1
|
Yang B, Wang M, Wu Z, Tan J, Meng Y, Zhang T, Zan L, Yang W. Perilipin1 mediates milk fat synthesis in bovine mammary epithelial cells through SREBP1 phosphorylation. Anim Biotechnol 2025; 36:2497915. [PMID: 40338730 DOI: 10.1080/10495398.2025.2497915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/21/2025] [Indexed: 05/10/2025]
Abstract
This study investigates the role of Perilipin1 (PLIN1) in milk fat synthesis in bovine mammary epithelial cells (BMECs) and its regulatory mechanisms, aiming to provide a foundation for improving milk fat content through molecular breeding. BMECs were used as a model to analyze the effects of PLIN1 overexpression (OE-PLIN1) and interference (si-PLIN1) on milk fat synthesis and lipid-related gene expression using RT-qPCR, Western blot, and Oil Red O staining. Results show that OE-PLIN1 significantly enhances triglyceride (TAG) accumulation in BMECs (P < 0.01), upregulates lipid synthesis-related genes (such as PPARγ, C/EBPα, C/EBPβ, FABP4, FASN) (P < 0.05), and downregulates the mRNA expression of lipid breakdown-related genes (HSL, ATGL) (P < 0.05). Conversely, si-PLIN1 significantly reduces TAG accumulation (P < 0.05) and lowers the expression of lipid synthesis and breakdown genes (P < 0.05). Additionally, OE-PLIN1 combined with SREBP1 siRNA interference (si-SREBP1) did not have a significant impact on the mRNA and protein levels of SREBP1, but it significantly altered SREBP1's phosphorylation, indicating that SREBP1 interference inhibits PLIN1's effect on milk fat synthesis. This study suggests that PLIN1 promotes milk fat synthesis in BMECs via regulating SREBP1 activity, offering a new strategy for enhancing milk fat content in dairy cattle.
Collapse
Affiliation(s)
- Benshun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Meng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhangqing Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianbing Tan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yanhong Meng
- Shaanxi Qinbao Animal Husbandry Co., LTD, Yangling, China
| | - Taoping Zhang
- Shaanxi Qinbao Animal Husbandry Co., LTD, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
2
|
Gudiksen A, Zhou E, Pedersen L, Zaia CA, Wille CE, Eliesen EV, Pilegaard H. Loss of PGC-1α causes depot-specific alterations in mitochondrial capacity, ROS handling and adaptive responses to metabolic stress in white adipose tissue. Mitochondrion 2025; 83:102034. [PMID: 40157624 DOI: 10.1016/j.mito.2025.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
White adipose tissue (WAT) delivers lipid-fueled metabolic support to systemic energy expenditure through control of lipolytic and re-esterifying regulatory pathways, facilitated by mitochondrial bioenergetic support. Mitochondria are important sources of reactive oxygen species (ROS) and oxidative damage may potentially derail adipocyte function when mitochondrial homeostasis is challenged by overproduction of ROS. Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α is a transcriptional co-activator that in skeletal muscle plays a central role in mitochondrial biogenesis and function but whether PGC-1α is equally important for mitochondrial function and adaptations in white adipose tissue remains to be fully resolved. The aim of the present study was to characterize the necessity of adipocyte PGC-1α for adaptive regulation of mitochondrial function in distinct white adipose depots. PGC-1α adipose tissue-specific knockout (ATKO) and floxed littermate control mice (CTRL) were subjected to either 24 h of fasting or 48 h of cold exposure. Bioenergetics, ROS handling, basal and adaptive protein responses, markers of protein damage as well as lipid cycling capacity and regulation were characterized in distinct WAT depots. ATKO mice demonstrated impairments in respiration as well as reduced OXPHOS protein content in fed and fasted conditions. Increased ROS emission in tandem with diminished mitochondrial antioxidant defense capacity resulted in increased protein oxidation in ATKO WAT. Adipose tissue PGC-1α knockout also led to changes in regulation of lipolysis and potentially triglyceride reesterification in WAT. In conclusion, PGC-1α regulates adipose tissue mitochondrial respiration and ROS balance as well as lipid cycling during metabolic challenges in a depot specific manner.
Collapse
Affiliation(s)
- Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Eva Zhou
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Louise Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catherine A Zaia
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie E Wille
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth V Eliesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Ismail VA, Schuetz M, Baker ZN, Castillo-Badillo JA, Naismith TV, Pagliarini DJ, Kast DJ. DFCP1 is a regulator of starvation-driven ATGL-mediated lipid droplet lipolysis. J Lipid Res 2025; 66:100700. [PMID: 39566849 PMCID: PMC11721518 DOI: 10.1016/j.jlr.2024.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Lipid droplets (LDs) are transient lipid storage organelles that can be readily tapped to resupply cells with energy or lipid building blocks, and therefore play a central role in cellular metabolism. Double FYVE Domain Containing Protein 1 (DFCP1/ZFYVE1) has emerged as a key regulator of LD metabolism, where the nucleotide-dependent accumulation of DFCP1 on LDs influences their size, number, and dynamics. Here we show that DFCP1 regulates lipid metabolism by directly modulating the activity of Adipose Triglyceride Lipase (ATGL/PNPLA2), the rate-limiting lipase driving the catabolism of LDs. We show through pharmacological inhibition of key enzymes associated with LD metabolism that DFCP1 specifically regulates lipolysis and, to a lesser extent, lipophagy. Consistent with this observation, DFCP1 interacts with and recruits ATGL to LDs in starved cells, irrespective of other known regulatory factors of ATGL. We further establish that this interaction prevents dynamic disassociation of ATGL from LDs and thereby impedes the rate of LD lipolysis. Collectively, our findings indicate that DFCP1 is a nutrient-sensitive regulator of LD catabolism.
Collapse
Affiliation(s)
- Victoria A Ismail
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meg Schuetz
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zak N Baker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jean A Castillo-Badillo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Teri V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
4
|
Kaur M, Sinha K, Eastmond PJ, Bhunia RK. Exploiting lipid droplet metabolic pathway to foster lipid production: oleosin in focus. PLANT CELL REPORTS 2024; 44:12. [PMID: 39724216 DOI: 10.1007/s00299-024-03390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants. Increased levels of energy density can be achieved by single and multiple gene strategies that re-orient the carbon flux into TAG. Transcription factors and enzymes of the metabolic pathways have been targeted to foster lipid production. Oleosin, a structural protein of the lipid droplet plays a vital role in its stabilization and subsequently in its mobilization for seed germination and seedling growth. Maintenance of increased lipid content with optimal composition is a major target. Knowledge gained from genetic engineering strategies suggests that oleosin co-expression can result in a significant shift in carbon allocation to LDs. In this review, we present a detailed analysis of the recent advancements in metabolic engineering of plant lipids with emphasis on oleosin with its distinct patterns and functions in plants.
