1
|
Desai O, Rathore M, Boutros CS, Wright M, Bryson E, Curry K, Wang R. HER3: Unmasking a twist in the tale of a previously unsuccessful therapeutic pursuit targeting a key cancer survival pathway. Genes Dis 2025; 12:101354. [PMID: 40290122 PMCID: PMC12022662 DOI: 10.1016/j.gendis.2024.101354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 04/30/2025] Open
Abstract
HER3, formally referred to as ERB-B2 receptor tyrosine kinase 3, is a member of the ErbB receptor tyrosine kinases (also known as EGFR) family. HER3 plays a significant pro-cancer role in various types of cancer due to its overexpression and abnormal activation, which initiates downstream signaling pathways crucial in cancer cell survival and progression. As a result, numerous monoclonal antibodies have been developed to block HER3 activation and subsequent signaling pathways. While pre-clinical investigations have effectively showcased significant anti-cancer effects of HER3-targeted therapies, these therapies have had little impact on cancer patient outcomes in the clinic, except for patients with rare NRG1 fusion mutations. This review offers a comprehensive description of the oncogenic functions of HER3, encompassing its structure and mediating signaling pathways. More importantly, it provides an in-depth exploration of past and ongoing clinical trials investigating HER3-targeted therapies for distinct types of cancer and discusses the tumor microenvironment and other critical determinants that may contribute to the observed suboptimal outcomes in most clinical studies using HER3-targeted therapies. Lastly, we suggest alternative approaches and the exploration of novel strategies to potentially improve the efficacy of targeting the pivotal oncogenic HER3 signaling pathway in future translational investigations.
Collapse
Affiliation(s)
- Omkar Desai
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Moeez Rathore
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christina S. Boutros
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth Bryson
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kimberly Curry
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Garrett JT, Tendler S, Feroz W, Kilroy MK, Yu H. Emerging importance of HER3 in tumorigenesis and cancer therapy. Nat Rev Clin Oncol 2025; 22:348-370. [PMID: 40087402 DOI: 10.1038/s41571-025-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
HER3 is a member of the HER/ErbB family of receptor tyrosine kinases, together with EGFR (HER1), HER2 and HER4. Despite having only weak intrinsic kinase activity, HER3 can contribute to oncogenic signalling via ligand-induced heterodimerization with other HER family members. Evidence indicates that HER3 is altered or aberrantly expressed across a variety of tumour types and can be associated with poor clinical outcomes. Whereas anticancer agents targeting EGFR and HER2 have been approved for decades, no drug targeting HER3 had been approved until very recently. Initial targeting of HER3 with monoclonal antibodies as single agents or in combination with other therapeutics produced disappointing clinical results. Subsequently, efforts have been made to target HER3 with novel agents such as antibody-drug conjugates and bispecific antibodies, with promising efficacy observed in several trials encompassing various tumour types. In December 2024, the HER3 × HER2 bispecific antibody zenocutuzumab was granted FDA Accelerated Approval for the treatment of non-small-cell lung cancers or pancreatic cancers harbouring fusions involving NRG1, the gene encoding the high-affinity HER3 ligand neuregulin 1. In this Review, we provide an essential guide to HER3 signalling and oncogenesis, HER3 expression in cancer and its prognostic implications, oncogenic HER3 somatic mutations as well as rare NRG1 fusions that might depend on HER3 signalling, and the roles of HER3 in resistance to cancer therapies. We also highlight efforts to target HER3 with diverse therapeutic strategies and the potential interplay between HER3 and the antitumour immune response.
Collapse
Affiliation(s)
- Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| | - Salomon Tendler
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wasim Feroz
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Mary Kate Kilroy
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Helena Yu
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Sato S, Shintani D, Kaneda Y, Nakamura R, Katoh T, Yano M, Hanaoka M, Yagishita S, Yasuda M, Nagata M, Hasegawa K. Human epidermal growth factor receptor 3 expression in patients with epithelial ovarian cancer: a potential target for ovarian mucinous and clear cell carcinoma. Int J Clin Oncol 2025; 30:805-813. [PMID: 39937426 DOI: 10.1007/s10147-024-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/09/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND Human epidermal growth factor receptor 3 (HER3), a tyrosine kinase belonging to the HER family, is a known target for cancer therapy; recently, an anti-HER3 antibody-drug conjugate (ADC) is developing. To understand HER3 expression in epithelial ovarian cancer (EOC), this study was conducted. METHODS We investigated the expression of HER3 in 202 patients with EOC using immunohistochemistry (IHC), and the association between HER3 expression, clinicopathological features, prognosis, and treatment timing. RESULTS Of all the cases, 55.4% had a HER3 IHC score ≥ 1 + . In particular, 78.0% of the patients with clear cell carcinoma (CCC) and 87.9% of the patients with mucinous carcinoma (MC) had a HER3 IHC score ≥ 1 + . Regarding clinicopathological features, early disease stage, feasibility of primary debulking surgery, no residual tumor, and low CA125 levels were more frequently observed in patients with a HER3 IHC score ≥ 1 + . Furthermore, a HER3 no-expression showed a significant association with a relatively short progression-free survival (PFS). And, for patients with mucinous carcinoma, those with a HER3 IHC score ≥ 1 + had poorer PFS and overall survival than those with a HER3 no-expression (no statistically significant difference). In addition, we analyzed HER3 expression at primary tumor and recurrence tumor in same patients. Thus, we observed the HER3 IHC score tended to change from 0 to ≥ 1 + in recurrence cases compared with primary cases. CONCLUSIONS These observations suggested that patients with MC, CCC and recurrence of all histological type may potentially benefit from future clinical trials of HER3-directed therapies.
Collapse
MESH Headings
- Humans
- Female
- Middle Aged
- Carcinoma, Ovarian Epithelial/pathology
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Aged
- Adenocarcinoma, Mucinous/pathology
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/drug therapy
- Adult
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/drug therapy
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/biosynthesis
- Prognosis
- Aged, 80 and over
- Biomarkers, Tumor
- Immunohistochemistry
- Progression-Free Survival
Collapse
Affiliation(s)
- Sho Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yuki Kaneda
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, 140-8710, Japan
| | - Ryuichi Nakamura
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, 140-8710, Japan
| | - Tomomi Katoh
- Department of Pathology, Saitama Medical University International Medical, Center, Hidaka, Saitama, 350-1298, Japan
| | - Mitsutake Yano
- Department of Pathology, Saitama Medical University International Medical, Center, Hidaka, Saitama, 350-1298, Japan
| | - Mieko Hanaoka
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji, Tokyo, Japan
- Department of Pharmacology and Therapeutics, National Cancer Center Research Institute, Tsukiji, Tokyo, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical, Center, Hidaka, Saitama, 350-1298, Japan
| | - Motoko Nagata
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, 140-8710, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
| |
Collapse
|
4
|
Zhang J, Rinne SS, Yin W, Leitao CD, Björklund E, Abouzayed A, Ståhl S, Löfblom J, Orlova A, Gräslund T, Vorobyeva A. Affibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor-3 Demonstrate Therapeutic Efficacy in Mice Bearing Low Expressing Xenografts. ACS Pharmacol Transl Sci 2024; 7:3228-3240. [PMID: 39416966 PMCID: PMC11475273 DOI: 10.1021/acsptsci.4c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
The outcome of clinical trials evaluating drugs targeting the human epidermal growth factor receptor 3 (HER3) has been poor, with primary concerns related to lack of efficacy. HER3 is considered a difficult target since its overexpression on tumors is relatively low and there is normal expression in many different organs. However, a significant number of patients across different cancer indications have overexpression of HER3 and the development of novel modalities targeting HER3 is therefore warranted. Here, we have investigated the properties of affibody-based drug conjugates targeting HER3. The HER3-targeting affibody molecule ZHER3 was fused in a mono- and bivalent format to an engineered albumin-binding domain (ABD) for in vivo half-life extension and was coupled to the cytotoxic drug DM1 via a non-cleavable maleimidocaproyl (mc) linker. In vivo, a moderate uptake was observed for [99mTc]Tc-labeled ZHER3-ABD-ZHER3-mcDM1 in HER3 expressing BxPC3 tumors (3.5 ± 0.3%IA/g) at 24 h after injection, and clearance was predominately renal-mediated. Treatment of mice with BxPC3 human pancreatic cancer xenografts showed that a combination of ZHER3-ABD-ZHER3-mcDM1 and its cytostatic analog ZHER3-ABD-ZHER3 was efficacious and superior to treatment with only ZHER3-ABD-ZHER3, providing tumor growth inhibition and longer median survival (90 d) in comparison to monotherapy (68 d) and vehicle control (49 d). ZHER3-ABD-ZHER3-mcDM1 was found to be a potent drug conjugate for the treatment of HER3-expressing tumors in mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Sara S. Rinne
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Wen Yin
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Elvira Björklund
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
| | - Stefan Ståhl
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - John Löfblom
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, Dag Hammarskjöldsv 14C, 751 83 Uppsala, Sweden
- Science
for Life Laboratory, Dag Hammarskjöldsv 14C, 751
83 Uppsala, Sweden
| | - Torbjörn Gräslund
- Department
of Protein Science, KTH Royal Institute
of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden
| | - Anzhelika Vorobyeva
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Dag Hammarskjölds
Väg 20, 751 85 Uppsala, Sweden
| |
Collapse
|
5
|
Kucharczyk T, Nicoś M, Kucharczyk M, Kalinka E. NRG1 Gene Fusions-What Promise Remains Behind These Rare Genetic Alterations? A Comprehensive Review of Biology, Diagnostic Approaches, and Clinical Implications. Cancers (Basel) 2024; 16:2766. [PMID: 39123493 PMCID: PMC11311641 DOI: 10.3390/cancers16152766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) presents a variety of druggable genetic alterations that revolutionized the treatment approaches. However, identifying new alterations may broaden the group of patients benefitting from such novel treatment options. Recently, the interest focused on the neuregulin-1 gene (NRG1), whose fusions may have become a potential predictive factor. To date, the occurrence of NRG1 fusions has been considered a negative prognostic marker in NSCLC treatment; however, many premises remain behind the targetability of signaling pathways affected by the NRG1 gene. The role of NRG1 fusions in ErbB-mediated cell proliferation especially seems to be considered as a main target of treatment. Hence, NSCLC patients harboring NRG1 fusions may benefit from targeted therapies such as pan-HER family inhibitors, which have shown efficacy in previous studies in various cancers, and anti-HER monoclonal antibodies. Considering the increased interest in the NRG1 gene as a potential clinical target, in the following review, we highlight its biology, as well as the potential clinical implications that were evaluated in clinics or remained under consideration in clinical trials.
Collapse
Affiliation(s)
- Tomasz Kucharczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Marek Kucharczyk
- Department of Zoology and Nature Conservation, Institute of Biology, Maria Curie-Sklodowska University in Lublin, 20-033 Lublin, Poland;
| | - Ewa Kalinka
- Oncology Clinic, Institute of the Polish Mother’s Health Center in Lodz, 93-338 Lodz, Poland;
| |
Collapse
|
6
|
Zeng H, Wang W, Zhang L, Lin Z. HER3-targeted therapy: the mechanism of drug resistance and the development of anticancer drugs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:14. [PMID: 38835349 PMCID: PMC11149107 DOI: 10.20517/cdr.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3), which is part of the HER family, is aberrantly expressed in various human cancers. Since HER3 only has weak tyrosine kinase activity, when HER3 ligand neuregulin 1 (NRG1) or neuregulin 2 (NRG2) appears, activated HER3 contributes to cancer development and drug resistance by forming heterodimers with other receptors, mainly including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Inhibition of HER3 and its downstream signaling, including PI3K/AKT, MEK/MAPK, JAK/STAT, and Src kinase, is believed to be necessary to conquer drug resistance and improve treatment efficiency. Until now, despite multiple anti-HER3 antibodies undergoing preclinical and clinical studies, none of the HER3-targeted therapies are licensed for utilization in clinical cancer treatment because of their safety and efficacy. Therefore, the development of HER3-targeted drugs possessing safety, tolerability, and sensitivity is crucial for clinical cancer treatment. This review summarizes the progress of the mechanism of HER3 in drug resistance, the HER3-targeted therapies that are conducted in preclinical and clinical trials, and some emerging molecules that could be used as future designed drugs for HER3, aiming to provide insights for future research and development of anticancer drugs targeting HER3.
