1
|
Ou KL, Huang CH, Tsai S, Inaba M, Jiang TX, Chuong CM. Two waves of adipogenesis in developing avian skin and dermal plasticity. Dev Biol 2025:S0012-1606(25)00142-3. [PMID: 40412743 DOI: 10.1016/j.ydbio.2025.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/24/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
How the complex architecture of skin is constructed, balancing both similarity and adaptive diversity, is not well understood. We propose that the developmental assembly of skin components, including skin appendages, dermal muscles, dermal adipose tissues, and vasculature, is interdependent and adaptive, enabling different species to adjust to their respective environments. Using the developing chicken skin model, we recently demonstrated that the intradermal muscle network and vasculature are organized with feather buds as reference points during the process of adaptive tissue patterning. In this study, we investigate the development of adipose tissue in the avian skin and compare them in different avian species (chicken, quail, duck). Avian skin contains two types of adipose tissue: subcutaneous white adipose tissue (SWAT) is skin associate adipose tissue located in subcutaneous layer, while dermal white adipose tissue (DWAT) consists of a layer of adipocytes within the dermis. Using elastin to distinguish dermal and subcutaneous layers, we observed two distinct waves of adipogenesis, shown by Oil Red O staining. The first wave, representing SWAT, begins around chicken embryonic day 14 (E14) from the posterior dorsal region. These adipocyte clusters are aligned with vasculatures. The second wave, representing DWAT, starts around E16, from the body midline where feather buds are more mature and starts to form smooth muscle network. DWAT adipocytes appear around feather follicles and align with the intradermal smooth muscle network, forming a grid pattern. The association between DWAT and dermal muscle was further explored. Some SMA-positive cells show co-expression of early adipocyte markers, suggesting a shared lineage. Lineage tracing using SMA-Cre revealed that some SMA+ cells in developing skin can give rise to adipocytes, shown by co-staining with the C/EBPα antibody. To explore differences of adipose tissues in birds living in different environments, we examined aquatic bird duck. In the duck, the first wave of SWAT appears in embryonic development from both scapular and femoral regions, while the second wave of DWAT also starts from the midline, surrounding feather follicles. Both waves are significantly more abundant in ducks, reflecting the adaptation in the duck skin. These findings suggest developmental relationships among tissue components in the skin-such as feathers, fat, vasculature, and dermal smooth muscle-are interconnected and adaptive, setting up the foundation for further investigation on regulatory mechanisms of dermal plasticity.
Collapse
Affiliation(s)
- Kuang-Ling Ou
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, The University of Southern California, California, USA; Burn Center and Division of Plastic and Reconstructive Surgery, Department of Surgery and Critical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Han Huang
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, The University of Southern California, California, USA; Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Stephanie Tsai
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, The University of Southern California, California, USA; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Masafumi Inaba
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Riley N, Kasza I, Hermsmeyer IDK, Trautman ME, Barrett-Wilt G, Jain R, Simcox JA, Yen CLE, MacDougald OA, Lamming DW, Alexander CM. Dietary lipids are largely deposited in skin and rapidly affect insulating properties. Nat Commun 2025; 16:4570. [PMID: 40379673 PMCID: PMC12084621 DOI: 10.1038/s41467-025-59869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Skin is a regulatory hub for energy expenditure and metabolism, and alteration of lipid metabolism enzymes in skin impacts thermogenesis and obesogenesis in mice. Here we show that thermal properties of skin are highly reactive to diet: within three days, a high fat diet reduces heat transfer through skin. In contrast, a dietary manipulation that prevents obesity accelerates energy loss through skins. We find that skin is the largest target for dietary fat delivery, and that dietary triglyceride is assimilated by epidermis and dermal white adipose tissue, persisting for weeks after feeding. With caloric-restriction, mouse skins thin and assimilation of circulating lipids decreases. Using multi-modal lipid profiling, keratinocytes and sebocytes are implicated in lipid changes, which correlate with thermal function. We propose that skin should be routinely included in physiological studies of lipid metabolism, given the size of the skin lipid reservoir and its adaptable functionality.
Collapse
Affiliation(s)
- Nick Riley
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, USA
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, USA
| | - Isabel D K Hermsmeyer
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | | | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, USA
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, USA
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, USA
- William S. Middleton Memorial Veterans Hospital, Madison, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
3
|
De Francesco F, Sbarbati A, Sierra LAQ, Zingaretti N, Sarmadian Z, Parodi PC, Ricci G, Riccio M, Mobasheri A. Anatomy, Histology, and Embryonic Origin of Adipose Tissue: Insights to Understand Adipose Tissue Homofunctionality in Regeneration and Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:53-78. [PMID: 39107527 DOI: 10.1007/5584_2024_801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Preadipocytes are formed during the 14th and 16th weeks of gestation. White adipose tissue, in particular, is generated in specific areas and thereby assembles after birth, rapidly increasing following the propagation of adipoblasts, which are considered the preadipocyte cell precursors. The second trimester of gestation is a fundamental phase of adipogenesis, and in the third trimester, adipocytes, albeit small may be present within the main deposition areas. In the course of late gestation, adipose tissue develops in the foetus and promotes the synthesis of large amounts of uncoupling protein 1, in similar quantities relative to differentiated brown adipose tissue. In mammals, differentiation occurs in two functionally different types of adipose cells: white adipose cells resulting from lipid storage and brown adipose cells from increased metabolic energy consumption. During skeletogenesis, synovial joints develop through the condensation of mesenchymal cells, which forms an insertional layer of flattened cells that umlaut skeletal elements, by sharing the same origin in the development of synovium. Peri-articular fat pads possess structural similarity with body subcutaneous white adipose tissue; however, they exhibit a distinct metabolic function due to the micro-environmental cues in which they are embedded. Fat pads are an important component of the synovial joint and play a key role in the maintenance of joint homeostasis. They are also implicated in pathological states such as osteoarthritis.In this paper we explore the therapeutic potential of adipocyte tissue mesenchymal precursor-based stem cell therapy linking it back to the anatomic origin of adipose tissue.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona, Italy
| | | | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Zahra Sarmadian
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Pier Camillo Parodi
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Joint Surgery, Sun Yat-sen University, Guangzhou, People's Republic of China.
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
4
|
Widgerow AD. Adipose Tissue, Regeneration, and Skin Health: The Next Regenerative Frontier. Aesthet Surg J Open Forum 2024; 6:ojae117. [PMID: 39703369 PMCID: PMC11658414 DOI: 10.1093/asjof/ojae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Adipose tissue, or fat compartments, has long been considered a storage depot and an energy source. However, a large part of new research, starting with the discovery of adipose-derived stem cells, has redirected this thinking toward the tremendous regenerative capacity that adipose tissue possesses when it is healthy. This has resulted in multiple technologies being explored with fat as a basis or with fat as a target aiming at the stimulation of new small hyperplastic adipose cells exuding adipokines and encouraging the proliferation of a whole host of progenitor cells that can have positive effects on many organ systems. One of these organ systems is skin, and there is a direct correlation with various fat compartments and skin health. Dermal fat tissue, also known as dermal white adipose tissue, is one such compartment that originates from dermal preadipocytes transdifferentiating into adipocytes and progenitor adipose cells under the right cues. The author of this paper discusses these potential cues, including injectable fillers, fat grafts, and topical formulations, and their capacity to impact skin health through the generation of healthy fat tissue. In addition, small molecules such as glucagon-like peptide-1 peptides and their impact on fat tissue are discussed. Adipose tissue is being recognized as the next regenerative frontier with exciting prospects ahead. Level of Evidence 5 Therapeutic
Collapse
Affiliation(s)
- Alan D Widgerow
- Corresponding Author: Dr Alan D. Widgerow, 9 Waterway, Irvine, CA 92614, USA. E-mail: ; Instagram: @alanwidge
| |
Collapse
|
5
|
Stryjek R, Parsons MH, Bebas P. Insights into tail-belting by wild mice encourages fresh perspectives on physiological mechanisms that safeguard mammal tissues from freezing. Sci Rep 2024; 14:28933. [PMID: 39578524 PMCID: PMC11584707 DOI: 10.1038/s41598-024-79594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
We investigated tail-belting (TB), the newly-discovered freeze avoidance behavior among wild rodents. When temperatures dropped to -6 °C, wild mice (Apodemus agrarius and Apodemus flavicollis) were observed curling their tails inward and positioning it on the back. A literature search suggested TB had never been documented, presumably because rodents, especially in the laboratory, are seldomly assayed under cold stress. Due to the infrequent occurrence of the behavior, we used infrared and thermal cameras to confirm observations. We also collected tail-skin samples to investigate whether any physiological mechanisms might co-occur with TB. If such mechanisms were found, they could inform wider debate involving freeze protection among mammals, and could potentially lead to understanding mammal susceptibility or resilience to sudden temperature changes such as those associated with climate change. Lastly, we scored behaviors by bank voles (Myodes glareolus) which unexpectedly visited chambers. Across four winters, we observed TB in both Apodemus species during subzero conditions, but bank voles never performed the behavior. We also confirmed that TB occurs as an adaptive reflex which warms the tail. From tissue samples, we found that free amino acids, peptides, and glycoproteins were significantly higher during cold-stress. Thus, TB may have been accompanied by the expression of cold-protective proteins which ostensibly enable the peripheral body parts of mammals to survive temperatures well below 0 °C. These findings should inspire new dialogue regarding the role of lipids in tissues of peripheral organs in mammals. By extension, our findings may lead to the discovery of a putative cryoprotection mechanism among mammals.
