1
|
Manai AL, Caria P, Noli B, Contini C, Manconi B, Etzi F, Cocco C. VGF and Its Derived Peptides in Amyotrophic Lateral Sclerosis. Brain Sci 2025; 15:329. [PMID: 40309800 PMCID: PMC12024961 DOI: 10.3390/brainsci15040329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a progressive degeneration in the neurons of the frontal cortex, spinal cord, and brainstem, altering the correct release of neurotransmitters. The disease affects every muscle in the body and could cause death three to five years after symptoms first occur. There is currently no efficient treatment to stop the disease's progression. The lack of identification of potential therapeutic strategies is a consequence of the delayed diagnosis due to the absence of accurate ALS early biomarkers. Indeed, neurotransmitters altered in ALS are not measurable in body fluids at quantities that allow for testing, making their use as diagnostic tools a challenge. Contrarily, neuroproteins and neuropeptides are chemical messengers produced and released by neurons, and most of them have the potential to enter bodily fluids. To find out new possible ALS biomarkers, the research of neuropeptides and proteins is intensified using mass spectrometry and biochemical-based assays. Neuropeptides derived from the proVGF precursor protein act as signaling molecules within neurons. ProVGF and its derived peptides are expressed in the nervous and endocrine systems but are also widely distributed in body fluids such as blood, urine, and cerebrospinal fluid, making them viable options as disease biomarkers. To highlight the proVGF and its derived peptides' major roles as ALS diagnostic biomarkers, this review provides an overview of the VGF peptide alterations in spinal cord and body fluids and outlines the limitations of the reported investigations.
Collapse
Affiliation(s)
- Antonio Luigi Manai
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.L.M.); (B.N.); (C.C.)
| | - Paola Caria
- Unit of Biology and Genetics, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Barbara Noli
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.L.M.); (B.N.); (C.C.)
| | - Cristina Contini
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Federica Etzi
- Unit of Biology and Genetics, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Cristina Cocco
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.L.M.); (B.N.); (C.C.)
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
- ALS Interdivisional Center, 09042 Cagliari, Italy
| |
Collapse
|
2
|
Rodriguez P, Laskowski LJ, Pallais JP, Bock HA, Cavalco NG, Anderson EI, Calkins MM, Razzoli M, Sham YY, McCorvy JD, Bartolomucci A. Functional profiling of the G protein-coupled receptor C3aR1 reveals ligand-mediated biased agonism. J Biol Chem 2024; 300:105549. [PMID: 38072064 PMCID: PMC10796979 DOI: 10.1016/j.jbc.2023.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are leading druggable targets for several medicines, but many GPCRs are still untapped for their therapeutic potential due to poor understanding of specific signaling properties. The complement C3a receptor 1 (C3aR1) has been extensively studied for its physiological role in C3a-mediated anaphylaxis/inflammation, and in TLQP-21-mediated lipolysis, but direct evidence for the functional relevance of the C3a and TLQP-21 ligands and signal transduction mechanisms are still limited. In addition, C3aR1 G protein coupling specificity is still unclear, and whether endogenous ligands, or drug-like compounds, show ligand-mediated biased agonism is unknown. Here, we demonstrate that C3aR1 couples preferentially to Gi/o/z proteins and can recruit β-arrestins to cause internalization. Furthermore, we showed that in comparison to C3a63-77, TLQP-21 exhibits a preference toward Gi/o-mediated signaling compared to β-arrestin recruitment and internalization. We also show that the purported antagonist SB290157 is a very potent C3aR1 agonist, where antagonism of ligand-stimulated C3aR1 calcium flux is caused by potent β-arrestin-mediated internalization. Finally, ligand-mediated signaling bias impacted cell function as demonstrated by the regulation of calcium influx, lipolysis in adipocytes, phagocytosis in microglia, and degranulation in mast cells. Overall, we characterize C3aR1 as a Gi/o/z-coupled receptor and demonstrate the functional relevance of ligand-mediated signaling bias in key cellular models. Due to C3aR1 and its endogenous ligands being implicated in inflammatory and metabolic diseases, these results are of relevance toward future C3aR1 drug discovery.