Collapse
Affiliation(s)
- Huilan Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wei Wang
- Department of Cancer Center, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404000, China
| | - Lin Zhang
- Department of Gastroenterology, Chongqing University Jiangjin Hospital, Chongqing 402260, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
7
|
Kojima Y, Yoshida H, Okuya T, Okuma HS, Nishikawa T, Tanioka M, Sudo K, Noguchi E, Shimoi T, Tamura K, Tanase Y, Uno M, Ishikawa M, Arakaki M, Ichikawa H, Yagishita S, Hamada A, Fujiwara Y, Yonemori K, Kato T. Therapeutic target biomarkers of patient-derived xenograft models of gastric-type cervical adenocarcinoma. Gynecol Oncol Rep 2023; 50:101302. [PMID: 38054200 PMCID: PMC10694048 DOI: 10.1016/j.gore.2023.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023] Open
Abstract
Background Most cervical adenocarcinomas are associated with human papillomavirus (HPV). Gastric-type cervical adenocarcinoma (GAS), an HPV-independent adenocarcinoma, shows an aggressive clinical feature, resulting in a poor prognosis. Resistance to chemotherapy poses a difficulty in managing patients with metastatic GAS. We aimed to establish patient-derived xenografts (PDXs) of tumors from two patients with GAS and evaluated protein biomarkers for drug development using immunohistochemistry. Methods Two PDXs were established 78 and 48 days after transplanting the patient's tumor tissues into immunodeficient mice, respectively. PDX and patient's tumor samples were stained for HER2, HER3, PMS2, MSH6, PanTrk, and ARID1A to evaluate biomarkers for therapeutic targets. In addition, whole exome sequencing and RNA sequencing were performed on available samples. Results The pathological findings in morphological features and immunohistochemical profiles from the established PDXs were similar to those from the patients' surgical tumor specimens. HER3 was overexpressed in the patient's tumors, and the corresponding PDX tumors and HER2 was weakly stained in both types of tumor samples. In all PDX and patient tumor samples, PMS2, MSH6, and ARID1A were retained, and PanTrk was not expressed. In addition, a total of 10 samples, including tumor tissue samples from 8 other GAS patients, were evaluated for HER3 expression scores, all of which were 2 + or higher. Conclusions In summary, we evaluated biomarkers for therapeutic targets using newly established PDX models of GAS. Frequent HER3 overexpression and HER2 expression in GAS tumors suggest the possibility of new treatments for patients with GAS by targeting HER3 and HER2.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
- Department of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Toshihiro Okuya
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitomi S Okuma
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Maki Tanioka
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Emi Noguchi
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kenji Tamura
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasuhito Tanase
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Masaya Uno
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Motoko Arakaki
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Shigehiro Yagishita
- Department of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Akinobu Hamada
- Department of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
8
|
Majumder A. HER3: Toward the Prognostic Significance, Therapeutic Potential, Current Challenges, and Future Therapeutics in Different Types of Cancer. Cells 2023; 12:2517. [PMID: 37947595 PMCID: PMC10648638 DOI: 10.3390/cells12212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is the only family member of the EGRF/HER family of receptor tyrosine kinases that lacks an active kinase domain (KD), which makes it an obligate binding partner with other receptors for its oncogenic role. When HER3 is activated in a ligand-dependent (NRG1/HRG) or independent manner, it can bind to other receptors (the most potent binding partner is HER2) to regulate many biological functions (growth, survival, nutrient sensing, metabolic regulation, etc.) through the PI3K-AKT-mTOR pathway. HER3 has been found to promote tumorigenesis, tumor growth, and drug resistance in different cancer types, especially breast and non-small cell lung cancer. Given its ubiquitous expression across different solid tumors and role in oncogenesis and drug resistance, there has been a long effort to target HER3. As HER3 cannot be targeted through its KD with small-molecule kinase inhibitors via the conventional method, pharmaceutical companies have used various other approaches, including blocking either the ligand-binding domain or extracellular domain for dimerization with other receptors. The development of treatment options with anti-HER3 monoclonal antibodies, bispecific antibodies, and different combination therapies showed limited clinical efficiency for various reasons. Recent reports showed that the extracellular domain of HER3 is not required for its binding with other receptors, which raises doubt about the efforts and applicability of the development of the HER3-antibodies for treatment. Whereas HER3-directed antibody-drug conjugates showed potentiality for treatment, these drugs are still under clinical trial. The currently understood model for dimerization-induced signaling remains incomplete due to the absence of the crystal structure of HER3 signaling complexes, and many lines of evidence suggest that HER family signaling involves more than the interaction of two members. This review article will significantly expand our knowledge of HER3 signaling and shed light on developing a new generation of drugs that have fewer side effects than the current treatment regimen for these patients.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Talbot T, Lu H, Aboagye EO. Amplified therapeutic targets in high-grade serous ovarian carcinoma - a review of the literature with quantitative appraisal. Cancer Gene Ther 2023; 30:955-963. [PMID: 36804485 PMCID: PMC9940086 DOI: 10.1038/s41417-023-00589-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
High-grade serous ovarian carcinoma is a unique cancer characterised by universal TP53 mutations and widespread copy number alterations. These copy number alterations include deletion of tumour suppressors and amplification of driver oncogenes. Given their key oncogenic roles, amplified driver genes are often proposed as therapeutic targets. For example, development of anti-HER2 agents has been clinically successful in treatment of ERBB2-amplified tumours. A wide scope of preclinical work has since investigated numerous amplified genes as potential therapeutic targets in high-grade serous ovarian carcinoma. However, variable experimental procedures (e.g., choice of cell lines), ambiguous phenotypes or lack of validation hinders further clinical translation of many targets. In this review, we collate the genes proposed to be amplified therapeutic targets in high-grade serous ovarian carcinoma, and quantitatively appraise the evidence in support of each candidate gene. Forty-four genes are found to have evidence as amplified therapeutic targets; the five highest scoring genes are CCNE1, PAX8, URI1, PRKCI and FAL1. This review generates an up-to-date list of amplified therapeutic target candidates for further development and proposes comprehensive criteria to assist amplified therapeutic target discovery in the future.
Collapse
Affiliation(s)
- Thomas Talbot
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK
| | - Haonan Lu
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK
| | - Eric O Aboagye
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120NN, London, UK.
| |
Collapse
|
10
|
Steele TM, Tsamouri MM, Siddiqui S, Lucchesi CA, Vasilatis D, Mooso BA, Durbin-Johnson BP, Ma AH, Hejazi N, Parikh M, Mudryj M, Pan CX, Ghosh PM. Cisplatin-induced increase in heregulin 1 and its attenuation by the monoclonal ErbB3 antibody seribantumab in bladder cancer. Sci Rep 2023; 13:9617. [PMID: 37316561 PMCID: PMC10267166 DOI: 10.1038/s41598-023-36774-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Cisplatin-based combination chemotherapy is the foundation for treatment of advanced bladder cancer (BlCa), but many patients develop chemoresistance mediated by increased Akt and ERK phosphorylation. However, the mechanism by which cisplatin induces this increase has not been elucidated. Among six patient-derived xenograft (PDX) models of BlCa, we observed that the cisplatin-resistant BL0269 express high epidermal growth factor receptor, ErbB2/HER2 and ErbB3/HER3. Cisplatin treatment transiently increased phospho-ErbB3 (Y1328), phospho-ERK (T202/Y204) and phospho-Akt (S473), and analysis of radical cystectomy tissues from patients with BlCa showed correlation between ErbB3 and ERK phosphorylation, likely due to the activation of ERK via the ErbB3 pathway. In vitro analysis revealed a role for the ErbB3 ligand heregulin1-β1 (HRG1/NRG1), which is higher in chemoresistant lines compared to cisplatin-sensitive cells. Additionally, cisplatin treatment, both in PDX and cell models, increased HRG1 levels. The monoclonal antibody seribantumab, that obstructs ErbB3 ligand-binding, suppressed HRG1-induced ErbB3, Akt and ERK phosphorylation. Seribantumab also prevented tumor growth in both the chemosensitive BL0440 and chemoresistant BL0269 models. Our data demonstrate that cisplatin-associated increases in Akt and ERK phosphorylation is mediated by an elevation in HRG1, suggesting that inhibition of ErbB3 phosphorylation may be a useful therapeutic strategy in BlCa with high phospho-ErbB3 and HRG1 levels.
Collapse
Affiliation(s)
- Thomas M Steele
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Maria Malvina Tsamouri
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Salma Siddiqui
- Research Service, VA Northern California Health Care System, Mather, CA, USA
| | - Christopher A Lucchesi
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, USA
| | - Demitria Vasilatis
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Benjamin A Mooso
- Research Service, VA Northern California Health Care System, Mather, CA, USA
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Ai-Hong Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Nazila Hejazi
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Yosemite Pathology Medical Group, Inc., Modesto, CA, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Maria Mudryj
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Chong-Xian Pan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paramita M Ghosh
- Research Service, VA Northern California Health Care System, Mather, CA, USA.
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA.
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
11
|
Desai O, Wang R. HER3- A key survival pathway and an emerging therapeutic target in metastatic colorectal cancer and pancreatic ductal adenocarcinoma. Oncotarget 2023; 14:439-443. [PMID: 37163206 PMCID: PMC10171365 DOI: 10.18632/oncotarget.28421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) are highly metastatic cancers with poor survival rates. The tumor microenvironment has been shown to play a critical role in cancer progression and response to therapies. Endothelial cells (ECs) are a key component of the tumor microenvironment and promote cancer cell survival by secreting soluble factors that activate cancer-promoting signaling pathways. Studies from us and others identified HER3 as a key mediator of liver EC-induced chemoresistance and cancer cell growth in metastatic CRC and PDAC. In this article, we discuss that HER3-targeted therapies may be effective in treating patients with HER3-expressing CRC and PDAC, and highlight the importance of applying HER3 expression as a predictive biomarker for patient response to HER3-targeted therapies. We also discuss the challenges encountered in past clinical trials of HER3-targeted therapies, including the role of NRG1 gene fusions, alternative HER3 activation mechanisms, and adaptive resistance mechanisms. Finally, we conclude by suggesting the future directions of HER3-targeted therapies, including novel approaches to overcome chemoresistance and promote cancer cell death.
Collapse
Affiliation(s)
- Omkar Desai
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Kardynska M, Kogut D, Pacholczyk M, Smieja J. Mathematical modeling of regulatory networks of intracellular processes - Aims and selected methods. Comput Struct Biotechnol J 2023; 21:1523-1532. [PMID: 36851915 PMCID: PMC9958294 DOI: 10.1016/j.csbj.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Regulatory networks structure and signaling pathways dynamics are uncovered in time- and resource consuming experimental work. However, it is increasingly supported by modeling, analytical and computational techniques as well as discrete mathematics and artificial intelligence applied to to extract knowledge from existing databases. This review is focused on mathematical modeling used to analyze dynamics and robustness of these networks. This paper presents a review of selected modeling methods that facilitate advances in molecular biology.