Collapse
Affiliation(s)
- Rafal Stryjek
- Institute of Psychology, Polish Academy of Sciences, Jaracza 1, 00-378, Warsaw, Poland.
| | - Michael H Parsons
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, NY, USA
- Centre for Urban Ecological Solutions, LLC Spring, Houston, TX, USA
| | - Piotr Bebas
- Department of Animal Physiology, Faculty of Biology, Institute of Experimental Zoology, University of Warsaw, 1 Miecznikowa Str, 02-096, Warsaw, Poland.
| |
Collapse
|
6
|
Riley N, Kasza I, Hermsmeyer IDK, Trautman ME, Barrett-Wilt G, Jain R, Simcox JA, Yen CLE, MacDougald OA, Lamming DW, Alexander CM. Dietary lipid is largely deposited in skin and rapidly affects insulating properties. RESEARCH SQUARE 2024:rs.3.rs-3957002. [PMID: 38464106 PMCID: PMC10925457 DOI: 10.21203/rs.3.rs-3957002/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Skin has been shown to be a regulatory hub for energy expenditure and metabolism: mutations of skin lipid metabolism enzymes can change the rate of thermogenesis and susceptibility to diet-induced obesity. However, little is known about the physiological basis for this function. Here we show that the thermal properties of skin are highly reactive to diet: within three days, a high fat diet reduces heat transfer through skin. In contrast, a dietary manipulation that prevents obesity accelerates energy loss through skins. We found that skin was the largest target in a mouse body for dietary fat delivery, and that dietary triglyceride was assimilated both by epidermis and by dermal white adipose tissue. Skin from mice calorie-restricted for 3 weeks did not take up circulating lipids and showed a highly depleted stratum corneum. Dietary triglyceride acyl groups persist in skin for weeks after feeding. Using multi-modal lipid profiling, we have implicated both keratinocytes and sebocytes in the altered lipids which correlate with thermal function. In response to high fat feeding, wax diesters and ceramides accumulate, and triglycerides become more saturated. In contrast, in response to the dramatic loss of adipose tissue that accompanies restriction of the branched chain amino acid isoleucine, skin becomes more heat-permeable, resisting changes induced by Western diet feeding, with a signature of depleted signaling lipids. We propose that skin should be routinely included in physiological studies of lipid metabolism, given the size of the skin lipid reservoir and its adaptable functionality.
Collapse
Affiliation(s)
- Nick Riley
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
| | | | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison
- William S. Middleton Memorial Veterans Hospital, Madison
| | | | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison
- Howard Hughes Medical Institute, University of Wisconsin-Madison
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison
| | | | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison
- William S. Middleton Memorial Veterans Hospital, Madison
| | | |
Collapse
|
7
|
Peng Y, Cheong S, Lu F, He Y. Dermal white adipose tissue: Development and impact on hair follicles, skin defense, and fibrosis. FASEB J 2024; 38:e70047. [PMID: 39292527 DOI: 10.1096/fj.202400653r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024]
Abstract
Dermal white adipose tissue (DWAT) is a distinctive adipose depot located within the lower dermis of the skin. Its significance as an ancillary fat in skin homoeostasis has recently received increased attention. New research has revealed that DWAT responses to skin pathology and physiology changes, impacting skin development, hair cycling, defense mechanisms, and fibrotic conditions. In this review, we explore the developmental process of DWAT and the adipose commitment timing of hypodermal. We explore the development process of DWAT and its pivotal role in regulating the hair cycle. We conclude the antibacterial activity and reversible dedifferentiation of dermal adipocytes in response to skin defense. Furthermore, we underscore the potentially crucial yet underestimated anti-fibrotic functions of DWAT-derived adipokines and adipocyte-myofibroblast transition.
Collapse
Affiliation(s)
- Yujie Peng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Sousan Cheong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
8
|
Traynor S, Bhattacharya S, Batmanov K, Cheng L, Weller A, Moore N, Flesher C, Merrick D. Developmental regulation of dermal adipose tissue by BCL11b. Genes Dev 2024; 38:772-783. [PMID: 39266447 PMCID: PMC11444185 DOI: 10.1101/gad.351907.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
The distinct anatomic environment in which adipose tissues arise during organogenesis is a principle determinant of their adult expansion capacity. Metabolic disease results from a deficiency in hyperplastic adipose expansion within the dermal/subcutaneous depot; thus, understanding the embryonic origins of dermal adipose is imperative. Using single-cell transcriptomics throughout murine embryogenesis, we characterized cell populations, including Bcl11b + cells, that regulate the development of dermal white adipose tissue (dWAT). We discovered that BCL11b expression modulates the Wnt signaling microenvironment to enable adipogenic differentiation in the dermal compartment. Subcutaneous and visceral adipose arises from a distinct population of Nefl + cells during embryonic organogenesis, whereas Pi16 + /Dpp4 + fibroadipogenic progenitors support obesity-stimulated hypertrophic expansion in the adult. Together, these results highlight the unique regulatory pathways used by anatomically distinct adipose depots, with important implications for human metabolic disease.
Collapse
Affiliation(s)
- Sarah Traynor
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shashwati Bhattacharya
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kirill Batmanov
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lan Cheng
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Angela Weller
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Natalie Moore
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Carmen Flesher
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Merrick
- Department of Medicine, Division of Endocrinology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Huang S, He H, Tom RZ, Glasl S, Anzenhofer P, Stiel AC, Hofmann SM, Ntziachristos V. Non-invasive optoacoustic imaging of dermal microcirculatory revascularization in diet-induced obese mice undergoing exercise intervention. PHOTOACOUSTICS 2024; 38:100628. [PMID: 39055739 PMCID: PMC11269314 DOI: 10.1016/j.pacs.2024.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Microcirculatory dysfunction has been observed in the dermal white adipose tissue (dWAT) and subcutaneous white adipose tissue (scWAT) of obese humans and has been proposed as an early prediction marker for cardio-metabolic disease progression. In-vivo visualization and longitudinal monitoring of microvascular remodeling in these tissues remains challenging. We compare the performance of two optoacoustic imaging methods, i.e. multi-spectral optoacoustic tomography (MSOT) and raster-scanning optoacoustic mesoscopy (RSOM) in visualizing lipid and hemoglobin contrast in scWAT and dWAT in a mouse model of diet-induced obesity (DIO) undergoing voluntary wheel running intervention for 32 weeks. MSOT visualized lipid and hemoglobin contrast in murine fat depots in a quantitative manner even at early stages of DIO. We show for the first time to our knowledge that RSOM allows precise visualization of the dWAT microvasculature and provides quantitative readouts of skin layer thickness and vascular density in dWAT and dermis. Combination of MSOT and RSOM resolved exercise-induced morphological changes in microvasculature density, tissue oxygen saturation, lipid and blood volume content in dWAT and scWAT. The combination of MSOT and RSOM may allow precise monitoring of microcirculatory dysfunction and intervention response in dWAT and scWAT in a mouse model for DIO. Our findings have laid out the foundation for future clinical studies using optoacoustic-derived vascular readouts from adipose tissues as a biomarker for monitoring microcirculatory function in metabolic disease.
Collapse
Affiliation(s)
- Shan Huang
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Hailong He
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Robby Zachariah Tom
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Pia Anzenhofer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- University of Regensburg, Faculty for Biology, Regensburg, Germany
| | - Susanna M. Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Jussila A, Zhang B, Kirti S, Atit R. Tissue fibrosis associated depletion of lipid-filled cells. Exp Dermatol 2024; 33:e15054. [PMID: 38519432 PMCID: PMC10977660 DOI: 10.1111/exd.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function. In some contexts, lipid-filled cells can impact ECM composition and stability, highlighting their importance in fibrotic transformation. Recent papers in fibrosis address this newly recognized fibrotic lipodystrophy phenomenon. Even in disparate tissues, common mechanisms are emerging to explain fibrotic lipodystrophy. These findings have implications for fibrosis in tissues composed of fibroblast and lipid-filled cell populations such as skin, lung, and liver. In this review, we will discuss the roles of lipid-containing cells, their reduction/loss during fibrotic transformation, and the mechanisms of that loss in the skin and lungs.
Collapse
Affiliation(s)
- Anna Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Radhika Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Li Y, Long J, Zhang Z, Yin W. Insights into the unique roles of dermal white adipose tissue (dWAT) in wound healing. Front Physiol 2024; 15:1346612. [PMID: 38465261 PMCID: PMC10920283 DOI: 10.3389/fphys.2024.1346612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Dermal white adipose tissue (dWAT) is a newly recognized layer of adipocytes within the reticular dermis of the skin. In many mammals, this layer is clearly separated by panniculus carnosus from subcutaneous adipose tissue (sWAT). While, they concentrated around the hair shaft and follicle, sebaceous gland, and arrector pili muscle, and forms a very specific cone geometry in human. Both the anatomy and the histology indicate that dWAT has distinct development and functions. Different from sWAT, the developmental origin of dWAT shares a common precursor with dermal fibroblasts during embryogenesis. Therefore, when skin injury happens and mature adipocytes in dWAT are exposed, they may undergo lipolysis and dedifferentiate into fibroblasts to participate in wound healing as embryogenetic stage. Studies using genetic strategies to selectively ablate dermal adipocytes observed delayed revascularization and re-epithelialization in wound healing. This review specifically summarizes the hypotheses of the functions of dWAT in wound healing. First, lipolysis of dermal adipocytes could contribute to wound healing by regulating inflammatory macrophage infiltration. Second, loss of dermal adipocytes occurs at the wound edge, and adipocyte-derived cells then become ECM-producing wound bed myofibroblasts during the proliferative phase of repair. Third, mature dermal adipocytes are rich resources for adipokines and cytokines and could release them in response to injury. In addition, the dedifferentiated dermal adipocytes are more sensitive to redifferentiation protocol and could undergo expansion in infected wound. We then briefly introduce the roles of dWAT in protecting the skin from environmental challenges: production of an antimicrobial peptide against infection. In the future, we believe there may be great potential for research in these areas: (1) taking advantage of the plasticity of dermal adipocytes and manipulating them in wound healing; (2) investigating the precise mechanism of dWAT expansion in infected wound healing.
Collapse
Affiliation(s)
| | | | | | - Wen Yin
- *Correspondence: Ziang Zhang, ; Wen Yin,
| |
Collapse
|
12
|
Gyurina K, Yarmak M, Sasi-Szabó L, Molnár S, Méhes G, Röszer T. Loss of Uncoupling Protein 1 Expression in the Subcutaneous Adipose Tissue Predicts Childhood Obesity. Int J Mol Sci 2023; 24:16706. [PMID: 38069028 PMCID: PMC10706300 DOI: 10.3390/ijms242316706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Stimulation of thermogenesis by inducing uncoupling protein 1 (UCP1) expression in adipocytes is thought to promote weight loss by increasing energy expenditure, and it is postulated that the human newborn has thermogenic subcutaneous fat depots. However, it remains unclear whether a relevant number of UCP1-expressing (UCP1+) adipocytes exist in the early postnatal life. Here we studied the distribution of UCP1 and the expression of thermogenic genes in the subcutaneous adipose tissues of the human fetus, infant and child. We show that the deep layer of human fetal and neonatal subcutaneous fat, particularly the abdominal wall, is rich in UCP1+ adipocytes. These adipocytes develop in the late third trimester and persist throughout childhood, expressing a panel of genes linked to mitochondrial biogenesis and thermogenesis. During the early childhood adiposity rebound-a critical phase that determines obesity risk later in life-the absence of adipose tissue UCP1 expression in children with normal body mass index (BMI) correlates with an obesity-associated gene expression signature. Finally, UCP1 expression is negatively correlated with BMI z-score and adipocyte size in infants and children. Overall, our results show that the absence of UCP1 expression in adipose tissue is an early indicator of adipose tissue expansion in children.