Collapse
Affiliation(s)
- Manmehar Kaur
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kshitija Sinha
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | | | - Rupam Kumar Bhunia
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
5
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
6
|
Kamatar A, Bravo JPK, Yuan F, Wang L, Lafer EM, Taylor DW, Stachowiak JC, Parekh SH. Lipid droplets as substrates for protein phase separation. Biophys J 2024; 123:1494-1507. [PMID: 38462838 PMCID: PMC11163294 DOI: 10.1016/j.bpj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Membrane-associated protein phase separation plays critical roles in cell biology, driving essential cellular phenomena from immune signaling to membrane traffic. Importantly, by reducing dimensionality from three to two dimensions, lipid bilayers can nucleate phase separation at far lower concentrations compared with those required for phase separation in solution. How might other intracellular lipid substrates, such as lipid droplets, contribute to nucleation of phase separation? Distinct from bilayer membranes, lipid droplets consist of a phospholipid monolayer surrounding a core of neutral lipids, and they are energy storage organelles that protect cells from lipotoxicity and oxidative stress. Here, we show that intrinsically disordered proteins can undergo phase separation on the surface of synthetic and cell-derived lipid droplets. Specifically, we find that the model disordered domains FUS LC and LAF-1 RGG separate into protein-rich and protein-depleted phases on the surfaces of lipid droplets. Owing to the hydrophobic nature of interactions between FUS LC proteins, increasing ionic strength drives an increase in its phase separation on droplet surfaces. The opposite is true for LAF-1 RGG, owing to the electrostatic nature of its interprotein interactions. In both cases, protein-rich phases on the surfaces of synthetic and cell-derived lipid droplets demonstrate molecular mobility indicative of a liquid-like state. Our results show that lipid droplets can nucleate protein condensates, suggesting that protein phase separation could be key in organizing biological processes involving lipid droplets.
Collapse
Affiliation(s)
- Advika Kamatar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| | - Feng Yuan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas; Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, Texas; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas; LIVESTRONG Cancer Institutes, Dell Medical School, Austin, Texas
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas.
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
7
|
Bavaresco A, Mazzeo P, Lazzara M, Barbot M. Adipose tissue in cortisol excess: What Cushing's syndrome can teach us? Biochem Pharmacol 2024; 223:116137. [PMID: 38494065 DOI: 10.1016/j.bcp.2024.116137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Endogenous Cushing's syndrome (CS) is a rare condition due to prolonged exposure to elevated circulating cortisol levels that features its typical phenotype characterised by moon face, proximal myopathy, easy bruising, hirsutism in females and a centripetal distribution of body fat. Given the direct and indirect effects of hypercortisolism, CS is a severe disease burdened by increased cardio-metabolic morbidity and mortality in which visceral adiposity plays a leading role. Although not commonly found in clinical setting, endogenous CS is definitely underestimated leading to delayed diagnosis with consequent increased rate of complications and reduced likelihood of their reversal after disease control. Most of all, CS is a unique model for systemic impairment induced by exogenous glucocorticoid therapy that is commonly prescribed for a number of chronic conditions in a relevant proportion of the worldwide population. In this review we aim to summarise on one side, the mechanisms behind visceral adiposity and lipid metabolism impairment in CS during active disease and after remission and on the other explore the potential role of cortisol in promoting adipose tissue accumulation.
Collapse
Affiliation(s)
- Alessandro Bavaresco
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Pierluigi Mazzeo
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Martina Lazzara
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Mattia Barbot
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy.
| |
Collapse
|
8
|
Griseti E, Bello AA, Bieth E, Sabbagh B, Iacovoni JS, Bigay J, Laurell H, Čopič A. Molecular mechanisms of perilipin protein function in lipid droplet metabolism. FEBS Lett 2024; 598:1170-1198. [PMID: 38140813 DOI: 10.1002/1873-3468.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.
Collapse
Affiliation(s)
- Elena Griseti
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Abdoul Akim Bello
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Eric Bieth
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
- Departement de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, France
| | - Bayane Sabbagh
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| | - Jason S Iacovoni
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| |
Collapse
|
9
|
Engin AB, Engin A. The Checkpoints of Intestinal Fat Absorption in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:73-95. [PMID: 39287849 DOI: 10.1007/978-3-031-63657-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
10
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 208] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Activation of β-Adrenoceptors Promotes Lipid Droplet Accumulation in MCF-7 Breast Cancer Cells via cAMP/PKA/EPAC Pathways. Int J Mol Sci 2023; 24:ijms24010767. [PMID: 36614209 PMCID: PMC9820888 DOI: 10.3390/ijms24010767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Physiologically, β-adrenoceptors are major regulators of lipid metabolism, which may be reflected in alterations in lipid droplet dynamics. β-adrenoceptors have also been shown to participate in breast cancer carcinogenesis. Since lipid droplets may be seen as a hallmark of cancer, the present study aimed to investigate the role of β-adrenoceptors in the regulation of lipid droplet dynamics in MCF-7 breast cancer cells. Cells were treated for up to 72 h with adrenaline (an endogenous adrenoceptor agonist), isoprenaline (a non-selective β-adrenoceptor agonist) and salbutamol (a selective β2-selective agonist), and their effects on lipid droplets were evaluated using Nile Red staining. Adrenaline or isoprenaline, but not salbutamol, caused a lipid-accumulating phenotype in the MCF-7 cells. These effects were significantly reduced by selective β1- and β3-antagonists (10 nM atenolol and 100 nM L-748,337, respectively), indicating a dependence on both β1- and β3-adrenoceptors. These effects were dependent on the cAMP signalling pathway, involving both protein kinase A (PKA) and cAMP-dependent guanine-nucleotide-exchange (EPAC) proteins: treatment with cAMP-elevating agents (forskolin or 8-Br-cAMP) induced lipid droplet accumulation, whereas either 1 µM H-89 or 1 µM ESI-09 (PKA or EPAC inhibitors, respectively) abrogated this effect. Taken together, the present results demonstrate the existence of a β-adrenoceptor-mediated regulation of lipid droplet dynamics in breast cancer cells, likely involving β1- and β3-adrenoceptors, revealing a new mechanism by which adrenergic stimulation may influence cancer cell metabolism.
