data show that the use of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors results in a dramatic reduction of various markers of lipid metabolism (namely LDL); however, several critical scientific papers have questioned the value, the need and especially the safety of these innovative drugs. LDL are a protective factor against lipopolysaccharides and other microbial derivatives. Similarly, these gram-negative bacteria-derived compounds have been identified as probable culprits of cardiovascular atherogenesis; moreover, lipopolysaccharides increase hepatic synthesis of PCSK9, as defense mechanism. This enzyme modulates LDL receptors level in the liver, as well as in other organs, such as adrenal gland and reproductive organs. Hence, PCSK9 inhibition may influence glucocorticoid secretion and fertility. Lastly, the consequent reduction of circulating LDL may relevantly hindrance immune system and favor lipopolysaccharides diffusion.
Collapse
Affiliation(s)
- Raimondo Feminò
- Anesthesia and Intensive Care Unit, Department of General and Specialist Surgeries, Polyclinic of Modena, Modena, Italy
| | - Giovanni Feminò
- Division of Immunology, Euro Medical Center Srl, Florence, Italy
| | - Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, Ascoli Piceno, Italy -
| | - Emidio Troiani
- Unit of Cardiology, Social Security Institute, State Hospital, Cailungo, San Marino
| |
Collapse
|
20
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
21
|
Samant M, Sahu U, Pandey SC, Khare P. Role of Cytokines in Experimental and Human Visceral Leishmaniasis. Front Cell Infect Microbiol 2021; 11:624009. [PMID: 33680991 PMCID: PMC7930837 DOI: 10.3389/fcimb.2021.624009] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Visceral Leishmaniasis (VL) is the most fatal form of disease leishmaniasis. To date, there are no effective prophylactic measures and therapeutics available against VL. Recently, new immunotherapy-based approaches have been established for the management of VL. Cytokines, which are predominantly produced by helper T cells (Th) and macrophages, have received great attention that could be an effective immunotherapeutic approach for the treatment of human VL. Cytokines play a key role in forming the host immune response and in managing the formation of protective and non-protective immunities during infection. Furthermore, immune response mediated through different cytokines varies from different host or animal models. Various cytokines viz. IFN-γ, IL-2, IL-12, and TNF-α play an important role during protection, while some other cytokines viz. IL-10, IL-6, IL-17, TGF-β, and others are associated with disease progression. Therefore, comprehensive knowledge of cytokine response and their interaction with various immune cells is very crucial to determine appropriate immunotherapies for VL. Here, we have discussed the role of cytokines involved in VL disease progression or host protection in different animal models and humans that will determine the clinical outcome of VL and open the path for the development of rapid and accurate diagnostic tools as well as therapeutic interventions against VL.
Collapse
Affiliation(s)
- Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Almora, India
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Almora, India
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
22
|
Kar A, Jayaraman A, Charan Raja MR, Srinivasan S, Debnath J, Mahapatra SK. Synergic effect of eugenol oleate with amphotericin B augments anti-leishmanial immune response in experimental visceral leishmaniasis in vitro and in vivo. Int Immunopharmacol 2021; 91:107291. [PMID: 33360084 DOI: 10.1016/j.intimp.2020.107291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
Present treatment regimen on visceral leishmaniasis has multiple limitations including severe side effects, toxicity, and resistance of Leishmania strains. Amphotericin B is a well-established pharmacologically approved drug; however, mainly toxicity is a foremost issue with that drug. Recently, our group identified eugenol oleate as an anti-leishmanial immunomodulatory compound. The important objectives of this present study was to evaluate the possible synergistic effect of eugenol oleate with amphotericin B to reduce the toxicity of this approved drug. Results obtained from this study signified that combination of eugenol oleate and amphotericin B showed indifferent combinatorial effect against promastigotes with xΣFIC 1.015, while, moderate synergistic activity with xΣFIC 0.456 against amastigotes. It was also notable that eugenol oleate (2.5 μM) with low concentrations of amphotericin B (0.3125 μM) showed 96.45% parasite reduction within L. donovani-infected murine macrophages. Furthermore, eugenol oleate and amphotericin B significantly (p < 0.01) enhanced the nitrite generation, and pro-inflammatory cytokines (IL-12, IFN-γ and TNF-α) in infected macrophages in vitro and in BALB/c mice in vivo. Eugenol oleate (10 mg/Kg b. wt.) with amphotericin B (1 mg/Kg b.wt.) significantly (p < 0.01) controlled the parasite burden in liver by 96.2% and in spleen by 93.12%. Hence, this study strongly suggested the synergic potential of eugenol oleate with low concentration of amphotericin B in experimental visceral leishmaniasis through anti-leishmanial immune response.
Collapse
MESH Headings
- Amphotericin B/pharmacology
- Animals
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Drug Synergism
- Drug Therapy, Combination
- Female
- Host-Parasite Interactions
- Inflammation Mediators/metabolism
- Leishmania donovani/drug effects
- Leishmania donovani/immunology
- Leishmania donovani/pathogenicity
- Leishmaniasis, Visceral/drug therapy
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/metabolism
- Leishmaniasis, Visceral/parasitology
- Liver/drug effects
- Liver/immunology
- Liver/metabolism
- Liver/parasitology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/parasitology
- Mice, Inbred BALB C
- Nitrites/metabolism
- Parasite Load
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Spleen/parasitology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/parasitology
- Th1-Th2 Balance
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Th2 Cells/parasitology
- Trypanocidal Agents/pharmacology
- Mice
Collapse
Affiliation(s)
- Amrita Kar
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Adithyan Jayaraman
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Mamilla R Charan Raja
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Sujatha Srinivasan
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Joy Debnath
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India.
| | - Santanu Kar Mahapatra
- Department of Biotechnology, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India.