Collapse
Affiliation(s)
- Katalin Gyurina
- Institute and University Clinics of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary (L.S.-S.)
| | - Mariia Yarmak
- Institute and University Clinics of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary (L.S.-S.)
| | - László Sasi-Szabó
- Institute and University Clinics of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary (L.S.-S.)
| | - Sarolta Molnár
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.M.)
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.M.)
| | - Tamás Röszer
- Institute and University Clinics of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary (L.S.-S.)
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
13
|
Walendzik K, Kopcewicz M, Wiśniewska J, Opyd P, Machcińska-Zielińska S, Gawrońska-Kozak B. Dermal white adipose tissue development and metabolism: The role of transcription factor Foxn1. FASEB J 2023; 37:e23171. [PMID: 37682531 DOI: 10.1096/fj.202300873rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Intradermal adipocytes form dermal white adipose tissue (dWAT), a unique fat depot localized in the lower layer of the dermis. However, recognition of molecular factors regulating dWAT development, homeostasis, and bioactivity is limited. Using Foxn1-/- and Foxn1+/+ mice, we demonstrated that epidermally expressed Foxn1 regulates dWAT development and defines the adipogenic capacity of dermal fibroblasts. In intact and post-wounded skin, Foxn1 contributes to the initial stimulation of dWAT adipogenesis and participates in the modulation of lipid metabolism processes. Furthermore, Foxn1 activity strengthens adipogenic processes through Bmp2 and Igf2 signaling and regulates lipid metabolism in differentiated dermal fibroblasts. The results reveal the contribution of Foxn1 to dWAT metabolism, thus identifying possible targets for modulation and regulation of dWAT in physiological and pathological processes in the skin.
Collapse
Affiliation(s)
- Katarzyna Walendzik
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Wiśniewska
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Paulina Opyd
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Sylwia Machcińska-Zielińska
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
14
|
Kramer AM, Martins JB, de Oliveira PC, Lehnen AM, Waclawovsky G. High-intensity interval training is not superior to continuous aerobic training in reducing body fat: A systematic review and meta-analysis of randomized clinical trials. J Exerc Sci Fit 2023; 21:385-394. [PMID: 37927356 PMCID: PMC10624584 DOI: 10.1016/j.jesf.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 11/07/2023] Open
Abstract
Background/Objective Guidelines on obesity management reinforce regular exercise to reduce body fat. Exercise modalities, including high-intensity interval training (HIIT), appear to produce a similar effect to continuous aerobic training (CAT) on body fat. However, they have not addressed the chronic effect of HIIT vs. CAT on body fat assessed by dual energy X-ray absorptiometry (DEXA). Thus, we compared the effectiveness of CAT vs. HIIT protocols on body fat (absolute or relative) (%BF) and abdominal visceral fat reduction, assessed by DEXA, in adults with overweight and obesity. Methods We conducted a systematic review and meta-analysis of randomized clinical trials (RCTs) including both female or male adults with excess body weight. We performed searches in the databases MEDLINE (PubMed), EMBASE, Scopus, LILACS, Web of Science and Cochrane. Results In our analysis (11 RCTs), we found no greater benefit on %BF of HIIT vs. CAT (MD -0.55%, 95% CI -1.42 to 0.31; p = 0.209). As for abdominal visceral fat, no training modality was superior (SMD: -0.05, 95% CI -0.29 to 0.19; p = 0.997). Regarding secondary outcomes (body weight, BMI, VO2 max, glycemic and lipid profiles), HIIT shows greater benefit than CAT in increasing VO2 max and fasting blood glucose and reducing total cholesterol. Conclusion HIIT is not superior to CAT in reducing %BF or abdominal visceral fat in individuals characterized by excess weight. However, HIIT showed beneficial effects on cardiorespiratory fitness, total cholesterol and fasting blood glucose when compared to CAT.
Collapse
Affiliation(s)
- Ana Marenco Kramer
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Jocelito Bijoldo Martins
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | | | - Alexandre Machado Lehnen
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Gustavo Waclawovsky
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| |
Collapse
|
15
|
Gawronska-Kozak B, Kopcewicz M, Machcinska-Zielinska S, Walendzik K, Wisniewska J, Drukała J, Wasniewski T, Rutkowska J, Malinowski P, Pulinski M. Gender Differences in Post-Operative Human Skin. Biomedicines 2023; 11:2653. [PMID: 37893027 PMCID: PMC10604277 DOI: 10.3390/biomedicines11102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Although the impact of age, gender, and obesity on the skin wound healing process has been extensively studied, the data related to gender differences in aspects of skin scarring are limited. The present study performed on abdominal human intact and scar skin focused on determining gender differences in extracellular matrix (ECM) composition, dermal white adipose tissue (dWAT) accumulation, and Foxn1 expression as a part of the skin response to injury. Scar skin of men showed highly increased levels of COLLAGEN 1A1, COLLAGEN 6A3, and ELASTIN mRNA expression, the accumulation of thick collagen I-positive fibers, and the accumulation of α-SMA-positive cells in comparison to the scar skin of women. However, post-injured skin of women displayed an increase (in comparison to post-injured men's skin) in collagen III accumulation in the scar area. On the contrary, women's skin samples showed a tendency towards higher levels of adipogenic-related genes (PPARγ, FABP4, LEPTIN) than men, regardless of intact or scar skin. Intact skin of women showed six times higher levels of LEPTIN mRNA expression in comparison to men intact (p < 0.05), men post-injured (p < 0.05), or women post-injured scar (p < 0.05) skin. Higher levels of FOXN1 mRNA and protein were also detected in women than in men's skin. In conclusion, the present data confirm and extend (dWAT layer) the data related to the presence of differences between men and women in the skin, particularly in scar tissues, which may contribute to the more effective and gender-tailored improvement of skin care interventions.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Sylwia Machcinska-Zielinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Tomasz Wasniewski
- Department of Obstetrics, Perinatology and Gynecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Joanna Rutkowska
- Department of Internal Medicine, Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Malinowski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Michał Pulinski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
16
|
Almet AA, Yuan H, Annusver K, Ramos R, Liu Y, Wiedemann J, Sorkin DH, Landén NX, Sonkoly E, Haniffa M, Nie Q, Lichtenberger BM, Luecken MD, Andersen B, Tsoi LC, Watt FM, Gudjonsson JE, Plikus MV, Kasper M. A Roadmap for a Consensus Human Skin Cell Atlas and Single-Cell Data Standardization. J Invest Dermatol 2023; 143:1667-1677. [PMID: 37612031 PMCID: PMC10610458 DOI: 10.1016/j.jid.2023.03.1679] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 08/25/2023]
Abstract
Single-cell technologies have become essential to driving discovery in both basic and translational investigative dermatology. Despite the multitude of available datasets, a central reference atlas of normal human skin, which can serve as a reference resource for skin cell types, cell states, and their molecular signatures, is still lacking. For any such atlas to receive broad acceptance, participation by many investigators during atlas construction is an essential prerequisite. As part of the Human Cell Atlas project, we have assembled a Skin Biological Network to build a consensus Human Skin Cell Atlas and outline a roadmap toward that goal. We define the drivers of skin diversity to be considered when selecting sequencing datasets for the atlas and list practical hurdles during skin sampling that can result in data gaps and impede comprehensive representation and technical considerations for tissue processing and computational analysis, the accounting for which should minimize biases in cell type enrichments and exclusions and decrease batch effects. By outlining our goals for Atlas 1.0, we discuss how it will uncover new aspects of skin biology.
Collapse
Affiliation(s)
- Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA
| | - Hao Yuan
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Raul Ramos
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Yingzi Liu
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Julie Wiedemann
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Mathematical, Computational & Systems Biology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Dara H Sorkin
- Institute for Clinical & Translational Science, University of California, Irvine, Irvine, California, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden; Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Beate M Lichtenberger
- Skin & Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany; Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bogi Andersen
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA; Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Fiona M Watt
- Centre for Gene Therapy & Regenerative Medicine, Faculty of Life Sciences & Medicine, School of Basic & Medical Biosciences, King's College London, London, United Kingdom; Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA.
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
17
|
Filfilan WM. Thyroid Hormones Regulate the Thermoregulatory Mechanisms of the Body: Review. Pak J Biol Sci 2023; 26:453-457. [PMID: 38044694 DOI: 10.3923/pjbs.2023.453.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Thyroid hormones (TH) play a critical role in metabolism, energy balance and thermogenesis. The mechanisms whereby thyroid hormone increases heat production have been analyzed with emphasis in more recent developments. Thyroid hormone increases obligatory thermogenesis as a result of the stimulation of numerous metabolic pathways involved in the development, remodeling and delivery of energy to the tissues. In this section, alterations in primary hyperthyroidism and hypothyroidism will be contrasted with the physiological characteristics of TH-dependent regulation in response to fasting and exposure to cold. The current review will discuss the situation with regard to regional thyroid hormones in the Central Nervous System (CNS) and more specifically, in peripheral cells. When caused by exposure to cold or fasting, local anomalies in the CNS are distinct from peripheral compartments, in contrast to hyperthyroidism and hypothyroidism, which differ when similar changes are observed. Lower hypothalamic TH concentrations are associated with cold exposure, although higher peripheral TH levels. The TH tendency is reversed by fasting. Primary hypothyroidism and hyperthyroidism impair them. The current study aims to trace the various mechanisms used by the thyroid gland to regulate the body's energy production process.
