1
|
Kohnz RA, Zhou D, Lou B, Yao H, McKenney D, Dokwal D, Villanueva R, Kocalis H, Ballard JE, Piesvaux J, Previs SF. Elucidation of Mechanism of Action in Drug Invention: Using Stable Isotope Tracers to Unravel Biochemical Kinetics. Pharmacol Res Perspect 2025; 13:e70099. [PMID: 40281645 PMCID: PMC12031654 DOI: 10.1002/prp2.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
The invention of a therapeutic begins by characterizing features that differentiate healthy versus diseased states; this often presents as changes in the concentration of an analyte. Examples include elevated blood glucose in diabetes, high cholesterol in heart disease, and protein aggregation in neurodegeneration. Analyte concentrations reflect the (im)balance of synthetic and degradation rates; as such, aberrant biochemical kinetics drive the changes in endpoint concentration that define disease biology. Therapeutics aim to reset the concentration of a disease marker via modulation of biochemical kinetics. This is easy to understand for drugs directly targeting an enzyme in a pathway but, although less obvious, this can also be at the core of protein: protein interactions. For instance, stimulation of the insulin receptor changes the flux of several biochemical substrates (across multiple tissues); similarly, modulation of proprotein convertase subtilisin/kexin type 9-low density lipoprotein (PCSK9-LDL) receptor interactions alters cholesterol trafficking. These classic examples underscore the importance of studying biochemical kinetics at a clinical level. Here, we discuss how kinetic studies link disease biology with mechanism of action elucidation and screening. This has an immediate impact on (i) enabling in vitro-in vivo correlations in early discovery, (ii) enhancing exposure-response models aiding in human dose prediction, and (iii) providing support for biomarker plans, including clinical diagnostics. Mechanism of action studies can also influence modality selection; e.g., knowledge regarding target kinetics is needed when making decisions surrounding the development of a reversible inhibitor vs. an irreversible covalent modifier, or an intervention that affects target levels such as those which enhance protein degradation or reduce protein synthesis.
Collapse
Affiliation(s)
| | - Dan Zhou
- Merck & co., Inc.West PointPennsylvaniaUSA
| | - Bin Lou
- Merck & co., Inc.South San FranciscoCaliforniaUSA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Amin A, Salman TM. Glucagon in glucose homeostasis and metabolic disease: from physiology to therapeutics. J Basic Clin Physiol Pharmacol 2025:jbcpp-2025-0005. [PMID: 40314189 DOI: 10.1515/jbcpp-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/06/2025] [Indexed: 05/03/2025]
Abstract
Glucagon, a key hormone in glucose homeostasis, plays a central role in maintaining blood glucose levels through hepatic glycogenolysis and gluconeogenesis. Historically, glucagon secretion was believed to be primarily regulated by insulin via the "insulin switch-off" hypothesis, where reduced insulin levels triggered glucagon release. However, this view has been revisited as emerging evidence highlights the complexity of glucagon regulation. New studies demonstrate that glucose itself, along with amino acids and fatty acid oxidation, directly influences glucagon secretion, challenging the insulin-centric perspective. These findings reveal the metabolic versatility of pancreatic α-cells and their capacity to adapt to nutrient availability. Recent therapeutic innovations, such as glucagon receptor antagonists, dual GLP-1/glucagon receptor agonists, and modulators of hepatic glucagon signalling, offer promising strategies to mitigate hyperglycemia, improve energy balance, and address metabolic dysregulation. This review provides an in-depth analysis of glucagon's role in health and disease, emphasizing its therapeutic potential in managing diabetes and related metabolic conditions.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Toyin Mohammed Salman
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
3
|
Jia J, Bai X, Kang Q, Jiang F, Wong FS, Jin Q, Li M. Blockade of glucagon receptor induces α-cell hypersecretion by hyperaminoacidemia in mice. Nat Commun 2025; 16:2473. [PMID: 40075066 PMCID: PMC11903786 DOI: 10.1038/s41467-025-57786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Blockade of the glucagon receptor (GCGR) has been shown to improve glycemic control. However, this therapeutic approach also brings side effects, such as α-cell hyperplasia and hyperglucagonemia, and the mechanisms underlying these side effects remain elusive. Here, we conduct single-cell transcriptomic sequencing of islets from male GCGR knockout (GCGR-KO) mice. Our analysis confirms the elevated expression of Gcg in GCGR-KO mice, along with enhanced glucagon secretion at single-cell level. Notably, Vgf (nerve growth factor inducible) is specifically upregulated in α cells of GCGR-KO mice. Inhibition of VGF impairs the formation of glucagon immature secretory granules and compromises glucagon maturation, lead to reduced α-cell hypersecretion of glucagon. We further demonstrate that activation of both mTOR-STAT3 and ERK-CREB pathways, induced by elevated circulation amino acids, is responsible for upregulation of Vgf and Gcg expression following glucagon receptor blockade. Thus, our findings elucidate parts of the molecular mechanism underlying hyperglucagonemia in GCGR blockade.
Collapse
Affiliation(s)
- Jianxin Jia
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xuanxuan Bai
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qi Kang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Fuquan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Quanwen Jin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Mingyu Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences and School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Holst JJ. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat Metab 2024; 6:1866-1885. [PMID: 39160334 DOI: 10.1038/s42255-024-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
The introduction of the highly potent incretin receptor agonists semaglutide and tirzepatide has marked a new era in the treatment of type 2 diabetes and obesity. With normalisation of glycated haemoglobin levels and weight losses around 15-25%, therapeutic goals that were previously unrealistic are now within reach, and clinical trials have documented that these effects are associated with reduced risk of cardiovascular events and premature mortality. Here, I review this remarkable development from the earliest observations of glucose lowering and modest weight losses with native glucagon-like peptide (GLP)-1 and short acting compounds, to the recent development of highly active formulations and new molecules. I will classify these agents as GLP-1-based therapies in the understanding that these compounds or combinations may have actions on other receptors as well. The physiology of GLP-1 is discussed as well as its mechanisms of actions in obesity, in particular, the role of sensory afferents and GLP-1 receptors in the brain. I provide details regarding the development of GLP-1 receptor agonists for anti-obesity therapy and discuss the possible mechanism behind their beneficial effects on adverse cardiovascular events. Finally, I highlight new pharmacological developments, including oral agents, and discuss important questions regarding maintenance therapy.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences. Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Kusminski CM, Perez-Tilve D, Müller TD, DiMarchi RD, Tschöp MH, Scherer PE. Transforming obesity: The advancement of multi-receptor drugs. Cell 2024; 187:3829-3853. [PMID: 39059360 PMCID: PMC11286204 DOI: 10.1016/j.cell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
For more than a century, physicians have searched for ways to pharmacologically reduce excess body fat. The tide has finally turned with recent advances in biochemically engineered agonists for the receptor of glucagon-like peptide-1 (GLP-1) and their use in GLP-1-based polyagonists. These polyagonists reduce body weight through complementary pharmacology by incorporating the receptors for glucagon and/or the glucose-dependent insulinotropic polypeptide (GIP). In their most advanced forms, gut-hormone polyagonists achieve an unprecedented weight reduction of up to ∼20%-30%, offering a pharmacological alternative to bariatric surgery. Along with favorable effects on glycemia, fatty liver, and kidney disease, they also offer beneficial effects on the cardiovascular system and adipose tissue. These new interventions, therefore, hold great promise for the future of anti-obesity medications.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Munich, Germany; German Center for Diabetes Research (DZD) and Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Matthias H Tschöp
- Helmholtz Munich, Munich, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Nishida K, Ueno S, Seino Y, Hidaka S, Murao N, Asano Y, Fujisawa H, Shibata M, Takayanagi T, Ohbayashi K, Iwasaki Y, Iizuka K, Okuda S, Tanaka M, Fujii T, Tochio T, Yabe D, Yamada Y, Sugimura Y, Hirooka Y, Hayashi Y, Suzuki A. Impaired Fat Absorption from Intestinal Tract in High-Fat Diet Fed Male Mice Deficient in Proglucagon-Derived Peptides. Nutrients 2024; 16:2270. [PMID: 39064713 PMCID: PMC11280123 DOI: 10.3390/nu16142270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced β-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract.
Collapse
Affiliation(s)
- Koki Nishida
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Shinji Ueno
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yusuke Seino
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Shihomi Hidaka
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Naoya Murao
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yuki Asano
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Haruki Fujisawa
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Megumi Shibata
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Takeshi Takayanagi
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (K.O.); (Y.I.)
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan;
| | - Shoei Okuda
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Mamoru Tanaka
- Graduate School of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.O.); (M.T.)
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
- Center for One Medicine Innovative Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuuichiro Yamada
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kyoto 604-8436, Japan; (D.Y.); (Y.Y.)
| | - Yoshihisa Sugimura
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Japan; (T.F.); (T.T.); (Y.H.)