Collapse
Affiliation(s)
- Malgorzata Kardynska
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland
| | - Daria Kogut
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Marcin Pacholczyk
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Jaroslaw Smieja
- Dept. of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Gliwice, Poland.,Dept. of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
13
|
Larsen ME, Lyu H, Liu B. HER3-targeted therapeutic antibodies and antibody-drug conjugates in non-small cell lung cancer refractory to EGFR-tyrosine kinase inhibitors. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:11-17. [PMID: 39170873 PMCID: PMC11332908 DOI: 10.1016/j.pccm.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 08/23/2024]
Abstract
Human epidermal growth factor receptor 3 (HER3) is a unique member of the human epidermal growth factor receptor (HER/EGFR) family, since it has negligible kinase activity. Therefore, HER3 must interact with a kinase-proficient receptor to form a heterodimer, leading to the activation of signaling cascades. Overexpression of HER3 is observed in various human cancers, including non-small cell lung cancer (NSCLC), and correlates with poor clinical outcomes in patients. Studies on the underlying mechanism demonstrate that HER3-initiated signaling promotes tumor metastasis and causes treatment failure in human cancers. Upregulation of HER3 is frequently observed in EGFR-mutant NSCLC treated with EGFR-tyrosine kinase inhibitors (TKIs). Increased expression of HER3 triggers the so-called EGFR-independent mechanism via interactions with other receptors to activate "bypass signaling pathways", thereby resulting in resistance to EGFR-TKIs. To date, no HER3-targeted therapy has been approved for cancer treatment. In both preclinical and clinical studies, targeting HER3 with a blocking antibody (Ab) is the only strategy being examined. Recent evaluations of an anti-HER3 Ab-drug conjugate (ADC) show promising results in patients with EGFR-TKI-resistant NSCLC. Herein, we summarize our understanding of the unique biology of HER3 in NSCLC refractory to EGFR-TKIs, with a focus on its dimerization partners and subsequent activation of signaling pathways. We also discuss the latest development of the therapeutic Abs and ADCs targeting HER3 to abrogate EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Margaret E. Larsen
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Hui Lyu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
14
|
Rathore M, Zhang W, Wright M, Zarei M, Vaziri-Gohar A, Hajihassani O, Abbas A, Feng H, Brody J, Markowitz SD, Winter J, Wang R. Liver Endothelium Microenvironment Promotes HER3-mediated Cell Growth in Pancreatic Ductal Adenocarcinoma. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:431-445. [PMID: 36644317 PMCID: PMC9838560 DOI: 10.26502/jcsct.5079182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
~90% metastatic pancreatic ductal adenocarcinoma (mPDAC) occurs in the liver, and the 5-year survival rate for patients with mPDAC is only at 3%. The liver has a unique endothelial cell (EC)-rich microenvironment, and preclinical studies showed that ECs promote cancer cell survival pathways by secreting soluble factors in a paracrine fashion in other types of cancer. However, the effects of liver ECs on mPDAC have not been elucidated. In this study, we used primary liver ECs and determined that liver EC-secreted factors containing conditioned medium (CM) increased PDAC cell growth, compared to control CM from PDAC cells. Using an unbiased receptor tyrosine kinase array, we identified human epidermal growth factor receptor 3 (HER3, also known as ErbB3) as a key mediator of liver EC-induced growth in PDAC cells with HER3 expression (HER3 +ve). We found that EC-secreted neuregulins activated the HER3-AKT signaling axis, and that depleting neuregulins from EC CM or blocking HER3 with an antibody, seribantumab, attenuated EC-induced functions in HER3 +ve PDAC cells, but not in cells without HER3 expression. Furthermore, we determined that EC CM increased PDAC xenograft growth in vivo, and that seribantumab blocked EC-induced growth in xenografts with HER3 expression. These findings elucidated a paracrine role of liver ECs in promoting PDAC cell growth, and identified the HER3-AKT axis as a key mediator in EC-induced functions in HER3 +ve PDAC cells. As over 70% mPDAC express HER3, this study highlights the potential of using HER3-targeted therapies for treating patients with HER3 +ve mPDAC.
Collapse
Affiliation(s)
- Moeez Rathore
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Wei Zhang
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Mehrdad Zarei
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Ali Vaziri-Gohar
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Omid Hajihassani
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Ata Abbas
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
| | - Hao Feng
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jonathan Brody
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239
| | - Sanford D Markowitz
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Department of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106. USA
| | - Jordan Winter
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH 44106
| |
Collapse
|
15
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. HER3 in cancer: from the bench to the bedside. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:310. [PMID: 36271429 PMCID: PMC9585794 DOI: 10.1186/s13046-022-02515-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
The HER3 protein, that belongs to the ErbB/HER receptor tyrosine kinase (RTK) family, is expressed in several types of tumors. That fact, together with the role of HER3 in promoting cell proliferation, implicate that targeting HER3 may have therapeutic relevance. Furthermore, expression and activation of HER3 has been linked to resistance to drugs that target other HER receptors such as agents that act on EGFR or HER2. In addition, HER3 has been associated to resistance to some chemotherapeutic drugs. Because of those circumstances, efforts to develop and test agents targeting HER3 have been carried out. Two types of agents targeting HER3 have been developed. The most abundant are antibodies or engineered antibody derivatives that specifically recognize the extracellular region of HER3. In addition, the use of aptamers specifically interacting with HER3, vaccines or HER3-targeting siRNAs have also been developed. Here we discuss the state of the art of the preclinical and clinical development of drugs aimed at targeting HER3 with therapeutic purposes.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Ocaña
- grid.411068.a0000 0001 0671 5785Hospital Clínico San Carlos and CIBERONC, 28040 Madrid, Spain
| | - Atanasio Pandiella
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
16
|
Ethier JL, Fuh KC, Arend R, Konecny GE, Konstantinopoulos PA, Odunsi K, Swisher EM, Kohn EC, Zamarin D. State of the Biomarker Science in Ovarian Cancer: A National Cancer Institute Clinical Trials Planning Meeting Report. JCO Precis Oncol 2022; 6:e2200355. [PMID: 36240472 PMCID: PMC9848534 DOI: 10.1200/po.22.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Despite therapeutic advances in the treatment of ovarian cancer (OC), 5-year survival remains low, and patients eventually die from recurrent, chemotherapy-resistant disease. The National Cancer Gynecologic Cancer Steering Committee identified the integration of scientifically defined subgroups as a top strategic priority in clinical trial planning. METHODS A group of experts was convened to review the scientific literature in OC to identify validated predictive biomarkers that could inform patient selection and treatment stratification. Here, we report on these findings and their potential for use in future clinical trial design on the basis of hierarchal evidence grading. RESULTS The biomarkers were classified on the basis of mechanistic targeting, including DNA repair and replication stress, immunotherapy and tumor microenvironment, oncogenic signaling, and angiogenesis. Currently, BRCA mutations and homologous recombination deficiency to predict poly (ADP-ribose) polymerase inhibitor response are supported in OC by the highest level of evidence. Additional biomarkers of response to agents targeting the pathways above have been identified but require prospective validation. CONCLUSION Although a number of biomarkers of response to various agents in OC have been described in the literature, high-level evidence for the majority is lacking. This report highlights the unmet need for identification and validation of predictive biomarkers to guide therapy and future trial design in OC.
Collapse
Affiliation(s)
- Josee-Lyne Ethier
- Department of Oncology, Cancer Centre of Southeastern Ontario, Queen's University, Kingston, ON, Canada
| | - Katherine C. Fuh
- Division of Gynecologic Oncology, Washington University St Louis, St Louis, MO
| | - Rebecca Arend
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingam, AL
| | - Gottfried E. Konecny
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | | | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | | | - Elise C. Kohn
- Clinical Investigations Branch of The Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, ML
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
Targeting Tyrosine Kinases in Ovarian Cancer: Small Molecule Inhibitor and Monoclonal Antibody, Where Are We Now? Biomedicines 2022; 10:biomedicines10092113. [PMID: 36140214 PMCID: PMC9495728 DOI: 10.3390/biomedicines10092113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynaecological malignancies worldwide. Despite high success rates following first time treatment, this heterogenous disease is prone to recurrence. Oncogenic activity of receptor tyrosine kinases is believed to drive the progression of ovarian cancer. Here we provide an update on the progress of the therapeutic targeting of receptor tyrosine kinases in ovarian cancer. Broadly, drug classes that inhibit tyrosine kinase/pathways can be classified as small molecule inhibitors, monoclonal antibodies, or immunotherapeutic vaccines. Small molecule inhibitors tested in clinical trials thus far include sorafenib, sunitinib, pazopanib, tivantinib, and erlotinib. Monoclonal antibodies include bevacizumab, cetuximab, pertuzumab, trastuzumab, and seribantumab. While numerous trials have been carried out, the results of monotherapeutic agents have not been satisfactory. For combination with chemotherapy, the monoclonal antibodies appear more effective, though the efficacy is limited by low frequency of target alteration and a lack of useful predictive markers for treatment stratification. There remain critical gaps for the treatment of platinum-resistant ovarian cancers; however, platinum-sensitive tumours may benefit from the combination of tyrosine kinase targeting drugs and PARP inhibitors. Immunotherapeutics such as a peptide B-cell epitope vaccine and plasmid-based DNA vaccine have shown some efficacy both as monotherapeutic agents and in combination therapy, but require further development to validate current findings. In conclusion, the tyrosine kinases remain attractive targets for treating ovarian cancers. Future development will need to consider effective drug combination, frequency of target, and developing predictive biomarker.
Collapse
|
18
|
Bella Á, Arrizabalaga L, Di Trani CA, Fernández-Sendin M, Teijeira A, Russo-Cabrera JS, Melero I, Berraondo P, Aranda F. Omentum: Friend or foe in ovarian cancer immunotherapy? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:117-131. [PMID: 35964998 DOI: 10.1016/bs.ircmb.2022.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ovarian cancer often spreads out of the ovary before a patient is diagnosed and is the deadliest gynecological malignancy. The aggressiveness of ovarian cancer is determined by the progression in the form of peritoneal carcinomatosis, a stage with a poor prognosis and an untreatable condition in most patients. One of the first tumor nests or the origin of metastasis in the peritoneal cavity is the omentum. The omentum contains immune aggregates, called milky spots, embedded in adipose tissue, which support tumor growth by various mechanisms, including immunosuppressive immune cells and metabolic functions. In this sense, the abundance of blood vessels, omental resident macrophages, and chemokines, among other factors, are known to promote invasiveness, proliferation and resistance to cancer therapies. As a result, surgical practice employed in advanced-stage ovarian cancer almost constantly includes omentectomy. Paradoxically, the omentum is considered the "abdominal policeman" that contributes to peritoneal immunity by capturing antigens and pathogens from the peritoneal cavity and promoting effective immune responses against microbes. Why immunosurveillance against the metastatic tumor does not take place in the omentum? Could omental immune responses be activated with immunotherapeutic interventions? The omentum has largely been ignored in cancer immunology and immunotherapy, and the potential translational implications of this in ovarian cancer are still unclear. Here, we focus on the dual role of the omentum in ovarian cancer: its role in antitumor immune responses versus its activities fostering cancer progression.
Collapse
Affiliation(s)
- Ángela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Myriam Fernández-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Joan Salvador Russo-Cabrera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Translational Oncology Group, Program in Solid Tumors, Cima Universidad de Navarra, Pamplona, Spain; Department of Immunology and Immunotherapy, Clinica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
19
|
The HER family as therapeutic targets in colorectal cancer. Crit Rev Oncol Hematol 2022; 174:103681. [PMID: 35462030 DOI: 10.1016/j.critrevonc.2022.103681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The human epidermal growth factor receptor (HER, ErbB) family has four members, epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. Although distinct in ligands and functions, all of the HER family members are receptor tyrosine kinases playing important roles in the pathogenesis of cancers. In the era of precision medicine, the HER family is one of the most important and successful cancer therapeutic targets, hallmarked by the approval of anti-EGFR therapies for the treatment of colorectal cancer and non-small cell lung cancer, and anti-HER2 therapies for the treatment of breast cancer and gastric cancer. This review briefly discusses how HER family members were discovered, their functions and roles in cancer, and most importantly, the developmental history and recent updates of therapies targeting HER family members, with colorectal cancer as a focus. We also discussed the patient selection and drug resistance to anti-EGFR therapies in the treatment of colorectal cancer.
Collapse
|
20
|
Rathore M, Zhang W, Wright M, Bhattacharya R, Fan F, Vaziri-Gohar A, Winter J, Wang Z, Markowitz SD, Willis J, Ellis LM, Wang R. Liver Endothelium Promotes HER3-mediated Cell Survival in Colorectal Cancer with Wild-type and Mutant KRAS. Mol Cancer Res 2022; 20:996-1008. [PMID: 35276002 PMCID: PMC9177644 DOI: 10.1158/1541-7786.mcr-21-0633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
We previously identified that human epidermal growth factor receptor 3 (HER3, also known as ERBB3) is a key mediator in liver endothelial cell (EC) promoting colorectal cancer (CRC) growth and chemoresistance, and suggested HER3-targeted therapy as a strategy for treating patients with metastatic CRC (mCRC) in the liver. Meanwhile, KRAS mutations occur in 40-50% of mCRC and render CRC resistant to therapies targeting the other HER family protein epidermal growth factor receptor (EGFR). It is necessary to elucidate the roles of KRAS mutation status in HER3-mediated cell survival and CRC response to HER3 inhibition. In the present study, we used primary ECs isolated from non-neoplastic liver tissues to recapitulate the liver EC microenvironment. We demonstrated that liver EC-secreted factors activated CRC-associated HER3, and increased CRC cell survival in vitro and promoted CRC patient-derived xenograft tumor growth in vivo. Moreover, we determined that blocking HER3, either by siRNA knockdown or the humanized antibody seribantumab, blocked EC-induced CRC survival in vitro in both KRAS wild-type and mutant CRC cells, and the HER3 antibody seribantumab significantly decreased CRC tumor growth and sensitized tumors to chemotherapy in an orthotopic xenograft model with CRC tumors developed in the liver. In summary, our findings demonstrated that blocking HER3 had significant effects on attenuating liver EC-induced CRC cell survival independent of the KRAS mutation status. Implications: This body of work highlighted a potential strategy of using HER3 antibodies in combination with standard chemotherapy agents for treating patients with either KRAS wild-type or KRAS mutant mCRC.