| |
Collapse
|
23
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
24
|
Atherogenic Diet Accelerates Ectopic Mineralization in a Mouse Model of Pseudoxanthoma Elasticum. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEROLOGY 2020; 3:91-96. [PMID: 32923017 PMCID: PMC7446280 DOI: 10.1097/jd9.0000000000000086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/22/2020] [Accepted: 03/08/2020] [Indexed: 12/03/2022]
Abstract
Objective: Pseudoxanthoma elasticum (PXE) is a multisystem heritable disorder caused by mutations in the Abcc6 gene. The disease is characterized by ectopic mineralization of the skin, eyes, and arterial blood vessels. Previous studies have suggested that cardiovascular complications in patients with PXE are caused in part by premature atherosclerosis. The aim of this study is to determine the effect of an atherogenic diet on ectopic mineralization. Methods: We used Abcc6tm1JfK mice (Abcc6−/− mice) as an established preclinical model of PXE. The offspring at age of 4 weeks were divided into two groups and fed the standard control laboratory diet (control group) and the atherogenic diet. Serum lipid profiles and bile acids were measured, and steatosis and tissue mineralization were evaluated by histopathologic analysis and chemical calcium quantification assay, respectively. Results: After 50–58 weeks of feeding an atherogenic diet, the concentrations of total cholesterol, low-density lipoprotein/very-low-density lipoprotein cholesterol, and bile acids were significantly higher in the Abcc6−/− mice on the atherogenic diet (180.9 ± 14.8 g/L, 145.9 ± 12.9 g/L, and 9.7 ± 1.4 μmol/L, respectively) than in Abcc6−/− mice on a control diet (85.2 ± 4.8 g/L, 25.1 ± 5.5 g/L, and 3.3 ± 0.5 μmol/L, respectively) (P < 0.001). Hypercholesterolemia was accompanied by extensive lipid accumulation in the liver and aorta, a characteristic feature of steatosis. The direct calcium assay demonstrated significantly increased mineralization of the muzzle skin containing the dermal sheath of vibrissae (57.2 ± 4.4 μmol Ca/gram tissue on the atherogenic diet and 43.9 ± 2.2 μmol Ca/gram tissue on control diet; P < 0.01), a reproducible biomarker of the ectopic mineralization process in these mice. An increased frequency of mineralization was also observed in the kidneys and eyes of mice on the atherogenic diet (P < 0.01). Conclusion: These observations suggest that the atherogenic diet caused hypercholesterolemia and accelerated ectopic mineralization in the Abcc6−/− mice. Our findings have clinical implications for patients with PXE, a currently intractable disorder with considerable morbidity and occasional mortality.
Collapse
|
25
|
Loria AD, Dattilo V, Santoro D, Guccione J, De Luca A, Ciaramella P, Pirozzi M, Iaccino E. Expression of Serum Exosomal miRNA 122 and Lipoprotein Levels in Dogs Naturally Infected by Leishmania infantum: A Preliminary Study. Animals (Basel) 2020; 10:ani10010100. [PMID: 31936232 PMCID: PMC7023135 DOI: 10.3390/ani10010100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The immunopathogenesis of leishmaniasis is not completely understood. Exosomes are extracellular vesicles produced by most eukaryotic cells, containing various molecular constituents with biological effects (e.g., proteins, peptides, RNA). They play an important role in cell-to-cell signaling. Recently, exosomal microRNA were demonstrated to be able to regulate gene expression and protein production in mammalian cells, serving as potential biomarkers of disease. The microRNA miR-122 is a biomarker of hepatic damage widely studied in mice in the course of Leishmania infection. Leishmania organisms can interfere with miR-122 production leading to a dysfunction in cholesterol metabolism ensuring its proliferation in the infected host. In this study, we suggest that such a phenomenon may also occur in dogs affected by Leishmania infection. Abstract Current knowledge on the role of exosomal microRNA (miRNA) in canine leishmaniasis (CL), with particular regards to the interaction between miR-122 and lipid alterations, is limited. The aim of this study was to isolate/characterize exosomes in canine serum and evaluate the expression of miR-122 in ten healthy and ten leishmaniotic dogs. Serum exosomes were isolated using a polymer-based kit, ExoQuick® and characterized by flow cytometry and transmission electron microscopy, whereas miR-122-5p expression was evaluated by quantitative reverse-transcriptase polymerase chain reaction. A significant decreased expression of exosomal miR-122-5p, decreased serum levels of high-density lipoproteins, and increased serum levels of low-density lipoproteins were seen in leishmaniotic dogs when compared with healthy dogs. These results suggest that hepatic dysfunctions induced by the parasite interfere with lipoprotein status. The decreased expression of exosomal miR122 represents an additional effect of Leishmania infection in dogs as in people.
Collapse
Affiliation(s)
- Antonio Di Loria
- Department of Veterinary Medicine and Animal Productions, University Federico II, 80130 Napoli, Italy; (J.G.); (P.C.)
- Correspondence: (A.D.L.); (D.S.)
| | - Vincenzo Dattilo
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence: (A.D.L.); (D.S.)
| | - Jacopo Guccione
- Department of Veterinary Medicine and Animal Productions, University Federico II, 80130 Napoli, Italy; (J.G.); (P.C.)
| | - Adriana De Luca
- Department of Veterinary Medicine and Animal Productions, University Federico II, 80130 Napoli, Italy; (J.G.); (P.C.)
| | - Paolo Ciaramella
- Department of Veterinary Medicine and Animal Productions, University Federico II, 80130 Napoli, Italy; (J.G.); (P.C.)
| | - Marinella Pirozzi
- Institute of Protein Biochemistry, National Research Council, 88100 Napoli, Italy;
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine Magna Graecia University, 88100 Catanzaro, Italy;
| |
Collapse
|
26
|
High Protein Diet and Metabolic Plasticity in Non-Alcoholic Fatty Liver Disease: Myths and Truths. Nutrients 2019; 11:nu11122985. [PMID: 31817648 PMCID: PMC6950466 DOI: 10.3390/nu11122985] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation within the liver affecting 1 in 4 people worldwide. As the new silent killer of the twenty-first century, NAFLD impacts on both the request and the availability of new liver donors. The liver is the first line of defense against endogenous and exogenous metabolites and toxins. It also retains the ability to switch between different metabolic pathways according to food type and availability. This ability becomes a disadvantage in obesogenic societies where most people choose a diet based on fats and carbohydrates while ignoring vitamins and fiber. The chronic exposure to fats and carbohydrates induces dramatic changes in the liver zonation and triggers the development of insulin resistance. Common believes on NAFLD and different diets are based either on epidemiological studies, or meta-analysis, which are not controlled evidences; in most of the cases, they are biased on test-subject type and their lifestyles. The highest success in reverting NAFLD can be attributed to diets based on high protein instead of carbohydrates. In this review, we discuss the impact of NAFLD on body metabolic plasticity. We also present a detailed analysis of the most recent studies that evaluate high-protein diets in NAFLD with a special focus on the liver and the skeletal muscle protein metabolisms.