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Japan
- BIOSIS Lab. Co., Ltd., Toyoake 470-1192, Japan
| | - Yoshitaka Hayashi
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan;
- Department of Endocrinology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Atsushi Suzuki
- Departments of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake 470-1192, Japan; (K.N.); (S.U.); (S.H.); (N.M.); (Y.A.); (H.F.); (M.S.); (T.T.); (Y.S.); (A.S.)
| |
Collapse
|
7
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
8
|
McGlone ER, Bloom SR, Tan TMM. Glucagon resistance and metabolic-associated steatotic liver disease: a review of the evidence. J Endocrinol 2024; 261:e230365. [PMID: 38579751 PMCID: PMC11067060 DOI: 10.1530/joe-23-0365] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) is closely associated with obesity. MASLD affects over 1 billion adults globally but there are few treatment options available. Glucagon is a key metabolic regulator, and its actions include the reduction of liver fat through direct and indirect means. Chronic glucagon signalling deficiency is associated with hyperaminoacidaemia, hyperglucagonaemia and increased circulating levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF-21). Reduction in glucagon activity decreases hepatic amino acid and triglyceride catabolism; metabolic effects include improved glucose tolerance, increased plasma cholesterol and increased liver fat. Conversely, glucagon infusion in healthy volunteers leads to increased hepatic glucose output, decreased levels of plasma amino acids and increased urea production, decreased plasma cholesterol and increased energy expenditure. Patients with MASLD share many hormonal and metabolic characteristics with models of glucagon signalling deficiency, suggesting that they could be resistant to glucagon. Although there are few studies of the effects of glucagon infusion in patients with obesity and/or MASLD, there is some evidence that the expected effect of glucagon on amino acid catabolism may be attenuated. Taken together, this evidence supports the notion that glucagon resistance exists in patients with MASLD and may contribute to the pathogenesis of MASLD. Further studies are warranted to investigate the direct effects of glucagon on metabolism in patients with MASLD.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
9
|
Asadi F, Gunawardana SC, Dolle RE, Piston DW. An orally available compound suppresses glucagon hypersecretion and normalizes hyperglycemia in type 1 diabetes. JCI Insight 2024; 9:e172626. [PMID: 38258903 PMCID: PMC10906223 DOI: 10.1172/jci.insight.172626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Suppression of glucagon hypersecretion can normalize hyperglycemia during type 1 diabetes (T1D). Activating erythropoietin-producing human hepatocellular receptor type-A4 (EphA4) on α cells reduced glucagon hypersecretion from dispersed α cells and T1D islets from both human donor and mouse models. We synthesized a high-affinity small molecule agonist for the EphA4 receptor, WCDD301, which showed robust plasma and liver microsome metabolic stability in both mouse and human preparations. In islets and dispersed islet cells from nondiabetic and T1D human donors, WCDD301 reduced glucagon secretion comparable to the natural EphA4 ligand, Ephrin-A5. In diabetic NOD and streptozotocin-treated mice, once-daily oral administration of WCDD301 formulated with a time-release excipient reduced plasma glucagon and normalized blood glucose for more than 3 months. These results suggest that targeting the α cell EphA4 receptor by sustained release of WCDD301 is a promising pharmacologic pathway for normalizing hyperglycemia in patients with T1D.
Collapse
Affiliation(s)
| | | | - Roland E. Dolle
- Center for Drug Discovery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
10
|
Novikoff A, Müller TD. The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides 2023; 165:171003. [PMID: 36997003 PMCID: PMC10265134 DOI: 10.1016/j.peptides.2023.171003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Within recent decades glucagon receptor (GcgR) agonism has drawn attention as a therapeutic tool for the treatment of type 2 diabetes and obesity. In both mice and humans, glucagon administration enhances energy expenditure and suppresses food intake suggesting a promising metabolic utility. Therefore synthetic optimization of glucagon-based pharmacology to further resolve the physiological and cellular underpinnings mediating these effects has advanced. Chemical modifications to the glucagon sequence have allowed for greater peptide solubility, stability, circulating half-life, and understanding of the structure-function potential behind partial and "super"-agonists. The knowledge gained from such modifications has provided a basis for the development of long-acting glucagon analogues, chimeric unimolecular dual- and tri-agonists, and novel strategies for nuclear hormone targeting into glucagon receptor-expressing tissues. In this review, we summarize the developments leading toward the current advanced state of glucagon-based pharmacology, while highlighting the associated biological and therapeutic effects in the context of diabetes and obesity.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
11
|
Lafferty R, Tanday N, Dubey V, Coulter-Parkhill A, Vishal K, Moffett RC, O'Harte F, Flatt PR, Irwin N. The glucagon receptor antagonist desHis 1Pro 4Glu 9-glucagon(Lys 12PAL) alters alpha-cell turnover and lineage in mice, but does not cause alpha-cell hyperplasia. Mol Cell Endocrinol 2023; 570:111932. [PMID: 37080378 DOI: 10.1016/j.mce.2023.111932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Glucagon receptor (GCGR) antagonism elicits antihyperglycemic effects in rodents and humans. The present study investigates whether the well characterised peptide-based GCGR antagonist, desHis1Pro4Glu9-glucagon (Lys12PAL), alters alpha-cell turnover or identity in mice. METHODS Multiple low-dose streptozotocin (STZ) treated (50 mg/kg bw, 5 days) transgenic GluCreERT2;ROSA26-eYFP mice were employed. STZ mice received twice daily administration of saline vehicle or desHis1Pro4Glu9-glucagon (Lys12PAL), at low- or high-dose (25 and 100 nmol/kg, respectively) for 11 days. RESULTS No GCGR antagonist induced changes in food or fluid intake, body weight or glucose homeostasis were observed. As expected, STZ dramatically reduced (P < 0.001) islet numbers and increased (P < 0.01) alpha-to beta-cell ratio, which was linked to elevated (P < 0.05) levels of beta-cell apoptosis. Whilst treatment with desHis1Pro4Glu9-glucagon (Lys12PAL) decreased (P < 0.05-P < 0.001) alpha- and beta-cell areas, it also helped restore the classic rodent islet alpha-cell mantle in STZ mice. Interestingly, low-dose desHis1Pro4Glu9-glucagon (Lys12PAL) increased (P < 0.05) alpha-cell apoptosis rates whilst high dose decreased (p < 0.05) this parameter. This difference reflects substantially increased (P < 0.001) alpha-to beta-cell transdifferentiation following high dose desHis1Pro4Glu9-glucagon (Lys12PAL) treatment, which was not fully manifest with low-dose therapy. CONCLUSIONS Taken together, the present study indicates that peptidic GCGR antagonists can positively influence alpha-cell turnover and lineage in identity in multiple low-dose STZ mice, but that such effects are dose-related.
Collapse
Affiliation(s)
- Ryan Lafferty
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Neil Tanday
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Vaibhav Dubey
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | | | - Karthick Vishal
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | | | - Finbarr O'Harte
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Centre for Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
12
|
Holst JJ. Glucagon 100 years. Important, but still enigmatic. Peptides 2023; 161:170942. [PMID: 36626940 DOI: 10.1016/j.peptides.2023.170942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Glucagon was discovered in 1923 as a contaminant of early insulin preparations, and its hormonal status was not established until its structure was established in the 1950 s and when the first radioimmunoassay was developed by Roger Unger, providing information about its secretion. Its role in hepatic glucose production was soon established and it was proposed as an essential factor in diabetic hyperglycemia. However, even today a number of issues remain unsolved. For instance, the assays for glucagon are not straightforward, although the development of sandwich ELISAs allowed reasonably accurate measurements also in rodents. The tools for evaluation of glucagon physiology include pancreatectomy, but studies in both humans and experimental animals pointed towards extrapancreatic sources of glucagon. It was demonstrated that glucagon receptor knockout animals do not develop diabetes upon destruction of their beta cells with streptozotocin. However, in patients with type 1 diabetes, glucagon antagonists do not normalize glucose levels; but antagonists do lower glucose levels in patients with in type 2 diabetes. Recent studies in animals and humans have confirmed the essential role of glucagon in glucose metabolism, but have suggested that it may be at least equally important for amino acid and lipid metabolism. In spite of the 100 years, glucagon research is very much alive.
Collapse
Affiliation(s)
- Jens Juul Holst
- NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
13
|
Galsgaard KD, Elmelund E, Johansen CD, Bomholt AB, Kizilkaya HS, Ceutz F, Hunt JE, Kissow H, Winther-Sørensen M, Sørensen CM, Kruse T, Lau JF, Rosenkilde MM, Ørskov C, Christoffersen C, Holst JJ, Wewer Albrechtsen NJ. Glucagon receptor antagonism impairs and glucagon receptor agonism enhances triglycerides metabolism in mice. Mol Metab 2022; 66:101639. [PMID: 36400402 PMCID: PMC9706156 DOI: 10.1016/j.molmet.2022.101639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice. METHODS Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr-/-) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks. Following treatment, liver tissue was harvested for RNA-sequencing and triglyceride measurements. Acute effects were studied in C57Bl/6JRj mice treated with a GRA or GCGA 1 h or immediately before OLTTs, respectively. Direct effects of glucagon on hepatic lipolysis were studied using isolated perfused mouse liver preparations. To investigate potential effects of GCGA and GRA on gastric emptying, paracetamol was, in separate experiments, administered immediately before OLTTs. RESULTS Plasma triglyceride concentrations increased 2-fold in Gcgr-/- mice compared to their wild-type littermates during the OLTT (P = 0.001). Chronic treatment with GCGR Ab increased, whereas GCGA treatment decreased, plasma triglyceride concentrations during OLTTs (P < 0.05). Genes involved in lipid metabolism were upregulated upon GCGR Ab treatment while GCGA treatment had opposite effects. Acute GRA and GCGA treatment, respectively, increased (P = 0.02) and decreased (P = 0.003) plasma triglyceride concentrations during OLTTs. Glucagon stimulated hepatic lipolysis, evident by an increase in free fatty acid concentrations in the effluent from perfused mouse livers. In line with this, GCGR Ab treatment increased, while GCGA treatment decreased, liver triglyceride concentrations. The effects of glucagon appeared independent of changes in gastric emptying of paracetamol. CONCLUSIONS Glucagon receptor signaling regulates triglyceride metabolism, both chronically and acutely, in mice. These data expand glucagon´s biological role and implicate that intact glucagon signaling is important for lipid metabolism. Glucagon agonism may have beneficial effects on hepatic and peripheral triglyceride metabolism.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian D. Johansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna B. Bomholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün S. Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Ceutz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Jesper F. Lau
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark,Corresponding author. Department of Biomedical Sciences and Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, and Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark.
| |
Collapse
|
14
|
Kang Q, Zheng J, Jia J, Xu Y, Bai X, Chen X, Zhang XK, Wong FS, Zhang C, Li M. Disruption of the glucagon receptor increases glucagon expression beyond α-cell hyperplasia in zebrafish. J Biol Chem 2022; 298:102665. [PMID: 36334626 PMCID: PMC9719020 DOI: 10.1016/j.jbc.2022.102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under preclinical and clinical development. However, GCGR antagonism, as well as genetically engineered GCGR deficiency in animal models, are accompanied by α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in α cells following GCGR disruption, we performed single cell sequencing of α cells isolated from control and gcgr-/- (glucagon receptor deficient) zebrafish. Interestingly, beyond the α-cell hyperplasia, we also found that the expression of gcga, gcgb, pnoca, and several glucagon-regulatory transcription factors were dramatically increased in one cluster of gcgr-/- α cells. We further confirmed that glucagon mRNA was upregulated in gcgr-/- animals by in situ hybridization and that glucagon promoter activity was increased in gcgr-/-;Tg(gcga:GFP) reporter zebrafish. We also demonstrated that gcgr-/- α cells had increased glucagon protein levels and increased granules after GCGR disruption. Intriguingly, the increased mRNA and protein levels could be suppressed by treatment with high-level glucose or knockdown of the pnoca gene. In conclusion, these data demonstrated that GCGR deficiency not only induced α-cell hyperplasia but also increased glucagon expression in α cells, findings which provide more information about physiological changes in α-cells when the GCGR is disrupted.