Collapse
|
12
|
Wang L, van Iersel LEJ, Pelgrim CE, Lu J, van Ark I, Leusink-Muis T, Gosker HR, Langen RCJ, Schols AMWJ, Argilés JM, van Helvoort A, Kraneveld AD, Garssen J, Henricks PAJ, Folkerts G, Braber S. Effects of Cigarette Smoke on Adipose and Skeletal Muscle Tissue: In Vivo and In Vitro Studies. Cells 2022; 11:cells11182893. [PMID: 36139468 PMCID: PMC9497292 DOI: 10.3390/cells11182893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), often caused by smoking, is a chronic lung disease with systemic manifestations including metabolic comorbidities. This study investigates adaptive and pathological alterations in adipose and skeletal muscle tissue following cigarette smoke exposure using in vivo and in vitro models. Mice were exposed to cigarette smoke or air for 72 days and the pre-adipose cell line 3T3-L1 was utilized as an in vitro model. Cigarette smoke exposure decreased body weight, and the proportional loss in fat mass was more pronounced than the lean mass loss. Cigarette smoke exposure reduced adipocyte size and increased adipocyte numbers. Adipose macrophage numbers and associated cytokine levels, including interleukin-1β, interleukine-6 and tumor necrosis factor-α were elevated in smoke-exposed mice. Muscle strength and protein synthesis signaling were decreased after smoke exposure; however, muscle mass was not changed. In vitro studies demonstrated that lipolysis and fatty acid oxidation were upregulated in cigarette smoke-exposed pre-adipocytes. In conclusion, cigarette smoke exposure induces a loss of whole-body fat mass and adipose atrophy, which is likely due to enhanced lipolysis.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Lieke E. J. van Iersel
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Charlotte E. Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Jingyi Lu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Harry R. Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Annemie M. W. J. Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
| | - Josep M. Argilés
- Biochemistry and Molecular Biology of Cancer, Faculty of Biology, University of Barcelona, 08007 Barcelona, Spain
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre +, 6200 MD Maastricht, The Netherlands
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands or
- Correspondence: ; Tel.: +31-0-622-483-913
| |
Collapse
|
13
|
Warde KM, Lim YJ, Ribes Martinez E, Beuschlein F, O'Shea P, Hantel C, Dennedy MC. Mitotane Targets Lipid Droplets to Induce Lipolysis in Adrenocortical Carcinoma. Endocrinology 2022; 163:6633639. [PMID: 35797592 PMCID: PMC9342684 DOI: 10.1210/endocr/bqac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Adrenocortical carcinoma (ACC) is a rare aggressive cancer with low overall survival. Adjuvant mitotane improves survival but is limited by poor response rates and resistance. Mitotane's efficacy is attributed to the accumulation of toxic free cholesterol, predominantly through cholesterol storage inhibition. However, targeting this pathway has proven unsuccessful. We hypothesize that mitotane-induced free-cholesterol accumulation is also mediated through enhanced breakdown of lipid droplets. METHODOLOGY ATCC-H295R (mitotane-sensitive) and MUC-1 (mitotane-resistant) ACC cells were evaluated for lipid content using specific BODIPY dyes. Protein expression was evaluated by immunoblotting and flow cytometry. Cell viability was measured by quantifying propidium iodide-positive cells following mitotane treatment and pharmacological inhibitors of lipolysis. RESULTS H295R and MUC-1 cells demonstrated similar neutral lipid droplet numbers at baseline. However, evaluation of lipid machinery demonstrated distinct profiles in each model. Analysis of intracellular lipid droplet content showed H295R cells preferentially store cholesteryl esters, whereas MUC-1 cells store triacylglycerol. Decreased lipid droplets were associated with increased lipolysis in H295R and in MUC-1 at toxic mitotane concentrations. Pharmacological inhibition of lipolysis attenuated mitotane-induced toxicity in both models. CONCLUSION We highlight that lipid droplet breakdown and activation of lipolysis represent a putative additional mechanism for mitotane-induced cytotoxicity in ACC. Further understanding of cholesterol and lipids in ACC offers potential novel therapeutic exploitation, especially in mitotane-resistant disease.
Collapse
Affiliation(s)
- Kate M Warde
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Yi Jan Lim
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Eduardo Ribes Martinez
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| | - Felix Beuschlein
- Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, 81377, Germany
- Department of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, Zurich 8091, Switzerland
| | - Paula O'Shea
- Department of Clinical Biochemistry, Galway University Hospitals, Saolta Hospitals Group, Newcastle Road, Galway, H91 RW28, Ireland
| | - Constanze Hantel
- Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, 81377, Germany
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Germany
| | - Michael Conall Dennedy
- Discipline of Pharmacology and Therapeutics, National University of Ireland, Galway, H91 TK33, Ireland
| |
Collapse
|
14
|
Pan J, Zhao S, He L, Zhang M, Li C, Huang S, Wang J, Jin G. Promotion effect of salt on intramuscular neutral lipid hydrolysis during dry-salting process of porcine (biceps femoris) muscles by inducing phosphorylation of ATGL, HSL and their regulatory proteins of Perilipin1, ABHD5 and G0S2. Food Chem 2022; 373:131597. [PMID: 34815115 DOI: 10.1016/j.foodchem.2021.131597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Towards a better understanding of the formation mechanism of salt on intramuscular triglyceride (TG) hydrolysis occurring in biceps femoris (BF) muscles during dry-salting process, the changes of TG hydrolysis, TG hydrolysis activity and phosphorylation of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) as well as their regulatory proteins (Perilipin1, ABHD5, G0S2) with different salt content (0%, 1%, 3%, 5%) and salting time (the first and third day) were analyzed. The results showed that dry-salting significantly increased the TG hydrolase activity and hydrolysis extent with salting process proceed (P < 0.05), especially upon the treatment with 3% amount of salt. The SDS-PAGE and Western-blot results further demonstrated that the promotion of salt on TG hydrolysis in intramuscular adipocytes was mainly attributed to the activation of protein kinase activity and protein phosphorylation process. Accordingly, the ATGL and HSL were activated, and meanwhile, the TG hydrolysis pivotal switch perilipin1 was also turned on by phosphorylation modification.
Collapse
Affiliation(s)
- Jiajing Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Shilin Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Lichao He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food and Biotechnology, Wuhan Institute of Design and Science, Wuhan 430205, China
| | - Min Zhang
- College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Chengliang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangjia Huang
- College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamei Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Guofeng Jin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store and supply lipids for energy metabolism, membrane synthesis and production of lipid-derived signaling molecules. While compositional differences in the phospholipid monolayer or neutral lipid core of LDs impact their metabolism and function, the proteome of LDs has emerged as a major influencer in all aspects of LD biology. The perilipins (PLINs) are the most studied and abundant proteins residing on the LD surface. This Cell Science at a Glance and the accompanying poster summarize our current knowledge of the common and unique features of the mammalian PLIN family of proteins, the mechanisms through which they affect cell metabolism and signaling, and their links to disease.
Collapse
Affiliation(s)
- Charles P. Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mahima Devarajan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Sancar G, Liu S, Gasser E, Alvarez JG, Moutos C, Kim K, van Zutphen T, Wang Y, Huddy TF, Ross B, Dai Y, Zepeda D, Collins B, Tilley E, Kolar MJ, Yu RT, Atkins AR, van Dijk TH, Saghatelian A, Jonker JW, Downes M, Evans RM. FGF1 and insulin control lipolysis by convergent pathways. Cell Metab 2022; 34:171-183.e6. [PMID: 34986332 PMCID: PMC8863067 DOI: 10.1016/j.cmet.2021.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023]
Abstract
Inexorable increases in insulin resistance, lipolysis, and hepatic glucose production (HGP) are hallmarks of type 2 diabetes. Previously, we showed that peripheral delivery of exogenous fibroblast growth factor 1 (FGF1) has robust anti-diabetic effects mediated by the adipose FGF receptor (FGFR) 1. However, its mechanism of action is not known. Here, we report that FGF1 acutely lowers HGP by suppressing adipose lipolysis. On a molecular level, FGF1 inhibits the cAMP-protein kinase A axis by activating phosphodiesterase 4D (PDE4D), which separates it mechanistically from the inhibitory actions of insulin via PDE3B. We identify Ser44 as an FGF1-induced regulatory phosphorylation site in PDE4D that is modulated by the feed-fast cycle. These findings establish the FGF1/PDE4 pathway as an alternate regulator of the adipose-HGP axis and identify FGF1 as an unrecognized regulator of fatty acid homeostasis.