Collapse
|
27
|
Zutshi S, Kumar S, Chauhan P, Bansode Y, Nair A, Roy S, Sarkar A, Saha B. Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines (Basel) 2019; 7:vaccines7040156. [PMID: 31635276 PMCID: PMC6963565 DOI: 10.3390/vaccines7040156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a neglected protozoan parasitic disease that occurs in 88 countries but a vaccine is unavailable. Vaccination with live, killed, attenuated (physically or genetically) Leishmania have met with limited success, while peptide-, protein-, or DNA-based vaccines showed promise only in animal models. Here, we critically assess several technical issues in vaccination and expectation of a host-protective immune response. Several studies showed that antigen presentation during priming and triggering of the same cells in infected condition are not comparable. Altered proteolytic processing, antigen presentation, protease-susceptible sites, and intracellular expression of pathogenic proteins during Leishmania infection may vary dominant epitope selection, MHC-II/peptide affinity, and may deter the reactivation of desired antigen-specific T cells generated during priming. The robustness of the memory T cells and their functions remains a concern. Presentation of the antigens by Leishmania-infected macrophages to antigen-specific memory T cells may lead to change in the T cells' functional phenotype or anergy or apoptosis. Although cells may be activated, the peptides generated during infection may be different and cross-reactive to the priming peptides. Such altered peptide ligands may lead to suppression of otherwise active antigen-specific T cells. We critically assess these different immunological issues that led to the non-availability of a vaccine for human use.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Yashwant Bansode
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Somenath Roy
- Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, India.
| | - Arup Sarkar
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| |
Collapse
|
28
|
Dixon AM, Roy S. Role of membrane environment and membrane-spanning protein regions in assembly and function of the Class II Major Histocompatibility complex. Hum Immunol 2019; 80:5-14. [PMID: 30102939 DOI: 10.1016/j.humimm.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Class II Major Histocompatibility complex (MHC-II) is a polymorphic heterodimer that binds antigen-derived peptides and presents them on the surface of antigen presenting cells. This mechanism of antigen presentation leads to recognition by CD4 T-cells and T-cell activation, making it a critical element of adaptive immune response. For this reason, the structural determinants of MHC-II function have been of great interest for the past 30 years, resulting in a robust structural understanding of the extracellular regions of the complex. However, the membrane-localized regions have also been strongly implicated in protein-protein and protein-lipid interactions that facilitate Class II assembly, transport and function, and it is these regions that are the focus of this review. Here we describe studies that reveal the strong and selective interactions between the transmembrane domains of the MHC α, and invariant chains which, when altered, have broad reaching impacts on antigen presentation and Class II function. We also summarize work that clearly demonstrates the link between membrane lipid composition (particularly the presence of cholesterol) and MHC-II conformation, subsequent peptide binding, and downstream T-cell activation. We have integrated these studies into a comprehensive view of Class II transmembrane domain biology.
Collapse
Affiliation(s)
- Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research-Kolkata, 4 Raja SC, Mullick Road, Kolkata 700032, India
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Hyperlipidemia is a comorbidity affecting a significant number of transplant patients despite treatment with cholesterol lowering drugs. Recently, it has been shown that hyperlipidemia can significantly alter T-cell responses to cardiac allografts in mice, and graft rejection is accelerated in dyslipidemic mice. Here, we review recent advances in our understanding of hyperlipidemia in graft rejection. RECENT FINDINGS Hyperlipidemic mice have significant increases in serum levels of proinflammatory cytokines, and neutralization of interleukin 17 (IL-17) slows graft rejection, suggesting that IL-17 production by Th17 cells was necessary but not sufficient for rejection. Hyperlipidemia also causes an increase in alloreactive T-cell responses prior to antigen exposure. Analysis of peripheral tolerance mechanisms indicated that this was at least in part due to alterations in FoxP3 T cells that led to reduced Treg function and the expansion of FoxP3 CD4 T cells expressing low levels of CD25. Functionally, alterations in Treg function prevented the ability to induce operational tolerance to fully allogeneic heart transplants through costimulatory-molecule blockade, a strategy that requires Tregs. SUMMARY These findings highlight the importance of considering the contribution of inflammatory comorbidities to cardiac allograft rejection, and point to the potential importance of managing hyperlipidemia in the transplant population.
Collapse
|
30
|
The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins. Pathogens 2017; 6:pathogens6030039. [PMID: 28837104 PMCID: PMC5617996 DOI: 10.3390/pathogens6030039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.
Collapse
|
31
|
Sterol targeting drugs reveal life cycle stage-specific differences in trypanosome lipid rafts. Sci Rep 2017; 7:9105. [PMID: 28831063 PMCID: PMC5567337 DOI: 10.1038/s41598-017-08770-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cilia play important roles in cell signaling, facilitated by the unique lipid environment of a ciliary membrane containing high concentrations of sterol-rich lipid rafts. The African trypanosome Trypanosoma brucei is a single-celled eukaryote with a single cilium/flagellum. We tested whether flagellar sterol enrichment results from selective flagellar partitioning of specific sterol species or from general enrichment of all sterols. While all sterols are enriched in the flagellum, cholesterol is especially enriched. T. brucei cycles between its mammalian host (bloodstream cell), in which it scavenges cholesterol, and its tsetse fly host (procyclic cell), in which it both scavenges cholesterol and synthesizes ergosterol. We wondered whether the insect and mammalian life cycle stages possess chemically different lipid rafts due to different sterol utilization. Treatment of bloodstream parasites with cholesterol-specific methyl-β-cyclodextrin disrupts both membrane liquid order and localization of a raft-associated ciliary membrane calcium sensor. Treatment with ergosterol-specific amphotericin B does not. The opposite results were observed with ergosterol-rich procyclic cells. Further, these agents have opposite effects on flagellar sterol enrichment and cell metabolism in the two life cycle stages. These findings illuminate differences in the lipid rafts of an organism employing life cycle-specific sterols and have implications for treatment.