Collapse
Affiliation(s)
- Qi Kang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jihong Zheng
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ying Xu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuanxuan Bai
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mingyu Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
15
|
Pettus J, Boeder SC, Christiansen MP, Denham DS, Bailey TS, Akturk HK, Klaff LJ, Rosenstock J, Cheng MHM, Bode BW, Bautista ED, Xu R, Yan H, Thai D, Garg SK, Klein S. Glucagon receptor antagonist volagidemab in type 1 diabetes: a 12-week, randomized, double-blind, phase 2 trial. Nat Med 2022; 28:2092-2099. [PMID: 36192552 PMCID: PMC9872851 DOI: 10.1038/s41591-022-02011-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/15/2022] [Indexed: 01/26/2023]
Abstract
Hyperglucagonemia contributes to hyperglycemia in patients with type 1 diabetes (T1D); however, novel therapeutics that block glucagon action could improve glycemic control. This phase 2 study evaluated the safety and efficacy of volagidemab, an antagonistic monoclonal glucagon receptor (GCGR) antibody, as an adjunct to insulin therapy in adults with T1D. The primary endpoint was change in daily insulin use at week 12. Secondary endpoints included changes in hemoglobin A1c (HbA1c) at week 13, in average daily blood glucose concentration and time within target range as assessed by continuous blood glucose monitoring (CGM) and seven-point glucose profile at week 12, incidence of hypoglycemic events, the proportion of subjects who achieve HbA1c reduction of ≥0.4%, volagidemab drug concentrations and incidence of anti-drug antibodies. Eligible participants (n = 79) were randomized to receive weekly subcutaneous injections of placebo, 35 mg volagidemab or 70 mg volagidemab. Volagidemab produced a reduction in total daily insulin use at week 12 (35 mg volagidemab: -7.59 units (U) (95% confidence interval (CI) -11.79, -3.39; P = 0.040 versus placebo); 70 mg volagidemab: -6.64 U (95% CI -10.99, -2.29; P = 0.084 versus placebo); placebo: -1.27 U (95% CI -5.4, 2.9)) without meeting the prespecified significance level (P < 0.025). At week 13, the placebo-corrected reduction in HbA1c percentage was -0.53 (95% CI -0.89 to -0.17, nominal P = 0.004) in the 35 mg volagidemab group and -0.49 (95% CI -0.85 to -0.12, nominal P = 0.010) in the 70 mg volagidemab group. No increase in hypoglycemia was observed with volagidemab therapy; however, increases in serum transaminases, low-density lipoprotein (LDL)-cholesterol and blood pressure were observed. Although the primary endpoint did not meet the prespecified significance level, we believe that the observed reduction in HbA1c and tolerable safety profile provide a rationale for further randomized studies to define the long-term efficacy and safety of volagidemab in patients with T1D.
Collapse
Affiliation(s)
- Jeremy Pettus
- Division of Endocrinology, University of California San Diego, La Jolla, CA, USA.
| | - Schafer C Boeder
- Division of Endocrinology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Halis K Akturk
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Campus, Aurora, CO, USA
| | | | | | | | | | | | - Ren Xu
- REMD Biotherapeutics, Camarillo, CA, USA
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA, USA
| | - Dung Thai
- REMD Biotherapeutics, Camarillo, CA, USA
| | - Satish K Garg
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO and Sansum Diabetes Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
16
|
Habegger KM. Cross Talk Between Insulin and Glucagon Receptor Signaling in the Hepatocyte. Diabetes 2022; 71:1842-1851. [PMID: 35657690 PMCID: PMC9450567 DOI: 10.2337/dbi22-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022]
Abstract
While the consumption of external energy (i.e., feeding) is essential to life, this action induces a temporary disturbance of homeostasis in an animal. A primary example of this effect is found in the regulation of glycemia. In the fasted state, stored energy is released to maintain physiological glycemic levels. Liver glycogen is liberated to glucose, glycerol and (glucogenic) amino acids are used to build new glucose molecules (i.e., gluconeogenesis), and fatty acids are oxidized to fuel long-term energetic demands. This regulation is driven primarily by the counterregulatory hormones epinephrine, growth hormone, cortisol, and glucagon. Conversely, feeding induces a rapid influx of diverse nutrients, including glucose, that disrupt homeostasis. Consistently, a host of hormonal and neural systems under the coordination of insulin are engaged in the transition from fasting to prandial states to reduce this disruption. The ultimate action of these systems is to appropriately store the newly acquired energy and to return to the homeostatic norm. Thus, at first glance it is tempting to assume that glucagon is solely antagonistic regarding the anabolic effects of insulin. We have been intrigued by the role of glucagon in the prandial transition and have attempted to delineate its role as beneficial or inhibitory to glycemic control. The following review highlights this long-known yet poorly understood hormone.
Collapse
Affiliation(s)
- Kirk M. Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
17
|
Perry RJ. Regulation of Hepatic Lipid and Glucose Metabolism by INSP3R1. Diabetes 2022; 71:1834-1841. [PMID: 35657697 PMCID: PMC9450566 DOI: 10.2337/dbi22-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022]
Abstract
With the rising epidemics of obesity and nonalcoholic fatty liver disease (NAFLD) and its downstream consequences including steatohepatitis, cirrhosis, and type 2 diabetes in the U.S. and worldwide, new therapeutic approaches are urgently needed to treat these devastating conditions. Glucagon, known for a century to be a glucose-raising hormone and clearly demonstrated to contribute to fasting and postprandial hyperglycemia in both type 1 and type 2 diabetes, represents an unlikely target to improve health in those with metabolic syndrome. However, recent work from our group and others' identifies an unexpected role for glucagon as a potential means of treating NAFLD, improving insulin sensitivity, and improving the lipid profile. We propose a unifying, calcium-dependent mechanism for glucagon's effects both to stimulate hepatic gluconeogenesis and to enhance hepatic mitochondrial oxidation: signaling through the inositol 1,4,5-trisphosphate receptor type 1 (INSP3R1), glucagon activates phospholipase C (PKC)/protein kinase A (PKA) signaling to enhance adipose triglyceride lipase (ATGL)-dependent intrahepatic lipolysis and, in turn, increase cytosolic gluconeogenesis by allosteric activation of pyruvate carboxylase. Simultaneously in the mitochondria, calcium transferred through mitochondria-associated membranes activates several dehydrogenases in the tricarboxylic acid cycle, correlated with an increase in mitochondrial energy expenditure and reduction in ectopic lipid. This model suggests that short-term, cyclic treatment with glucagon or other INSP3R1 antagonists could hold promise as a means to reset lipid homeostasis in patients with NAFLD.
Collapse
Affiliation(s)
- Rachel J. Perry
- Section of Endocrinology & Metabolism, Department of Internal Medicine, and Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
18
|
Insights into the Role of Glucagon Receptor Signaling in Metabolic Regulation from Pharmacological Inhibition and Tissue-Specific Knockout Models. Biomedicines 2022; 10:biomedicines10081907. [PMID: 36009454 PMCID: PMC9405517 DOI: 10.3390/biomedicines10081907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
While glucagon has long been recognized as the primary counter hormone to insulin’s actions, it has recently gained recognition as a metabolic regulator with its effects extending beyond control of glycemia. Recently developed models of tissue-specific glucagon receptor knockouts have advanced our understanding of this hormone, providing novel insight into the role it plays within organs as well as its systemic effects. Studies where the pharmacological blockade of the glucagon receptor has been employed have proved similarly valuable in the study of organ-specific and systemic roles of glucagon signaling. Studies carried out employing these tools demonstrate that glucagon indeed plays a role in regulating glycemia, but also in amino acid and lipid metabolism, systemic endocrine, and paracrine function, and in the response to cardiovascular injury. Here, we briefly review recent progress in our understanding of glucagon’s role made through inhibition of glucagon receptor signaling utilizing glucagon receptor antagonists and tissue specific genetic knockout models.
Collapse
|
19
|
Jia Y, Liu Y, Feng L, Sun S, Sun G. Role of Glucagon and Its Receptor in the Pathogenesis of Diabetes. Front Endocrinol (Lausanne) 2022; 13:928016. [PMID: 35784565 PMCID: PMC9243425 DOI: 10.3389/fendo.2022.928016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Various theories for the hormonal basis of diabetes have been proposed and debated over the past few decades. Insulin insufficiency was previously regarded as the only hormone deficiency directly leading to metabolic disorders associated with diabetes. Although glucagon and its receptor are ignored in this framework, an increasing number of studies have shown that they play essential roles in the development and progression of diabetes. However, the molecular mechanisms underlying the effects of glucagon are still not clear. In this review, recent research on the mechanisms by which glucagon and its receptor contribute to the pathogenesis of diabetes as well as correlations between GCGR mutation rates in populations and the occurrence of diabetes are summarized. Furthermore, we summarize how recent research clearly establishes glucagon as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Yunbo Jia
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linlin Feng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangwei Sun
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Wendt A, Eliasson L. Pancreatic alpha cells and glucagon secretion: Novel functions and targets in glucose homeostasis. Curr Opin Pharmacol 2022; 63:102199. [PMID: 35245797 DOI: 10.1016/j.coph.2022.102199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
Abstract
Diabetes is the result of dysregulation of both insulin and glucagon. Still, insulin has attracted much more attention than glucagon. Glucagon is released from alpha cells in the islets of Langerhans in response to low glucose and certain amino acids. Drugs with the primary aim of targeting glucagon signalling are scarce. However, glucagon is often administered to counteract severe hypoglycaemia, and commonly used diabetes medications such as GLP-1 analogues, sulfonylureas and SGLT2-inhibitors also affect alpha cells. Indeed, there are physiological and developmental similarities between the alpha cell and the insulin-secreting beta cell and new data confirm that alpha cells can be converted into insulin-secreting cells. These aspects and attributes, the need to find novel therapies targeting the alpha cell and more are considered in this review.