Collapse
Affiliation(s)
- Moeez Rathore
- Case Western Reserve University, cleveland, ohio, United States
| | - Wei Zhang
- Case Western Reserve University, United States
| | | | - Rajat Bhattacharya
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fan Fan
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ali Vaziri-Gohar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jordan Winter
- University Hospitals, Cleveland Medical Center, Cleveland, OH, United States
| | - Zhenghe Wang
- Case Western Reserve University, Cleveland, OH, United States
| | | | - Joseph Willis
- Case Western Reserve University, Cleveland, OH, United States
| | - Lee M Ellis
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rui Wang
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Liu L, Xiong W. Effect of molecular targeted agents in chemotherapy for treating platinum-resistant recurrent ovarian cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26849. [PMID: 34397893 PMCID: PMC8360434 DOI: 10.1097/md.0000000000026849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to investigate the effect of molecular targeted agents (MTAs) in chemo on platinum-resistant recurrent ovarian cancer (ROC). We performed this meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statements. Randomized controlled trials reporting data about platinum-resistant ovarian cancer treated by MTAs were included. The endpoints for the present study included overall survival and progression-free survival. We analyzed 9 randomized controlled trials including 3631 patients with ROC. The pooled analysis indicated that a combination of MTAs with chemo could markedly increase objective response rate in those patients (P = .012). Nevertheless, the survival rate of those patients was not markedly changed (P = .19). Besides, the combination of MTAs with chemo dramatically aggravated the occurrence of adverse events (P < .05). Moreover, it resulted in the termination of treatment (P = .044) in those patients, but it had no effect on fatal adverse events (P = .16). Our results indicated that the combination of MTAs with chemo notably improved objective response rate in patients with platinum-resistant ROC, but its benefit did not translate into survival benefits.
Collapse
|
22
|
Broekman KE, van Kruchten M, van Tinteren H, Sessa C, Jalving M, Reyners AKL. Clinical benefit of systemic therapies for recurrent ovarian cancer-ESMO-MCBS scores. ESMO Open 2021; 6:100229. [PMID: 34371383 PMCID: PMC8358417 DOI: 10.1016/j.esmoop.2021.100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Licensed systemic treatment options for platinum-sensitive recurrent ovarian cancer are platinum-based chemotherapy and maintenance treatment with bevacizumab and poly (ADP-ribose) polymerase inhibitors. For platinum-resistant disease, several non-platinum options are available. We aimed to assess the clinical benefit of these treatments according to the European Society of Medical Oncology (ESMO)-Magnitude of Clinical Benefit Scale (MCBS). MATERIALS AND METHODS A PubMed search was carried out including all studies evaluating systemic treatment of recurrent epithelial ovarian cancer, from 1990 onwards. Randomised trials with an adequate comparator and design showing a statistically significant benefit of the study arm were independently scored by two blinded observers using the ESMO-MCBS. RESULTS A total of 1127 papers were identified, out of which 61 reported results of randomised trials of sufficient quality. Nineteen trials showed statistically significant results and the studied treatments were graded according to ESMO-MCBS. Only three treatments showed substantial benefit (score of 4 on a scale of 1-5) according to the ESMO-MCBS: platinum-based chemotherapy with paclitaxel in the platinum-sensitive setting and the addition of bevacizumab to chemotherapy in the platinum-resistant setting. The WEE1 inhibitor adavosertib (not licensed) also scores a 4, based on a recent small phase II study. Assessment of quality-of-life data and toxicity using the ESMO-MCBS showed to be complex, which should be taken into account in using this score for clinical decision making. CONCLUSION Only a few licensed systemic therapies for recurrent ovarian cancer show substantial clinical benefit based on ESMO-MCBS scores. Trials demonstrating overall survival benefit are sparse.
Collapse
Affiliation(s)
- K E Broekman
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M van Kruchten
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H van Tinteren
- Trial and Data Center, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - C Sessa
- Oncology Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland
| | - M Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A K L Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
23
|
Li X, Ng ASN, Mak VCY, Chan KKL, Cheung ANY, Cheung LWT. Strategic Combination Therapies for Ovarian Cancer. Curr Cancer Drug Targets 2021; 20:573-585. [PMID: 32392113 DOI: 10.2174/1568009620666200511084007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
Ovarian cancer remains the leading cause of gynecologic cancer-related deaths among women worldwide. The dismal survival rate is partially due to recurrence after standardized debulking surgery and first-line chemotherapy. In recent years, targeted therapies, including antiangiogenic agents or poly (ADP-ribose) polymerase inhibitors, represent breakthroughs in the treatment of ovarian cancer. As more therapeutic agents become available supplemented by a deeper understanding of ovarian cancer biology, a range of combination treatment approaches are being actively investigated to further improve the clinical outcomes of the disease. These combinations, which involve DNA-damaging agents, targeted therapies of signaling pathways and immunotherapies, simultaneously target multiple cancer pathways or hallmarks to induce additive or synergistic antitumor activities. Here we review the preclinical data and ongoing clinical trials for developing effective combination therapies in treating ovarian cancer. These emerging therapeutic modalities may reshape the treatment landscape of the disease.
Collapse
Affiliation(s)
- Xinran Li
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Angel S N Ng
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Victor C Y Mak
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Karen K L Chan
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Annie N Y Cheung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lydia W T Cheung
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
24
|
Denlinger CS, Keedy VL, Moyo V, MacBeath G, Shapiro GI. Phase 1 dose escalation study of seribantumab (MM-121), an anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Invest New Drugs 2021; 39:1604-1612. [PMID: 34250553 PMCID: PMC8541959 DOI: 10.1007/s10637-021-01145-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
Background Overactivation of human epidermal growth factor receptor 3 (HER3) triggers multiple intracellular pathways resulting in tumor cell survival. This Phase 1 study assessed the safety, efficacy, and pharmacokinetics (PK) of seribantumab, a fully human anti-HER3 monoclonal antibody. Methods Adult patients with advanced or refractory solid tumors were treated in six dose cohorts of seribantumab: 3.2, 6, 10, 15, or 20 mg/kg weekly, or 40 mg/kg loading dose followed by 20 mg/kg weekly maintenance dose (40/20 mg/kg) using a modified 3 + 3 dose escalation strategy with cohort expansion. Primary objectives were identification of a recommended Phase 2 dose (RP2D) and determination of objective response rate. Secondary objectives were assessment of safety, dose-limiting toxicities, and PK. Results Forty-four patients (26 dose escalation; 18 dose expansion) were enrolled. Seribantumab monotherapy was well tolerated with most adverse events being transient and mild to moderate (grade 1 or 2) in severity; maximum tolerated dose was not reached. The highest dose, 40/20 mg/kg, was identified as RP2D. Best response was stable disease, reported in 24% and 39% of patients during the dose escalation and expansion portions of the study, respectively. Seribantumab terminal half-life was ≈100 h; steady state concentrations were reached after 3–4 weekly doses. Conclusions Seribantumab monotherapy was well tolerated across all dose levels. Safety and PK data from this study support further seribantumab investigations in genomically defined populations. Clinical trial registration NCT00734305. August 12, 2008.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- Dose-Response Relationship, Drug
- Female
- Half-Life
- Humans
- Male
- Maximum Tolerated Dose
- Middle Aged
- Neoplasms/drug therapy
- Receptor, ErbB-3/antagonists & inhibitors
Collapse
Affiliation(s)
- Crystal S Denlinger
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Vicki L Keedy
- Department of Medicine (Hematology and Oncology), Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Victor Moyo
- Merrimack Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
25
|
Haikala HM, Jänne PA. Thirty Years of HER3: From Basic Biology to Therapeutic Interventions. Clin Cancer Res 2021; 27:3528-3539. [PMID: 33608318 DOI: 10.1158/1078-0432.ccr-20-4465] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
HER3 is a pseudokinase member of the EGFR family having a role in both tumor progression and drug resistance. Although HER3 was discovered more than 30 years ago, no therapeutic interventions have reached clinical approval to date. Because the evidence of the importance of HER3 is accumulating, increased amounts of preclinical and clinical trials with HER3-targeting agents are emerging. In this review article, we discuss the most recent HER3 biology in tumorigenic events and drug resistance and provide an overview of the current and emerging strategies to target HER3.
Collapse
Affiliation(s)
- Heidi M Haikala
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Abstract
Neuregulins, members of the largest subclass of growth factors of the epidermal growth factor family, mediate a myriad of cellular functions including survival, proliferation, and differentiation in normal tissues through binding to receptor tyrosine kinases of the ErbB family. However, aberrant neuregulin signaling in the tumor microenvironment is increasingly recognized as a key player in initiation and malignant progression of human cancers. In this chapter, we focus on the role of neuregulin signaling in the hallmarks of cancer, including cancer initiation and development, metastasis, as well as therapeutic resistance. Moreover, role of neuregulin signaling in the regulation of tumor microenvironment and targeting of neuregulin signaling in cancer from the therapeutic perspective are also briefly discussed.
Collapse
|
27
|
Huebner H, Kurbacher CM, Kuesters G, Hartkopf AD, Lux MP, Huober J, Volz B, Taran FA, Overkamp F, Tesch H, Häberle L, Lüftner D, Wallwiener M, Müller V, Beckmann MW, Belleville E, Ruebner M, Untch M, Fasching PA, Janni W, Fehm TN, Kolberg HC, Wallwiener D, Brucker SY, Schneeweiss A, Ettl J. Heregulin (HRG) assessment for clinical trial eligibility testing in a molecular registry (PRAEGNANT) in Germany. BMC Cancer 2020; 20:1091. [PMID: 33176725 PMCID: PMC7656772 DOI: 10.1186/s12885-020-07546-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eligibility criteria are a critical part of clinical trials, as they define the patient population under investigation. Besides certain patient characteristics, clinical trials often include biomarker testing for eligibility. However, patient-identification mostly relies on the trial site itself and is often a time-consuming procedure, which could result in missing out on potentially eligible patients. Pre-selection of those patients using a registry could facilitate the process of eligibility testing and increase the number of identified patients. One aim with the PRAEGNANT registry (NCT02338167) is to identify patients for therapies based on clinical and molecular data. Here, we report eligibility testing for the SHERBOC trial using the German PRAEGNANT registry. METHODS Heregulin (HRG) has been reported to identify patients with better responses to therapy with the anti-HER3 monoclonal antibody seribantumab (MM-121). The SHERBOC trial investigated adding seribantumab (MM-121) to standard therapy in patients with advanced HER2-negative, hormone receptor-positive (HR-positive) breast cancer and HRG overexpression. The PRAEGNANT registry was used for identification and tumor testing, helping to link potential HRG positive patients to the trial. Patients enrolled in PRAEGNANT have invasive and metastatic or locally advanced, inoperable breast cancer. Patients eligible for SHERBOC were identified by using the registry. Study aims were to describe the HRG positivity rate, screening procedures, and patient characteristics associated with inclusion and exclusion criteria. RESULTS Among 2769 unselected advanced breast cancer patients, 650 were HER2-negative, HR-positive and currently receiving first- or second-line treatment, thus potentially eligible for SHERBOC at the end of current treatment; 125 patients also met further clinical eligibility criteria (e.g. menopausal status, ECOG). In the first/second treatment lines, patients selected for SHERBOC based on further eligibility criteria had a more favorable prognosis than those not selected. HRG status was tested in 38 patients, 14 of whom (36.8%) proved to be HRG-positive. CONCLUSION Using a real-world breast cancer registry allowed identification of potentially eligible patients for SHERBOC focusing on patients with HER3 overexpressing, HR-positive, HER2-negative metastatic breast cancer. This approach may provide insights into differences between patients eligible or non-eligible for clinical trials. TRIAL REGISTRATION Clinicaltrials, NCT02338167 , Registered 14 January 2015 - retrospectively registered.
Collapse
Affiliation(s)
- Hanna Huebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 21-23, Erlangen, 91054, Germany
| | - Christian M Kurbacher
- Gynecology I (Gynecologic Oncology), Gynecologic Center Bonn-Friedensplatz, Bonn, Germany
| | | | - Andreas D Hartkopf
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Michael P Lux
- Klinik für Gynäkologie und Geburtshilfe Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, Kooperatives Brustzentrum, Paderborn, Germany
| | - Jens Huober
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Bernhard Volz
- Ansbach University of Applied Sciences, Ansbach, Germany
| | | | | | - Hans Tesch
- Oncology Practice at Bethanien Hospital Frankfurt, Frankfurt, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 21-23, Erlangen, 91054, Germany.,Biostatistics Unit, Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Diana Lüftner
- Berlin, Campus Benjamin Franklin, Department of Hematology, Oncology and Tumor Immunology, Charité University Hospital, Berlin, Germany
| | - Markus Wallwiener
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 21-23, Erlangen, 91054, Germany
| | | | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 21-23, Erlangen, 91054, Germany
| | - Michael Untch
- Department of Gynecology and Obstetrics, Helios Clinics Berlin Buch, Berlin, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Universitaetsstrasse 21-23, Erlangen, 91054, Germany.