Collapse
Affiliation(s)
- Gencer Sancar
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sihao Liu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jacqueline G Alvarez
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Moutos
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kyeongkyu Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tim van Zutphen
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Yuhao Wang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Timothy F Huddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Brittany Ross
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yang Dai
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Zepeda
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Brett Collins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emma Tilley
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Matthew J Kolar
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Theo H van Dijk
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Lipid Droplets, Phospholipase A 2, Arachidonic Acid, and Atherosclerosis. Biomedicines 2021; 9:biomedicines9121891. [PMID: 34944707 PMCID: PMC8699036 DOI: 10.3390/biomedicines9121891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets, classically regarded as static storage organelles, are currently considered as dynamic structures involved in key processes of lipid metabolism, cellular homeostasis and signaling. Studies on the inflammatory state of atherosclerotic plaques suggest that circulating monocytes interact with products released by endothelial cells and may acquire a foamy phenotype before crossing the endothelial barrier and differentiating into macrophages. One such compound released in significant amounts into the bloodstream is arachidonic acid, the common precursor of eicosanoids, and a potent inducer of neutral lipid synthesis and lipid droplet formation in circulating monocytes. Members of the family of phospholipase A2, which hydrolyze the fatty acid present at the sn-2 position of phospholipids, have recently emerged as key controllers of lipid droplet homeostasis, regulating their formation and the availability of fatty acids for lipid mediator production. In this paper we discuss recent findings related to lipid droplet dynamics in immune cells and the ways these organelles are involved in regulating arachidonic acid availability and metabolism in the context of atherosclerosis.
Collapse
|
18
|
Pereira-Dutra FS, Bozza PT. Lipid droplets diversity and functions in inflammation and immune response. Expert Rev Proteomics 2021; 18:809-825. [PMID: 34668810 DOI: 10.1080/14789450.2021.1995356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lipid droplets (LDs) are dynamic and evolutionary conserved lipid-enriched organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell- and stimulus-regulated. Far beyond being simply a deposit of neutral lipids, accumulating evidence demonstrate that LDs act as spatial and temporal local for lipid and protein compartmentalization and signaling organization. AREAS COVERED This review focuses on the progress in our understanding of LD protein diversity and LD functions in the context of cell signaling and immune responses, highlighting the relationship between LD composition with the multiple roles of this organelle in immunometabolism, inflammation and host-response to infection. EXPERT OPINION LDs are essential platforms for various cellular processes, including metabolic regulation, cell signaling, and immune responses. The functions of LD in infection and inflammatory disease are associated with the dynamic and complexity of their proteome. Our contemporary view place LDs as critical regulators of different inflammatory and infectious diseases and key markers of leukocyte activation.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Choi Y, Kim DS, Lee MC, Park S, Lee JW, Om AS. Effects of Bacillus Subtilis-Fermented White Sword Bean Extract on Adipogenesis and Lipolysis of 3T3-L1 Adipocytes. Foods 2021; 10:1423. [PMID: 34205436 PMCID: PMC8235212 DOI: 10.3390/foods10061423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
To investigate the adipogenesis and lipolysis effects of the Bacillus subtilis-fermented white sword bean extract (FWSBE) on 3T3-L1 adipocytes, we treated 3T3-L1 preadipocytes before and after differentiation with FWSBE and measured triglyceride, free glycerol, mRNA, and protein levels. First, FWSBE reduced the cell viability of 3T3-L1 pre-adipocytes under 1000 µg/mL conditions. Triglyceride accumulation in 3T3-L1 pre-adipocytes was suppressed, and free glycerol content in mature 3T3-L1 adipocytes was increased in the FWSBE treatment groups, indicating that FWSBE has anti-obesity effects. Further, FWSBE suppressed adipogenesis in 3T3-L1 pre-adipocytes by lowering the protein levels of C/EBPα, PPARγ, and FAS and increasing the level of pACC and pAMPK. Additionally, FWSBE promoted lipolysis in mature 3T3-L1 adipocytes by increasing the transcription levels of Ppara, Acox, and Lcad and the protein levels of pHSL and ATGL. Thus, we suggest that FWSBE can be a potential dietary supplement because of its anti-obesity properties.
Collapse
Affiliation(s)
- Yujeong Choi
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
| | - Da-Som Kim
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
| | - Min-Chul Lee
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
| | - Seulgi Park
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
| | - Joo-Won Lee
- Department of Active Aging Industry, Division of Industrial Information Studies, Hanyang University, Seoul 04763, Korea
| | - Ae-Son Om
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, Korea; (Y.C.); (D.-S.K.); (M.-C.L.); (S.P.); (J.-W.L.)
- Department of Active Aging Industry, Division of Industrial Information Studies, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
20
|
Knebel B, Müller-Wieland D, Kotzka J. Lipodystrophies-Disorders of the Fatty Tissue. Int J Mol Sci 2020; 21:ijms21228778. [PMID: 33233602 PMCID: PMC7699751 DOI: 10.3390/ijms21228778] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Lipodystrophies are a heterogeneous group of physiological changes characterized by a selective loss of fatty tissue. Here, no fat cells are present, either through lack of differentiation, loss of function or premature apoptosis. As a consequence, lipids can only be stored ectopically in non-adipocytes with the major health consequences as fatty liver and insulin resistance. This is a crucial difference to being slim where the fat cells are present and store lipids if needed. A simple clinical classification of lipodystrophies is based on congenital vs. acquired and generalized vs. partial disturbance of fat distribution. Complications in patients with lipodystrophy depend on the clinical manifestations. For example, in diabetes mellitus microangiopathic complications such as nephropathy, retinopathy and neuropathy may develop. In addition, due to ectopic lipid accumulation in the liver, fatty liver hepatitis may also develop, possibly with cirrhosis. The consequences of extreme hypertriglyceridemia are typically acute pancreatitis or eruptive xanthomas. The combination of severe hyperglycemia with dyslipidemia and signs of insulin resistance can lead to premature atherosclerosis with its associated complications of coronary heart disease, peripheral vascular disease and cerebrovascular changes. Overall, lipodystrophy is rare with an estimated incidence for congenital (<1/1.000.000) and acquired (1-9/100.000) forms. Due to the rarity of the syndrome and the phenotypic range of metabolic complications, only studies with limited patient numbers can be considered. Experimental animal models are therefore useful to understand the molecular mechanisms in lipodystrophy and to identify possible therapeutic approaches.
Collapse
Affiliation(s)
- Birgit Knebel
- German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute for Clinical Biochemistry and Pathobiochemistry, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Dirk Müller-Wieland
- Clinical Research Center, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Jorg Kotzka
- German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- Correspondence: ; Tel.: +49-221-3382537
| |
Collapse
|
21
|
Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J 2020; 477:985-1008. [PMID: 32168372 DOI: 10.1042/bcj20190468] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Fatty acids (FAs) are stored safely in the form of triacylglycerol (TAG) in lipid droplet (LD) organelles by professional storage cells called adipocytes. These lipids are mobilized during adipocyte lipolysis, the fundamental process of hydrolyzing TAG to FAs for internal or systemic energy use. Our understanding of adipocyte lipolysis has greatly increased over the past 50 years from a basic enzymatic process to a dynamic regulatory one, involving the assembly and disassembly of protein complexes on the surface of LDs. These dynamic interactions are regulated by hormonal signals such as catecholamines and insulin which have opposing effects on lipolysis. Upon stimulation, patatin-like phospholipase domain containing 2 (PNPLA2)/adipocyte triglyceride lipase (ATGL), the rate limiting enzyme for TAG hydrolysis, is activated by the interaction with its co-activator, alpha/beta hydrolase domain-containing protein 5 (ABHD5), which is normally bound to perilipin 1 (PLIN1). Recently identified negative regulators of lipolysis include G0/G1 switch gene 2 (G0S2) and PNPLA3 which interact with PNPLA2 and ABHD5, respectively. This review focuses on the dynamic protein-protein interactions involved in lipolysis and discusses some of the emerging concepts in the control of lipolysis that include allosteric regulation and protein turnover. Furthermore, recent research demonstrates that many of the proteins involved in adipocyte lipolysis are multifunctional enzymes and that lipolysis can mediate homeostatic metabolic signals at both the cellular and whole-body level to promote inter-organ communication. Finally, adipocyte lipolysis is involved in various diseases such as cancer, type 2 diabetes and fatty liver disease, and targeting adipocyte lipolysis is of therapeutic interest.