Collapse
Affiliation(s)
- Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, SUS, Malmö, Sweden.
| |
Collapse
|
21
|
Wang M, Liao S, Fu Z, Zang X, Yin S, Wang T. iTRAQ-based quantitative proteomic analysis of Pelteobagrus vachelli liver in response to hypoxia. J Proteomics 2022; 251:104425. [PMID: 34785373 DOI: 10.1016/j.jprot.2021.104425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Dissolved oxygen is one of the determinants in the healthy farming of Pelteobagrus vachelli. This study, we conducted quantitative proteomics on the juvenile P. vachelli livers using iTRAQ. P. vachelli were treated by 3.75 ± 0.25 mg O2/L (hypoxia group) and 7.25 ± 0.25 mg O2/L (control group) for 90 days. The results revealed that under hypoxic conditions, P. vachelli grew slower than control group. Proteomic profiling enabled us to identify 2618 proteins, of which 176 were significantly differentially abundant proteins (DAPs). Verification of protein regulation based on qRT-PCR indicated that the proteomics data were reliable. The top 20 significantly DAPs (10 up-regulated, 10 down-regulated) were primarily involved in energy metabolism, apoptosis inhibition, and heavy metal detoxification. KEGG pathway enrichment analysis revealed significant enrichment of 'protein digestion and absorption', 'glycolysis/gluconeogenesis', and 'phagosome'. Combining the proteomics results of short-term hypoxia (treated with 0.70 ± 0.10 mg O2 /L for 4 h), we screened 36 common DAPs. The analysis of the 36 common DAPs indicated that P. vachelli responded to the hypoxia by regulating energy supply, inhibiting apoptosis, and disturbing defensive system. Our results lay a theoretical foundation for the cultivation of hypoxia-tolerant species and eco-breeding of P. vachelli. SIGNIFICANCE OF THE STUDY: The hypoxia tolerance of Pelteobagrus vachelli is poor, which will seriously lead to its death in high-density culture. This study analysed the liver proteome of P. vachelli under long-term hypoxia stress (treated for 90 days at 3.75 ± 0.25 mg O2/L), and then combined the proteome results of short-term hypoxia stress (treated for 4 h at 0.70 ± 0.10 mg O2/L). The results showed P. vachelli responded to the hypoxia by regulating energy supply, inhibiting apoptosis and disturbing defensive system. The study contributes to the breeding of new hypoxia-tolerant species of P. vachelli and lays the theoretical foundation for eco-breeding.
Collapse
Affiliation(s)
- Min Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Shujia Liao
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Zhineng Fu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xuechun Zang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
22
|
Asadi F, Dhanvantari S. Pathways of Glucagon Secretion and Trafficking in the Pancreatic Alpha Cell: Novel Pathways, Proteins, and Targets for Hyperglucagonemia. Front Endocrinol (Lausanne) 2021; 12:726368. [PMID: 34659118 PMCID: PMC8511682 DOI: 10.3389/fendo.2021.726368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with diabetes mellitus exhibit hyperglucagonemia, or excess glucagon secretion, which may be the underlying cause of the hyperglycemia of diabetes. Defective alpha cell secretory responses to glucose and paracrine effectors in both Type 1 and Type 2 diabetes may drive the development of hyperglucagonemia. Therefore, uncovering the mechanisms that regulate glucagon secretion from the pancreatic alpha cell is critical for developing improved treatments for diabetes. In this review, we focus on aspects of alpha cell biology for possible mechanisms for alpha cell dysfunction in diabetes: proglucagon processing, intrinsic and paracrine control of glucagon secretion, secretory granule dynamics, and alterations in intracellular trafficking. We explore possible clues gleaned from these studies in how inhibition of glucagon secretion can be targeted as a treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Farzad Asadi
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
| | - Savita Dhanvantari
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Program in Metabolism and Diabetes, Lawson Health Research Institute, London, ON, Canada
- Imaging Research Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
23
|
Martínez MS, Manzano A, Olivar LC, Nava M, Salazar J, D’Marco L, Ortiz R, Chacín M, Guerrero-Wyss M, Cabrera de Bravo M, Cano C, Bermúdez V, Angarita L. The Role of the α Cell in the Pathogenesis of Diabetes: A World beyond the Mirror. Int J Mol Sci 2021; 22:9504. [PMID: 34502413 PMCID: PMC8431704 DOI: 10.3390/ijms22179504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent chronic metabolic disorders, and insulin has been placed at the epicentre of its pathophysiological basis. However, the involvement of impaired alpha (α) cell function has been recognized as playing an essential role in several diseases, since hyperglucagonemia has been evidenced in both Type 1 and T2DM. This phenomenon has been attributed to intra-islet defects, like modifications in pancreatic α cell mass or dysfunction in glucagon's secretion. Emerging evidence has shown that chronic hyperglycaemia provokes changes in the Langerhans' islets cytoarchitecture, including α cell hyperplasia, pancreatic beta (β) cell dedifferentiation into glucagon-positive producing cells, and loss of paracrine and endocrine regulation due to β cell mass loss. Other abnormalities like α cell insulin resistance, sensor machinery dysfunction, or paradoxical ATP-sensitive potassium channels (KATP) opening have also been linked to glucagon hypersecretion. Recent clinical trials in phases 1 or 2 have shown new molecules with glucagon-antagonist properties with considerable effectiveness and acceptable safety profiles. Glucagon-like peptide-1 (GLP-1) agonists and Dipeptidyl Peptidase-4 inhibitors (DPP-4 inhibitors) have been shown to decrease glucagon secretion in T2DM, and their possible therapeutic role in T1DM means they are attractive as an insulin-adjuvant therapy.
Collapse
Affiliation(s)
- María Sofía Martínez
- MedStar Health Internal Medicine, Georgetown University Affiliated, Baltimore, MD 21218-2829, USA;
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Luis Carlos Olivar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Luis D’Marco
- Department of Nephrology, Hospital Clinico Universitario de Valencia, INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Rina Ortiz
- Facultad de Medicina, Universidad Católica de Cuenca, Ciudad de Cuenca, Azuay 010105, Ecuador;
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia; (M.C.); (V.B.)
| | - Marion Guerrero-Wyss
- Escuela de Nutrición y Dietética, Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile;
| | | | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (A.M.); (L.C.O.); (M.N.); (J.S.); (C.C.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia; (M.C.); (V.B.)
| | - Lisse Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile
| |
Collapse
|
24
|
Acreman S, Zhang Q. Regulation of α-cell glucagon secretion: The role of second messengers. Chronic Dis Transl Med 2021; 8:7-18. [PMID: 35620162 PMCID: PMC9128566 DOI: 10.1016/j.cdtm.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Glucagon is a potent glucose‐elevating hormone that is secreted by pancreatic α‐cells. While well‐controlled glucagon secretion plays an important role in maintaining systemic glucose homeostasis and preventing hypoglycaemia, it is increasingly apparent that defects in the regulation of glucagon secretion contribute to impaired counter‐regulation and hyperglycaemia in diabetes. It has therefore been proposed that pharmacological interventions targeting glucagon secretion/signalling can have great potential in improving glycaemic control of patients with diabetes. However, despite decades of research, a consensus on the precise mechanisms of glucose regulation of glucagon secretion is yet to be reached. Second messengers are a group of small intracellular molecules that relay extracellular signals to the intracellular signalling cascade, modulating cellular functions. There is a growing body of evidence that second messengers, such as cAMP and Ca2+, play critical roles in α‐cell glucose‐sensing and glucagon secretion. In this review, we discuss the impact of second messengers on α‐cell electrical activity, intracellular Ca2+ dynamics and cell exocytosis. We highlight the possibility that the interaction between different second messengers may play a key role in the glucose‐regulation of glucagon secretion.
Collapse
|
25
|
Fukui T, Ohara M, Yamagishi SI. Glucagon in type 1 diabetes patients receiving SGLT2 inhibitors: A Friend or Foe? Diabetes Metab Res Rev 2021; 37:e3415. [PMID: 33049104 DOI: 10.1002/dmrr.3415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Tomoyasu Fukui
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Makoto Ohara
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Lafferty RA, O’Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-Derived Peptides as Therapeutics. Front Endocrinol (Lausanne) 2021; 12:689678. [PMID: 34093449 PMCID: PMC8171296 DOI: 10.3389/fendo.2021.689678] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.