Collapse
|
18
|
Kasza I, Cuncannan C, Michaud J, Nelson D, Yen CLE, Jain R, Simcox J, MacDougald OA, Parks BW, Alexander CM. "Humanizing" mouse environments: Humidity, diurnal cycles and thermoneutrality. Biochimie 2023; 210:82-98. [PMID: 36372307 PMCID: PMC10172392 DOI: 10.1016/j.biochi.2022.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Thermoneutral housing has been shown to promote more accurate and robust development of several pathologies in mice. Raising animal housing temperatures a few degrees may create a relatively straightforward opportunity to improve translatability of mouse models. In this commentary, we discuss the changes of physiology induced in mice housed at thermoneutrality, and review techniques for measuring systemic thermogenesis, specifically those affecting storage and mobilization of lipids in adipose depots. Environmental cues are a component of the information integrated by the brain to calculate food consumption and calorie deposition. We show that relative humidity is one of those cues, inducing a rapid sensory response that is converted to a more chronic susceptibility to obesity. Given high inter-institutional variability in the regulation of relative humidity, study reproducibility may be improved by consideration of this factor. We evaluate a "humanized" environmental cycling protocol, where mice sleep in warm temperature housing, and are cool during the wake cycle. We show that this protocol suppresses adaptation to cool exposure, with consequence for adipose-associated lipid storage. To evaluate systemic cues in mice housed at thermoneutral temperatures, we characterized the circulating lipidome, and show that sera are highly depleted in some HDL-associated phospholipids, specifically phospholipids containing the essential fatty acid, 18:2 linoleic acid, and its derivative, arachidonic acid (20:4) and related ether-phospholipids. Given the role of these fatty acids in inflammatory responses, we propose they may underlie the differences in disease progression observed at thermoneutrality.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Colleen Cuncannan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Julian Michaud
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Dave Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Judi Simcox
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, United States
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States.
| |
Collapse
|
19
|
Palanivel JA, Millington GWM. Obesity-induced immunological effects on the skin. SKIN HEALTH AND DISEASE 2023; 3:e160. [PMID: 37275420 PMCID: PMC10233091 DOI: 10.1002/ski2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 03/05/2023]
Abstract
There is an increasing prevalence of obesity globally. Equally, the significance of maintaining a healthy body weight for maintaining a healthy skin homoeostasis is gaining greater attention. On this background, there is growing evidence of an adverse influence of excess body weight on the immune system, which has a resultant detrimental effect on the functioning of the skin. The presence of obesity appears to intensify various inflammatory skin disorders. These immune-dermatological consequences in the obese occur because of multiple adverse changes in the skin physiology, endocrine imbalance, metabolic deviations, alterations in circulation, skin microbiome and immunological disruptions. The purpose of this article is to highlight the profound impact of increased fat deposition on cutaneous immunology and its role in the pathophysiology of various chronic inflammatory dermatological conditions. Understanding these immunological modulations will aid in developing therapies targeting the specific inflammatory mediators in the management of obesity-associated chronic immunological skin disease.
Collapse
|
20
|
Flores V, Spicer AB, Sonsalla MM, Richardson NE, Yu D, Sheridan GE, Trautman ME, Babygirija R, Cheng EP, Rojas JM, Yang SE, Wakai MH, Hubbell R, Kasza I, Tomasiewicz JL, Green CL, Dantoin C, Alexander CM, Baur JA, Malecki KC, Lamming DW. Regulation of metabolic health by dietary histidine in mice. J Physiol 2023; 601:2139-2163. [PMID: 36086823 PMCID: PMC9995620 DOI: 10.1113/jp283261] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Low-protein (LP) diets are associated with a decreased risk of diabetes in humans, and promote leanness and glycaemic control in both rodents and humans. While the effects of an LP diet on glycaemic control are mediated by reduced levels of the branched-chain amino acids, we have observed that reducing dietary levels of the other six essential amino acids leads to changes in body composition. Here, we find that dietary histidine plays a key role in the response to an LP diet in male C57BL/6J mice. Specifically reducing dietary levels of histidine by 67% reduces the weight gain of young, lean male mice, reducing both adipose and lean mass without altering glucose metabolism, and rapidly reverses diet-induced obesity and hepatic steatosis in diet-induced obese male mice, increasing insulin sensitivity. This normalization of metabolic health was associated not with caloric restriction or increased activity, but with increased energy expenditure. Surprisingly, the effects of histidine restriction do not require the energy balance hormone Fgf21. Histidine restriction that was started in midlife promoted leanness and glucose tolerance in aged males but not females, but did not affect frailty or lifespan in either sex. Finally, we demonstrate that variation in dietary histidine levels helps to explain body mass index differences in humans. Overall, our findings demonstrate that dietary histidine is a key regulator of weight and body composition in male mice and in humans, and suggest that reducing dietary histidine may be a translatable option for the treatment of obesity. KEY POINTS: Protein restriction (PR) promotes metabolic health in rodents and humans and extends rodent lifespan. Restriction of specific individual essential amino acids can recapitulate the benefits of PR. Reduced histidine promotes leanness and increased energy expenditure in male mice. Reduced histidine does not extend the lifespan of mice when begun in midlife. Dietary levels of histidine are positively associated with body mass index in humans.
Collapse
Affiliation(s)
- Victoria Flores
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexandra B. Spicer
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Michelle M. Sonsalla
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nicole E. Richardson
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Deyang Yu
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grace E. Sheridan
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michaela E. Trautman
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Reji Babygirija
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eunhae P. Cheng
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jennifer M. Rojas
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shany E. Yang
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew H. Wakai
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ryan Hubbell
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Cara L. Green
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Claudia Dantoin
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Caroline M. Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| |
Collapse
|
21
|
Chick CN, Sasaki Y, Kawaguchi M, Tanaka E, Niikura T, Usuki T. LC-MS/MS quantitation of elastin crosslinker desmosines and histological analysis of skin aging characteristics in mice. Bioorg Med Chem 2023; 90:117351. [PMID: 37247585 DOI: 10.1016/j.bmc.2023.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Elastic fibers consist of an insoluble inner core of elastin, which confers elasticity and resilience to vertebral organs and tissues. Desmosine (DES) and isodesmosine (IDES) are potential biomarkers of pathologies that lead to decreased elastin turnover. Mice are commonly used in research to mimic humans because of their similar genetics, physiology, and organ systems. The present study thus used senescent accelerated prone (SAMP10) and senescent accelerated resistant (SAMR1) mice to examine the connection between aging and histological or biomolecular changes. Mice were divided into three groups: SAMP10 fed a control diet (CD), SAMP10 fed a high-fat diet (HFD), and SAMR1 fed a CD. The percent liver to total body weight ratio (%LW/BW), desmosines (DESs or DES/IDES) content, and histological alterations in skin samples were evaluated. DESs were quantified using an isotope-dilution liquid chromatography-tandem mass spectrometry method with isodesmosine-13C3,15N1 as the internal standard (ISTD). The assays were repeatable, reproducible, and accurate, with %CV values ≤ (1.90, 1.77, and 3.03), ISTD area %RSD of (1.54, 0.92, and 1.13), and %AC of (99.02 ± 1.86, 101.00 ± 2.30, and 101.30 ± 2.90) for the calibrations (equimolar DES/IDES, DES, and IDES, respectively). The average DESs content per dry-weight abdominal skin and %LW/BW were similar between the three groups. Histological analyses revealed elastin fibers in five randomly selected samples. The epidermis and dermal white adipose tissue layers were thicker in SAMP10 mice than SAMR1 mice. Thus, characteristic signs of aging in SAMP10 and SAMR1 mice could not be differentiated based on measurement of DESs content of the skin or %LW/BW, but aging could be differentiated based on microscopic analysis of histological changes in the skin components of SAMP10 and SAMR1 mice.
Collapse
Affiliation(s)
- Christian Nanga Chick
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yusuke Sasaki
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Mari Kawaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Eri Tanaka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
22
|
Castillo V, Díaz-Astudillo P, Corrales-Orovio R, San Martín S, Egaña JT. Comprehensive Characterization of Tissues Derived from Animals at Different Regenerative Stages: A Comparative Analysis between Fetal and Adult Mouse Skin. Cells 2023; 12:cells12091215. [PMID: 37174615 PMCID: PMC10177150 DOI: 10.3390/cells12091215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Tissue regeneration capabilities vary significantly throughout an organism's lifespan. For example, mammals can fully regenerate until they reach specific developmental stages, after which they can only repair the tissue without restoring its original architecture and function. The high regenerative potential of fetal stages has been attributed to various factors, such as stem cells, the immune system, specific growth factors, and the presence of extracellular matrix molecules upon damage. To better understand the local differences between regenerative and reparative tissues, we conducted a comparative analysis of skin derived from mice at regenerative and reparative stages. Our findings show that both types of skin differ in their molecular composition, structure, and functionality. We observed a significant increase in cellular density, nucleic acid content, neutral lipid density, Collagen III, and glycosaminoglycans in regenerative skin compared with reparative skin. Additionally, regenerative skin had significantly higher porosity, metabolic activity, water absorption capacity, and elasticity than reparative skin. Finally, our results also revealed significant differences in lipid distribution, extracellular matrix pore size, and proteoglycans between the two groups. This study provides comprehensive data on the molecular and structural clues that enable full tissue regeneration in fetal stages, which could aid in developing new biomaterials and strategies for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Valentina Castillo
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Valparaiso 2540064, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaiso, Valparaiso 2540064, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences, and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
23
|
Świątkiewicz I, Wróblewski M, Nuszkiewicz J, Sutkowy P, Wróblewska J, Woźniak A. The Role of Oxidative Stress Enhanced by Adiposity in Cardiometabolic Diseases. Int J Mol Sci 2023; 24:ijms24076382. [PMID: 37047352 PMCID: PMC10094567 DOI: 10.3390/ijms24076382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiometabolic diseases (CMDs), including cardiovascular disease (CVD), metabolic syndrome (MetS), and type 2 diabetes (T2D), are associated with increased morbidity and mortality. The growing prevalence of CVD is mostly attributed to the aging population and common occurrence of risk factors, such as high systolic blood pressure, elevated plasma glucose, and increased body mass index, which led to a global epidemic of obesity, MetS, and T2D. Oxidant–antioxidant balance disorders largely contribute to the pathogenesis and outcomes of CMDs, such as systemic essential hypertension, coronary artery disease, stroke, and MetS. Enhanced and disturbed generation of reactive oxygen species in excess adipose tissue during obesity may lead to increased oxidative stress. Understanding the interplay between adiposity, oxidative stress, and cardiometabolic risks can have translational impacts, leading to the identification of novel effective strategies for reducing the CMDs burden. The present review article is based on extant results from basic and clinical studies and specifically addresses the various aspects associated with oxidant–antioxidant balance disorders in the course of CMDs in subjects with excess adipose tissue accumulation. We aim at giving a comprehensive overview of existing knowledge, knowledge gaps, and future perspectives for further basic and clinical research. We provide insights into both the mechanisms and clinical implications of effects related to the interplay between adiposity and oxidative stress for treating and preventing CMDs. Future basic research and clinical trials are needed to further examine the mechanisms of adiposity-enhanced oxidative stress in CMDs and the efficacy of antioxidant therapies for reducing risk and improving outcome of patients with CMDs.