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Diethelm Wallwiener
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases and Department of Gynecology and Obstetrics, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Ettl
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Hafeez U, Parslow AC, Gan HK, Scott AM. New insights into ErbB3 function and therapeutic targeting in cancer. Expert Rev Anticancer Ther 2020; 20:1057-1074. [PMID: 32981377 DOI: 10.1080/14737140.2020.1829485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The importance of ErbB3 receptor tyrosine kinase in cancer progression, primary and acquired drug resistance, has become steadily evident since its discovery in 1989. ErbB3 overexpression in various solid organ malignancies is associated with shorter survival of patients. However, initial strategies to therapeutically target ErbB3 have not been rewarding. AREAS COVERED Here, we provide an overview of ErbB3 biology in carcinogenesis. We outline the role of ErbB3 as a critical pathway for resistance to other anti-cancer drugs. We focus on emerging clinical data, which will steer the potential future development of ErbB3 directed therapies. EXPERT OPINION Initial approaches to ErbB3 targeting have been challenging. However, the lack of success of anti-ErbB3 therapies in ongoing clinical trials may relate more to the complex biology of the receptor and challenges with the biomarkers used to date. Furthermore, it seems certain that the expression of the receptor per se is necessary but not sufficient for the response to ErbB3 therapies. Emerging data suggest that more sophisticated biomarkers are needed. Nonetheless, it is also likely that ErbB3 therapies may have the most efficacy in combination therapy, and their favorable toxicity profile makes this feasible.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Adam C Parslow
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health , Melbourne, Australia
| |
Collapse
|
29
|
Mizuno T, Kojima Y, Yonemori K, Yoshida H, Sugiura Y, Ohtake Y, Okuma HS, Nishikawa T, Tanioka M, Sudo K, Shimomura A, Noguchi E, Kato T, Shimoi T, Uno M, Ishikawa M, Fujiwara Y, Ohe Y, Tamura K. Neoadjuvant chemotherapy promotes the expression of HER3 in patients with ovarian cancer. Oncol Lett 2020; 20:336. [PMID: 33123247 PMCID: PMC7583842 DOI: 10.3892/ol.2020.12200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
HER3 (erbB3) signaling serves an important role in the development and chemoresistance of ovarian cancer, and is activated by chemotherapy. To evaluate the influence of neoadjuvant chemotherapy and other clinical factors on the expression of HER3, as well as to examine its role as a prognostic marker, the present study evaluated archived tissues from patients who underwent surgery for ovarian cancer between 2011 and 2018 at our hospital. Immunohistochemical staining for HER3 was performed using formalin-fixed paraffin-embedded surgical specimens and biopsy samples. In total, data from 111 patients with sufficient surgically resected tumor samples were extracted. A total of 28 patients with histology type high-grade serous carcinoma (HGSC) had specimens available from both pre-chemotherapy biopsies and post-chemotherapy surgery. High HER3 expression (HER3-high) was observed in 64 patients (58%), whereas low HER3 expression (HER3-low) was observed in 47 patients (42%). Multivariate logistic regression analysis identified neoadjuvant chemotherapy [odds ratio (OR), 7.49; 95% confidence interval (CI), 2.48–22.64; P<0.001) and non-HGSC histology (OR, 5.42; 95% CI, 1.99–14.78; P<0.001) as significant predictive factors for HER3-high. In pre-chemotherapy biopsy specimens, 15 patients were HER3-high and 13 were HER3-low. After chemotherapy, eight of 13 patients with HER3-low exhibited a change in status to HER3-high, with a trend toward poorer progression-free survival compared to that of patients whose status remained HER3-low. In conclusion, HER3 overexpression was revealed to be common among patients with ovarian cancer, especially in those with non-HGSC histology. In addition, HER3 expression may be promoted by chemotherapy. These findings suggested that patients with ovarian cancer are good candidates for emerging HER3-targeting therapies.
Collapse
Affiliation(s)
- Takaaki Mizuno
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan.,The Jikei University Graduate School of Medicine, Tokyo 105-8461, Japan
| | - Yuki Kojima
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hiroshi Yoshida
- Department of Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yukiko Sugiura
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yohei Ohtake
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hitomi S Okuma
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tadaaki Nishikawa
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Maki Tanioka
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Kazuki Sudo
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Emi Noguchi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tatsunori Shimoi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Masaya Uno
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yasuhiro Fujiwara
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yuichiro Ohe
- The Jikei University Graduate School of Medicine, Tokyo 105-8461, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| |
Collapse
|
30
|
Guo Q, Yang Q, Li J, Liu G, Nikoulin I, Jia S. Advanced clinical trials of dendritic cell vaccines in ovarian cancer. J Investig Med 2020; 68:1223-1227. [PMID: 32718940 DOI: 10.1136/jim-2020-001355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most common and leading cause of death for gynecologic cancer in the western world. Current standard treatments with limited selection of chemotherapies cannot meet patients' urgent needs. Immunotherapies have recently demonstrated clinical benefits in a variety of solid tumors and may offer a promising frontier for treating EOC. Dendritic cells (DCs) are key coordinators of the innate and adaptive immune system in induction of antitumor immunity. DC-based vaccinations showed clinical benefits and encouraging safety profiles in a few phase II clinical trials for patients with EOC and currently are in a phase III double-blind, randomized, placebo-controlled clinical trial. In this review, we have searched Pubmed and Clinicaltrials. gov databases for past and current phase II or phase III clinical trials with focus on EOC and DC vaccines. Outcomes and implications of the completed and ongoing trials are discussed.
Collapse
Affiliation(s)
- Quan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guipeng Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Igor Nikoulin
- Research and Development, IriSys, LLC, San Diego, California, USA
| | - Steve Jia
- RD Center, Pacificbio Inc, Irvine, California, USA
| |
Collapse
|
31
|
Mizuno T, Kojima Y, Yonemori K, Yoshida H, Sugiura Y, Ohtake Y, Okuma HS, Nishikawa T, Tanioka M, Sudo K, Shimomura A, Noguchi E, Kato T, Shimoi T, Uno M, Ishikawa M, Fujiwara Y, Ohe Y, Tamura K. HER3 protein expression as a risk factor for post-operative recurrence in patients with early-stage adenocarcinoma and adenosquamous carcinoma of the cervix. Oncol Lett 2020; 20:38. [PMID: 32802162 PMCID: PMC7412725 DOI: 10.3892/ol.2020.11899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/19/2020] [Indexed: 02/03/2023] Open
Abstract
Patients with cervical adenocarcinoma (AC) and adenosquamous carcinoma (ASC) have a poorer prognosis than those with squamous cell carcinoma (SCC). Erb-b2 receptor tyrosine kinase 3 (HER3) is a member of the epidermal growth factor receptor family and its expression is associated with unfavorable prognosis in several cancer types, including SCC of the cervix. As there is limited information on the prognostic value of HER3 for AC and ASC of the cervix, the present study aimed to evaluate the expression of HER3 and its impact on post-operative recurrence in patients with AC and ASC of the cervix. This retrospective study included 39 patients with early-stage AC and ASC who underwent primary surgery between January 1997 and December 2017. Immunohistochemical staining for HER3 was performed on formalin-fixed paraffin-embedded surgical specimens. The possible influence of HER3 expression on disease-free survival (DFS) was studied by using multivariate Cox regression with adjustment for established risk factors of post-operative recurrence. High expression of HER3 (HER3-high) was detected in 85.1% of cases of AC (23/27) and in 58.3% of cases of ASC (7/12). The median follow-up duration was 63.1 months and Kaplan-Meier analysis indicated that the 5-year DFS rates of patients with AC and ASC of the cervix were 56.7% in patients with HER3-high and 77.8% in patients with HER3-low (log rank, P=0.20). On multivariate analysis, HER3-high [hazard ratio (HR)=6.32, 95% CI: 1.10–36.26, P=0.039), pelvic lymph node metastasis (HR=7.61, 95% CI: 2.07–28.00, P=0.002) and vascular invasion (HR=4.28, 95% CI: 1.12–16.31, P=0.033) were indicated to be independent predictors of DFS. To date, the present study is the most comprehensive analysis to evaluate the expression of HER3 in patients with early-stage AC and ASC of the cervix. The results suggested that HER3 overexpression may be an independent risk factor for post-operative recurrence. However, these results and the prognostic value of HER3 should be confirmed in a larger sample.
Collapse
Affiliation(s)
- Takaaki Mizuno
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan.,Cancer Medicine, Jikei University Graduate School of Medicine, Tokyo 105-8461, Japan
| | - Yuki Kojima
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hiroshi Yoshida
- Department of Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yukiko Sugiura
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yohei Ohtake
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hitomi S Okuma
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tadaaki Nishikawa
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Maki Tanioka
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Kazuki Sudo
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Emi Noguchi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tatsunori Shimoi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Masaya Uno
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yasuhiro Fujiwara
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yuichiro Ohe
- Cancer Medicine, Jikei University Graduate School of Medicine, Tokyo 105-8461, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| |
Collapse
|
32
|
Jiang Y, Wang C, Zhou S. Targeting tumor microenvironment in ovarian cancer: Premise and promise. Biochim Biophys Acta Rev Cancer 2020; 1873:188361. [PMID: 32234508 DOI: 10.1016/j.bbcan.2020.188361] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related mortality globally. The majority of ovarian cancer patients suffer from relapse after standard of care therapies and the clinical benefits from cancer therapies are not satisfactory owing to drug resistance. Certain novel drugs targeting the components of tumor microenvironment (TME) have been approved by US Food and Drug Administration in solid cancers. As such, the passion is rekindled to exploit the role of TME in ovarian cancer progression and metastasis for discovery of novel therapeutics for this deadly disease. In the current review, we revisit the recent mechanistic insights into the contributions of TME to the development, progression, prognosis prediction and therapeutic efficacy of ovarian cancer via modulating cancer hallmarks. We also explored potentially promising predictive and prognostic biomarkers for ovarian cancer patients.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
33
|
Haslam A, Herrera-Perez D, Gill J, Prasad V. Patient Experience Captured by Quality-of-Life Measurement in Oncology Clinical Trials. JAMA Netw Open 2020; 3:e200363. [PMID: 32129865 PMCID: PMC7057133 DOI: 10.1001/jamanetworkopen.2020.0363] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPORTANCE Quality of life (QoL) is an important consideration in cancer medicine, especially because drugs are becoming more costly and may only result in modest gains in overall survival. However, there has been no descriptive analysis for the points at which QoL is measured in cancer trials. OBJECTIVE To estimate the prevalence of studies that measure QoL at different points and see how many studies measure QoL for the entirety of a patient's life. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional analysis includes all articles on oncology clinical trials in the 3 highest-impact oncology journals, published between July 2015 and June 2018, that reported QoL outcomes. MAIN OUTCOMES AND MEASURES Data were abstracted on when QoL was assessed and the characteristics of these studies. RESULTS For all 149 studies that met inclusion criteria, QoL assessment was high during treatment (104 articles [69.8%]), during follow-up (81 articles [54.4%]), and after the end of the intervention (68 articles [45.6%]). In 5 of the 149 studies (3.4%), QoL was assessed until death, including in only 1 of the 74 studies on metastatic or incurable cancers. Among these 5 studies, only 1 (20%) used a drug intervention, 1 (20%) used a behavioral intervention, and 2 (40%) used a radiation intervention; only 1 of 5 was in the metastatic setting. The number of studies that reported a positive QoL outcome (ie, QoL outcome was more favorable in the intervention group than in the control group) was between 42 of 81 articles (51.9%) and 16 of 28 articles (57.1%) for most QoL assessment points but only 1 of 5 articles (20%) for studies measuring QoL until death. CONCLUSIONS AND RELEVANCE This study found that most clinical trials assessed QoL during the treatment or intervention and often during a given amount of follow-up but infrequently assessed QoL on disease progression and rarely followed QoL until the end of the patient's life. Most studies reporting QoL until the end of life reported worse QoL outcomes for the intervention group than the control group. Future research and policy recommendations should consider not just short-term QoL outcomes but QoL outcomes throughout the patient's cancer care.