Collapse
Affiliation(s)
| | | | | | - Victor A. Gault
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | |
Collapse
|
27
|
Yang B, Gelfanov VM, Perez-Tilve D, DuBois B, Rohlfs R, Levy J, Douros JD, Finan B, Mayer JP, DiMarchi RD. Optimization of Truncated Glucagon Peptides to Achieve Selective, High Potency, Full Antagonists. J Med Chem 2021; 64:4697-4708. [PMID: 33821647 DOI: 10.1021/acs.jmedchem.0c02069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antagonism of glucagon's biological action is a proven strategy for decreasing glucose in diabetic animals and patients. To achieve full, potent, and selective suppression, we chemically optimized N-terminally truncated glucagon fragments for the identification and establishment of the minimum sequence peptide, [Glu9]glucagon(6-29) amide (11) as a full antagonist in cellular signaling and receptor binding (IC50 = 36 nM). Substitution of Phe6 with l-3-phenyllactic acid (Pla) produced [Pla6, Glu9]glucagon(6-29) amide (21), resulting in a 3-fold improvement in receptor binding (IC50 = 12 nM) and enhanced antagonist potency. Further substitution of Glu9 and Asn28 with aspartic acid yielded [Pla6, Asp28]glucagon amide (26), which demonstrated a further increase in inhibitory potency (IC50 = 9 nM), and improved aqueous solubility. Peptide 26 and a palmitoylated analogue, [Pla6, Lys10(γGluγGlu-C16), Asp28]glucagon(6-29) amide (31), displayed sustained duration in vivo action that successfully reversed glucagon-induced glucose elevation in mice.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.,Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Vasily M Gelfanov
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.,Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Diego Perez-Tilve
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Barent DuBois
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Rebecca Rohlfs
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Jay Levy
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Jonathan D Douros
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - John P Mayer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
28
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
29
|
Sun EW, Martin AM, de Fontgalland D, Sposato L, Rabbitt P, Hollington P, Wattchow DA, Colella AD, Chataway T, Wewer Albrechtsen NJ, Spencer NJ, Young RL, Keating DJ. Evidence for Glucagon Secretion and Function Within the Human Gut. Endocrinology 2021; 162:6127286. [PMID: 33534908 DOI: 10.1210/endocr/bqab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 11/19/2022]
Abstract
Glucagon is secreted by pancreatic α cells in response to hypoglycemia and increases hepatic glucose output through hepatic glucagon receptors (GCGRs). There is evidence supporting the notion of extrapancreatic glucagon but its source and physiological functions remain elusive. Intestinal tissue samples were obtained from patients undergoing surgical resection of cancer. Mass spectrometry analysis was used to detect glucagon from mucosal lysate. Static incubations of mucosal tissue were performed to assess glucagon secretory response. Glucagon concentration was quantitated using a highly specific sandwich enzyme-linked immunosorbent assay. A cholesterol uptake assay and an isolated murine colonic motility assay were used to assess the physiological functions of intestinal GCGRs. Fully processed glucagon was detected by mass spectrometry in human intestinal mucosal lysate. High glucose evoked significant glucagon secretion from human ileal tissue independent of sodium glucose cotransporter and KATP channels, contrasting glucose-induced glucagon-like peptide 1 (GLP-1) secretion. The GLP-1 receptor agonist Exendin-4 attenuated glucose-induced glucagon secretion from the human ileum. GCGR blockade significantly increased cholesterol uptake in human ileal crypt culture and markedly slowed ex vivo colonic motility. Our findings describe the human gut as a potential source of extrapancreatic glucagon and demonstrate a novel enteric glucagon/GCGR circuit with important physiological functions beyond glycemic regulation.
Collapse
Affiliation(s)
- Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Luigi Sposato
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Philippa Rabbitt
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Paul Hollington
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Alexander D Colella
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Tim Chataway
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Richard L Young
- Adelaide Medical School and NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Metabolism, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, SA, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
30
|
Bai X, Jia J, Kang Q, Fu Y, Zhou Y, Zhong Y, Zhang C, Li M. Integrated Metabolomics and Lipidomics Analysis Reveal Remodeling of Lipid Metabolism and Amino Acid Metabolism in Glucagon Receptor-Deficient Zebrafish. Front Cell Dev Biol 2021; 8:605979. [PMID: 33520988 PMCID: PMC7841139 DOI: 10.3389/fcell.2020.605979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The glucagon receptor (GCGR) is activated by glucagon and is essential for glucose, amino acid, and lipid metabolism of animals. GCGR blockade has been demonstrated to induce hypoglycemia, hyperaminoacidemia, hyperglucagonemia, decreased adiposity, hepatosteatosis, and pancreatic α cells hyperplasia in organisms. However, the mechanism of how GCGR regulates these physiological functions is not yet very clear. In our previous study, we revealed that GCGR regulated metabolic network at transcriptional level by RNA-seq using GCGR mutant zebrafish (gcgr -/-). Here, we further performed whole-organism metabolomics and lipidomics profiling on wild-type and gcgr -/- zebrafish to study the changes of metabolites. We found 107 significantly different metabolites from metabolomics analysis and 87 significantly different lipids from lipidomics analysis. Chemical substance classification and pathway analysis integrated with transcriptomics data both revealed that amino acid metabolism and lipid metabolism were remodeled in gcgr-deficient zebrafish. Similar to other studies, our study showed that gcgr -/- zebrafish exhibited decreased ureagenesis and impaired cholesterol metabolism. More interestingly, we found that the glycerophospholipid metabolism was disrupted, the arachidonic acid metabolism was up-regulated, and the tryptophan metabolism pathway was down-regulated in gcgr -/- zebrafish. Based on the omics data, we further validated our findings by revealing that gcgr -/- zebrafish exhibited dampened melatonin diel rhythmicity and increased locomotor activity. These global omics data provide us a better understanding about the role of GCGR in regulating metabolic network and new insight into GCGR physiological functions.
Collapse
Affiliation(s)
- Xuanxuan Bai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yadong Fu
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Yingbin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
31
|
Cheng C, Jabri S, Taoka BM, Sinz CJ. Small molecule glucagon receptor antagonists: an updated patent review (2015–2019). Expert Opin Ther Pat 2020; 30:509-526. [DOI: 10.1080/13543776.2020.1769600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chen Cheng
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Salman Jabri
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Brandon M Taoka
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Christopher J Sinz
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
- Current Address: Maze Therapeutics, South San Francisco, California, USA
| |
Collapse
|
32
|
Stemmer K, Finan B, DiMarchi RD, Tschöp MH, Müller TD. Insights into incretin-based therapies for treatment of diabetic dyslipidemia. Adv Drug Deliv Rev 2020; 159:34-53. [PMID: 32485206 DOI: 10.1016/j.addr.2020.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
Derangements in triglyceride and cholesterol metabolism (dyslipidemia) are major risk factors for the development of cardiovascular diseases in obese and type-2 diabetic (T2D) patients. An emerging class of glucagon-like peptide-1 (GLP-1) analogues and next generation peptide dual-agonists such as GLP-1/glucagon or GLP-1/GIP could provide effective therapeutic options for T2D patients. In addition to their role in glucose and energy homeostasis, GLP-1, GIP and glucagon serve as regulators of lipid metabolism. This review summarizes the current knowledge in GLP-1, glucagon and GIP effects on lipid and lipoprotein metabolism and frames the emerging therapeutic benefits of GLP-1 analogs and GLP-1-based multiagonists as add-on treatment options for diabetes associated dyslipidemia.
Collapse
|
33
|
Patil M, Deshmukh NJ, Patel M, Sangle GV. Glucagon-based therapy: Past, present and future. Peptides 2020; 127:170296. [PMID: 32147318 DOI: 10.1016/j.peptides.2020.170296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/05/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Diabesity and its related cardio-hepato-renal complications are of absolute concern globally. Last decade has witnessed a growing interest in the scientific community in investigating novel pharmaco-therapies employing the pancreatic hormone, glucagon. Canonically, this polypeptide hormone is known for its use in rescue treatment for hypoglycaemic shocks owing to its involvement in the counter-regulatory feedback mechanism. However, substantial studies in the recent past elucidated the pleiotropic effects of glucagon in diabesity and related complications like non-alcoholic steatohepatitis (NASH) and non-alcoholic fatty liver disease (NAFLD). Thus, the dual nature of this peptide has sparked the search for drugs that can modify glucagon signalling to combat hypoglycaemia or diabesity. Thus far, researchers have explored various pharmacological approaches to utilise this peptide in imminent modern therapies. The research endeavours in this segment led to explorations of stable glucagon formulations/analogues, glucagon receptor antagonism, glucagon receptor agonism, and incretin poly-agonism as new strategies for the management of hypoglycaemia or diabesity. This 'three-dimensional' research on glucagon resulted in the discovery of various drug candidates that proficiently modify glucagon signalling. Currently, several emerging glucagon-based therapies are under pre-clinical and clinical development. We sought to summarise the recent progress to comprehend glucagon-mediated pleiotropic effects, provide an overview of drug candidates currently being developed and future perspectives in this research domain.
Collapse
Affiliation(s)
- Mohan Patil
- Diabetes Research Lab, New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Nitin J Deshmukh
- Diabetes Research Lab, New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Mahesh Patel
- Diabetes Research Lab, New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India; New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India
| | - Ganesh V Sangle
- Diabetes Research Lab, New Drug Discovery, Wockhardt Research Centre, Aurangabad, Maharashtra, India.
| |
Collapse
|
34
|
Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. Int J Mol Sci 2020; 21:ijms21030724. [PMID: 31979106 PMCID: PMC7037442 DOI: 10.3390/ijms21030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The glucagon receptor (GCGR) is a G-protein-coupled receptor (GPCR) that mediates the activity of glucagon. Disruption of GCGR results in many metabolic alterations, including increased glucose tolerance, decreased adiposity, hypoglycemia, and pancreatic α-cell hyperplasia. To better understand the global transcriptomic changes resulting from GCGR deficiency, we performed whole-organism RNA sequencing analysis in wild type and gcgr-deficient zebrafish. We found that the expression of 1645 genes changes more than two-fold among mutants. Most of these genes are related to metabolism of carbohydrates, lipids, and amino acids. Genes related to fatty acid β-oxidation, amino acid catabolism, and ureagenesis are often downregulated. Among gcrgr-deficient zebrafish, we experimentally confirmed increases in lipid accumulation in the liver and whole-body glucose uptake, as well as a modest decrease in total amino acid content. These results provide new information about the global metabolic network that GCGR signaling regulates in addition to a better understanding of the receptor’s physiological functions.
Collapse
|
35
|
Chabenne JR, Mroz PA, Mayer JP, DiMarchi RD. Structural Refinement of Glucagon for Therapeutic Use. J Med Chem 2019; 63:3447-3460. [PMID: 31774682 DOI: 10.1021/acs.jmedchem.9b01493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucagon counters insulin's effects on glucose metabolism and serves as a rescue medicine in the treatment of hypoglycemia. Acute hypoglycemia, a common occurrence in insulin-dependent diabetes, is the central obstacle to correcting high blood glucose, a primary cause of long-term microvascular complications. As a result, there has been a resurgence of interest in improved glucagon therapy, including nonconventional liquid formulations, alternative routes of administration, and novel analogs with optimized biophysical properties. These options collectively minimize the complexity of glucagon delivery and enable its application in ways not feasible with conventional emergency rescue kits. These advances have indirectly promoted the integrated use of glucagon agonism with other hormones in a manner that runs counter to the long-standing pursuit of glucagon antagonism. This review summarizes novel approaches to glucagon optimization, methods with potential application to the broader family of therapeutic peptides, where biophysical challenges may be encountered.