Collapse
|
24
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
25
|
Abstract
Rather than serving as a mere onlooker, adipose tissue is a complex endocrine organ and active participant in disease initiation and progression. Disruptions of biological processes operating within adipose can disturb healthy systemic physiology, the sequelae of which include metabolic disorders such as obesity and type 2 diabetes. A burgeoning interest in the field of adipose research has allowed for the elucidation of regulatory networks underlying both adipose tissue function and dysfunction. Despite this progress, few diseases are treated by targeting maladaptation in the adipose, an oft-overlooked organ. In this review, we elaborate on the distinct subtypes of adipocytes, their developmental origins and secretory roles, and the dynamic interplay at work within the tissue itself. Central to this discussion is the relationship between adipose and disease states, including obesity, cachexia, and infectious diseases, as we aim to leverage our wealth of knowledge for the development of novel and targeted therapeutics.
Collapse
Affiliation(s)
- Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; .,Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
26
|
Hajam EY, Panikulam P, Chu CC, Jayaprakash H, Majumdar A, Jamora C. The expanding impact of T-regs in the skin. Front Immunol 2022; 13:983700. [PMID: 36189219 PMCID: PMC9521603 DOI: 10.3389/fimmu.2022.983700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
As the interface between the body and the environment, the skin functions as the physical barrier against external pathogens and toxic agents. In addition, the skin is an immunologically active organ with a plethora of resident adaptive and innate immune cells, as well as effector molecules that provide another layer of protection in the form of an immune barrier. A major subpopulation of these immune cells are the Foxp3 expressing CD4 T cells or regulatory T cells (T-regs). The canonical function of T-regs is to keep other immune cells in check during homeostasis or to dissipate a robust inflammatory response following pathogen clearance or wound healing. Interestingly, recent data has uncovered unconventional roles that vary between different tissues and we will highlight the emerging non-lymphoid functions of cutaneous T-regs. In light of the novel functions of other immune cells that are routinely being discovered in the skin, their regulation by T-regs implies that T-regs have executive control over a broad swath of biological activities in both homeostasis and disease. The blossoming list of non-inflammatory functions, whether direct or indirect, suggests that the role of T-regs in a regenerative organ such as the skin will be a field ripe for discovery for decades to come.
Collapse
Affiliation(s)
- Edries Yousaf Hajam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Patricia Panikulam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Haarshadri Jayaprakash
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Colin Jamora
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| |
Collapse
|
27
|
Vassilopoulou E, Bumbacea RS, Pappa AK, Papadopoulos AN, Bumbacea D. Obesity and Infection: What Have We Learned From the COVID-19 Pandemic. Front Nutr 2022; 9:931313. [PMID: 35938136 PMCID: PMC9353573 DOI: 10.3389/fnut.2022.931313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023] Open
Abstract
Objective The critical role played by the nutritional status in the complications, duration of hospitalization and mortality in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) has emerged from several research studies in diverse populations. Obesity has been associated with an increased risk of serious complications, as the adipose tissue appears to have significant effects on the immune response. The aim of this narrative review was to investigate the relationship between COVID-19 and obesity. Methods We performed a review of papers in the English language derived from PubMed, Science Direct, and Web of Science. The primary outcomes investigated were the severity of the disease, admission to the intensive care unit (ICU), need for intubation, and mortality. Results and Conclusion Review of 44 eligible studies from 18 countries around the world revealed evidence that obesity increases the risk of severe COVID-19 complications, ICU admission, intubation and mortality. Patients with a higher body mass index (BMI) appear to be more vulnerable to SARS-CoV-2 infection, with more severe illness requiring admission to ICU and intubation, and to have higher mortality. A healthy body weight should be targeted as a long-term prevention measure against acute complications of infection, and in the event of COVID-19, overweight and obese patients should be monitored closely.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Roxana Silvia Bumbacea
- Allergy Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Allergy Department, Nephrology Hospital Dr Carol Davila, Bucharest, Romania
| | | | - Athanasios N. Papadopoulos
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Dragos Bumbacea
- Department of Cardio-Thoracic Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pneumology and Acute Respiratory Care, Elias Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
28
|
Zhang KW, Liu SY, Jia Y, Zou ML, Teng YY, Chen ZH, Li Y, Guo D, Wu JJ, Yuan ZD, Yuan FL. Insight into the role of DPP-4 in fibrotic wound healing. Biomed Pharmacother 2022; 151:113143. [PMID: 35643071 DOI: 10.1016/j.biopha.2022.113143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Wound healing is a complex and long-term process consisting of hemostasis, inflammation, proliferation, and maturation/remodeling. These four stages overlap and influence each other; they affect wound healing in different ways, and if they do not function perfectly, they may cause scarring, proliferative scarring and keloid formation. A therapeutic target affecting wound healing in multiple ways will help the healing process proceed more effectively. DPP-4/CD26 is a multifunctional dimorphic glycoprotein widely distributed on the surface of a variety of cells, including fibroblasts and keratin-forming cells. It has been found to affect periwound inflammation, re-epithelialization, extracellular matrix secretion and skin fibrosis and is a potential target for promoting wound healing and inhibiting scar formation. After presenting a brief introduction of the wound healing process and DPP-4/CD26, this paper summarizes the effects of DPP-4/CD26 on cells involved in different stages of wound healing and discusses the feasibility of DPP-4/CD26 as a multifunctional target for the treatment of wound healing and inhibition of scar formation.
Collapse
Affiliation(s)
- Kai-Wen Zhang
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Si-Yu Liu
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Ming-Li Zou
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Ying-Ying Teng
- The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zhong-Hua Chen
- Department of Medicine, The Nantong University, Nantong, China
| | - Yueyue Li
- The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Danyang Guo
- The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China; Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China; The Hospital Affiliated to Jiangnan University, Wuxi, China.
| |
Collapse
|
29
|
Jussila AR, Zhang B, Caves E, Kirti S, Steele M, Hamburg-Shields E, Lydon J, Ying Y, Lafyatis R, Rajagopalan S, Horsley V, Atit RP. Skin Fibrosis and Recovery Is Dependent on Wnt Activation via DPP4. J Invest Dermatol 2022; 142:1597-1606.e9. [PMID: 34808238 PMCID: PMC9120259 DOI: 10.1016/j.jid.2021.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Fibrosis is the life-threatening, excessive accumulation of the extracellular matrix and is sometimes associated with a loss of lipid-filled cells in the skin and other organs. Understanding the mechanisms of fibrosis and associated lipodystrophy and their reversal may reveal new targets for therapeutic intervention. In vivo genetic models are needed to identify key targets that induce recovery from established fibrosis. Wnt signaling is activated in animal and human fibrotic diseases across organs. Here, we developed a genetically inducible and reversible Wnt activation model and showed that it is sufficient to cause fibrotic dermal remodeling, including extracellular matrix expansion and shrinking of dermal adipocytes. Upon withdrawal from Wnt activation, Wnt-induced fibrotic remodeling was reversed in mouse skin-fully restoring skin architecture. Next, we demonstrated CD26/ DPP4 is a Wnt/β-catenin-responsive gene and a functional mediator of fibrotic transformation. We provide genetic evidence that the Wnt/DPP4 axis is required to drive fibrotic dermal remodeling and is associated with human skin fibrosis severity. Remarkably, DPP4 inhibitors can be repurposed to accelerate recovery from established Wnt-induced fibrosis. Collectively, this study identifies Wnt/DPP4 axis as a key driver of extracellular matrix homeostasis and dermal fat loss, providing therapeutic avenues to manipulate the onset and reversal of tissue fibrosis.
Collapse
Affiliation(s)
- Anna R Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elizabeth Caves
- Department of Molecular and Cell Biology, Yale University, New Haven, Connecticut, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Miarasa Steele
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily Hamburg-Shields
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yan Ying
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, University Hospitals Harrington Heart and Vascular Institute (HHVI), Case Cardiovascular Research Institute, Department of Internal Medicine and Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Valerie Horsley
- Department of Molecular and Cell Biology, Yale University, New Haven, Connecticut, USA
| | - Radhika P Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA; Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
30
|
Agareva M, Stafeev I, Michurina S, Sklyanik I, Shestakova E, Ratner E, Hu X, Menshikov M, Shestakova M, Parfyonova Y. Type 2 Diabetes Mellitus Facilitates Shift of Adipose-Derived Stem Cells Ex Vivo Differentiation toward Osteogenesis among Patients with Obesity. Life (Basel) 2022; 12:life12050688. [PMID: 35629356 PMCID: PMC9146836 DOI: 10.3390/life12050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose of this study was to evaluate ADSC osteogenesis activity among patients with obesity in normal glucose tolerance (NGT) and T2DM conditions. Methods: In the study, ADSCs from donors with obesity were used. After clinical characterization, all patients underwent bariatric surgery and ADSCs were isolated from subcutaneous fat biopsies. ADSCs were subjected to osteogenic differentiation, stained with Alizarin Red S, and harvested for real-time PCR and Western blotting. Cell senescence was evaluated with a β-galactosidase-activity-based assay. Results: Our results demonstrated the significantly increased calcification of ADSC on day 28 of osteogenesis in the T2DM group. These data were confirmed by the statistically significant enhancement of RUNX2 gene expression, which is a master regulator of osteogenesis. Protein expression analysis showed the increased expression of syndecan 1 and collagen I before and during osteogenesis, respectively. Moreover, T2DM ADSCs demonstrated an increased level of cellular senescence. Conclusion: We suggest that T2DM-associated cellular senescence can cause ADSC differentiation to shift toward osteogenesis, the impaired formation of new fat depots in adipose tissue, and the development of insulin resistance. The balance between ADSC adipo- and osteogenesis commitment is crucial for the determination of the metabolic fate of patients and their adipose tissue.