Collapse
Affiliation(s)
- Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Natalie G Cavalco
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
3
|
Sahu BS, Razzoli M, McGonigle S, Pallais JP, Nguyen ME, Sadahiro M, Jiang C, Lin WJ, Kelley KA, Rodriguez P, Mansk R, Cero C, Caviola G, Palanza P, Rao L, Beetch M, Alejandro E, Sham YY, Frontini A, Salton SR, Bartolomucci A. Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis. Mol Metab 2023; 76:101781. [PMID: 37482186 PMCID: PMC10400922 DOI: 10.1016/j.molmet.2023.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVE Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. METHODS We developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R21→A). RESULTS We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by an environmental temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue. CONCLUSIONS The ΔTLQP-21 mouse line can be a valuable resource to conduct mechanistic studies on the necessary role of TLQP-21 in physiology and disease, while also serving as a platform to test the specificity of novel antibodies or immunoassays directed at TLQP-21. Our approach also has far-reaching implications by informing the development of knowledge-based genetic engineering approaches to generate selective loss of function of other peptides encoded by pro-hormones genes, leaving all other peptides within the pro-protein precursor intact and unmodified.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Masato Sadahiro
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cheng Jiang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei-Jye Lin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevin A Kelley
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel Mansk
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Giada Caviola
- Department of Medicine and Surgery, University of Parma, 43120, Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43120, Parma, Italy
| | - Loredana Rao
- Department of Life and Environmental Sciences, Universita' Politecnica delle Marche, Ancona, 60131, Italy
| | - Megan Beetch
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Emilyn Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Universita' Politecnica delle Marche, Ancona, 60131, Italy
| | - Stephen R Salton
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Sahu BS, Razzoli M, McGonigle S, Pallais JP, Nguyen ME, Sadahiro M, Jiang C, Lin WJ, Kelley KA, Rodriguez P, Mansk R, Cero C, Caviola G, Palanza P, Rao L, Beetch M, Alejandro E, Sham YY, Frontini A, Salton SR, Bartolomucci A. Targeted and selective knockout of the TLQP-21 neuropeptide unmasks its unique role in energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.532619. [PMID: 36993202 PMCID: PMC10055429 DOI: 10.1101/2023.03.23.532619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pro-peptide precursors are processed into biologically active peptide hormones or neurotransmitters, each playing an essential role in physiology and disease. Genetic loss of function of a pro-peptide precursor results in the simultaneous ablation of all biologically-active peptides within that precursor, often leading to a composite phenotype that can be difficult to align with the loss of specific peptide components. Due to this biological constraint and technical limitations, mice carrying the selective ablation of individual peptides encoded by pro-peptide precursor genes, while leaving the other peptides unaffected, have remained largely unaddressed. Here, we developed and characterized a mouse model carrying the selective knockout of the TLQP-21 neuropeptide (ΔTLQP-21) encoded by the Vgf gene. To achieve this goal, we used a knowledge-based approach by mutating a codon in the Vgf sequence leading to the substitution of the C-terminal Arginine of TLQP-21, which is the pharmacophore as well as an essential cleavage site from its precursor, into Alanine (R 21 →A). We provide several independent validations of this mouse, including a novel in-gel digestion targeted mass spectrometry identification of the unnatural mutant sequence, exclusive to the mutant mouse. ΔTLQP-21 mice do not manifest gross behavioral and metabolic abnormalities and reproduce well, yet they have a unique metabolic phenotype characterized by a temperature-dependent resistance to diet-induced obesity and activation of the brown adipose tissue.