Collapse
Affiliation(s)
- Joseph R Chabenne
- Novo Nordisk Research Center, Indianapolis, Indiana 46241, United States
| | - Piotr A Mroz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John P Mayer
- MCD Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Richard D DiMarchi
- Novo Nordisk Research Center, Indianapolis, Indiana 46241, United States.,Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
36
|
Kleinert M, Sachs S, Habegger KM, Hofmann SM, Müller TD. Glucagon Regulation of Energy Expenditure. Int J Mol Sci 2019; 20:ijms20215407. [PMID: 31671603 PMCID: PMC6862306 DOI: 10.3390/ijms20215407] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Stephan Sachs
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- Division of Metabolic Diseases, Technische Universität München, 85740 Munich, Germany.
| | - Kirk M Habegger
- Department of Medicine-Endocrinology and Comprehensive Diabetes Center, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35899, USA.
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU, 80336 München, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72076 Tübingen, Germany.
| |
Collapse
|
37
|
Spolitu S, Okamoto H, Dai W, Zadroga JA, Wittchen ES, Gromada J, Ozcan L. Hepatic Glucagon Signaling Regulates PCSK9 and Low-Density Lipoprotein Cholesterol. Circ Res 2019; 124:38-51. [PMID: 30582457 DOI: 10.1161/circresaha.118.313648] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Glucagon is a key hormone that regulates the adaptive metabolic responses to fasting. In addition to maintaining glucose homeostasis, glucagon participates in the regulation of cholesterol metabolism; however, the molecular pathways underlying this effect are incompletely understood. OBJECTIVE We sought to determine the role of hepatic Gcgr (glucagon receptor) signaling in plasma cholesterol regulation and identify its underlying molecular mechanisms. METHODS AND RESULTS We show that Gcgr signaling plays an essential role in LDL-C (low-density lipoprotein cholesterol) homeostasis through regulating the PCSK9 (proprotein convertase subtilisin/kexin type 9) levels. Silencing of hepatic Gcgr or inhibition of glucagon action increased hepatic and plasma PCSK9 and resulted in lower LDLR (LDL receptor) protein and increased plasma LDL-C. Conversely, treatment of wild-type (WT) mice with glucagon lowered LDL-C levels, whereas this response was abrogated in Pcsk9-/- and Ldlr-/- mice. Our gain- and loss-of-function studies identified Epac2 (exchange protein activated by cAMP-2) and Rap1 (Ras-related protein-1) as the downstream mediators of glucagon's action on PCSK9 homeostasis. Moreover, mechanistic studies revealed that glucagon affected the half-life of PCSK9 protein without changing the level of its mRNA, indicating that Gcgr signaling regulates PCSK9 degradation. CONCLUSIONS These findings provide novel insights into the molecular interplay between hepatic glucagon signaling and lipid metabolism and describe a new posttranscriptional mechanism of PCSK9 regulation.
Collapse
Affiliation(s)
- Stefano Spolitu
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (H.O., J.G.)
| | - Wen Dai
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - John A Zadroga
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| | - Erika S Wittchen
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill (E.S.W.)
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (H.O., J.G.)
| | - Lale Ozcan
- From the Department of Medicine, Columbia University, New York (S.S., W.D., J.A.Z., L.O.)
| |
Collapse
|
38
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
39
|
Sharma AX, Quittner-Strom EB, Lee Y, Johnson JA, Martin SA, Yu X, Li J, Lu J, Cai Z, Chen S, Wang MY, Zhang Y, Pearson MJ, Dorn AC, McDonald JG, Gordillo R, Yan H, Thai D, Wang ZV, Unger RH, Holland WL. Glucagon Receptor Antagonism Improves Glucose Metabolism and Cardiac Function by Promoting AMP-Mediated Protein Kinase in Diabetic Mice. Cell Rep 2019; 22:1760-1773. [PMID: 29444429 PMCID: PMC5978750 DOI: 10.1016/j.celrep.2018.01.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/30/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
The antidiabetic potential of glucagon receptor antagonism presents an opportunity for use in an insulin-centric clinical environment. To investigate the metabolic effects of glucagon receptor antagonism in type 2 diabetes, we treated Leprdb/db and Lepob/ob mice with REMD 2.59, a human monoclonal antibody and competitive antagonist of the glucagon receptor. As expected, REMD 2.59 suppresses hepatic glucose production and improves glycemia. Surprisingly, it also enhances insulin action in both liver and skeletal muscle, coinciding with an increase in AMP-activated protein kinase (AMPK)-mediated lipid oxidation. Furthermore, weekly REMD 2.59 treatment over a period of months protects against diabetic cardiomyopathy. These functional improvements are not derived simply from correcting the systemic milieu; nondiabetic mice with cardiac-specific overexpression of lipoprotein lipase also show improvements in contractile function after REMD 2.59 treatment. These observations suggest that hyperglucagonemia enables lipotoxic conditions, allowing the development of insulin resistance and cardiac dysfunction during disease progression.
Collapse
Affiliation(s)
- Ankit X Sharma
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Ezekiel B Quittner-Strom
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Young Lee
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - Joshua A Johnson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Sarah A Martin
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Xinxin Yu
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - Jianping Li
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - John Lu
- REMD Biotherapeutics Inc., Camarillo, CA 93012, USA
| | | | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - May-Yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - Yiyi Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Mackenzie J Pearson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Andie C Dorn
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Hai Yan
- REMD Biotherapeutics Inc., Camarillo, CA 93012, USA
| | - Dung Thai
- REMD Biotherapeutics Inc., Camarillo, CA 93012, USA
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Roger H Unger
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA; Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX 75216, USA
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
40
|
Morgan ES, Tai LJ, Pham NC, Overman JK, Watts LM, Smith A, Jung SW, Gajdošík M, Krššák M, Krebs M, Geary RS, Baker BF, Bhanot S. Antisense Inhibition of Glucagon Receptor by IONIS-GCGR Rx Improves Type 2 Diabetes Without Increase in Hepatic Glycogen Content in Patients With Type 2 Diabetes on Stable Metformin Therapy. Diabetes Care 2019; 42:585-593. [PMID: 30765435 DOI: 10.2337/dc18-1343] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/16/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To evaluate the safety and efficacy of IONIS-GCGRRx, a 2'-O-methoxyethyl antisense oligonucleotide targeting the glucagon receptor (GCGR), and the underlying mechanism of liver transaminase increases in patients with type 2 diabetes on stable metformin therapy. RESEARCH DESIGN AND METHODS In three phase 2, randomized, double-blind studies, patients with type 2 diabetes on metformin received weekly subcutaneous injections of IONIS-GCGRRx (50-200 mg) or placebo for 13 or 26 weeks. RESULTS Significant reductions in HbA1c were observed after IONIS-GCGRRx treatment versus placebo at week 14 (-2.0% 200 mg, -1.4% 100 mg, -0.3% placebo; P < 0.001) or week 27 (-1.6% 75 mg, -0.9% 50 mg, -0.2% placebo; P < 0.001). Dose-dependent increases in transaminases were observed with IONIS-GCGRRx, which were attenuated at lower doses and remained mostly within the normal reference range at the 50-mg dose. There were no other significant safety observations and no symptomatic hypoglycemia or clinically relevant changes in blood pressure, LDL cholesterol, or other vital signs. At week 14, IONIS-GCGRRx 100 mg did not significantly affect mean hepatic glycogen content compared with placebo (15.1 vs. -20.2 mmol/L, respectively; P = 0.093) but significantly increased hepatic lipid content (4.2 vs. -2.7%, respectively; P = 0.005) in the presence of transaminase increases. CONCLUSIONS IONIS-GCGRRx is a potent inhibitor of hepatic glucagon receptor expression with a potential to improve glycemic control at low weekly doses in combination with metformin. Significant reductions in HbA1c occurred across the full-dose range tested, with minimal transaminase elevations at lower doses. Furthermore, novel results suggest that despite inhibition of glycogenolysis after GCGR antagonism, IONIS-GCGRRx did not increase hepatic glycogen content.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Smith
- Ionis Pharmaceuticals, Inc., Carlsbad, CA
| | | | - Martin Gajdošík
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.,High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.,High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
41
|
Abstract
Findings from the past 10 years have placed the glucagon-secreting pancreatic α-cell centre stage in the development of diabetes mellitus, a disease affecting almost one in every ten adults worldwide. Glucagon secretion is reduced in patients with type 1 diabetes mellitus, increasing the risk of insulin-induced hypoglycaemia, but is enhanced in type 2 diabetes mellitus, exacerbating the effects of diminished insulin release and action on blood levels of glucose. A better understanding of the mechanisms underlying these changes is therefore an important goal. RNA sequencing reveals that, despite their opposing roles in the control of blood levels of glucose, α-cells and β-cells have remarkably similar patterns of gene expression. This similarity might explain the fairly facile interconversion between these cells and the ability of the α-cell compartment to serve as a source of new β-cells in models of extreme β-cell loss that mimic type 1 diabetes mellitus. Emerging data suggest that GABA might facilitate this interconversion, whereas the amino acid glutamine serves as a liver-derived factor to promote α-cell replication and maintenance of α-cell mass. Here, we survey these developments and their therapeutic implications for patients with diabetes mellitus.