Collapse
|
32
|
Semini G, Paape D, Paterou A, Schroeder J, Barrios‐Llerena M, Aebischer T. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection. Microbiologyopen 2017; 6:e00469. [PMID: 28349644 PMCID: PMC5552908 DOI: 10.1002/mbo3.469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 11/08/2022] Open
Abstract
Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and MycobacteriaDepartment of Infectious DiseasesRobert Koch‐InstituteBerlinGermany
| | - Daniel Paape
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
- Present address:
Welcome Trust Centre for Molecular Parasitology and Institute of Infection Immunity and InflammationCollege of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Athina Paterou
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
| | - Juliane Schroeder
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
- Present address:
Welcome Trust Centre for Molecular Parasitology and Institute of Infection Immunity and InflammationCollege of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| | - Martin Barrios‐Llerena
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
- Present address:
Centre for Cardiovascular SciencesQueen's Medical Research Institute University of EdinburghEdinburghUK
| | - Toni Aebischer
- Mycotic and Parasitic Agents and MycobacteriaDepartment of Infectious DiseasesRobert Koch‐InstituteBerlinGermany
- Institute of Immunology and Infection ResearchThe University of EdinburghEdinburghUK
| |
Collapse
|
33
|
Riella LV, Bagley J, Iacomini J, Alegre ML. Impact of environmental factors on alloimmunity and transplant fate. J Clin Invest 2017; 127:2482-2491. [PMID: 28481225 DOI: 10.1172/jci90596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although gene-environment interactions have been investigated for many years to understand people's susceptibility to autoimmune diseases or cancer, a role for environmental factors in modulating alloimmune responses and transplant outcomes is only now beginning to emerge. New data suggest that diet, hyperlipidemia, pollutants, commensal microbes, and pathogenic infections can all affect T cell activation, differentiation, and the kinetics of graft rejection. These observations reveal opportunities for novel therapeutic interventions to improve graft outcomes as well as for noninvasive biomarker discovery to predict or diagnose graft deterioration before it becomes irreversible. In this Review, we will focus on the impact of these environmental factors on immune function and, when known, on alloimmune function, as well as on transplant fate.
Collapse
Affiliation(s)
- Leonardo V Riella
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessamyn Bagley
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | - John Iacomini
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | | |
Collapse
|
34
|
Abstract
Coxiella burnetii is an intracellular bacterial pathogen and a significant cause of culture-negative endocarditis in the United States. Upon infection, the nascent Coxiella phagosome fuses with the host endocytic pathway to form a large lysosome-like vacuole called the parasitophorous vacuole (PV). The PV membrane is rich in sterols, and drugs perturbing host cell cholesterol homeostasis inhibit PV formation and bacterial growth. Using cholesterol supplementation of a cholesterol-free cell model system, we found smaller PVs and reduced Coxiella growth as cellular cholesterol concentration increased. Further, we observed in cells with cholesterol a significant number of nonfusogenic PVs that contained degraded bacteria, a phenotype not observed in cholesterol-free cells. Cholesterol had no effect on axenic Coxiella cultures, indicating that only intracellular bacteria are sensitive to cholesterol. Live-cell microscopy revealed that both plasma membrane-derived cholesterol and the exogenous cholesterol carrier protein low-density lipoprotein (LDL) traffic to the PV. To test the possibility that increasing PV cholesterol levels affects bacterial survival, infected cells were treated with U18666A, a drug that traps cholesterol in lysosomes and PVs. U18666A treatment led to PVs containing degraded bacteria and a significant loss in bacterial viability. The PV pH was significantly more acidic in cells with cholesterol or cells treated with U18666A, and the vacuolar ATPase inhibitor bafilomycin blocked cholesterol-induced PV acidification and bacterial death. Additionally, treatment of infected HeLa cells with several FDA-approved cholesterol-altering drugs led to a loss of bacterial viability, a phenotype also rescued by bafilomycin. Collectively, these data suggest that increasing PV cholesterol further acidifies the PV, leading to Coxiella death. The intracellular Gram-negative bacterium Coxiella burnetii is a significant cause of culture-negative infectious endocarditis, which can be fatal if untreated. The existing treatment strategy requires prolonged antibiotic treatment, with a 10-year mortality rate of 19% in treated patients. Therefore, new clinical therapies are needed and can be achieved by better understanding C. burnetii pathogenesis. Upon infection of host cells, C. burnetii grows within a specialized replication niche, the parasitophorous vacuole (PV). Recent data have linked cholesterol to intracellular C. burnetii growth and PV formation, leading us to further decipher the role of cholesterol during C. burnetii-host interaction. We observed that increasing PV cholesterol concentration leads to increased acidification of the PV and bacterial death. Further, treatment with FDA-approved drugs that alter host cholesterol homeostasis also killed C. burnetii through PV acidification. Our findings suggest that targeting host cholesterol metabolism might prove clinically efficacious in controlling C. burnetii infection.
Collapse
|
35
|
Bouazizi-Ben Messaoud H, Guichard M, Lawton P, Delton I, Azzouz-Maache S. Changes in Lipid and Fatty Acid Composition During Intramacrophagic Transformation of Leishmania donovani Complex Promastigotes into Amastigotes. Lipids 2017; 52:433-441. [PMID: 28161835 PMCID: PMC5427136 DOI: 10.1007/s11745-017-4233-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/10/2017] [Indexed: 11/27/2022]
Abstract
Leishmania sp., are trypanosomatid parasites that are phagocytized by human and animal macrophages. Transformation from the vector promastigote stage to the intracellular amastigote host cell stage is mandatory, since development in the host depends on the internalization of the parasite. We identified and analyzed the lipids involved in the promastigote to amastigote transformation process in the Leishmania donovani complex. Four lipid classes, phospholipids, free fatty acids, triglycerides and sterols were studied. The derivatization method of Bligh and Dyer was used to establish the fatty acid composition in each stage of the parasite. To stay within the context of Leishmania infection, we used amastigotes extracted from macrophages after experimental in vitro infection. The purification process was checked by electronic microscopy, the absence of major contamination by host-cell debris and a correct purification yield validated our experimental model. Our results show that free fatty acids and cholesterol increased, whereas triglycerides and ergosterol decreased during the transition between promastigotes to amastigotes. With respect to phospholipid classes, we found increased proportion of sphingomyelin and phosphatidylserine and lowered proportion of phosphatidylinositol and lysophosphatidylethanolamine. Regarding fatty acid composition, a significant increase of n-7 fatty acids was observed in amastigotes. Overall, the total n-6 fatty acids were decreased in PL. Several of the changes were also observed in TG and free fatty acids. Particularly, n-7 fatty acids and 20:4n-6 were highly increased, whereas n-9 fatty acid and n-6 precursors decreased.