Collapse
|
22
|
Li XX, Zhang SJ, Man KY, Chiu AP, Lo LH, To JC, Chiu CH, Chan CO, Mok DK, Rowlands DK, Keng VW. Schwann cell-specific Pten inactivation reveals essential role of the sympathetic nervous system activity in adipose tissue development. Biochem Biophys Res Commun 2020; 531:118-124. [DOI: 10.1016/j.bbrc.2020.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023]
|
23
|
Hofer P, Taschler U, Schreiber R, Kotzbeck P, Schoiswohl G. The Lipolysome-A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation. Metabolites 2020; 10:E147. [PMID: 32290093 PMCID: PMC7240967 DOI: 10.3390/metabo10040147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The catabolism of intracellular triacylglycerols (TAGs) involves the activity of cytoplasmic and lysosomal enzymes. Cytoplasmic TAG hydrolysis, commonly termed lipolysis, is catalyzed by the sequential action of three major hydrolases, namely adipose triglyceride lipase, hormone-sensitive lipase, and monoacylglycerol lipase. All three enzymes interact with numerous protein binding partners that modulate their activity, cellular localization, or stability. Deficiencies of these auxiliary proteins can lead to derangements in neutral lipid metabolism and energy homeostasis. In this review, we summarize the composition and the dynamics of the complex lipolytic machinery we like to call "lipolysome".
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| |
Collapse
|
24
|
Bio-transformation of green tea infusion with tannase and its improvement on adipocyte metabolism. Enzyme Microb Technol 2020; 135:109496. [DOI: 10.1016/j.enzmictec.2019.109496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
|
25
|
Kim JH, Lee S, Kim HY, Cho EJ. Acer okamotoanum inhibits adipocyte differentiation by the regulation of adipogenesis and lipolysis in 3T3‑L1 cells. Int J Mol Med 2020; 45:589-596. [PMID: 31894306 DOI: 10.3892/ijmm.2019.4448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/04/2019] [Indexed: 11/06/2022] Open
Abstract
Acer okamotoanum is reported to have various antioxidant, anti‑inflammatory and beneficial immune system effects. The anti‑adipocyte differentiation effects and mechanisms of the ethyl acetate (EtOAc) fraction of an A. okamotoanum extraction was investigated in 3T3‑L1 adipocyte cells. Treatment with differentiation inducers increased the level of triglycerides (TGs) in 3T3‑L1 adipocyte cells compared with an untreated control. However, the EtOAc fraction of A. okamotoanum significantly decreased TGs. Treatment with 1, 2.5 and 5 µg/ml showed weak activity, but TG production was inhibited at 10 µg/ml compared with the control. In addition, A. okamotoanum caused a significant downregulation of proteins related to adipogenesis, such as γ‑cytidine‑cytidine‑adenosine‑adenosine‑thymidine/enhancer binding protein‑α, ‑β and peroxisome proliferator‑activated receptor‑γ, compared with the untreated control. Furthermore, A. okamotoanum significantly upregulated lipolysis related protein, hormone‑sensitive lipase and the phosphorylation of adenosine monophosphate‑activated protein kinase (AMPK). Therefore, these results indicate that A. okamotoanum suppressed adipogenesis and increased lipolysis and the activation of AMPK, suggesting a protective role in adipocyte differentiation.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung‑Ang University, Anseong 17546, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
26
|
Wang J, Zhang L, Dong L, Hu X, Feng F, Chen F. 6-Gingerol, a Functional Polyphenol of Ginger, Promotes Browning through an AMPK-Dependent Pathway in 3T3-L1 Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14056-14065. [PMID: 31789021 DOI: 10.1021/acs.jafc.9b05072] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The main purpose of the present study was to investigate the browning effect of 6-gingerol (6G), one of the main functional compounds in the ethyl acetate extract of ginger (ginger ethyl acetate fraction, GEF), and its underlying mechanisms. In this study, we first discovered that GEF stimulated brown adipocyte differentiation by upregulating the expression levels of browning-specific transcription makers (UCP1, PRDM16, and PGC-1α), thereby reducing lipogenesis transcriptional regulator (C/EBPα) expression in 3T3-L1-differentiated adipocytes. Then, 6G (47.81 ± 0.62 mg/g) was identified as one of the main functional compounds in GEF using high-performance liquid chromatography. 6G promoted adipocyte browning, as evidenced by an increase in some brown/beige fat-specific genes (PGC-1α, Cidea, Prdm16, Cited1, SIRT1, Tmem26, and Ucp1) and proteins (UCP1, CEBP/β, PGC-1α, and PRDM16) expression levels. Moreover, 6G greatly improved mitochondrial respiration and energy metabolism by upregulating the expression levels of some mitochondrial biogenesis markers (Tfam, Nrf1, SIRT1, and p-AMPK/AMPK) and increasing the uncoupled oxygen consumption rate of protons leaked in 3T3-L1 cells. Comparison of the experimental results obtained with an inhibitor (dorsomorphin) and an activator (5-aminoimidazole-4-carboxamide ribonucleotide) suggested that the 6G-associated regulation of the energy metabolism effect was mediated partly through the AMPK signaling pathway. This study provides new insight into the promotion of fat browning and regulation of lipid metabolism by 6G and suggests that 6G likely has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310029 , China
| | - Lu Zhang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Li Dong
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Fengqin Feng
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310029 , China
| | - Fang Chen
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
27
|
Murphy CS, Liaw L, Reagan MR. In vitro tissue-engineered adipose constructs for modeling disease. BMC Biomed Eng 2019; 1:27. [PMID: 32133436 PMCID: PMC7055683 DOI: 10.1186/s42490-019-0027-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adipose tissue is a vital tissue in mammals that functions to insulate our bodies, regulate our internal thermostat, protect our organs, store energy (and burn energy, in the case of beige and brown fat), and provide endocrine signals to other organs in the body. Tissue engineering of adipose and other soft tissues may prove essential for people who have lost this tissue from trauma or disease. MAIN TEXT In this review, we discuss the applications of tissue-engineered adipose tissue specifically for disease modeling applications. We provide a basic background to adipose depots and describe three-dimensional (3D) in vitro adipose models for obesity, diabetes, and cancer research applications. CONCLUSIONS The approaches to engineering 3D adipose models are diverse in terms of scaffold type (hydrogel-based, silk-based and scaffold-free), species of origin (H. sapiens and M. musculus) and cell types used, which allows researchers to choose a model that best fits their application, whether it is optimization of adipocyte differentiation or studying the interaction of adipocytes and other cell types like endothelial cells. In vitro 3D adipose tissue models support discoveries into the mechanisms of adipose-related diseases and thus support the development of novel anti-cancer or anti-obesity/diabetes therapies.