Collapse
Affiliation(s)
- Alyson Haslam
- Knight Cancer Institute, Oregon Health & Science University, Portland
| | | | - Jennifer Gill
- Knight Cancer Institute, Oregon Health & Science University, Portland
| | - Vinay Prasad
- Division of Hematology Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland
- Center for Health Care Ethics, Oregon Health & Science University, Portland
- Division of General Medicine, Department of Medicine, Oregon Health & Science University, Portland
| |
Collapse
|
34
|
Investigation on vitamin e succinate based intelligent hyaluronic acid micelles for overcoming drug resistance and enhancing anticancer efficacy. Eur J Pharm Sci 2019; 140:105071. [DOI: 10.1016/j.ejps.2019.105071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 11/20/2022]
|
35
|
Dual targeting of IGF-1R and ErbB3 as a potential therapeutic regimen for ovarian cancer. Sci Rep 2019; 9:16832. [PMID: 31728045 PMCID: PMC6856132 DOI: 10.1038/s41598-019-53322-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Therapeutically targeting receptor tyrosine kinases has proven to be paramount to overcoming chemotherapy resistance in several cancer indications, improving patient outcomes. Insulin-Like Growth Factor Receptor 1 (IGF-1R) and Epidermal Growth Factor Receptor 3 (ErbB3) have been implicated as two such drivers of resistance, however their simultaneous role in ovarian cancer chemotherapy resistance remains poorly elucidated. The aim of this work is to determine the effects of dual IGF-1R/ErbB3 inhibition on ovarian cancer cell signaling, growth, and in vivo efficacy. Assessment of in vitro chemotherapy response across a panel of ovarian cancer cell lines revealed that increased IGF-1R cell surface expression correlates with decreased sensitivity to chemotherapy, and that growth induced by IGF-1R and ErbB3 ligands is blocked by the tetravalent bispecific antibody targeting IGF-1R and ErbB3, istiratumab. In vitro chemotherapy treatment increased ovarian cancer cell line capacity to activate prosurvival PI3K signaling in response to ligand, which could be prevented with istiratumab treatment. Furthermore, in vivo efficacy of standard of care chemotherapies using a xenograft model of ovarian cancer was potentiated with istiratumab. Our results suggest a role for IGF-1R and ErbB3 in driving chemotherapy resistance of ovarian cancer.
Collapse
|
36
|
Chung YW, Kim S, Hong JH, Lee JK, Lee NW, Lee YS, Song JY. Overexpression of HER2/HER3 and clinical feature of ovarian cancer. J Gynecol Oncol 2019; 30:e75. [PMID: 31328457 PMCID: PMC6658608 DOI: 10.3802/jgo.2019.30.e75] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Human epidermal growth factor receptor-2 (HER2) and 3 (HER3) belong to the epidermal growth factor receptor (EGFR) family of transmembrane receptor tyrosine kinases. In this study, we assessed HER2/HER3 expression levels in specimens of epithelial ovarian cancer and determined their correlation with clinical features of ovarian cancer. METHODS Tissue microarrays (TMAs) were prepared from paraffin blocks of 105 ovarian tumour samples. HER2, HER3, PI3K, Akt, p-Akt, mTOR, p-mTOR, S6, and p-S6 expression levels were investigated using immunohistochemistry (IHC). HER2 and HER3 amplifications were determined using in situ hybridization (ISH). The correlation between HER2/3 expression and disease outcome of the patients including surgical outcome, progression-free survival (PFS) and overall survival (OS) was analysed. RESULTS HER2 positivity was 3.8% by IHC and 5.7% by ISH, whereas that of HER3 was 12.4% and 8.6%, respectively. HER2 status by either IHC or ISH was not related to PFS (p=0.128, 0.168, respectively) and OS (p=0.245, 0.164, respectively). However, the HER3 status determined using fluorescence ISH was associated with poor PFS (p=0.035 on log rank test), which was a significant risk factor even after adjusting other possible risk factors in multivariate analysis (hazard ratio=2.377 [1.18-7.49], p=0.021). Expressions of Akt, p-mTOR, and S6 were also related with poor progression (p=0.008, 0.049, 0.014, respectively). CONCLUSION HER3 is possibly an independent marker for poor prognosis in individuals with ovarian cancer, as the HER3 signalling pathway is distinct from that of HER2. The possibility of targeted therapy for patients with HER3 alteration in ovarian cancer should be evaluated.
Collapse
Affiliation(s)
- Ye Won Chung
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Seongmin Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Jin Hwa Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Jae Kwan Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Nak Woo Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Young Seok Lee
- Department of Pathology, Korea University College of Medicine, Seoul, Korea
| | - Jae Yun Song
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Khalifa AM, Elsheikh MA, Khalifa AM, Elnaggar YSR. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J Control Release 2019; 311-312:125-137. [PMID: 31476342 DOI: 10.1016/j.jconrel.2019.08.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Ovarian carcinoma (OC) is one of the leading causes of death among gynecologic malignancies all over the world. It is characterized by high mortality rate because of the lack of early diagnosis. The first-line chemotherapeutic regimen for late stage epithelial ovarian cancer is paclitaxel in combination to carboplatin. However, in most of cases, relapse occurs within six months despite the initial success of this chemotherapeutic combination. A lot of challenges have been encountered with the conventional delivery of paclitaxel in addition to the occurrence of severe off-target toxicity. One major problem is poor paclitaxel solubility which was improved by addition of Cremophor EL that unfortunately resulted in hypersensitivity side effects. Another obstacle is the multi drug resistance which is the main cause of OC recurrence. Accordingly, incorporation of paclitaxel, solely or in combination to other drugs, in nanocarrier systems has grabbed attention of many researchers to circumvent all these hurdles. The current review is the first article that provides a comprehensive overview on multi-faceted implementations of paclitaxel loaded nanoplatforms to solve delivery obstacles of paclitaxel in management of ovarian carcinoma. Moreover, challenges in physicochemical properties, biological activity and targeted delivery of PTX were depicted with corresponding solutions using nanotechnology. Different categories of nanocarriers employed were collected included lipid, protein, polymeric, solid nanoemulsion and hybrid systems. Future perspectives including imperative research considerations in ovarian cancer therapy were proposed as well.
Collapse
Affiliation(s)
- Alaa M Khalifa
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Manal A Elsheikh
- Department of pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Amr M Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Yosra S R Elnaggar
- Head of International Publication and Nanotechnology Consultation Center INCC, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
38
|
Cejalvo JM, Jacob W, Fleitas Kanonnikoff T, Felip E, Navarro Mendivil A, Martinez Garcia M, Taus Garcia A, Leighl N, Lassen U, Mau-Soerensen M, Adessi C, Michielin F, James I, Ceppi M, Hasmann M, Weisser M, Cervantes A. A phase Ib/II study of HER3-targeting lumretuzumab in combination with carboplatin and paclitaxel as first-line treatment in patients with advanced or metastatic squamous non-small cell lung cancer. ESMO Open 2019; 4:e000532. [PMID: 31423336 PMCID: PMC6678014 DOI: 10.1136/esmoopen-2019-000532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study investigated the safety and clinical activity of lumretuzumab, a humanised antihuman epidermal growth factor receptor 3 (HER3) monoclonal antibody, in combination with carboplatin and paclitaxel in first-line treatment of patients with squamous non-small cell lung cancer (sqNSCLC). HER3 ligand heregulin and HER3 protein expression were evaluated as potential biomarkers of clinical activity. Patients and methods This open-label, phase Ib/II study enrolled patients receiving lumretuzumab at 800 mg (flat) in combination with carboplatin (area under the curve (AUC) 6 mg/mL×min) and paclitaxel (200 mg/m2) administered intravenously on a every 3-week schedule. Adverse event (AE) rates and tumour responses were determined. Heregulin messenger RNA (mRNA) and HER3 protein expression were investigated in archival tumour biopsies. Results Altogether, 12 patients received lumretuzumab in combination with carboplatin and paclitaxel. The most frequent AEs were gastrointestinal, haematological and nervous system toxicities, which were generally mild and manageable. Partial responses were observed in 3 of 12 patients lasting 81, 177 and 207 days. All responses were achieved in tumours expressing higher heregulin mRNA levels. Conclusion Lumretuzumab in combination with carboplatin and paclitaxel was well tolerated. Objective responses were enriched in tumours expressing higher heregulin mRNA levels.
Collapse
Affiliation(s)
- Juan-Miguel Cejalvo
- Department of Medical Oncology, Institute of Health Research INCLIVA, University of Valencia, Valencia and CIBERONC, Institute of Health Carlos III, Madrid, Spain
| | - Wolfgang Jacob
- Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Tania Fleitas Kanonnikoff
- Department of Medical Oncology, Institute of Health Research INCLIVA, University of Valencia, Valencia and CIBERONC, Institute of Health Carlos III, Madrid, Spain
| | - Enriqueta Felip
- Department of Medical Oncology, University Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | | - Natasha Leighl
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ulrik Lassen
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Celine Adessi
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Francesca Michielin
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Ian James
- A4PConsulting Ltd, Sandwich, United Kingdom
| | - Maurizio Ceppi
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Max Hasmann
- Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Martin Weisser
- Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Andrés Cervantes
- Department of Medical Oncology, Institute of Health Research INCLIVA, University of Valencia, Valencia and CIBERONC, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Sequist LV, Gray JE, Harb WA, Lopez-Chavez A, Doebele RC, Modiano MR, Jackman DM, Baggstrom MQ, Atmaca A, Felip E, Provencio M, Cobo M, Adiwijaya B, Kuesters G, Kamoun WS, Andreas K, Pipas JM, Santillana S, Cho BC, Park K, Shepherd FA. Randomized Phase II Trial of Seribantumab in Combination with Erlotinib in Patients with EGFR Wild-Type Non-Small Cell Lung Cancer. Oncologist 2019; 24:1095-1102. [PMID: 30975923 DOI: 10.1634/theoncologist.2018-0695] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Seribantumab (MM-121) is a fully human IgG2 monoclonal antibody that binds to human epidermal growth factor receptor 3 (HER3/ErbB3) to block heregulin (HRG/NRG)-mediated ErbB3 signaling and induce receptor downregulation. This open-label, randomized phase 1/2 study evaluated safety and efficacy of seribantumab plus erlotinib in advanced non-small cell lung cancer (NSCLC). Here, we report the activity of seribantumab plus erlotinib, versus erlotinib alone, in patients with EGFR wild-type tumors and describe the potential predictive power of HRG. MATERIALS AND METHODS Patients with EGFR wild-type NSCLC were assigned randomly to receive seribantumab + erlotinib or erlotinib alone. Patients underwent pretreatment core needle biopsy and archived tumor samples were collected to support prespecified biomarker analyses. RESULTS One hundred twenty-nine patients received seribantumab + erlotinib (n = 85) or erlotinib alone (n = 44). Median estimated progression-free survival (PFS) in the unselected intent-to-treat (ITT) population was 8.1 and 7.7 weeks in the experimental and control arm, respectively (hazard ratio [HR], 0.822; 95% confidence interval [CI], 0.37-1.828; p = 0.63), and median estimated overall survival was 27.3 and 40.3 weeks in the experimental and control arm, respectively (HR, 1.395; 95% CI, 0.846 to 2.301; p = .1898) In patients whose tumors had detectable HRG mRNA expression, treatment benefit was observed in the seribantumab + erlotinib combination (HR, 0.35; 95% CI, 0.16-0.76; p = .008). In contrast, in patients whose tumors were HRG negative, the HR was 2.15 (95% CI, 0.97-4.76; p = .059, HRG-by-treatment interaction, p value = .0016). CONCLUSION The addition of seribantumab to erlotinib did not result in improved PFS in unselected patients. However, predefined retrospective exploratory analyses suggest that detectable HRG mRNA levels identified patients who might benefit from seribantumab. An ongoing clinical trial of seribantumab, in combination with docetaxel, is underway in patients with advanced NSCLC and high HRG mRNA expression (NCT02387216). IMPLICATIONS FOR PRACTICE The poor prognosis of patients with non-small cell lung cancer (NSCLC) underscores the need for more effective treatment options, highlighting the unmet medical need in this patient population. The results of this study show that a novel biomarker, heregulin, may help to identify patients with advanced NSCLC who could benefit from treatment with seribantumab. On the basis of the observed safety profile and promising clinical efficacy, a prospective, randomized, open-label, international, multicenter phase II trial (SHERLOC, NCT02387216) is under way to investigate the efficacy and safety of seribantumab in combination with docetaxel in patients with heregulin-positive advanced adenocarcinoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- Erlotinib Hydrochloride/pharmacology
- Erlotinib Hydrochloride/therapeutic use
- Female
- Follow-Up Studies
- Humans
- Lung/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neuregulin-1/analysis
- Neuregulin-1/antagonists & inhibitors
- Patient Selection
- Progression-Free Survival
- Receptor, ErbB-3/analysis
- Receptor, ErbB-3/antagonists & inhibitors
- Retrospective Studies
Collapse
Affiliation(s)
| | | | - Wael A Harb
- Horizon Oncology Center, Lafayette, Indiana, USA
| | - Ariel Lopez-Chavez
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Akin Atmaca
- Department of Hematology and Oncology, Institute of Clinical Research at Krankenhaus Nordwest, UCT-University Cancer Center, Frankfurt, Germany
| | | | | | - Manuel Cobo
- Hospital Regional Universitario Málaga, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | | | | | - Walid S Kamoun
- Merrimack Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Karen Andreas
- Merrimack Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - J Marc Pipas
- Merrimack Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | | | | | - Keunchil Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | |
Collapse
|
40
|
Schardt JS, Noonan-Shueh M, Oubaid JM, Pottash AE, Williams SC, Hussain A, Lapidus RG, Lipkowitz S, Jay SM. HER3-Targeted Affibodies with Optimized Formats Reduce Ovarian Cancer Progression in a Mouse Xenograft Model. AAPS JOURNAL 2019; 21:48. [PMID: 30949858 DOI: 10.1208/s12248-019-0318-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/08/2019] [Indexed: 01/16/2023]
Abstract
Expression of the receptor tyrosine kinase HER3 is negatively correlated with survival in ovarian cancer, and HER3 overexpression is associated with cancer progression and therapeutic resistance. Thus, improvements in HER3-targeted therapy could lead to significant clinical impact for ovarian cancer patients. Previous work from our group established multivalency as a potential strategy to improve the therapeutic efficacy of HER3-targeted ligands, including affibodies. Others have established HER3 affibodies as viable and potentially superior alternatives to monoclonal antibodies for cancer therapy. Here, bivalent HER3 affibodies were engineered for optimized production, specificity, and function as evaluated in an ovarian cancer xenograft model. Enhanced inhibition of HER3-mediated signaling and increased HER3 downregulation associated with multivalency could be achieved with a simplified construct, potentially increasing translational potential. Additionally, functional effects of affibodies due to multivalency were found to be specific to HER3 targeting, suggesting a unique molecular mechanism. Further, HER3 affibodies demonstrated efficacy in ovarian cancer xenograft mouse models, both as single agents and in combination with carboplatin. Overall, these results reinforce the potential of HER3-targeted affibodies for cancer therapy and establish treatment of ovarian cancer as an application where multivalent HER3 ligands may be useful. Further, this work introduces the potential of HER3 affibodies to be utilized as part of clinically relevant combination therapies (e.g., with carboplatin).