Collapse
Affiliation(s)
- Margarita Agareva
- Institute of Fine Chemical Technologies Named after M.V. Lomonosov, 119571 Moscow, Russia;
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Iurii Stafeev
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Correspondence:
| | - Svetlana Michurina
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Sklyanik
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Ekaterina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Elizaveta Ratner
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Mikhail Menshikov
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Marina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Yelena Parfyonova
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
31
|
Weigel T, Malkmus C, Weigel V, Wußmann M, Berger C, Brennecke J, Groeber-Becker F, Hansmann J. Fully Synthetic 3D Fibrous Scaffolds for Stromal Tissues-Replacement of Animal-Derived Scaffold Materials Demonstrated by Multilayered Skin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106780. [PMID: 34933407 DOI: 10.1002/adma.202106780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties. Synthetic matrices are usually completely degraded or are inert regarding cellular remodeling. Based on a refined electrospinning process, a method is developed to generate synthetic scaffolds with highly porous fibrous structures and enhanced fiber-to-fiber distances. Since this approach allows for cell migration, matrix remodeling, and ECM synthesis, the scaffold provides an ideal platform for the generation of soft tissue equivalents. Using this matrix, an electrospun-based multilayered skin equivalent composed of a stratified epidermis, a dermal compartment, and a subcutis is able to be generated without the use of animal matrix components. The extension of classical dense electrospun scaffolds with high porosities and motile fibers generates a fully synthetic and defined alternative to collagen-gel-based tissue models and is a promising system for the construction of tissue equivalents as in vitro models or in vivo implants.
Collapse
Affiliation(s)
- Tobias Weigel
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082, Würzburg, Germany
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Christoph Malkmus
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Verena Weigel
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082, Würzburg, Germany
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Maximiliane Wußmann
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082, Würzburg, Germany
| | - Constantin Berger
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Julian Brennecke
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Florian Groeber-Becker
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082, Würzburg, Germany
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
| | - Jan Hansmann
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070, Würzburg, Germany
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, 97421, Schweinfurt, Germany
| |
Collapse
|
32
|
Chen J, Zheng Y, Hu C, Jin X, Chen X, Xiao Y, Wang C. Hair Graying Regulators Beyond Hair Follicle. Front Physiol 2022; 13:839859. [PMID: 35283766 PMCID: PMC8908028 DOI: 10.3389/fphys.2022.839859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hair graying is an interesting physiological alteration associated with aging and certain diseases. The occurrence is due to depigmentation of the hair caused by depletion and dysfunction of melanocyte stem cells (MeSCs). However, what causes the depletion and dysfunction of MeSCs remains unclear. MeSCs reside in the hair follicle bulge which provides the appropriate niche for the homeostasis of various stem cells within hair follicle including MeSCs. In addition to local signaling from the cells composed of hair follicle, emerging evidences have shown that nerves, adipocytes and immune cells outside of hair follicle per se also play important roles in the regulation of MeSCs. Here, we review the recent studies on different cells in the MeSCs microenvironment beyond the hair follicle per se, discuss their function in regulating hair graying and potentially novel treatments of hair graying.
Collapse
Affiliation(s)
- Jing Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University – University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Yixin Zheng
- Zhejiang University – University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Chen Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Chen
- Institute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Xiao
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Ying Xiao,
| | - Chaochen Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University – University of Edinburgh Institute, Zhejiang University, Haining, China
- *Correspondence: Chaochen Wang,
| |
Collapse
|
33
|
Kasza I, Kühn JP, Völzke H, Hernando D, Xu YG, Siebert JW, Gibson ALF, Yen CLE, Nelson DW, MacDougald OA, Richardson NE, Lamming DW, Kern PA, Alexander CM. Contrasting recruitment of skin-associated adipose depots during cold challenge of mouse and human. J Physiol 2022; 600:847-868. [PMID: 33724479 PMCID: PMC8443702 DOI: 10.1113/jp280922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/02/2021] [Indexed: 02/03/2023] Open
Abstract
KEY POINTS Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of β-adrenergic-induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to β-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding β-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of
Wisconsin-Madison, Germany
| | - Jens-Peter Kühn
- Institute and Policlinic of Diagnostic and Interventional
Radiology, Medical Faculty Carl Gustav Carus, Technical University Dresden,
Germany
| | - Henry Völzke
- Institute of Community Medicine, University of Greifswald,
Germany
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-School of
Medicine and Public Health,Department of Medical Physics, University of
Wisconsin-School of Medicine and Public Health
| | - Yaohui G. Xu
- Department of Dermatology, University of Wisconsin-School
of Medicine and Public Health
| | - John W. Siebert
- Department of Surgery, University of Wisconsin-School of
Medicine and Public Health
| | - Angela LF Gibson
- Department of Surgery, University of Wisconsin-School of
Medicine and Public Health
| | - C.-L. Eric Yen
- Department of Nutritional Sciences, University of
Wisconsin-Madison
| | - David W. Nelson
- Department of Nutritional Sciences, University of
Wisconsin-Madison
| | | | - Nicole E. Richardson
- Department of Medicine, University of Wisconsin-School of
Medicine and Public Health,William S. Middleton Memorial Veterans Hospital, Madison,
Wisconsin
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-School of
Medicine and Public Health,William S. Middleton Memorial Veterans Hospital, Madison,
Wisconsin
| | - Philip A. Kern
- Department of Internal Medicine, University of Kentucky,
Lexington
| | - CM Alexander
- McArdle Laboratory for Cancer Research, University of
Wisconsin-Madison, Germany,corresponding author: CM Alexander, McArdle
Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland
Ave, Madison WI 53705-2275. Ph: 608-265 5182;
| |
Collapse
|
34
|
Emerging Roles of Adipose Tissue in the Pathogenesis of Psoriasis and Atopic Dermatitis in Obesity. JID INNOVATIONS 2022; 2:100064. [PMID: 35024685 PMCID: PMC8659781 DOI: 10.1016/j.xjidi.2021.100064] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Obesity is a growing epidemic worldwide, and it is also considered a major environmental factor contributing to the pathogenesis of inflammatory skin diseases, including psoriasis (PSO) and atopic dermatitis (AD). Moreover, obesity worsens the course and impairs the treatment response of these inflammatory skin diseases. Emerging evidence highlights that hypertrophied adipocytes and infiltrated immune cells secrete a variety of molecules, including fatty acids and adipokines, such as leptin, adiponectin, and a panel of cytokines/chemokines that modulate our immune system. In this review, we describe how adipose hypertrophy leads to a chronic low-grade inflammatory state in obesity and how obesity-related inflammatory factors are involved in the pathogenesis of PSO and/or AD. Finally, we discuss the potential role of antimicrobial peptides, mechanical stress and impairment of epidermal barrier function mediated by fast expansion, and dermal fat in modulating skin inflammation. Together, this review summarizes the current literature on how obesity is associated with the pathogenesis of PSO and AD, highlighting the potentially important but overlooked immunomodulatory role of adipose tissue in the skin.
Collapse
Key Words
- AD, atopic dermatitis
- AMP, antimicrobial peptide
- AT, adipose tissue
- BAT, brown adipose tissue
- BMI, body mass index
- CI, confidence interval
- DC, dendritic cell
- DIO, diet-induced obesity
- FFA, free fatty acid
- HFD, high-fat diet
- KC, keratinocyte
- OA, oleic acid
- PA, palmitic acid
- PSO, psoriasis
- SCORAD, SCORing Atopic Dermatitis
- TC, total cholesterol
- TEWL, transepidermal water loss
- TG, triglyceride
- TLR, toll-like receptor
- Th, T helper
- WAT, white adipose tissue
- dFB, dermal fibroblast
- dWAT, dermal white adipose tissue
- sWAT, subcutaneous white adipose tissue
Collapse
|
35
|
Gawronska-Kozak B, Walendzik K, Machcinska S, Padzik A, Kopcewicz M, Wiśniewska J. Dermal White Adipose Tissue (dWAT) Is Regulated by Foxn1 and Hif-1α during the Early Phase of Skin Wound Healing. Int J Mol Sci 2021; 23:257. [PMID: 35008683 PMCID: PMC8745105 DOI: 10.3390/ijms23010257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
Dermal white adipose tissue (dWAT) is involved in the maintenance of skin homeostasis. However, the studies concerning its molecular regulation are limited. In the present paper, we ask whether the introduction of two transcription factors, Foxn1 and Hif-1α, into the post-wounded skin of Foxn1-/- mice regulates dWAT during wound healing (days 3 and 6). We have chosen lentivirus vectors (LVs) as a tool to deliver Foxn1 and Hif-1α into the post-wounded skin. We documented that combinations of both transgenes reduces the number, size and diameter of dermal adipocytes at the wound bed area. The qRT-PCR analysis of pro-adipogenic genes, revealed that LV-Hif-1α alone, or combined with LV-Foxn1, increases the mRNA expression of Pparγ, Glut 4 and Fasn at post-wounding day 6. However, the most spectacular stimulatory effect of Foxn1 and/or Hif-1α was observed for Igf2, the growth factor participating in adipogenic signal transduction. Our data also shows that Foxn1/Hif-1α, at post-wounding day 3, reduces levels of CD68 and MIP-1γ mRNA expression and the percentage of CD68 positive cells in the wound site. In conclusion, the present data are the first to document that Foxn1 and Hif-1α cooperatively (1) regulate dWAT during the proliferative phase of skin wound healing through the Igf2 signaling pathway, and (2) reduce the macrophages content in the wound site.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Artur Padzik
- Virus Vector Core, Turku Centre for Biotechnology BioCity, 20520 Turku, Finland;
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| | - Joanna Wiśniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (S.M.); (M.K.); (J.W.)