Collapse
Affiliation(s)
- Connor S. Murphy
- Maine Medical Center Research Institute, Scarborough, ME USA
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME USA
- Center for Molecular Medicine and Center for Translational Research, 81 Research Drive, Scarborough, ME 04074 USA
| | - Lucy Liaw
- Maine Medical Center Research Institute, Scarborough, ME USA
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME USA
- School of Medicine, Tufts University, Boston, MA USA
- Center for Molecular Medicine and Center for Translational Research, 81 Research Drive, Scarborough, ME 04074 USA
| | - Michaela R. Reagan
- Maine Medical Center Research Institute, Scarborough, ME USA
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME USA
- School of Medicine, Tufts University, Boston, MA USA
- Center for Molecular Medicine and Center for Translational Research, 81 Research Drive, Scarborough, ME 04074 USA
| |
Collapse
|
28
|
Kim HS, Moon JH, Kim YM, Huh JY. Epigallocatechin Exerts Anti-Obesity Effect in Brown Adipose Tissue. Chem Biodivers 2019; 16:e1900347. [PMID: 31532890 DOI: 10.1002/cbdv.201900347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022]
Abstract
Catechins in green tea are well-known to be effective in reducing the risk of obesity. The purpose of this study was to elucidate the effects of catechins present in green tea on adipocyte differentiation and mature adipocyte metabolism. Treatment of 3T3-L1 mouse adipocyte during differentiation adipocytes with (-)-epigallocatechin (EGC) and gallic acid (GA) resulted in dose-dependent inhibition of adipogenesis. Specifically, EGC increased adiponectin and uncoupling protein 1 (UCP1) transcription in mature adipocytes. Transcription levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) were not significantly impacted by either of the compounds. These results suggest that the EGC is the most effective catechin having anti-obesity activity. Finally, EGC is an attractive candidate component for remodeling obesity.
Collapse
Affiliation(s)
- Hae-Soo Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Hak Moon
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joo-Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
29
|
Janah L, Kjeldsen S, Galsgaard KD, Winther-Sørensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Glucagon Resistance. Int J Mol Sci 2019; 20:E3314. [PMID: 31284506 PMCID: PMC6651628 DOI: 10.3390/ijms20133314] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon's potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.
Collapse
Affiliation(s)
- Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sasha Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, 3400 Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
30
|
Galsgaard KD, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Lipid Metabolism. Front Physiol 2019; 10:413. [PMID: 31068828 PMCID: PMC6491692 DOI: 10.3389/fphys.2019.00413] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/26/2019] [Indexed: 01/04/2023] Open
Abstract
Glucagon is secreted from the pancreatic alpha cells upon hypoglycemia and stimulates hepatic glucose production. Type 2 diabetes is associated with dysregulated glucagon secretion, and increased glucagon concentrations contribute to the diabetic hyperglycemia. Antagonists of the glucagon receptor have been considered as glucose-lowering therapy in type 2 diabetes patients, but their clinical applicability has been questioned because of reports of therapy-induced increments in liver fat content and increased plasma concentrations of low-density lipoprotein. Conversely, in animal models, increased glucagon receptor signaling has been linked to improved lipid metabolism. Glucagon acts primarily on the liver and by regulating hepatic lipid metabolism glucagon may reduce hepatic lipid accumulation and decrease hepatic lipid secretion. Regarding whole-body lipid metabolism, it is controversial to what extent glucagon influences lipolysis in adipose tissue, particularly in humans. Glucagon receptor agonists combined with glucagon-like peptide 1 receptor agonists (dual agonists) improve dyslipidemia and reduce hepatic steatosis. Collectively, emerging data support an essential role of glucagon for lipid metabolism.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Varghese M, Kimler VA, Ghazi FR, Rathore GK, Perkins GA, Ellisman MH, Granneman JG. Adipocyte lipolysis affects Perilipin 5 and cristae organization at the cardiac lipid droplet-mitochondrial interface. Sci Rep 2019; 9:4734. [PMID: 30894648 PMCID: PMC6426865 DOI: 10.1038/s41598-019-41329-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
This study investigated the effects of elevated fatty acid (FA) supply from adipose tissue on the ultrastructure of cardiac lipid droplets (LDs) and the expression and organization of LD scaffold proteins perilipin-2 (PLIN2) and perilipin-5 (PLIN5). Stimulation of adipocyte lipolysis by fasting (24 h) or β3-adrenergic receptor activation by CL316, 243 (CL) increased cardiac triacylglycerol (TAG) levels and LD size, whereas CL treatment also increased LD number. LDs were tightly associated with mitochondria, which was maintained during LD expansion. Electron tomography (ET) studies revealed continuity of LD and smooth endoplasmic reticulum (SER), suggesting interconnections among LDs. Under fed ad libitum conditions, the cristae of mitochondria that apposed LD were mostly organized perpendicularly to the tangent of the LD surface. Fasting significantly reduced, whereas CL treatment greatly increased, the perpendicular alignment of mitochondrial cristae. Fasting and CL treatment strongly upregulated PLIN5 protein and PLIN2 to a lesser extent. Immunofluorescence and immuno-electron microscopy demonstrated strong targeting of PLIN5 to the cardiac LD-mitochondrial interface, but not to the mitochondrial matrix. CL treatment augmented PLIN5 targeting to the LD-mitochondrial interface, whereas PLIN2 was not significantly affected. Together, our results support the concept that the interface between LD and cardiac mitochondria represents an organized and dynamic "metabolic synapse" that is highly responsive to FA trafficking.
Collapse
Affiliation(s)
- Mita Varghese
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Victoria A Kimler
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Fariha R Ghazi
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Gurnoor K Rathore
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, 92093, USA
| | - James G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
32
|
Nimri L, Staikin K, Peri I, Yehuda-Shnaidman E, Schwartz B. Ostreolysin induces browning of adipocytes and ameliorates hepatic steatosis. J Gastroenterol Hepatol 2018; 33:1990-2000. [PMID: 29663549 DOI: 10.1111/jgh.14259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Deposition of excess triglycerides in liver cells, a hallmark of NAFLD, is associated with loss of insulin sensitivity. Ostreolysin (Oly) is a 15-kDa fungal protein known to interact with cholesterol-enriched raft-like membrane domains. We aim to test whether a recombinant version of Oly (rOly) can induce functional changes in vitro in adipocytes or in vivo in mice fed a high-fat diet (HFD). METHODS White preadipocyte 3T3-L1 cells or mouse primary adipocytes treated with rOly. Male C57BL/6 mice were fed a control or HFD and treated with saline or with rOly (1 mg/kg BW) every other day for 4 weeks. RESULTS White preadipocyte 3T3-L1 cells or mouse primary adipocytes treated with rOly acquire a browning phenotype through activation of 5' adenosine monophosphate-activated protein kinase and downregulation of tumor necrosis factor α-mediated activation of IκB kinase ε and TANK-binding kinase 1. HFD-fed mice treated with rOly showed a 10% reduction in BW and improved glucose tolerance, which paralleled improved expression of liver and adipose functionality, metabolism, and inflammation status, mimicking the in vitro findings. CONCLUSION This study provides first evidence of rOly's prevention of HFD-induced NAFLD by stimulating liver and adipose muscle tissue functionality and oxidative potential, improving glucose tolerance, and ameliorating the metabolic profile of diet-induced obese mice.