Collapse
Affiliation(s)
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
42
|
Gumbiner B, Esteves B, Dell V, Joh T, Garzone PD, Forgie A, Udata C. Single and multiple ascending-dose study of glucagon-receptor antagonist RN909 in type 2 diabetes: a phase 1, randomized, double-blind, placebo-controlled trial. Endocrine 2018; 62:371-380. [PMID: 30203123 DOI: 10.1007/s12020-018-1597-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE This first-in-human study assessed safety, immunogenicity, pharmacokinetics, and pharmacodynamics of RN909, a monoclonal antibody antagonist of the glucagon receptor, in type 2 diabetes (T2DM) subjects. METHODS This study enrolled 84 T2DM subjects receiving stable metformin regimens. Forty-four subjects were randomized to receive single escalating doses of RN909 (0.3 to 6 mg/kg subcutaneously (SC), or 1 mg/kg intravenously (IV)), or placebo; 40 subjects were randomized to receive multiple escalating doses (50 to 150 mg SC) or placebo every 4 weeks for 12 weeks. RESULTS RN909 was well tolerated; treatment-related elevated liver function tests (LFTs) were observed in 4/33 (12.1%) and 5/32 (15.6%) subjects treated with single and multiple doses, respectively, versus 1/10 (10%) and 0 in the respective placebo groups. RN909 dose-normalized AUCinf increased more than dose-proportionally following single SC doses, and after multiple doses, accumulation ratios ranged from 1.3 to 3.4. The incidence of antidrug antibodies (ADA) was 33% after single doses and 50% after multiple doses. RN909 produced dose-dependent, durable fasting plasma glucose (FPG)-lowering at day 29 (mean change -20.6 to -97.5 mg/dL) and day 85 (mean change; -27.2 to -43.5 mg/dL) after single and multiple doses, respectively. HbA1c also was reduced after single (mean change -0.30% to -1.44%), and multiple doses (-0.83% to -1.56%). CONCLUSION RN909 was well tolerated after single and multiple doses in T2DM subjects, with diarrhea and elevated LFTs the most frequent adverse events. The appearance of ADA did not affect pharmacokinetics or efficacy. Robust lowering of FPG and HbA1c was observed.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Blood Glucose/drug effects
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/immunology
- Dose-Response Relationship, Drug
- Double-Blind Method
- Female
- Humans
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/pharmacokinetics
- Hypoglycemic Agents/therapeutic use
- Male
- Metformin/therapeutic use
- Middle Aged
- Placebos
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/immunology
- Young Adult
Collapse
Affiliation(s)
- Barry Gumbiner
- Pfizer Inc., 10777 Science Center Dr, San Diego, CA, 92121, USA.
| | - Brooke Esteves
- Pfizer Inc., 7 Shipley Circle, Westford, MA, 01886, USA
- ImmunoGen, Inc., 830 Winter Street, Waltham, MA, 02451, USA
| | - Vanessa Dell
- Pfizer Inc. Maine, 235 E. 42nd Street, New York, NY, 10017, USA
| | - Tenshang Joh
- Pfizer Inc., 10646 Science Center Drive, La Jolla, CA, 92121, USA
| | - Pamela D Garzone
- Pfizer Inc., 230 East Grand Ave, South San Francisco, CA, 94080, USA
| | - Alison Forgie
- Pfizer Inc., 10646 Science Center Drive, La Jolla, CA, 92121, USA
| | | |
Collapse
|
43
|
Kazierad DJ, Chidsey K, Somayaji VR, Bergman AJ, Calle RA. Efficacy and safety of the glucagon receptor antagonist PF-06291874: A 12-week, randomized, dose-response study in patients with type 2 diabetes mellitus on background metformin therapy. Diabetes Obes Metab 2018; 20:2608-2616. [PMID: 29923286 DOI: 10.1111/dom.13440] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
Abstract
AIMS To conduct a dose-response assessment of the efficacy and safety of the glucagon receptor antagonist PF-06291874 in adults with type 2 diabetes (T2DM) using stable doses of metformin. MATERIALS AND METHODS This randomized, double-blind, statin-stratified, placebo-controlled, 4-arm, parallel-group study was conducted in patients with T2DM who were receiving background metformin. After an 8-week, non-metformin oral antidiabetic agent washout period, 206 patients were randomized to placebo or PF-06291874 (30, 60 or 100 mg once daily) for 12 weeks. Glycosylated haemoglobin (HbA1c), fasting plasma glucose (FPG) and safety endpoints were assessed at baseline and post baseline. RESULTS Dose-dependent mean reductions from baseline in HbA1c for PF-06291874 ranged from -0.67% (-7.29 mmol/mol) to -0.93% (-10.13 mmol/mol), and for FPG from -16.6 to -33.3 mg/dL after 12 weeks of dosing. The incidence of hypoglycaemia was low and was similar between groups receiving PF-06291874 and placebo. Small, non-dose-dependent increases in LDL cholesterol (<10%) and blood pressure (BP) (systolic BP > 2 mm Hg; diastolic BP > 1 mm Hg) were observed with PF-06291874. Modest non-dose-dependent median increases were observed across PF-06291874 groups at 12 weeks for alanine aminotransferase (range, 37.6-48.7 U/L vs placebo) and aspartate aminotransferase (range, 33.3-36.6 U/L vs placebo); these were not associated with bilirubin changes. Small increases were observed in body weight (< 0.5 kg) in each PF-06291874 group vs placebo. CONCLUSIONS In patients with T2DM, PF-06291874 significantly lowered HbA1c and glucose, was well tolerated and carried a low risk of hypoglycaemia. Small, non-dose-related increases in BP, lipids and hepatic transaminases were observed.
Collapse
Affiliation(s)
- David J Kazierad
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kristin Chidsey
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Veena R Somayaji
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Arthur J Bergman
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Roberto A Calle
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| |
Collapse
|
44
|
The first pediatric case of glucagon receptor defect due to biallelic mutations in GCGR is identified by newborn screening of elevated arginine. Mol Genet Metab Rep 2018; 17:46-52. [PMID: 30294546 PMCID: PMC6171159 DOI: 10.1016/j.ymgmr.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Glucagon receptor (GCGR) defect (Mahvash disease) is an autosomal recessive hereditary pancreatic neuroendocrine tumor (PNET) syndrome that has only been reported in adults with pancreatic α cell hyperplasia and PNETs. We describe a 7-year-old girl with persistent hyperaminoacidemia, notable for elevations of glutamine (normal ammonia), alanine (normal lactate), dibasic amino acids (arginine, lysine and ornithine), threonine and serine. She initially was brought to medical attention by an elevated arginine on newborn screening (NBS) and treated for presumed arginase deficiency with a low protein diet, essential amino acids formula and an ammonia scavenger drug. This treatment normalized plasma amino acids. She had intermittent emesis and anorexia, but was intellectually normal. Arginase enzyme assay and ARG1 sequencing and deletion/duplication analysis were normal. Treatments were stopped, but similar pattern of hyperaminoacidemia recurred. She also had hypercholesterolemia type IIa, with only elevated LDL cholesterol, despite an extremely lean body habitus. Exome sequencing was initially non-diagnostic. Through a literature search, we recognized the pattern of hyperaminoacidemia was strikingly similar to that reported in the Gcgr−/− knockout mice. Subsequently the patient was found to have an extremely elevated plasma glucagon and a novel, homozygous c.958_960del (p.Phe320del) variant in GCGR. Functional studies confirmed the pathogenicity of this variant. This case expands the clinical phenotype of GCGR defect in children and emphasizes the clinical utility of plasma amino acids in screening, diagnosis and monitoring glucagon signaling interruption. Early identification of a GCGR defect may provide an opportunity for potential beneficial treatment for an adult onset tumor predisposition disease. Describe the first case of glucagon receptor defect uniquely identified by abnormal newborn screening for elevated arginine. Characterize the pattern of hyperaminoacidemia in GCGR defect. Expand the clinical spectrum of GCGR defect from adult to childhood with a unique gastrointestinal manifestation.
Collapse
|
45
|
Kim T, Nason S, Holleman C, Pepin M, Wilson L, Berryhill TF, Wende AR, Steele C, Young ME, Barnes S, Drucker DJ, Finan B, DiMarchi R, Perez-Tilve D, Tschöp M, Habegger KM. Glucagon Receptor Signaling Regulates Energy Metabolism via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21. Diabetes 2018; 67:1773-1782. [PMID: 29925501 PMCID: PMC6110317 DOI: 10.2337/db17-1502] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Glucagon, an essential regulator of glucose and lipid metabolism, also promotes weight loss, in part through potentiation of fibroblast growth factor 21 (FGF21) secretion. However, FGF21 is only a partial mediator of metabolic actions ensuing from glucagon receptor (GCGR) activation, prompting us to search for additional pathways. Intriguingly, chronic GCGR agonism increases plasma bile acid levels. We hypothesized that GCGR agonism regulates energy metabolism, at least in part, through farnesoid X receptor (FXR). To test this hypothesis, we studied whole-body and liver-specific FXR-knockout (Fxr∆liver) mice. Chronic GCGR agonist (IUB288) administration in diet-induced obese (DIO) Gcgr, Fgf21, and Fxr whole-body or liver-specific knockout (∆liver) mice failed to reduce body weight when compared with wild-type (WT) mice. IUB288 increased energy expenditure and respiration in DIO WT mice, but not Fxr∆liver mice. GCGR agonism increased [14C]palmitate oxidation in hepatocytes isolated from WT mice in a dose-dependent manner, an effect blunted in hepatocytes from Fxr∆liver mice. Our data clearly demonstrate that control of whole-body energy expenditure by GCGR agonism requires intact FXR signaling in the liver. This heretofore-unappreciated aspect of glucagon biology has implications for the use of GCGR agonism in the therapy of metabolic disorders.