Collapse
Affiliation(s)
- John S Schardt
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Madeleine Noonan-Shueh
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Jinan M Oubaid
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Sonya C Williams
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Arif Hussain
- Baltimore VA Medical Center, Baltimore, Maryland, United States of America.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Translational Laboratory Shared Service, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America. .,Program in Molecular and Cellular Biology, University of Maryland, College Park, Maryland, United States of America.
| |
Collapse
|
41
|
Exploitation of phage display for the development of anti-cancer agents targeting fibroblast growth factor signaling pathways: New strategies to tackle an old challenge. Cytokine Growth Factor Rev 2019; 46:54-65. [DOI: 10.1016/j.cytogfr.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 01/20/2023]
|
42
|
Liu X, Liu S, Lyu H, Riker AI, Zhang Y, Liu B. Development of Effective Therapeutics Targeting HER3 for Cancer Treatment. Biol Proced Online 2019; 21:5. [PMID: 30930695 PMCID: PMC6425631 DOI: 10.1186/s12575-019-0093-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
HER3 is the third member of the human epidermal growth factor receptor (HER/EGFR) family, and unlike its other family members, is unique due to its minimal intrinsic kinase activity. As a result, HER3 has to interact with another receptor tyrosine kinase (RTK), such as EGFR or HER2, in order to activate the PI-3 K/Akt, MEK/MAPK, Jak/Stat pathways, as well as Src kinase. Over-expression of HER3 in various human cancers promotes tumor progression by increasing metastatic potential and acting as a major cause of treatment failure. Effective inhibition of HER3, and/or the key downstream mediators of HER3 signaling, is thought to be required to overcome resistance and enhance therapeutic efficacy. To date, there is no known HER3-targeted therapy that is approved for breast cancer, with a number of anti-HER3 antibodies current in various stages of development and clinical testing. Recent data suggests that the epigenetic strategy of using a histone deacetylase (HDAC) inhibitor, or functional cooperative miRNAs, may be an effective way to abrogate HER3 signaling. Here, we summarize the latest advances in our understanding of the mechanism of HER3 signaling in tumor progression, with continuing research towards the identification of therapeutic anti-HER3 antibodies. We will also examine the potential to develop novel epigenetic approaches that specifically target the HER3 receptor, along with important key downstream mediators that are involved in cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Liu
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Shuang Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Hui Lyu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Adam I Riker
- 3Department of Surgery, Section of Surgical Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Yamin Zhang
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Bolin Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
43
|
Turowec JP, Lau EWT, Wang X, Brown KR, Fellouse FA, Jawanda KK, Pan J, Moffat J, Sidhu SS. Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. J Biol Chem 2019; 294:1396-1409. [PMID: 30523157 DOI: 10.1074/jbc.ra118.004420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/25/2018] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of the ErbB family of receptor tyrosine kinases is involved in the progression of many cancers. Antibodies targeting the dimerization domains of family members EGFR and HER2 are approved cancer therapeutics, but efficacy is restricted to a subset of tumors and resistance often develops in response to treatment. A third family member, HER3, heterodimerizes with both EGFR and HER2 and has also been implicated in cancer. Consequently, there is strong interest in developing antibodies that target HER3, but to date, no therapeutics have been approved. To aid the development of anti-HER3 antibodies as cancer therapeutics, we combined antibody engineering and functional genomics screens to identify putative mechanisms of resistance or synthetic lethality with antibody-mediated anti-proliferative effects. We developed a synthetic antibody called IgG 95, which binds to HER3 and promotes ubiquitination, internalization, and receptor down-regulation. Using an shRNA library targeting enzymes in the ubiquitin proteasome system, we screened for genes that effect response to IgG 95 and uncovered the E3 ubiquitin ligase RNF41 as a driver of IgG 95 anti-proliferative activity. RNF41 has been shown previously to regulate HER3 levels under normal conditions and we now show that it is also responsible for down-regulation of HER3 upon treatment with IgG 95. Moreover, our findings suggest that down-regulation of RNF41 itself may be a mechanism for acquired resistance to treatment with IgG 95 and perhaps other anti-HER3 antibodies. Our work deepens our understanding of HER3 signaling by uncovering the mechanistic basis for the anti-proliferative effects of potential anti-HER3 antibody therapeutics.
Collapse
Affiliation(s)
- Jacob P Turowec
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Esther W T Lau
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Xiaowei Wang
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kevin R Brown
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Frederic A Fellouse
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kamaldeep K Jawanda
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - James Pan
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jason Moffat
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
44
|
Blagden SP, Hamilton AL, Mileshkin L, Wong S, Michael A, Hall M, Goh JC, Lisyanskaya AS, DeSilvio M, Frangou E, Stronach EA, Gopalakrishna P, Meniawy TM, Gabra H. Phase IB Dose Escalation and Expansion Study of AKT Inhibitor Afuresertib with Carboplatin and Paclitaxel in Recurrent Platinum-resistant Ovarian Cancer. Clin Cancer Res 2018; 25:1472-1478. [PMID: 30563934 DOI: 10.1158/1078-0432.ccr-18-2277] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/24/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Preclinically, AKT kinase inhibition restores drug sensitivity in platinum-resistant tumors. Here the pan-AKT kinase inhibitor afuresertib was given in combination with paclitaxel and carboplatin (PC) in patients with recurrent platinum-resistant epithelial ovarian cancer (PROC) and primary platinum-refractory ovarian cancer (PPROC). PATIENTS AND METHODS Part I was a combination 3+3 dose escalation study for recurrent ovarian cancer. Patients received daily continuous oral afuresertib at 50-150 mg/day with intravenous paclitaxel (175 mg/m2) and carboplatin (AUC5) every 3 weeks for six cycles followed by maintenance afuresertib at 125 mg/day until progression or toxicity. Part II was a single-arm evaluation of the clinical activity of this combination in recurrent PROC (Cohort A) or PPROC (Cohort B). Patients received oral afuresertib at the MTD defined in Part I in combination with PC for six cycles, followed by maintenance afuresertib. Primary endpoints were safety and tolerability of afuresertib in combination with PC (Part I, dose escalation), and investigator-assessed overall response rate (ORR) as per RECIST version 1.1 (Part II). RESULTS Twenty-nine patients enrolled into Part I, and 30 into Part II. Three dose-limiting toxicities of grade 3 rash were observed, one at 125 mg and two at 150 mg afuresertib. The MTD of afuresertib in combination with PC was therefore identified as 125 mg/day. The most common (≥50%) drug-related adverse events observed in Part I of the study were nausea, diarrhea, vomiting, alopecia, fatigue, and neutropenia and, in Part II, were diarrhea, fatigue, nausea, and alopecia. The Part II ORR in the intention to treat patients was 32% [95% confidence interval (CI), 15.9-52.4] by RECIST 1.1 and 52% (95% CI, 31.3-72.2) by GCIG CA125 criteria. Median progression-free survival was 7.1 months (95% CI, 6.3-9.0 months). CONCLUSIONS Afuresertib plus PC demonstrated efficacy in recurrent PROC with the MTD of afuresertib defined as 125 mg/day.