| |
Collapse
|
36
|
Romanelli SM, Lewis KT, Nishii A, Rupp AC, Li Z, Mori H, Schill RL, Learman BS, Rhodes CJ, MacDougald OA. BAd-CRISPR: Inducible gene knockout in interscapular brown adipose tissue of adult mice. J Biol Chem 2021; 297:101402. [PMID: 34774798 PMCID: PMC8661024 DOI: 10.1016/j.jbc.2021.101402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 has enabled inducible gene knockout in numerous tissues; however, its use has not been reported in brown adipose tissue (BAT). Here, we developed the brown adipocyte CRISPR (BAd-CRISPR) methodology to rapidly interrogate the function of one or multiple genes. With BAd-CRISPR, an adeno-associated virus (AAV8) expressing a single guide RNA (sgRNA) is administered directly to BAT of mice expressing Cas9 in brown adipocytes. We show that the local administration of AAV8-sgRNA to interscapular BAT of adult mice robustly transduced brown adipocytes and ablated expression of adiponectin, adipose triglyceride lipase, fatty acid synthase, perilipin 1, or stearoyl-CoA desaturase 1 by >90%. Administration of multiple AAV8 sgRNAs led to simultaneous knockout of up to three genes. BAd-CRISPR induced frameshift mutations and suppressed target gene mRNA expression but did not lead to substantial accumulation of off-target mutations in BAT. We used BAd-CRISPR to create an inducible uncoupling protein 1 (Ucp1) knockout mouse to assess the effects of UCP1 loss on adaptive thermogenesis in adult mice. Inducible Ucp1 knockout did not alter core body temperature; however, BAd-CRISPR Ucp1 mice had elevated circulating concentrations of fibroblast growth factor 21 and changes in BAT gene expression consistent with heat production through increased peroxisomal lipid oxidation. Other molecular adaptations predict additional cellular inefficiencies with an increase in both protein synthesis and turnover, and mitochondria with reduced reliance on mitochondrial-encoded gene expression and increased expression of nuclear-encoded mitochondrial genes. These data suggest that BAd-CRISPR is an efficient tool to speed discoveries in adipose tissue biology.
Collapse
Affiliation(s)
- Steven M Romanelli
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kenneth T Lewis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Akira Nishii
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alan C Rupp
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brian S Learman
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
37
|
Dhurandhar NV, Petersen KS, Webster C. Key Causes and Contributors of Obesity: A Perspective. Nurs Clin North Am 2021; 56:449-464. [PMID: 34749887 DOI: 10.1016/j.cnur.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity is a disease with several potential causes and contributors. This article provides a focused overview of key known causes of obesity and factors that contribute to obesity. Obesity ultimately results from impaired energy storage mechanisms, such as dysregulation of hunger, satiety, digestion, fat storage, and metabolic rate. In addition, myriad contributors promote its expression, including dietary factors, sleep quality and duration, psychological health and well-being, and tobacco cessation, among others. This article concludes with a discussion of the clinical relevance of causes and contributors in obesity prevention and treatment, which is paramount to providing effective, individualized clinical management.
Collapse
Affiliation(s)
- Nikhil V Dhurandhar
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Avenue, P.O. Box 41270, Lubbock, TX 79409, USA.
| | - Kristina S Petersen
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Avenue, P.O. Box 41270, Lubbock, TX 79409, USA
| | - Chelsi Webster
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Avenue, P.O. Box 41270, Lubbock, TX 79409, USA
| |
Collapse
|
38
|
Chun KH. Mouse model of the adipose organ: the heterogeneous anatomical characteristics. Arch Pharm Res 2021; 44:857-875. [PMID: 34606058 DOI: 10.1007/s12272-021-01350-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Adipose tissue plays a pivotal role in energy storage, hormone secretion, and temperature control. Mammalian adipose tissue is largely divided into white adipose tissue and brown adipose tissue, although recent studies have discovered the existence of beige adipocytes. Adipose tissues are widespread over the whole body and each location shows distinctive metabolic features. Mice are used as a representative experimental model system in metabolic studies due to their numerous advantages. Importantly, the adipose tissues of experimental animals and humans are not perfectly matched, and each adipose tissue exhibits both similar and specific characteristics. Nevertheless, the diversity and characteristics of mouse adipose tissue have not yet been comprehensively summarized. This review summarizes diverse information about the different types of adipose tissue being studied in mouse models. The types and characteristics of adipocytes were described, and each adipose tissue was classified by type, and features such as its distribution, origin, differences from humans, and metabolic characteristics were described. In particular, the distribution of widely studied adipose tissues was illustrated so that researchers can comprehensively grasp its location. Also, the adipose tissues misused or confusingly used among researchers were described. This review will provide researchers with comprehensive information and cautions needed to study adipose tissues in mouse models.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Inchon, 21936, Republic of Korea.
| |
Collapse
|
39
|
Moncal KK, Gudapati H, Godzik KP, Heo DN, Kang Y, Rizk E, Ravnic DJ, Wee H, Pepley DF, Ozbolat V, Lewis GS, Moore JZ, Driskell RR, Samson TD, Ozbolat IT. Intra-Operative Bioprinting of Hard, Soft, and Hard/Soft Composite Tissues for Craniomaxillofacial Reconstruction. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2010858. [PMID: 34421475 PMCID: PMC8376234 DOI: 10.1002/adfm.202010858] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 05/20/2023]
Abstract
Reconstruction of complex craniomaxillofacial (CMF) defects is challenging due to the highly organized layering of multiple tissue types. Such compartmentalization necessitates the precise and effective use of cells and other biologics to recapitulate the native tissue anatomy. In this study, intra-operative bioprinting (IOB) of different CMF tissues, including bone, skin, and composite (hard/soft) tissues, is demonstrated directly on rats in a surgical setting. A novel extrudable osteogenic hard tissue ink is introduced, which induced substantial bone regeneration, with ≈80% bone coverage area of calvarial defects in 6 weeks. Using droplet-based bioprinting, the soft tissue ink accelerated the reconstruction of full-thickness skin defects and facilitated up to 60% wound closure in 6 days. Most importantly, the use of a hybrid IOB approach is unveiled to reconstitute hard/soft composite tissues in a stratified arrangement with controlled spatial bioink deposition conforming the shape of a new composite defect model, which resulted in ≈80% skin wound closure in 10 days and 50% bone coverage area at Week 6. The presented approach will be absolutely unique in the clinical realm of CMF defects and will have a significant impact on translating bioprinting technologies into the clinic in the future.
Collapse
Affiliation(s)
- Kazim K Moncal
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hemanth Gudapati
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin P Godzik
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dong N Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngnam Kang
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elias Rizk
- Department of Neurosurgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Dino J Ravnic
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Hwabok Wee
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - David F Pepley
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Veli Ozbolat
- Mechanical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | - Gregory S Lewis
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jason Z Moore
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Thomas D Samson
- Department of Neurosurgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
40
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
41
|
Michurina SS, Stafeev IS, Menshikov MY, Parfyonova YV. Mitochondrial dynamics keep balance of nutrient combustion in thermogenic adipocytes. Mitochondrion 2021; 59:157-168. [PMID: 34010673 DOI: 10.1016/j.mito.2021.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Non-shivering thermogenesis takes place in brown and beige adipocytes and facilitates cold tolerance and acclimation. However, thermogenesis in adipose tissue also was found to be activated in metabolic overload states for fast utilization of nutrients excess. This observation spurred research interest in mechanisms of thermogenesis regulation for metabolic overload and obesity prevention. One of proposed regulators of thermogenic efficiency in adipocytes is the dynamics of mitochondria, where thermogenesis takes place. Indeed, brown and beige adipocytes exhibit fragmented round-shaped mitochondria, while white adipocytes have elongated organelles with high ATP synthesis. Mitochondrial morphology can determine uncoupling protein 1 (UCP1) content, efficiency of catabolic pathways and electron transport chain, supplying thermogenesis. This review will highlight the co-regulation of mitochondrial dynamics and thermogenesis and formulate hypothetical ways for excessive nutrients burning in response to mitochondrial morphology manipulation.
Collapse
Affiliation(s)
- S S Michurina
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - I S Stafeev
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - M Y Menshikov
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| | - Ye V Parfyonova
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| |
Collapse
|
42
|
Galanin I, Nicu C, Tower JI. Facial Fat Fitness: A New Paradigm to Understand Facial Aging and Aesthetics. Aesthetic Plast Surg 2021; 45:151-163. [PMID: 32914326 DOI: 10.1007/s00266-020-01933-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022]
Abstract
Traditionally, facial adipose tissue has been perceived and treated as a homogenous volume-occupying subcutaneous depot. However, recent research from across disciplines is converging to reveal a far more anatomically organized and functionally dynamic role of facial adipose tissue. In this narrative review, we will discuss new insights into adipocyte function and facial adipose anatomy that have far-reaching implications for the practice of aesthetic facial plastic surgery. These concepts are synthesized into a "facial fat fitness" model which can be used to explain clinical observations in facial aging and aesthetic surgery. Fat fitness relates to the quality of facial adipose tissue, as opposed to quantity, and describes whether adipose tissue is in a predominantly healthy hyperplastic or unhealthy hypertrophic state. Fat fitness is modulated by lifestyle factors, and may be impacted positively or negatively by facial aesthetic treatments. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
| | - Carina Nicu
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacob I Tower
- Department of Otolaryngology-Head and Neck Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, 130 East 77th Street, 10th Floor, New York, NY, USA.
| |
Collapse
|
43
|
Walendzik K, Bukowska J, Kopcewicz M, Machcinska S, Gimble JM, Gawronska-Kozak B. Age, Diet and Epidermal Signaling Modulate Dermal Fibroblasts' Adipogenic Potential. Int J Mol Sci 2020; 21:ijms21238955. [PMID: 33255750 PMCID: PMC7728337 DOI: 10.3390/ijms21238955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
The recognition of a distinct fat depot, the dermal white adipose tissue (dWAT), points out the complexity of the interaction among skin resident cells: keratinocytes, dermal fibroblasts (DFs) and adipocytes in response to physiological (diet, age) and pathological (injury) stimulations. dWAT has been recognized as a significant contributor to thermoregulation, hair cycle, immune response, wound healing and scarring. In this study, we examined age- and diet-related changes in dWAT modulation and DFs' adipogenic potential. The data showed that diet modulates dWAT expansion predominantly by hypertrophy, whereas age affects the pool of adipocyte progenitor cells in the skin indicating its role in dWAT hyperplasia. Analysis of DFs' migratory abilities in the model of skin explants isolated from the skin of young, old, low (LFD)- or high (HFD)-fat diet C56BL/6 mice revealed that HFD, regardless of animal age has the most profound stimulatory impact of DF migration. We determined that the adipogenic potential of DFs is comparable to stromal vascular fraction (SVF) of inguinal fat depot and ear mesenchymal stem cells (EMSC). We also showed the stimulatory role of epidermally expressed transcription factor Foxn1 on adipogenic signaling: bone morphogenetic protein 2 (Bmp2) and insulin-like growth factor 2 (Igf2) in keratinocytes.