Collapse
Affiliation(s)
- Lili Nimri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Katerina Staikin
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einav Yehuda-Shnaidman
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
33
|
Zhang C, Liu P. The New Face of the Lipid Droplet: Lipid Droplet Proteins. Proteomics 2018; 19:e1700223. [DOI: 10.1002/pmic.201700223] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Congyan Zhang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pingsheng Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
34
|
Choi RY, Lee HI, Ham JR, Yee ST, Kang KY, Lee MK. Heshouwu (Polygonum multiflorum Thunb.) ethanol extract suppresses pre-adipocytes differentiation in 3T3-L1 cells and adiposity in obese mice. Biomed Pharmacother 2018; 106:355-362. [PMID: 29966981 DOI: 10.1016/j.biopha.2018.06.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
This study investigated whether Heshouwu (Polygonum multiflorum Thunb.) root ethanol extract (PME) has anti-obesity activity using 3T3-L1 cells and high-fat diet (HFD)-induced obese mice. Treatment with PME (5 and 10 μg/mL) dose-dependently suppressed 3T3-L1 pre-adipocyte differentiation to adipocytes and cellular triglyceride contents. In addition, PME inhibited mRNA and protein expression of adipogenic transcription factors such as CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), which led to down-regulation of fatty acid synthase gene expression. After feeding mice PME (0.05%) with HFD for 12 weeks, their visceral fat mass, size and body weight were significantly reduced compared with the HFD group. Furthermore, PME supplementation significantly up-regulated the PPARα, CPT1, CPT2, UCP1 and HSL mRNA levels compared with the HFD group, whereas it down-regulated expression of the PPARγ and DGAT2 genes. Finally, HFD increased serum leptin, insulin, glucose and insulin and glucose levels; however, PME reversed these changes. These results demonstrated that PME might relieve obesity that occurs via inhibition of adipogenesis and lipogenesis as well as through lipolysis and fatty acid oxidation in 3T3-L1 cells and HFD-induced obese mice.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Hae-In Lee
- Mokpo Marin Food-Industry Research Center, Mokpo, 58621, Republic of Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Sung-Tae Yee
- College of Pharmacy, Sunchon National University, Suncheon, 57922, Republic of Korea; Suncheon Research Center for Natural Medicines, Suncheon, 57922, Republic of Korea
| | - Kyung-Yun Kang
- Suncheon Research Center for Natural Medicines, Suncheon, 57922, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea; Suncheon Research Center for Natural Medicines, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
35
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
36
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
37
|
Rogne M, Chu DT, Küntziger TM, Mylonakou MN, Collas P, Tasken K. OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. Mol Biol Cell 2018; 29:1487-1501. [PMID: 29688805 PMCID: PMC6014102 DOI: 10.1091/mbc.e17-09-0538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Optic atrophy 1 (OPA1) is the A-kinase anchoring protein targeting the pool of protein kinase A (PKA) responsible for perilipin 1 phosphorylation, a gatekeeper for lipolysis. However, the involvement of OPA1-bound PKA in the downstream regulation of lipolysis is unknown. Here we show up-regulation and relocation of OPA1 from mitochondria to lipid droplets during adipocytic differentiation of human adipose stem cells. We employed various biochemical and immunological approaches to demonstrate that OPA1-bound PKA phosphorylates perilipin 1 at S522 and S497 on lipolytic stimulation. We show that the first 30 amino acids of OPA1 are essential for its lipid droplet localization as is OMA1-dependent processing. Finally, our results indicate that presence of OPA1 is necessary for lipolytic phosphorylation of downstream targets. Our results show for the first time, to our knowledge, how OPA1 mediates adrenergic control of lipolysis in human adipocytes by regulating phosphorylation of perilipin 1.
Collapse
Affiliation(s)
- Marie Rogne
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Dinh-Toi Chu
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | | | - Maria-Niki Mylonakou
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.,Norewegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kjetil Tasken
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
38
|
Haczeyni F, Bell-Anderson KS, Farrell GC. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev 2018; 19:406-420. [PMID: 29243339 DOI: 10.1111/obr.12646] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/28/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Adipose tissue plays a significant role in whole body energy homeostasis. Obesity-associated diabetes, fatty liver and metabolic syndrome are closely linked to adipose stress and dysfunction. Genetic predisposition, overeating and physical inactivity influence the expansion of adipose tissues. Under conditions of constant energy surplus, adipocytes become hypertrophic and adipose tissues undergo hyperplasia so as to increase their lipid storage capacity, thereby keeping circulating blood glucose and fatty acids below toxic levels. Nonetheless, adipocytes have a saturation point where they lose capacity to store more lipids. At this stage, when adipocytes are fully lipid-engorged, they express stress signals. Adipose depots (particularly visceral compartments) from obese individuals with a severe metabolic phenotype are characterized by the high proportion of hypertrophic adipocytes. This review focuses on the mechanisms of adipocyte enlargement in relation to adipose fatty acid and cholesterol metabolism, and considers how this may be related to adipose dysfunction.
Collapse
Affiliation(s)
- F Haczeyni
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Canberra, ACT, Australia
| | - K S Bell-Anderson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - G C Farrell
- Liver Research Group, Australian National University Medical School at The Canberra Hospital, Canberra, ACT, Australia
| |
Collapse
|
39
|
Liu L, Wang N, Ma Y, Liu Y, Wen D. Saponins fromBoussingaultia gracilisprevent obesity and related metabolic impairments in diet-induced obese mice. Food Funct 2018; 9:5660-5673. [DOI: 10.1039/c8fo01264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Saponins fromBoussingaultia gracilisattenuate obesity and its related metabolic disorders in diet-induced obese mice.
Collapse
Affiliation(s)
- Lei Liu
- School of Public Health
- Dalian Medical University
- Dalian
- P.R. China
| | - Ningning Wang
- School of Public Health
- Dalian Medical University
- Dalian
- P.R. China
| | - Yanan Ma
- School of Public Health
- China Medical University
- Shenyang
- P.R. China
| | - Yang Liu
- School of Public Health
- China Medical University
- Shenyang
- P.R. China
| | - Deliang Wen
- School of Public Health
- China Medical University
- Shenyang
- P.R. China
| |
Collapse
|
40
|
Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Sci Rep 2017; 7:15011. [PMID: 29118433 PMCID: PMC5678101 DOI: 10.1038/s41598-017-15059-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
Perilipin 1 is a lipid droplet coating protein known to regulate lipid metabolism in adipocytes by serving as a physical barrier as well as a recruitment site for lipases to the lipid droplet. Phosphorylation of perilipin 1 by protein kinase A rapidly initiates lipolysis, but the detailed mechanism on how perilipin 1 controls lipolysis is unknown. Here, we identify specific lipid binding properties of perilipin 1 that regulate the dynamics of lipolysis in human primary adipocytes. Cellular imaging combined with biochemical and biophysical analyses demonstrate that perilipin 1 specifically binds to cholesteryl esters, and that their dynamic properties direct segregation of perilipin 1 into topologically distinct micro domains on the lipid droplet. Together, our data points to a simple unifying mechanism that lipid assembly and segregation control lipolysis in human primary adipocytes.