Collapse
Affiliation(s)
- Hana Bouazizi-Ben Messaoud
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France.,Department of Parasitology and Medical Mycology, Lyon University, Lyon, France.,Inserm U1060 CarMeN Laboratory, INSA-Lyon, Villeurbanne, France
| | - Marion Guichard
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France.,Department of Parasitology and Medical Mycology, Lyon University, Lyon, France
| | - Philippe Lawton
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France.,Department of Parasitology and Medical Mycology, Lyon University, Lyon, France
| | - Isabelle Delton
- Inserm U1060 CarMeN Laboratory, INSA-Lyon, Villeurbanne, France
| | - Samira Azzouz-Maache
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France. .,Department of Parasitology and Medical Mycology, Lyon University, Lyon, France.
| |
Collapse
|
36
|
Metabolic reprogramming & inflammation: Fuelling the host response to pathogens. Semin Immunol 2016; 28:450-468. [PMID: 27780657 DOI: 10.1016/j.smim.2016.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
Successful immune responses to pathogens rely on efficient host innate processes to contain and limit bacterial growth, induce inflammatory response and promote antigen presentation for the development of adaptive immunity. This energy intensive process is regulated through multiple mechanisms including receptor-mediated signaling, control of phago-lysomal fusion events and promotion of bactericidal activities. Inherent macrophage activities therefore are dynamic and are modulated by signals and changes in the environment during infection. So too does the way these cells obtain their energy to adapt to altered homeostasis. It has emerged recently that the pathways employed by immune cells to derive energy from available or preferred nutrients underline the dynamic changes associated with immune activation. In particular, key breakpoints have been identified in the metabolism of glucose and lipids which direct not just how cells derive energy in the form of ATP, but also cellular phenotype and activation status. Much of this comes about through altered flux and accumulation of intermediate metabolites. How these changes in metabolism directly impact on the key processes required for anti-microbial immunity however, is less obvious. Here, we examine the 2 key nutrient utilization pathways employed by innate cells to fuel central energy metabolism and examine how these are altered in response to activation during infection, emphasising how certain metabolic switches or 'reprogramming' impacts anti-microbial processes. By examining carbohydrate and lipid pathways and how the flux of key intermediates intersects with innate immune signaling and the induction of bactericidal activities, we hope to illustrate the importance of these metabolic switches for protective immunity and provide a potential mechanism for how altered metabolic conditions in humans such as diabetes and hyperlipidemia alter the host response to infection.
Collapse
|
37
|
Parihar SP, Hartley MA, Hurdayal R, Guler R, Brombacher F. Topical Simvastatin as Host-Directed Therapy against Severity of Cutaneous Leishmaniasis in Mice. Sci Rep 2016; 6:33458. [PMID: 27632901 PMCID: PMC5025842 DOI: 10.1038/srep33458] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/19/2016] [Indexed: 01/22/2023] Open
Abstract
We recently demonstrated that statins mediate protection against intracellular pathogens, Mycobacterium tuberculosis and Listeria monocytogenes in mice. Here, we investigated the immunomodulatory potential of simvastatin as a topical or systemic host-directed drug therapy in controlling inflammatory responses in an experimental mouse model of cutaneous leishmaniasis caused by Leishmania major (LV39). In an ear infection model, topical application of simvastatin directly on established lesions significantly reduced severity of the disease reflected by ear lesion size and ulceration. The host protective effect was further accompanied by decreased parasite burden in the ear and draining lymph nodes in both BALB/c and C57BL/6 mice. Pre-treatment of these mice on a low-fat cholesterol diet and systemic simvastatin also reduced footpad swelling, as well as parasite burdens and ulceration/necrosis in the more robust footpad infection model, demonstrating the prophylactic potential of simvastatin for cutaneous leishmaniasis. Mechanistically, following L. major infection, simvastatin-treated primary macrophages responded with significantly reduced cholesterol levels and increased production of hydrogen peroxide. Furthermore, simvastatin-treated macrophages displayed enhanced phagosome maturation, as revealed by increased LAMP-3 expression in fluorescent microscopy and Western blot analysis. These findings demonstrate that simvastatin treatment enhances host protection against L. major by increasing macrophage phagosome maturation and killing effector functions.
Collapse
Affiliation(s)
- Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, Epalinges, CH1066, Switzerland
| | - Ramona Hurdayal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.,Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch-7701, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
38
|
Roy K, Mandloi S, Chakrabarti S, Roy S. Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy. PLoS Negl Trop Dis 2016; 10:e0004710. [PMID: 27214205 PMCID: PMC4877013 DOI: 10.1371/journal.pntd.0004710] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/23/2016] [Indexed: 12/20/2022] Open
Abstract
Background Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activation. Methodology/Principal Findings MΦ of CBA/j mice were infected with Leishmania donovani (I-MΦ). Two different anti-Aκ mAbs were used to monitor the status of MHC-II protein under parasitized condition. One of them (11.5–2) was conformation specific, whereas the other one (10.2.16) was not. Under parasitized condition, the binding of 11.5–2 decreased significantly with respect to the normal counterpart, whereas that of 10.2.16 remained unaltered. The binding of 11.5–2 was restored to normal upon liposomal delivery of cholesterol in I-MΦ. By molecular dynamics (MD) simulation studies we found that there was considerable conformational fluctuation in the transmembrane domain of the MHC-II protein in the presence of membrane cholesterol than in its absence, which possibly influenced the distal peptide binding groove. This was evident from the faster dissociation of the cognate peptide from peptide-MHC complex under parasitized condition, which could be corrected by liposomal delivery of cholesterol in I-MΦ. Conclusion The decrease in membrane cholesterol in I-MΦ may lead to altered conformation of MHC II, and this may contribute to a faster dissociation of the peptide. Furthermore, liposomal delivery of cholesterol in I-MΦ restored its normal antigen presenting function. This observation brings strength to our previous observation on host directed therapeutic application of liposomal cholesterol in experimental visceral leishmaniasis. The disease visceral leishmaniasis is caused by the protozoan parasite Leishmania donovani (LD). One of the hallmarks of the disease is immune suppression. The parasites replicate within the macrophages and dendritic cells, and such cells are known as antigen presenting cells (APCs). APCs present peptide to T-helper cells in association with the transplantation antigen-II (MHC-II). The infected macrophages show decrease in membrane cholesterol leading to increase in membrane fluidity. The membrane cholesterol is important for maintaining conformation of membrane proteins. Here we show that conformation of MHC-II protein is altered in parasitized macrophages, which results faster dissociation of peptide from peptide-MHC-II complex as compared to normal counterpart. The conformational change in MHC-II protein is also supported by molecular dynamic simulation studies, as there is considerable structural fluctuation of MHC-II peptide binding domain in presence and absence of cholesterol. This observation indicated that cholesterol is important for maintaining conformation of MHC-II protein and stability of the peptide-MHC complex. Thus, Leishmania parasites by modulating membrane cholesterol influence above processes leading to defective T-cell stimulation in leishmaniasis. The above defects displayed by infected macrophages could be corrected by liposomal delivery of cholesterol indicating a possible therapeutic role of liposomal cholesterol in infection.