Collapse
|
5
|
Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster. Sci Rep 2022; 12:13552. [PMID: 35941167 PMCID: PMC9360046 DOI: 10.1038/s41598-022-16731-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Temperate zone animals exhibit seasonal variation in multiple endocrine systems. In most cases, peripheral organs display robust switches in tissue involution and recrudescence in mass. Our understanding of the molecular control of tissue-specific changes in seasonal function remains limited. Central to this problem is the lack of information on the nucleic acid structure, and distribution of transcripts across tissues in seasonal model organisms. Here we report the transcriptome profile of nine endocrine tissues from Siberian hamsters. Luteinizing hormone receptor expression was localized to gonadal tissues and confirmed previous distribution analyses. Assessment of the prolactin receptor reveal relatively high abundance across tissues involved in reproduction, energy, and water homeostasis. Neither melatonin receptor-1a, nor -1b, were found to be expressed in most tissues. Instead, the closely related G-protein coupled receptor Gpr50 was widely expressed in peripheral tissues. Epigenetic enzymes such as DNA methyltransferase 3a, was widely expressed and the predominant DNA methylation enzyme. Quantitative PCR analyses revealed some sex- and tissue-specific differences for prolactin receptor and DNA methyltransferase 3a expression. These data provide significant information on the distribution of transcripts, relative expression levels and nucleic acid sequences that will facilitate molecular studies into the seasonal programs in mammalian physiology.
Collapse
|
6
|
Alqarni S, Alsebai M. Could VGF and/or its derived peptide act as biomarkers for the diagnosis of neurodegenerative diseases: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1032192. [PMID: 36619561 PMCID: PMC9817138 DOI: 10.3389/fendo.2022.1032192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The increasing ageing population has led to an increase in the prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). However, as yet, there are no simple biomarkers to predict the onset of such diseases. Recently, VGF and its peptides have been highlighted in neurodegenerative diseases. VGF (non-acronymic) is a polypeptide induced in PC12 cells by neurotrophic factors. OBJECTIVE This systematic review aimed to determine whether VGF and/or its derived peptides can be used as biomarkers for the diagnosis of ALS, PD, and AD with specific attention to (1) the levels of VGF and/or its derived peptides, (2) amyloid-beta, (3) dopamine, and (4) cognitive score. METHODOLOGY A search was undertaken in the Ovid EMBASE, Cochrane Library, PubMed, Scopus, and Web of Science for observational studies. Publications that assessed the level of VGF and/or its derived peptides among people with neurodegenerative diseases and compared them with healthy people were included. The quality of the included studies was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. RESULT A search of the databases yielded 834 studies, of which, eight observational studies met the inclusion criteria with a total of 673 participants (51.7% males) aged >18 years. Seven studies showed significant decreases in VGF and its derived peptides in adults with AD, PD, and ALS compared to healthy controls (p<0.05). However, one study showed that there was no significant difference in VGF in AD compared to healthy control(p>0.05). Furthermore, only one study reported that VGF levels were positively correlated with those of tissue dopamine but not with Aβ1-42, and low levels of VGF were associated to cognitive deficits. CONCLUSION The use of VGF and its derivatives for the diagnosis of PD, ALS, AD remains unclear, so further investigation of the role of VGF in neurodegenerative diseases and pathophysiology is needed to provide new insights.
Collapse
|
7
|
Sahu BS, Nguyen ME, Rodriguez P, Pallais JP, Ghosh V, Razzoli M, Sham YY, Salton SR, Bartolomucci A. The molecular identity of the TLQP-21 peptide receptor. Cell Mol Life Sci 2021; 78:7133-7144. [PMID: 34626205 PMCID: PMC8629782 DOI: 10.1007/s00018-021-03944-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
The TLQP-21 neuropeptide has been implicated in functions as diverse as lipolysis, neurodegeneration and metabolism, thus suggesting an important role in several human diseases. Three binding targets have been proposed for TLQP-21: C3aR1, gC1qR and HSPA8. The aim of this review is to critically evaluate the molecular identity of the TLQP-21 receptor and the proposed multi-receptor mechanism of action. Several studies confirm a critical role for C3aR1 in TLQP-21 biological activity and a largely conserved mode of binding, receptor activation and signaling with C3a, its first-identified endogenous ligand. Conversely, data supporting a role of gC1qR and HSPA8 in TLQP-21 activity remain limited, with no signal transduction pathways being described. Overall, C3aR1 is the only receptor for which a necessary and sufficient role in TLQP-21 activity has been confirmed thus far. This conclusion calls into question the validity of a multi-receptor mechanism of action for TLQP-21 and should inform future studies.