Collapse
|
41
|
Zhang Y, Li J, Wen X. Jueming prescription and its ingredients, semen cassiae and Rhizoma Curcumae Longae, stimulate lipolysis and enhance the phosphorylation of hormone-sensitive lipase in cultured rat white adipose tissue. Mol Med Rep 2017; 16:6200-6207. [DOI: 10.3892/mmr.2017.7317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 07/03/2017] [Indexed: 11/06/2022] Open
|
42
|
Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1221-1232. [PMID: 28754637 DOI: 10.1016/j.bbalip.2017.07.009] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
Lipid droplets in chordates are decorated by two or more members of the perilipin family of lipid droplet surface proteins. The perilipins sequester lipids by protecting lipid droplets from lipase action. Their relative expression and protective nature is adapted to the balance of lipid storage and utilization in specific cells. Most cells of the body have tiny lipid droplets with perilipins 2 and 3 at the surfaces, whereas specialized fat-storing cells with larger lipid droplets also express perilipins 1, 4, and/or 5. Perilipins 1, 2, and 5 modulate lipolysis by controlling the access of lipases and co-factors of lipases to substrate lipids stored within lipid droplets. Although perilipin 2 is relatively permissive to lipolysis, perilipins 1 and 5 have distinct control mechanisms that are altered by phosphorylation. Here we evaluate recent progress toward understanding functions of the perilipins with a focus on their role in regulating lipolysis and autophagy. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Carole Sztalryd
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD, USA; Geriatric Research, Education, and Clinical Center, Baltimore Veterans Affairs Health Care Center, Baltimore, MD, USA.
| | - Dawn L Brasaemle
- Department of Nutritional Sciences and Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
43
|
Kimmel AR, Sztalryd C. The Perilipins: Major Cytosolic Lipid Droplet-Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis. Annu Rev Nutr 2017; 36:471-509. [PMID: 27431369 DOI: 10.1146/annurev-nutr-071813-105410] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein-protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, Maryland 20892;
| | - Carole Sztalryd
- The Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.,Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
44
|
Bersuker K, Olzmann JA. Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28627435 DOI: 10.1016/j.bbalip.2017.06.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipid droplets (LDs) are ubiquitous, endoplasmic reticulum (ER)-derived organelles that mediate the sequestration of neutral lipids (e.g. triacylglycerol and sterol esters), providing a dynamic cellular storage depot for rapid lipid mobilization in response to increased cellular demands. LDs have a unique ultrastructure, consisting of a core of neutral lipids encircled by a phospholipid monolayer that is decorated with integral and peripheral proteins. The LD proteome contains numerous lipid metabolic enzymes, regulatory scaffold proteins, proteins involved in LD clustering and fusion, and other proteins of unknown functions. The cellular role of LDs is inherently determined by the composition of its proteome and alteration of the LD protein coat provides a powerful mechanism to adapt LDs to fluctuating metabolic states. Here, we review the current understanding of the molecular mechanisms that govern LD protein targeting and degradation. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Kirill Bersuker
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
45
|
Zhu X, Yang L, Xu F, Lin L, Zheng G. Combination therapy with catechins and caffeine inhibits fat accumulation in 3T3-L1 cells. Exp Ther Med 2016; 13:688-694. [PMID: 28352352 DOI: 10.3892/etm.2016.3975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Catechins and caffeine, which are green tea components, have a slimming effect; however, the combinational effect of fat metabolism in 3T3-L1 cells remains unclear. In the present study, 3T3-L1 cells were treated with catechins and caffeine in combination, and it was found that combination therapy with catechins and caffeine markedly reduced intracellular fat accumulation, mRNA expression levels of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer-binding protein α in the early stage of cell differentiation were significantly reduced, and mRNA expression of fatty acid synthetase(FAS) andglycerol-3-phosphate dehydrogenase protein expression levels of FAS were downregulated. Noradrenaline-induced lipolysis was enhanced by caffeine, which markedly increased the protein expression of adipose triglyceride lipase and hormone sensitive lipase. These results indicated that combination therapy with catechins and caffeine synergistically inhibited lipid accumulation by regulating the gene and protein expression levels of lipid metabolism-related enzymes. Therefore, catechins and caffeine combination therapy has potential as a functional food that may be used to prevent obesity and lifestyle-associated diseases.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Feng Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| |
Collapse
|
46
|
Daniel J, Kapoor N, Sirakova T, Sinha R, Kolattukudy P. The perilipin-like PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol accumulation under dormancy-inducing conditions. Mol Microbiol 2016; 101:784-94. [PMID: 27325376 DOI: 10.1111/mmi.13422] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 01/15/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes latent tuberculosis infection in one-third of the world population and remains quiescent in the human body for decades. The dormant pathogen accumulates lipid droplets containing triacylglycerol (TAG). In mammals, perilipin regulates lipid droplet homeostasis but no such protein has been identified in Mtb. We identified an Mtb protein (PPE15) that showed weak amino acid sequence identities with mammalian perilipin-1 and was upregulated in Mtb dormancy. We generated a ppe15 gene-disrupted mutant of Mtb and examined its ability to metabolically incorporate radiolabeled oleic acid into TAG, accumulate lipid droplets containing TAG and develop phenotypic tolerance to rifampicin in two in vitro models of dormancy including a three-dimensional human granuloma model. The mutant showed a significant decrease in the biosynthesis and accumulation of lipid droplets containing TAG and in its tolerance of rifampicin. Complementation of the mutant with a wild-type copy of the ppe15 gene restored the lost phenotypes. We designate PPE15 as mycobacterial perilipin-1 (MPER1). Our findings suggest that the MPER1 protein plays a critical role in the homeostasis of TAG -containing lipid droplets in Mtb and influences the entry of the pathogen into a dormant state.
Collapse
Affiliation(s)
- Jaiyanth Daniel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA.,Department of Biology, Indiana University-Purdue University Fort Wayne, Fort Wayne, IN 46805, USA
| | - Nidhi Kapoor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Tatiana Sirakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Rajesh Sinha
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Pappachan Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
47
|
CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Sci Rep 2016; 6:27938. [PMID: 27301791 PMCID: PMC4908383 DOI: 10.1038/srep27938] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21.
Collapse
|
48
|
The adipokine Chemerin induces lipolysis and adipogenesis in bovine intramuscular adipocytes. Mol Cell Biochem 2016; 418:39-48. [DOI: 10.1007/s11010-016-2731-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/26/2016] [Indexed: 11/26/2022]
|
49
|
Monoterpene limonene induces brown fat-like phenotype in 3T3-L1 white adipocytes. Life Sci 2016; 153:198-206. [DOI: 10.1016/j.lfs.2016.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/22/2022]
|
50
|
Rowe ER, Mimmack ML, Barbosa AD, Haider A, Isaac I, Ouberai MM, Thiam AR, Patel S, Saudek V, Siniossoglou S, Savage DB. Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1-3. J Biol Chem 2016; 291:6664-78. [PMID: 26742848 PMCID: PMC4807253 DOI: 10.1074/jbc.m115.691048] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs inSaccharomyces cerevisiae,demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targetingin vivoandin vitro Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.
Collapse
Affiliation(s)
- Emily R Rowe
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Michael L Mimmack
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Antonio D Barbosa
- the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Afreen Haider
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Iona Isaac
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Myriam M Ouberai
- the Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, United Kingdom, and
| | - Abdou Rachid Thiam
- the Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Satish Patel
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Vladimir Saudek
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Symeon Siniossoglou
- the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David B Savage
- From the University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom,
| |
Collapse
|