Collapse
Affiliation(s)
- Koushik Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sapan Mandloi
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (SC); (SR)
| | - Syamal Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (SC); (SR)
| |
Collapse
|
39
|
Yao C, Wilson ME. Dynamics of sterol synthesis during development of Leishmania spp. parasites to their virulent form. Parasit Vectors 2016; 9:200. [PMID: 27071464 PMCID: PMC4830053 DOI: 10.1186/s13071-016-1470-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/23/2016] [Indexed: 12/14/2022] Open
Abstract
Background The Leishmania spp. protozoa, the causative agents of the “neglected” tropical disease leishmaniasis, are transmitted to mammals by sand fly vectors. Within the sand fly, parasites transform from amastigotes to procyclic promastigotes, followed by development of virulent (metacyclic) promastigote forms. The latter are infectious to mammalian hosts. Biochemical components localized in the parasite plasma membrane such as proteins and sterols play a pivotal role in Leishmania pathogenesis. Leishmania spp. lack the enzymes for cholesterol synthesis, and the dynamics of sterol acquisition and biosynthesis in parasite developmental stages are not understood. We hypothesized that dynamic changes in sterol composition during metacyclogenesis contribute to the virulence of metacyclic promastigotes. Methods Sterols were extracted from logarithmic phase or metacyclic promastigotes grown in liquid culture with or without cholesterol, and analyzed qualitatively and quantitatively by gas chromatograph-mass spectrometry (GC-MS). TriTrypDB was searched for identification of genes involved in Leishmania sterol biosynthetic pathways. Results In total nine sterols were identified. There were dynamic changes in sterols during promastigote metacyclogenesis. Cholesterol in the culture medium affected sterol composition in different parasite stages. There were qualitative and relative quantitative differences between the sterol content of virulent versus avirulent parasite strains. A tentative sterol biosynthetic pathway in Leishmania spp. promastigotes was identified. Conclusions Significant differences in sterol composition were observed between promastigote stages, and between parasites exposed to different extracellular cholesterol in the environment. These data lay the foundation for further investigating the role of sterols in the pathogenesis of Leishmania spp. infections. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1470-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies, ᅟ.
| | - Mary E Wilson
- Departments of Internal Medicine, Microbiology and Epidemiology, University of Iowa, Iowa City, IA, USA.,Iowa City VA Medical Center, Iowa City, IA, USA
| |
Collapse
|
40
|
Linhares-Lacerda L, Morrot A. Role of Small RNAs in Trypanosomatid Infections. Front Microbiol 2016; 7:367. [PMID: 27065454 PMCID: PMC4811879 DOI: 10.3389/fmicb.2016.00367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/07/2016] [Indexed: 12/28/2022] Open
Abstract
Trypanosomatid parasites survive and replicate in the host by using mechanisms that aim to establish a successful infection and ensure parasite survival. Evidence points to microRNAs as new players in the host-parasite interplay. MicroRNAs are small non-coding RNAs that control proteins levels via post-transcriptional gene down-regulation, either within the cells where they were produced or in other cells via intercellular transfer. These microRNAs can be modulated in host cells during infection and are among the growing group of small regulatory RNAs, for which many classes have been described, including the transfer RNA-derived small RNAs. Parasites can either manipulate microRNAs to evade host-driven damage and/or transfer small RNAs to host cells. In this mini-review, we present evidence for the involvement of small RNAs, such as microRNAs, in trypanosomatid infections which lack RNA interference. We highlight both microRNA profile alterations in host cells during those infections and the horizontal transfer of small RNAs and proteins from parasites to the host by membrane-derived extracellular vesicles in a cell communication mechanism.
Collapse
Affiliation(s)
- Leandra Linhares-Lacerda
- Oswaldo Cruz Foundation, Laboratory on Thymus Research, Institute Oswaldo Cruz Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Department of Immunology, Microbiology Institute, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Rabhi S, Rabhi I, Trentin B, Piquemal D, Regnault B, Goyard S, Lang T, Descoteaux A, Enninga J, Guizani-Tabbane L. Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection. PLoS One 2016; 11:e0148640. [PMID: 26871576 PMCID: PMC4752496 DOI: 10.1371/journal.pone.0148640] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/20/2016] [Indexed: 01/13/2023] Open
Abstract
Leishmania, the causative agent of vector-borne diseases, known as leishmaniases, is an obligate intracellular parasite within mammalian hosts. The outcome of infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. Understanding the strategies developed by the parasite to circumvent macrophage defense mechanisms and to survive within those cells help defining novel therapeutic approaches for leishmaniasis. We previously showed the formation of lipid droplets (LDs) in L. major infected macrophages. Here, we provide novel insights on the origin of the formed LDs by determining their cellular distribution and to what extent these high-energy sources are directed to the proximity of Leishmania parasites. We show that the ability of L. major to trigger macrophage LD accumulation is independent of parasite viability and uptake and can also be observed in non-infected cells through paracrine stimuli suggesting that LD formation is from cellular origin. The accumulation of LDs is demonstrated using confocal microscopy and live-cell imagin in parasite-free cytoplasmic region of the host cell, but also promptly recruited to the proximity of Leishmania parasites. Indeed LDs are observed inside parasitophorous vacuole and in parasite cytoplasm suggesting that Leishmania parasites besides producing their own LDs, may take advantage of these high energy sources. Otherwise, these LDs may help cells defending against parasitic infection. These metabolic changes, rising as common features during the last years, occur in host cells infected by a large number of pathogens and seem to play an important role in pathogenesis. Understanding how Leishmania parasites and different pathogens exploit this LD accumulation will help us define the common mechanism used by these different pathogens to manipulate and/or take advantage of this high-energy source.