Collapse
Affiliation(s)
- Sarah P Blagden
- Ovarian Cancer Action Research Centre, Imperial College London, United Kingdom. .,Department of Oncology, University of Oxford, United Kingdom
| | - Anne L Hamilton
- Royal Women's Hospital, Melbourne, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Linda Mileshkin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shirley Wong
- Western Hospital, Melbourne, Victoria, Australia
| | | | - Marcia Hall
- Mount Vernon Cancer Centre, Middlesex, United Kingdom
| | - Jeffrey C Goh
- Royal Brisbane & Women's Hospital, Queensland, Australia.,University of Queensland, Saint Lucia, Queensland, Australia
| | | | | | - Eleni Frangou
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Euan A Stronach
- Ovarian Cancer Action Research Centre, Imperial College London, United Kingdom
| | | | - Tarek M Meniawy
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, United Kingdom.,Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
45
|
Advanced development of ErbB family-targeted therapies in osteosarcoma treatment. Invest New Drugs 2018; 37:175-183. [DOI: 10.1007/s10637-018-0684-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023]
|
46
|
Morrison J, Thoma C, Goodall RJ, Lyons TJ, Gaitskell K, Wiggans AJ, Bryant A, Cochrane Gynaecological, Neuro‐oncology and Orphan Cancer Group. Epidermal growth factor receptor blockers for the treatment of ovarian cancer. Cochrane Database Syst Rev 2018; 10:CD007927. [PMID: 30321910 PMCID: PMC6430330 DOI: 10.1002/14651858.cd007927.pub4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND This is an update of a previously published version of the review (Issue 10, 2011).Epithelial ovarian cancer (EOC) is the seventh most common cause of cancer death among women worldwide. Treatment consists of a combination of surgical debulking and platinum-based chemotherapy. Between 55% and 75% of women who respond to first-line therapy experience relapse within two years. Second-line chemotherapy is palliative and aims to reduce symptoms and prolong survival. Improved understanding about the molecular basis of EOC has led to the development of novel agents, such as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and anti-EGFR antibodies. OBJECTIVES To compare the effectiveness and harmful effects of interventions that target the epidermal growth factor receptor in the treatment of epithelial ovarian cancer (EOC). SEARCH METHODS We searched the Cochrane Gynaecological Cancer Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL; 2010, Issue 4), MEDLINE, and Embase up to October 2010. We also searched registers of clinical trials, abstracts of scientific meetings, and reference lists of included studies, and we contacted experts in the field. This update includes further searches up to September 2017. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing anti-EGFR agents with or without conventional chemotherapy versus conventional chemotherapy alone or no treatment in women with histologically proven EOC. DATA COLLECTION AND ANALYSIS Two review authors independently abstracted data, assessed risk of bias, and performed GRADE assessment. MAIN RESULTS From 6105 references obtained through the literature search and an additional 15 references derived from grey literature searches, we identified seven RCTs that met our inclusion criteria and included 1725 participants. Trial results show that after first-line chemotherapy is provided, maintenance treatment with erlotinib (EGFR tyrosine kinase inhibitor (TKI)) probably makes little or no difference in overall survival (hazard ratio (HR) 0.99, 95% confidence interval (CI) 0.81 to 1.20; one study; 835 participants; low-certainty evidence) and may make little or no difference in progression-free survival (HR 1.05, 95% CI 0.90 to 1.23; one study; 835 participants; very low-certainty evidence). Less than 50% of participants provided quality of life data, and study authors reported these results incompletely. The certainty of evidence is very low, but treatment may reduce quality of life compared to observation.Treatment with an EGFR TKI (vandetanib) for women with relapsed EOC may make little or no difference in overall survival (HR 1.25, 95% CI 0.80 to 1.95; one study; 129 participants; low-certainty evidence) and may make little or no difference in progression-free survival (HR 0.99, 95% CI 0.69 to 1.42; one study; 129 participants; very low-certainty evidence). In treating patients with relapse, giving EGFR TKI may slightly increase some toxicities, such as severe rash (risk ratio (RR) 13.63, 95% CI 0.78 to 236.87; one study; 125 participants; very low-certainty evidence). Quality of life data were not available for meta-analysis.Anti-EGFR antibody treatment in relapsed EOC may or may not make a difference to overall survival (HR 0.93, 95% CI 0.74 to 1.18; four studies; 658 participants; moderate-certainty evidence) and may or may not have any effect on progression-free survival (HR 0.90, 95% CI 0.70 to 1.16; four studies; 658 participants; low-certainty evidence). Anti-EGFR antibody treatment may or may not increase side effects, including severe nausea and/or vomiting (RR 1.27, 95% CI 0.56 to 2.89; three studies; 503 participants; low-certainty evidence), severe fatigue (RR 1.06, 95% CI 0.66 to 1.73; I² = 0%; four studies; 652 participants; low-certainty evidence), and hypokalaemia (RR 2.01, 95% CI 0.80 to 5.06; I² = 0%; three studies; 522 participants; low-certainty evidence). Severe diarrhoea rates were heterogeneous across studies (RR 2.87, 95% CI 0.59 to 13.89; four studies; 652 participants; low-certainty evidence), and subgroup analysis revealed that severe diarrhoea was more likely with pertuzumab (RR 6.37, 95% CI 1.89 to 21.45; I² = 0%; three studies; 432 participants; low-certainty evidence) than with seribantumab treatment (RR 0.38, 95% CI 0.07 to 2.23; I² = 0%; one study; 220 participants; very low-certainty evidence). Quality of life data were incompletely reported, and we were unable to combine them in a meta-analysis. AUTHORS' CONCLUSIONS Current evidence suggests that an anti-EGFR single-agent biological treatment (EGFR TKI or anti-EGFR antibody) makes little or no difference to survival, either as maintenance treatment after first-line chemotherapy or in association with chemotherapy in recurrent cancer. Anti-EGFR therapy may increase some side effects and may or may not reduce quality of life.
Collapse
Affiliation(s)
- Jo Morrison
- Musgrove Park HospitalDepartment of Gynaecological OncologyTaunton and Somerset NHS Foundation TrustTauntonSomersetUKTA1 5DA
| | | | | | - Thomas J Lyons
- University of BristolSchool of Medical Sciences38 Kings Parade AvenueBristolUKBS8 2RB
| | - Kezia Gaitskell
- University of OxfordCancer Epidemiology Unit, Nuffield Department of Population HealthRichard Doll BuildingRoosevelt DriveOxfordUKOX3 7LF
| | - Alison J Wiggans
- Musgrove Park HospitalDepartment of Obstetrics and GynaecologyTaunton and Somerset NHS Foundation TrustTauntonSomersetUKTA1 5DA
| | - Andrew Bryant
- Newcastle UniversityInstitute of Health & SocietyMedical School New BuildRichardson RoadNewcastle upon TyneUKNE2 4AX
| | | |
Collapse
|
47
|
Influence of Molecular Design on the Targeting Properties of ABD-Fused Mono- and Bi-Valent Anti-HER3 Affibody Therapeutic Constructs. Cells 2018; 7:cells7100164. [PMID: 30314301 PMCID: PMC6210767 DOI: 10.3390/cells7100164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 01/26/2023] Open
Abstract
Overexpression of human epidermal growth factor receptor type 3 (HER3) is associated with tumour cell resistance to HER-targeted therapies. Monoclonal antibodies (mAbs) targeting HER3 are currently being investigated for treatment of various types of cancers. Cumulative evidence suggests that affibody molecules may be appropriate alternatives to mAbs. We previously reported a fusion construct (3A3) containing two HER3-targeting affibody molecules flanking an engineered albumin-binding domain (ABD035) included for the extension of half-life in circulation. The 3A3 fusion protein (19.7 kDa) was shown to delay tumour growth in mice bearing HER3-expressing xenografts and was equipotent to the mAb seribantumab. Here, we have designed and explored a series of novel formats of anti-HER3 affibody molecules fused to the ABD in different orientations. All constructs inhibited heregulin-induced phosphorylation in HER3-expressing BxPC-3 and DU-145 cell lines. Biodistribution studies demonstrated extended the half-life of all ABD-fused constructs, although at different levels. The capacity of our ABD-fused proteins to accumulate in HER3-expressing tumours was demonstrated in nude mice bearing BxPC-3 xenografts. Formats where the ABD was located on the C-terminus of affibody binding domains (3A, 33A, and 3A3) provided the best tumour targeting properties in vivo. Further development of these promising candidates for treatment of HER3-overexpressing tumours is therefore justified.
Collapse
|
48
|
Capparelli C, Purwin TJ, Heilman SA, Chervoneva I, McCue PA, Berger AC, Davies MA, Gershenwald JE, Krepler C, Aplin AE. ErbB3 Targeting Enhances the Effects of MEK Inhibitor in Wild-Type BRAF/NRAS Melanoma. Cancer Res 2018; 78:5680-5693. [PMID: 30115691 DOI: 10.1158/0008-5472.can-18-1001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/23/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
MEK-ERK1/2 signaling is elevated in melanomas that are wild-type for both BRAF and NRAS (WT/WT), but patients are insensitive to MEK inhibitors. Stromal-derived growth factors may mediate resistance to targeted inhibitors, and optimizing the use of targeted inhibitors for patients with WT/WT melanoma is a clinical unmet need. Here, we studied adaptive responses to MEK inhibition in WT/WT cutaneous melanoma. The Cancer Genome Atlas data set and tumor microarray studies of WT/WT melanomas showed that high levels of neuregulin-1 (NRG1) were associated with stromal content and ErbB3 signaling. Of growth factors implicated in resistance to targeted inhibitors, NRG1 was effective at mediating resistance to MEK inhibitors in patient-derived WT/WT melanoma cells. Furthermore, ErbB3/ErbB2 signaling was adaptively upregulated following MEK inhibition. Patient-derived cancer-associated fibroblast studies demonstrated that stromal-derived NRG1 activated ErbB3/ErbB2 signaling and enhanced resistance to a MEK inhibitor. ErbB3- and ErbB2-neutralizing antibodies blocked the protective effects of NRG1 in vitro and cooperated with the MEK inhibitor to delay tumor growth in both cell line and patient-derived xenograft models. These results highlight tumor microenvironment regulation of targeted inhibitor resistance in WT/WT melanoma and provide a rationale for combining MEK inhibitors with anti-ErbB3/ErbB2 antibodies in patients with WT/WT cutaneous melanoma, for whom there are no effective targeted therapy options.Significance: This work suggests a mechanism by which NRG1 regulates the sensitivity of WT NRAS/BRAF melanomas to MEK inhibitors and provides a rationale for combining MEK inhibitors with anti-ErbB2/ErbB3 antibodies in these tumors. Cancer Res; 78(19); 5680-93. ©2018 AACR.
Collapse
Affiliation(s)
- Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shea A Heilman
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam C Berger
- Department of Surgery, Division of General Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clemens Krepler
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Melanoma Research Center, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center at Jefferson, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Orlova A, Bass TZ, Rinne SS, Leitao CD, Rosestedt M, Atterby C, Gudmundsdotter L, Frejd FY, Löfblom J, Tolmachev V, Ståhl S. Evaluation of the Therapeutic Potential of a HER3-Binding Affibody Construct TAM-HER3 in Comparison with a Monoclonal Antibody, Seribantumab. Mol Pharm 2018; 15:3394-3403. [PMID: 29995421 DOI: 10.1021/acs.molpharmaceut.8b00393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human epidermal growth factor receptor type 3 (HER3) is recognized to be involved in resistance to HER-targeting therapies. A number of HER3-targeting monoclonal antibodies are under clinical investigation as potential cancer therapeutics. Smaller high-affinity scaffold proteins are attractive non-Fc containing alternatives to antibodies. A previous study indicated that anti-HER3 affibody molecules could delay the growth of xenografted HER3-positive tumors. Here, we designed a second-generation HER3-targeting construct (TAM-HER3), containing two HER3-specific affibody molecules bridged by an albumin-binding domain (ABD) for extension of blood circulation. Receptor blocking activity was demonstrated in vitro. In mice bearing BxPC-3 xenografts, the therapeutic efficacy of TAM-HER3 was compared to the HER3-specific monoclonal antibody seribantumab (MM-121). TAM-HER3 inhibited heregulin-induced phosphorylation in a panel of HER3-expressing cancer cells and was found to be equally as potent as seribantumab in terms of therapeutic efficacy in vivo and with a similar safety profile. Median survival times were 60 days for TAM-HER3, 54 days for seribantumab, and 41 days for the control group. No pathological changes were observed in cytopathological examination. The multimeric HER3-binding affibody molecule in fusion to ABD seems promising for further evaluation as candidate therapeutics for treatment of HER3-overexpressing tumors.
Collapse
Affiliation(s)
- Anna Orlova
- Department of Medicinal Chemistry , Uppsala University , Uppsala , Sweden.,Science for Life Laboratory , Uppsala University , Uppsala , Sweden
| | - Tarek Z Bass
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Sara S Rinne
- Department of Medicinal Chemistry , Uppsala University , Uppsala , Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Maria Rosestedt
- Department of Medicinal Chemistry , Uppsala University , Uppsala , Sweden
| | - Christina Atterby
- Department of Immunology, Genetics and Pathology , Uppsala University , Uppsala , Sweden
| | | | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology , Uppsala University , Uppsala , Sweden.,Affibody AB , Solna , Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology , Uppsala University , Uppsala , Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Stockholm , Sweden
| |
Collapse
|
50
|
Understanding the biology of HER3 receptor as a therapeutic target in human cancer. Acta Pharm Sin B 2018; 8:503-510. [PMID: 30109175 PMCID: PMC6090011 DOI: 10.1016/j.apsb.2018.05.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
HER3 belongs to the human epidermal growth factor receptor (HER) family which also includes HER1/EGFR/erbB1, HER2/erbB2, and HER4/erbB4. As a unique member of the HER family, HER3 lacks or has little intrinsic tyrosine kinase activity. It frequently co-expresses and forms heterodimers with other receptor tyrosine kinases (RTKs) in cancer cells to activate oncogenic signaling, especially the PI-3K/Akt pathway and Src kinase. Elevated expression of HER3 has been observed in a wide variety of human cancers and associates with a worse survival in cancer patients with solid tumors. Studies on the underlying mechanism implicate HER3 expression as a major cause of treatment failure in cancer therapy. Activation of HER3 signaling has also been shown to promote cancer metastasis. These data strongly support the notion that therapeutic inactivation of HER3 and/or its downstream signaling is required to overcome treatment resistance and improve the outcomes of cancer patients.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- Ab, antibody
- Cell signaling
- Dimerization
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- FDA, Food and Drug Administration
- HER, Human epidermal growth factor receptor
- HER3
- HRG, heregulin
- IGF-1R, insulin-like growth factor-I receptor
- MAPK, mitogen-activated protein kinase
- MEK, MAPK kinase
- NSCLC, non-small cell lung cancer
- OS, overall survival
- PI-3K, phosphoinositide 3-kinase
- RTK, receptor tyrosine kinase
- TKI, tyrosine kinase inhibitor
- Targeted therapy
- Therapeutic resistance
- Tumor metastasis
- lncRNA, long ncRNA
- miRNA, microRNA
- ncRNA, noncoding RNA
Collapse
|