Collapse
Affiliation(s)
- Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
| | - Jeffrey M. Gimble
- LaCell LLC, New Orleans, LA 70112, USA;
- Obatala Sciences Inc., 2000 Lakeshore Drive, #4020, New Orleans, LA 70148, USA
- Departments of Medicine, Structural and Cellular Biology, and Surgery and Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70118, USA
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (K.W.); (J.B.); (M.K.); (S.M.)
- Correspondence: ; Tel.: +48-89-5234634; Fax: +48-89-5240124
| |
Collapse
|
44
|
Regional differences in the skin of the desert hedgehog (Paraechinus aethiopicus) with special reference to hair polymorphism. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Chou YT, Lai FJ, Chang NS, Hsu LJ. Wwox Deficiency Causes Downregulation of Prosurvival ERK Signaling and Abnormal Homeostatic Responses in Mouse Skin. Front Cell Dev Biol 2020; 8:558432. [PMID: 33195192 PMCID: PMC7652735 DOI: 10.3389/fcell.2020.558432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
Deficiency of tumor suppressor WW domain-containing oxidoreductase (WWOX) in humans and animals leads to growth retardation and premature death during postnatal developmental stages. Skin integrity is essential for organism survival due to its protection against dehydration and hypothermia. Our previous report demonstrated that human epidermal suprabasal cells express WWOX protein, and the expression is gradually increased toward the superficial differentiated cells prior to cornification. Here, we investigated whether abnormal skin development and homeostasis occur under Wwox deficiency that may correlate with early death. We determined that keratinocyte proliferation and differentiation were decreased, while apoptosis was increased in Wwox–/– mouse epidermis and primary keratinocyte cultures and WWOX-knockdown human HaCaT cells. Without WWOX, progenitor cells in hair follicle junctional zone underwent massive proliferation in early postnatal developmental stages and the stem/progenitor cell pools were depleted at postnatal day 21. These events lead to significantly decreased epidermal thickness, dehydration state, and delayed hair development in Wwox–/– mouse skin, which is associated with downregulation of prosurvival MEK/ERK signaling in Wwox–/– keratinocytes. Moreover, Wwox depletion results in substantial downregulation of dermal collagen contents in mice. Notably, Wwox–/– mice exhibit severe loss of subcutaneous adipose tissue and significant hypothermia. Collectively, our knockout mouse model supports the validity of WWOX in assisting epidermal and adipose homeostasis, and the involvement of prosurvival ERK pathway in the homeostatic responses regulated by WWOX.
Collapse
Affiliation(s)
- Ying-Tsen Chou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chimei Medical Center, Tainan, Taiwan.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
46
|
Trivanović D, Vignjević Petrinović S, Okić Djordjević I, Kukolj T, Bugarski D, Jauković A. Adipogenesis in Different Body Depots and Tumor Development. Front Cell Dev Biol 2020; 8:571648. [PMID: 33072753 PMCID: PMC7536553 DOI: 10.3389/fcell.2020.571648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue (AT) forms depots at different anatomical locations throughout the body, being in subcutaneous and visceral regions, as well as the bone marrow. These ATs differ in the adipocyte functional profile, their insulin sensitivity, adipokines’ production, lipolysis, and response to pathologic conditions. Despite the recent advances in lineage tracing, which have demonstrated that individual adipose depots are composed of adipocytes derived from distinct progenitor populations, the cellular and molecular dissection of the adipose clonogenic stem cell niche is still a great challenge. Additional complexity in AT regulation is associated with tumor-induced changes that affect adipocyte phenotype. As an integrative unit of cell differentiation, AT microenvironment regulates various phenotype outcomes of differentiating adipogenic lineages, which consequently may contribute to the neoplastic phenotype manifestations. Particularly interesting is the capacity of AT to impose and support the aberrant potency of stem cells that accompanies tumor development. In this review, we summarize the current findings on the communication between adipocytes and their progenitors with tumor cells, pointing out to the co-existence of healthy and neoplastic stem cell niches developed during tumor evolution. We also discuss tumor-induced adaptations in mature adipocytes and the involvement of alternative differentiation programs.
Collapse
Affiliation(s)
- Drenka Trivanović
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Wuerzburg, Germany.,Bernhard-Heine Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - Sanja Vignjević Petrinović
- Laboratory for Neuroendocrinology, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ivana Okić Djordjević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
47
|
Zhang Z, Shao M, Hepler C, Zi Z, Zhao S, An YA, Zhu Y, Ghaben AL, Wang MY, Li N, Onodera T, Joffin N, Crewe C, Zhu Q, Vishvanath L, Kumar A, Xing C, Wang QA, Gautron L, Deng Y, Gordillo R, Kruglikov I, Kusminski CM, Gupta RK, Scherer PE. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Invest 2020; 129:5327-5342. [PMID: 31503545 DOI: 10.1172/jci130239] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Dermal adipose tissue (also known as dermal white adipose tissue and herein referred to as dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly reappearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with dWAT's dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single-cell RNA sequencing, we observed that mature dermal adipocytes undergo dedifferentiation and redifferentiation under physiological and pathophysiological conditions. Upon various challenges, the dedifferentiated cells proliferate and redifferentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT toward maintaining skin homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Zhu
- Touchstone Diabetes Center
| | | | | | - Na Li
- Touchstone Diabetes Center
| | | | | | | | | | | | - Ashwani Kumar
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qiong A Wang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope/Beckman Research Institute, Duarte, California, USA
| | - Laurent Gautron
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Ilja Kruglikov
- Scientific Department, Wellcomet GmbH, Karlsruhe, Germany
| | | | | | | |
Collapse
|
48
|
Kapoor R, Dhatwalia S, Kumar R, Rani S, Parsad D. Emerging role of dermal compartment in skin pigmentation: comprehensive review. J Eur Acad Dermatol Venereol 2020; 34:2757-2765. [DOI: 10.1111/jdv.16404] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- R. Kapoor
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - S.K. Dhatwalia
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - R. Kumar
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - S. Rani
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - D. Parsad
- Department of Dermatology PGIMER Chandigarh India
| |
Collapse
|
49
|
Kopcewicz M, Walendzik K, Bukowska J, Kur-Piotrowska A, Machcinska S, Gimble JM, Gawronska-Kozak B. Cutaneous wound healing in aged, high fat diet-induced obese female or male C57BL/6 mice. Aging (Albany NY) 2020; 12:7066-7111. [PMID: 32294622 PMCID: PMC7202484 DOI: 10.18632/aging.103064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Since there are limited studies analyzing the impact of age, sex and obesity on cutaneous repair, the current study evaluated excisional skin wound healing as a function of age, sex and diet in C57BL/6 mice subjected to either low (LFD) or high (HFD) fat diet. Older mice accumulated increased body fat relative to younger mice under HFD. Skin wound healing at particular stages was affected by age in the aspect of Tgfβ-1, MCP-1, Mmp-9 and Mmp-13 expression. The most profound, cumulative effect was observed for the combination of two parameters: age and sex. While skin of younger males displayed extremely high collagen 1 and collagen 3 expression, younger females showed exceptionally high Mmp-13 expression at day 3 and 7 after injury. Diet as a single variable modified the thickness of dermis due to increased dermal White Adipose Tissue (dWAT) accumulation in mice fed HFD. The combination of age and diet affected the re-epithelialization and inflammatory response of injured skin. Overall, our data indicate that age has the most fundamental impact although all components (age, sex and diet) contribute to skin repair.
Collapse
Affiliation(s)
- Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anna Kur-Piotrowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jeffrey M Gimble
- LaCell LLC, New Orleans, LA 70112, USA.,Obatala Sciences Inc., New Orleans, LA 70148, USA.,Departments of Medicine, Structural and Cellular Biology, and Surgery and Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
50
|
Pleštilová L, Okrouhlík J, Burda H, Sehadová H, Valesky EM, Šumbera R. Functional histology of the skin in the subterranean African giant mole-rat: thermal windows are determined solely by pelage characteristics. PeerJ 2020; 8:e8883. [PMID: 32296606 PMCID: PMC7150539 DOI: 10.7717/peerj.8883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/10/2020] [Indexed: 11/29/2022] Open
Abstract
Excavation of burrows is an extremely physically demanding activity producing a large amount of metabolic heat. Dissipation of its surplus is crucial to avoid the risk of overheating, but in subterranean mammals it is complicated due to the absence of notable body extremities and high humidity in their burrows. IR-thermography in a previous study on two species of African mole-rats revealed that body heat was dissipated mainly through the ventral body part, which is notably less furred. Here, we analyzed the dorsal and ventral skin morphology, to test if dermal characteristics could contribute to higher heat dissipation through the ventral body part. The thickness of the epidermis and dermis and the presence, extent and connectivity of fat tissue in the dermis were examined using routine histological methods, while vascular density was evaluated using fluorescent dye and confocal microscopy in the giant mole-rat Fukomys mechowii. As in other hitherto studied subterranean mammals, no subcutaneous adipose tissue was found. All examined skin characteristics were very similar for both dorsal and ventral regions: relative content of adipose tissue in the dermis (14.4 ± 3.7% dorsally and 11.0 ± 4.0% ventrally), connectivity of dermal fat (98.5 ± 2.8% and 95.5 ± 6.8%), vascular density (26.5 ± 3.3% and 22.7 ± 2.3%). Absence of large differences in measured characteristics between particular body regions indicates that the thermal windows are determined mainly by the pelage characteristics.
Collapse
Affiliation(s)
- Lucie Pleštilová
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Okrouhlík
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Hana Sehadová
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Eva M. Valesky
- Department of Dermatology, Venereology and Allergology, University Hospital, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|