Collapse
Affiliation(s)
- Sameh Rabhi
- Institut Pasteur de Tunis, Laboratoire de Parasitologies médicales biotechnologies et Biomolecules, University of Tunis El Manar, 13, Place Pasteur – B. P. 74, 1002, Tunis-Belvedere, Tunisia
- Université de carthage, Sidi Bou Said, Avenue de la République – B. P .77. 1054, Carthage, Tunisia
| | - Imen Rabhi
- Institut Pasteur de Tunis, Laboratoire de Parasitologies médicales biotechnologies et Biomolecules, University of Tunis El Manar, 13, Place Pasteur – B. P. 74, 1002, Tunis-Belvedere, Tunisia
- Biotechnology and Bio-Geo Resources Valorization Laboratory (LR11ES31); Higher Institute for Biotechnology - University of Manouba, Biotechpole of Sidi Thabet, 2020, Sidi Thabet, Ariana, Tunisia
| | - Bernadette Trentin
- Acobiom Cap Delta-Biopôle Euromédecine II. 1682, rue de la Valsière – 34184, Montpellier, Cedex 4, France
| | - David Piquemal
- Acobiom Cap Delta-Biopôle Euromédecine II. 1682, rue de la Valsière – 34184, Montpellier, Cedex 4, France
| | - Béatrice Regnault
- DNA Chip Platform, Genopole, Institut Pasteur de Paris, 25–28 rue du Dr Roux, 75015, Paris, France
| | - Sophie Goyard
- Institut Pasteur, Département Infection et Epidémiologie, Laboratoire des Processus infectieux à Trypanosomatidés, 26 rue du Dr Roux, 75724, Paris, Cedex 15, France
| | - Thierry Lang
- Institut Pasteur, Département Infection et Epidémiologie, Laboratoire des Processus infectieux à Trypanosomatidés, 26 rue du Dr Roux, 75724, Paris, Cedex 15, France
| | - Albert Descoteaux
- INRS-Institut Armand Frappier and Centre for Host-Parasite Interactions, 531, boulevard des Prairies, Laval (Québec), H7V 1B7, Canada
| | - Jost Enninga
- Institut Pasteur, Dynamics of host-pathogen interactions Unit, 25 Rue du Dr. Roux, 75724, Paris, France
| | - Lamia Guizani-Tabbane
- Institut Pasteur de Tunis, Laboratoire de Parasitologies médicales biotechnologies et Biomolecules, University of Tunis El Manar, 13, Place Pasteur – B. P. 74, 1002, Tunis-Belvedere, Tunisia
| |
Collapse
|
42
|
Banerjee S, Halder K, Ghosh S, Bose A, Majumdar S. The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ. Oncoimmunology 2015; 4:e995559. [PMID: 25949923 DOI: 10.1080/2162402x.2014.995559] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023] Open
Abstract
Tumor associated macrophages and tumor infiltrating regulatory T cells greatly hamper host-protective antitumor responses. Therefore, we utilized a novel immunomodulator, heat-killed Mycobacterium indicus pranii (Mw), to repolarize TAM and an agonistic GITR antibody (DTA-1) to reduce intratumoral regulatory T cell frequency for generation of a host-protective antitumor response. Although, the combination of Mw and DTA-1was found to be effective against advanced stage tumors, however, Mw or DTA-1 failed to do so when administered individually. The presence of high level of regulatory T cells abrogated the only Mw induced antitumor functions, whereas only DTA-1 treatment was found to be ineffective due to its inability to induce TAM repolarization in vivo. The combination therapy was found to be effective since DTA-1 treatment reduced the frequency of regulatory T cells to such an extent where they could not attenuate Mw induced TAM repolarization in vivo. Therefore, the combination therapy involving Mw and DTA-1 may be utilized to the success of advanced stage solid tumor immunotherapies.
Collapse
Affiliation(s)
| | - Kuntal Halder
- Division of Molecular Medicine; Bose Institute ; Kolkata, India
| | - Sweta Ghosh
- Division of Molecular Medicine; Bose Institute ; Kolkata, India
| | - Anamika Bose
- Division of Molecular Medicine; Bose Institute ; Kolkata, India
| | | |
Collapse
|
43
|
Millán J, Chirife AD, Altet L. Serum chemistry reference values for the common genet (Genetta genetta): variations associated with Leishmania infantum infection. Vet Q 2014; 35:43-7. [PMID: 25399516 DOI: 10.1080/01652176.2014.987883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The role of wildlife in the epidemiology of leishmaniosis in under debate, and determining whether infection with Leishmania infantum causes illness in wild carnivores is important to determine its potential role as a reservoir. OBJECTIVES To provide for the first time serum biochemistry reference values for the common genet (Genetta genetta), and to determine variations associated with L. infantum infection. METHODS Twenty-five serum biochemistry parameters were determined in 22 wild-caught genets. Blood samples were analyzed for L. infantum DNA by means of real-time polymerase chain reaction (PCR). RESULTS Two female genets were positive for L. infantum DNA but did not show any external clinical sign upon physical examination. Among other variations in the biochemistry values of these genets, one presented a higher concentration of gamma-globulins and cholesterol, whereas the other genet presented increased creatinine, bilirubin, and chloride levels when compared to uninfected females. Sex-related differences in some parameters were also reported. CONCLUSION Infection with L. infantum may sometimes be accompanied by abnormal serum biochemistry in wild carnivores. CLINICAL IMPORTANCE Clinical disease may occur in L. infantum-infected wild carnivores. This has implications in the epidemiology of leishmaniosis. In addition, the data provided here would also be useful as reference values for researchers or rehabilitators working with the common genet.