Collapse
MESH Headings
- Adiposity/drug effects
- Animals
- Anti-Obesity Agents/therapeutic use
- Calorimetry, Indirect
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Energy Metabolism/drug effects
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation/drug effects
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/enzymology
- Mitochondria, Liver/metabolism
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Organ Specificity
- Oxidative Phosphorylation/drug effects
- Peptides/therapeutic use
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Glucagon/agonists
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Signal Transduction/drug effects
- Weight Gain/drug effects
Collapse
Affiliation(s)
- Teayoun Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Shelly Nason
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Cassie Holleman
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Mark Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, AL
| | - Landon Wilson
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL
| | - Taylor F Berryhill
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, AL
| | - Chad Steele
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Stephen Barnes
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN
- Department of Chemistry, Indiana University, Bloomington, IN
| | - Diego Perez-Tilve
- Division of Endocrinology, Diabetes and Metabolism, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - Kirk M Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
46
|
GLP-2 receptor signaling controls circulating bile acid levels but not glucose homeostasis in Gcgr -/- mice and is dispensable for the metabolic benefits ensuing after vertical sleeve gastrectomy. Mol Metab 2018; 16:45-54. [PMID: 29937214 PMCID: PMC6157461 DOI: 10.1016/j.molmet.2018.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Therapeutic interventions that improve glucose homeostasis such as attenuation of glucagon receptor (Gcgr) signaling and bariatric surgery share common metabolic features conserved in mice and humans. These include increased circulating levels of bile acids (BA) and the proglucagon-derived peptides (PGDPs), GLP-1 and GLP-2. Whether BA acting through TGR5 (Gpbar1) increases PGDP levels in these scenarios has not been examined. Furthermore, although the importance of GLP-1 action has been interrogated in Gcgr−/− mice and after bariatric surgery, whether GLP-2 contributes to the metabolic benefits of these interventions is not known. Methods To assess whether BA acting through Gpbar1 mediates improved glucose homeostasis in Gcgr−/− mice we generated and characterized Gcgr−/−:Gpbar1−/− mice. The contribution of GLP-2 receptor (GLP-2R) signaling to intestinal and metabolic adaptation arising following loss of the Gcgr was studied in Gcgr−/−:Glp2r−/− mice. The role of the GLP-2R in the metabolic improvements evident after bariatric surgery was studied in high fat-fed Glp2r−/− mice subjected to vertical sleeve gastrectomy (VSG). Results Circulating levels of BA were markedly elevated yet similar in Gcgr−/−:Gpbar1+/+ vs. Gcgr−/−:Gpbar1−/− mice. Loss of GLP-2R lowered levels of BA in Gcgr−/− mice. Gcgr−/−:Glp2r−/− mice also exhibited shifts in the proportion of circulating BA species. Loss of Gpbar1 did not impact body weight, intestinal mass, or glucose homeostasis in Gcgr−/− mice. In contrast, small bowel growth was attenuated in Gcgr−/−:Glp2r−/− mice. The improvement in glucose tolerance, elevated circulating levels of GLP-1, and glucose-stimulated insulin levels were not different in Gcgr−/−:Glp2r+/+ vs. Gcgr−/−:Glp2r−/− mice. Similarly, loss of the GLP-2R did not attenuate the extent of weight loss and improvement in glucose control after VSG. Conclusions These findings reveal that GLP-2R controls BA levels and relative proportions of BA species in Gcgr−/− mice. Nevertheless, the GLP-2R is not essential for i) control of body weight or glucose homeostasis in Gcgr−/− mice or ii) metabolic improvements arising after VSG in high fat-fed mice. Furthermore, despite elevations of circulating levels of BA, Gpbar1 does not mediate elevated levels of PGDPs or major metabolic phenotypes in Gcgr−/− mice. Collectively these findings refine our understanding of the relationship between Gpbar1, elevated levels of BA, PGDPs, and the GLP-2R in amelioration of metabolic derangements arising following loss of Gcgr signaling or after vertical sleeve gastrectomy. GLP-2 receptor controls bile acid levels in Gcgr−/− mice. Gpbar1 is not required for the metabolic benefits or elevated levels of PGDPs in Gcgr−/− mice. GLP-2 regulates gut adaptation in Gcgr−/− mice. Bile acid profiles are altered in Gcgr−/− mice following loss of GLP-2R. GLP-2R is not required for improvements in glucose homeostasis or weight loss after VSG in mice.
Collapse
|
47
|
Hoffmann TJ, Theusch E, Haldar T, Ranatunga DK, Jorgenson E, Medina MW, Kvale MN, Kwok PY, Schaefer C, Krauss RM, Iribarren C, Risch N. A large electronic-health-record-based genome-wide study of serum lipids. Nat Genet 2018; 50:401-413. [PMID: 29507422 PMCID: PMC5942247 DOI: 10.1038/s41588-018-0064-5] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022]
Abstract
A genome-wide association study of 94,674 multi-ethnic Kaiser Permanente members utilizing 478,866 longitudinal untreated serum lipid electronic-health-record-derived measurements (EHRs) empowered multiple novel findings: 121 new SNP associations (46 primary, 15 conditional, 60 in meta-analysis with Global Lipids Genetic Consortium); increase of 33-42% in variance explained with multiple measurements; sex differences in genetic impact (greater in females for LDL, HDL, TC, the opposite for TG); differences in variance explained amongst non-Hispanic whites, Latinos, African Americans, and East Asians; genetic dominance and epistasis, with strong evidence for both at ABOxFUT2 for LDL; and eQTL tissue-enrichment implicating the liver, adipose, and pancreas. Utilizing EHR pharmacy data, both LDL and TG genetic risk scores (477 SNPs) were strongly predictive of age-at-initiation of lipid-lowering treatment. These findings highlight the value of longitudinal EHRs for identifying novel genetic features of cholesterol and lipoprotein metabolism with implications for lipid treatment and risk of coronary heart disease.
Collapse
Affiliation(s)
- Thomas J Hoffmann
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
| | | | - Tanushree Haldar
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Dilrini K Ranatunga
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Mark N Kvale
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Neil Risch
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. .,Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA.
| |
Collapse
|
48
|
Riopel M, Seo JB, Bandyopadhyay GK, Li P, Wollam J, Chung H, Jung SR, Murphy A, Wilson M, de Jong R, Patel S, Balakrishna D, Bilakovics J, Fanjul A, Plonowski A, Koh DS, Larson CJ, Olefsky JM, Lee YS. Chronic fractalkine administration improves glucose tolerance and pancreatic endocrine function. J Clin Invest 2018; 128:1458-1470. [PMID: 29504946 DOI: 10.1172/jci94330] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/18/2018] [Indexed: 01/09/2023] Open
Abstract
We have previously reported that the fractalkine (FKN)/CX3CR1 system represents a novel regulatory mechanism for insulin secretion and β cell function. Here, we demonstrate that chronic administration of a long-acting form of FKN, FKN-Fc, can exert durable effects to improve glucose tolerance with increased glucose-stimulated insulin secretion and decreased β cell apoptosis in obese rodent models. Unexpectedly, chronic FKN-Fc administration also led to decreased α cell glucagon secretion. In islet cells, FKN inhibited ATP-sensitive potassium channel conductance by an ERK-dependent mechanism, which triggered β cell action potential (AP) firing and decreased α cell AP amplitude. This results in increased glucose-stimulated insulin secretion and decreased glucagon secretion. Beyond its islet effects, FKN-Fc also exerted peripheral effects to enhance hepatic insulin sensitivity due to inhibition of glucagon action. In hepatocytes, FKN treatment reduced glucagon-stimulated cAMP production and CREB phosphorylation in a pertussis toxin-sensitive manner. Together, these results raise the possibility of use of FKN-based therapy to improve type 2 diabetes by increasing both insulin secretion and insulin sensitivity.
Collapse
Affiliation(s)
- Matthew Riopel
- Department of Medicine, Division of Endocrinology and Metabolism, UCSD, La Jolla, California, USA
| | - Jong Bae Seo
- Department of Medicine, Division of Endocrinology and Metabolism, UCSD, La Jolla, California, USA.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Gautam K Bandyopadhyay
- Department of Medicine, Division of Endocrinology and Metabolism, UCSD, La Jolla, California, USA
| | - Pingping Li
- Department of Medicine, Division of Endocrinology and Metabolism, UCSD, La Jolla, California, USA.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Joshua Wollam
- Department of Medicine, Division of Endocrinology and Metabolism, UCSD, La Jolla, California, USA
| | - Heekyung Chung
- Department of Medicine, Division of Endocrinology and Metabolism, UCSD, La Jolla, California, USA
| | - Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Anne Murphy
- Department of Pharmacology, UCSD, La Jolla, California, USA
| | - Maria Wilson
- Cardiovascular and Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, California, USA
| | - Ron de Jong
- Cardiovascular and Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, California, USA
| | - Sanjay Patel
- Cardiovascular and Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, California, USA
| | - Deepika Balakrishna
- Cardiovascular and Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, California, USA
| | - James Bilakovics
- Cardiovascular and Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, California, USA
| | - Andrea Fanjul
- Cardiovascular and Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, California, USA
| | - Artur Plonowski
- Cardiovascular and Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, California, USA
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Christopher J Larson
- Cardiovascular and Metabolic Diseases Drug Discovery Unit, Takeda Pharmaceuticals, San Diego, California, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jerrold M Olefsky
- Department of Medicine, Division of Endocrinology and Metabolism, UCSD, La Jolla, California, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, UCSD, La Jolla, California, USA.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
49
|
Shu S, Dai A, Wang J, Wang B, Feng Y, Li J, Cai X, Yang D, Ma D, Wang MW, Liu H. A novel series of 4-methyl substituted pyrazole derivatives as potent glucagon receptor antagonists: Design, synthesis and evaluation of biological activities. Bioorg Med Chem 2018. [PMID: 29523469 DOI: 10.1016/j.bmc.2018.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A novel series of 4-methyl substituted pyrazole derivatives were designed, synthesized and biologically evaluated as potent glucagon receptor (GCGR) antagonists. In this study, compounds 9q, 9r, 19d and 19e showed high GCGR binding (IC50 = 0.09 μM, 0.06 μM, 0.07 μM and 0.08 μM, respectively) and cyclic-adenosine monophosphate (cAMP) activities (IC50 = 0.22 μM, 0.26 μM, 0.44 μM and 0.46 μM, respectively) in cell-based assays. Most importantly, the docking experiment demonstrated that compound 9r formed extensive hydrophobic interactions with the receptor binding pocket, making it justifiable to further investigate the potential of becoming a GCGR antagonist.
Collapse
Affiliation(s)
- Shuangjie Shu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Antao Dai
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yang Feng
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Dakota Ma
- The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; The National Center for Drug Screening, 189 Guo Shou Jing Road, Shanghai 201203, China; School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
50
|
Abstract
Globally, 13% of the world's adult population is obese, and more than 400 million people suffer from diabetes. These conditions are both associated with significant morbidity, mortality and financial cost. Therefore, finding new pharmacological treatments is an imperative. Relative hyperglucagonaemia is seen in all types of diabetes, and has been implicated in its pathogenesis. Consequently, clinical trials are underway using drugs which block glucagon activity to treat type 2 diabetes. Conversely, exogenous glucagon can increase energy expenditure. Therefore, researchers are designing peptides that combine activation of the glucagon receptor with further incretin properties, which will treat obesity while mitigating the hyperglycaemic effects of glucagon. This review will discuss these conflicting physiological properties of glucagon, and the attempts to harness these effects pharmacologically.
Collapse
Affiliation(s)
- R V Scott
- Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, London, W12 0NN, United Kingdom.
| | - S R Bloom
- Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, London, W12 0NN, United Kingdom.
| |
Collapse
|