Collapse
Affiliation(s)
- Bhavani S Sahu
- National Brain Research Centre, NH-8, Manesar, Gurugram, Haryana, 122052, India
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Vinayak Ghosh
- National Brain Research Centre, NH-8, Manesar, Gurugram, Haryana, 122052, India
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, USA
| | - Stephen R Salton
- Departments of Neuroscience and Geriatrics and Palliative Medicine, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Dalbøge LS, Jacobsen JM, Mehrotra S, Mercer AJ, Cox N, Liu F, Bennett CM, Said M, Tang-Christensen M, Raun K, Hansen JL, Grove KL, Baquero AF. Evaluation of VGF peptides as potential anti-obesity candidates in pre-clinical animal models. Peptides 2021; 136:170444. [PMID: 33245952 DOI: 10.1016/j.peptides.2020.170444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
VGF is a peptide precursor expressed in neuroendocrine cells that is suggested to play a role in the regulation of energy homeostasis. VGF is proteolytically cleaved to yield multiple bioactive peptides. However, the specific actions of VGF-derived peptides on energy homeostasis remain unclear. The aim of the present work was to investigate the role of VGF-derived peptides in energy homeostasis and explore the pharmacological actions of VGF-derived peptides on body weight in preclinical animal models. VGF-derived peptides (NERP-1, NERP-2, PGH-NH2, PGH-OH, NERP-4, TLQP-21, TLQP-30, TLQP-62, HHPD-41, AQEE-30, and LQEQ-19) were synthesized and screened for their ability to affect neuronal activity in vitro on hypothalamic brain slices and modulate food intake and energy expenditure after acute central administration in vivo. In addition, the effects of NERP-1, NERP-2, PGH-NH2, TLQP-21, TLQP-62, and HHPD-41 on energy homeostasis were studied after chronic central infusion. NERP-1, PGH-NH2, HHPD-41, and TLQP-62 increased the functional activity of hypothalamic neuronal networks. However, none of the peptides altered energy homeostasis after either acute or chronic ICV administration. The present data do not support the potential use of the tested VGF-derived peptides as novel anti-obesity drug candidates.
Collapse
Affiliation(s)
- Louise S Dalbøge
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Julie M Jacobsen
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Suneet Mehrotra
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Aaron J Mercer
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Nick Cox
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Fa Liu
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Camdin M Bennett
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Meerit Said
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | | | - Kirsten Raun
- Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Jakob L Hansen
- Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Kevin L Grove
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Arian F Baquero
- Novo Nordisk Research Center Seattle Inc., 530 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
9
|
Koc G, Soyocak A, Alis H, Kankaya B, Kanigur G. Changes in VGF and C3aR1 gene expression in human adipose tissue in obesity. Mol Biol Rep 2020; 48:251-257. [PMID: 33306149 DOI: 10.1007/s11033-020-06043-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/28/2020] [Indexed: 01/03/2023]
Abstract
The VGF gene, which has been shown to be metabolically associated with energy balance, glucose homeostasis, insulin secretion process, and biological processes related to overeating, is prominent in relation to obesity. TLQP-21 neuropeptide, derived from the VGF, is considered to promote lipolysis by the beta-adrenergic pathway through targeting the C3aR1 receptor located in the adipocyte membrane. In this study, we aimed to measure the expression levels of the VGF and C3aR1 genes in the adipose tissue of obese subjects and individuals with normal weight determined based on body mass index (BMI), and to reveal the correlation of these levels with obesity. VGF and C3aR1 gene expression levels were measured using Real Time Polymerase Chain Reaction (RT PCR) in the visceral adipose tissue (VAT) samples of 52 obese patients (BMI ≥ 35 kg/m2) and 21 non-obese controls (BMI = 18.5-24.9 kg/m2). The results were statistically analyzed. The VGF expression was lower and the C3aR1 gene expression was higher in obese patients compared to the non-obese control group (p < 0.05). In obese patients, there was a statistically significant positive correlation of 85.6% between VGF and C3aR1, in which when one level increased, the other also increased (p < 0.05, r = 0.856). The findings show that the VGF may be significantly associated with obesity and is very important since it is the first to measure the level of VGF gene expression in human adipose tissue. This research provides new evidence of a link between obesity and VGF/C3aR1 and in the future may help design strategies to combat obesity.