Collapse
Affiliation(s)
- Javier Millán
- a Facultad de Ecología y Recursos Naturales , Universidad Andres Bello , República 252, Santiago , Chile
| | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. RECENT FINDINGS A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. SUMMARY Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, Melbourne, 3004, Australia
- Address correspondence to: Dmitri Sviridov, Baker IDI Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia; Phone: +61385321363,
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
45
|
Pandey SP, Chandel HS, Srivastava S, Selvaraj S, Jha MK, Shukla D, Ebensen T, Guzman CA, Saha B. Pegylated bisacycloxypropylcysteine, a diacylated lipopeptide ligand of TLR6, plays a host-protective role against experimental Leishmania major infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:3632-43. [PMID: 25194056 DOI: 10.4049/jimmunol.1400672] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TLRs recognize pathogen-expressed Ags and elicit host-protective immune response. Although TLR2 forms heterodimers with TLR1 or TLR6, recognizing different ligands, differences in the functions of these heterodimers remain unknown. In this study, we report that in Leishmania major-infected macrophages, the expression of TLR1 and TLR2, but not TLR6, increased; TLR2-TLR2 association increased, but TLR2-TLR6 association diminished. Lentivirus-expressed TLR1-short hairpin RNA (shRNA) or TLR2-shRNA administration reduced, but TLR6-shRNA increased L. major infection in BALB/c mice. Corroboratively, Pam3CSK4 (TLR1-TLR2 ligand) and peptidoglycan (TLR2 ligand) increased L. major infection but reduced TLR9 expression, whereas pegylated bisacycloxypropylcysteine (BPPcysMPEG; TLR2-TLR6 ligand) reduced L. major number in L. major-infected macrophages, accompanied by increased TLR9 expression, higher IL-12 production, and inducible NO synthase expression. Whereas MyD88, Toll/IL-1R adaptor protein, and TNFR-α-associated factor 6 recruitments to TLR2 were not different in Pam3CSK4-, peptidoglycan-, or BPPcysMPEG-treated macrophages, only BPPcysMPEG enhanced p38MAPK and activating transcription factor 2 activation. BPPcysMPEG conferred antileishmanial functions to L. major-infected BALB/c-derived T cells in a macrophage-T cell coculture and in BALB/c mice; the protection was TLR6 dependent and IL-12 dependent, and it was accompanied by reduced regulatory T cell number. BPPcysMPEG administration during the priming with fixed L. major protected BALB/c mice against challenge L. major infection; the protection was accompanied by low IL-4 and IL-10, but high IFN-γ productions and reduced regulatory T cells. Thus, BPPcysMPEG, a novel diacylated lipopeptide ligand for TLR2-TLR6 heterodimer, induces IL-12-dependent, inducible NO synthase-dependent, T-reg-sensitive antileishmanial protection. The data reveal a novel dimerization partner-dependent duality in TLR2 function.
Collapse
Affiliation(s)
| | | | - Sunit Srivastava
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| | | | - Mukesh Kumar Jha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| | - Divanshu Shukla
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, 38124 Braunschweig, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, 38124 Braunschweig, Germany
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; and
| |
Collapse
|
46
|
Chen Y, Verfaillie CM. MicroRNAs: the fine modulators of liver development and function. Liver Int 2014; 34:976-90. [PMID: 24517588 DOI: 10.1111/liv.12496] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
MicroRNAs are a class of small non-coding RNAs involved in the transcriptional and post-transcriptional regulation of gene expression. The function of miRNAs in liver disease including hepatocellular carcinoma (HCC), hepatitis, and alcoholic liver disease, have been widely studied and extensively reviewed. Increasing evidence demonstrates that miRNAs also play a critical role in normal liver development and in the fine-tuning of fundamental biological liver processes. In this review, we highlight the most recent findings on the role of miRNAs in liver specification and differentiation, liver cell development, as well as in the many metabolic functions of the liver, including glucose, lipid, iron and drug metabolism. These findings demonstrate an important role of miRNAs in normal liver development and function. Further researches will be needed to fully understand how miRNAs regulate liver generation and metabolic function, which should then lead to greater insights in liver biology and perhaps open up the possibility to correct errors that cause liver diseases or metabolic disorders.
Collapse
Affiliation(s)
- Yemiao Chen
- Southwest Hospital, and Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Institute of Pathology and Southwest Cancer Center, Third Military Medical University, Chongqing, China; Department of Development and Regeneration, Stem Cell Institute Leuven, Cluster Stem Cell Biology and Embryology, KU Leuven Medical School, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
47
|
Vanaerschot M, Dumetz F, Roy S, Ponte-Sucre A, Arevalo J, Dujardin JC. Treatment failure in leishmaniasis: drug-resistance or another (epi-) phenotype? Expert Rev Anti Infect Ther 2014; 12:937-46. [PMID: 24802998 DOI: 10.1586/14787210.2014.916614] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two major leishmaniasis treatments have shown a significant decrease in effectiveness in the last few decades, mostly in the Indian subcontinent but also in other endemic areas. Drug resistance of Leishmania correlated only partially to treatment failure (TF) of pentavalent antimonials, and has so far proved not to be important for the increased miltefosine relapse rates observed in the Indian subcontinent. While other patient- or drug-related factors could also have played a role, recent studies identified several parasite features such as infectivity and host manipulation skills that might contribute to TF. This perspective aims to discuss how different parasitic features other than drug resistance can contribute to TF of leishmaniasis and how this may vary between different epidemiological contexts.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerpen, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 2014; 14:36. [PMID: 24656052 PMCID: PMC3994432 DOI: 10.1186/1471-2318-14-36] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/26/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology? DISCUSSION Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology. MECHANISM Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of 'immunosterol' 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease. SUMMARY We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology.
Collapse
Affiliation(s)
- Richard Lathe
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK
| | - Alexandra Sapronova
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Optical Research Group, Laboratory of Evolutionary Biophysics of Development, Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri Kotelevtsev
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Biomedical Centre for Research Education and Innovation (CREI), Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK
| |
Collapse
|
49
|
Liposomal cholesterol delivery activates the macrophage innate immune arm to facilitate intracellular Leishmania donovani killing. Infect Immun 2013; 82:607-17. [PMID: 24478076 DOI: 10.1128/iai.00583-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania donovani causes visceral leishmaniasis (VL) by infecting the monocyte/macrophage lineage and residing inside specialized structures known as parasitophorous vacuoles. The protozoan parasite has adopted several means of escaping the host immune response, with one of the major methods being deactivation of host macrophages. Previous reports highlight dampened macrophage signaling, defective antigen presentation due to increased membrane fluidity, and the downregulation of several genes associated with L. donovani infection. We have reported previously that the defective antigen presentation in infected hamsters could be corrected by a single injection of a cholesterol-containing liposome. Here we show that cholesterol in the form of a liposomal formulation can stimulate the innate immune arm and reactivate macrophage function. Augmented levels of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI), along with proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), corroborate intracellular parasite killing. Cholesterol incorporation kinetics is favored in infected macrophages more than in normal macrophages. Such an enhanced cholesterol uptake is associated with preferential apoptosis of infected macrophages in an endoplasmic reticulum (ER) stress-dependent manner. All these events are coupled with mitogen-activated protein (MAP) kinase activation, while inhibition of such pathways resulted in increased parasite loads. Hence, liposomal cholesterol is a potential facilitator of the macrophage effector function in favor of the host, independently of the T-cell arm.
Collapse
|
50
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|