Collapse
Affiliation(s)
- G Koc
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| | - A Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - H Alis
- Department of General Surgery, Faculty of Medicine, Istanbul Aydin University VM Medical Park Florya Hospital, Istanbul, Turkey
| | - B Kankaya
- Department of General Surgery, Faculty of Medicine, Istanbul Aydin University VM Medical Park Florya Hospital, Istanbul, Turkey
| | - G Kanigur
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
10
|
Mohr SM, Bagriantsev SN, Gracheva EO. Cellular, Molecular, and Physiological Adaptations of Hibernation: The Solution to Environmental Challenges. Annu Rev Cell Dev Biol 2020; 36:315-338. [PMID: 32897760 DOI: 10.1146/annurev-cellbio-012820-095945] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thriving in times of resource scarcity requires an incredible flexibility of behavioral, physiological, cellular, and molecular functions that must change within a relatively short time. Hibernation is a collection of physiological strategies that allows animals to inhabit inhospitable environments, where they experience extreme thermal challenges and scarcity of food and water. Many different kinds of animals employ hibernation, and there is a spectrum of hibernation phenotypes. Here, we focus on obligatory mammalian hibernators to identify the unique challenges they face and the adaptations that allow hibernators to overcome them. This includes the cellular and molecular strategies used to combat low environmental and body temperatures and lack of food and water. We discuss metabolic, neuronal, and hormonal cues that regulate hibernation and how they are thought to be coordinated by internal clocks. Last, we touch on questions that are left to be addressed in the field of hibernation research. Studies from the last century and more recent work reveal that hibernation is not simply a passive reduction in body temperature and vital parameters but rather an active process seasonally regulated at the molecular, cellular, and organismal levels.
Collapse
Affiliation(s)
- Sarah M Mohr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| |
Collapse
|
11
|
Helfer G, Stevenson TJ. Pleiotropic effects of proopiomelanocortin and VGF nerve growth factor inducible neuropeptides for the long-term regulation of energy balance. Mol Cell Endocrinol 2020; 514:110876. [PMID: 32473184 DOI: 10.1016/j.mce.2020.110876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance.
Collapse
Affiliation(s)
- Gisela Helfer
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
12
|
Noli B, Brancia C, Corda G, Ferri GL, Cocco C. Dynamic of TLQP-peptides upon fasting. Tissue Cell 2020; 65:101368. [PMID: 32746995 DOI: 10.1016/j.tice.2020.101368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The VGF-derived TLQP peptides (TLQPp), a new potential drug target for obesity, are expressed in stomach, pancreas, adrenal gland as well as in adipose tissues, and, when exogenously injected, regulate energy expenditure and food intake. However, it is not clear if these peptides physiologically change in these organs in response to fasting. METHODS Rats were subdivided into four groups: (A) fed ad libitum, (B) fed with restrictions (once a day) (C) fast for 48 h and (D) fast for 48 h and then fed 1 h before sacrifice. Immunosorbent assay was used to possibly reveal TLQPp changes upon fasting in plasma as well as in pancreas, adrenal gland, stomach and adipose tissues. In the latter organs, we also measured the levels of the VGF precursor protein while immunohistochemistry was used to investigate the presence of the TLQP-21 receptors. RESULTS During fasting, TLQPp were down-regulated in the stomach (45 %), pancreas (47 %), adrenal gland (51 %) and WAT (45.2 %) in parallel with a significant increase in the blood (36.6 %), all versus ad libitum group. In the same organs where the TLQPp were decreased upon fasting, the VGF precursor levels were not changed. In ad libitum rats, TLQP-21 receptors were well represented within the same cells that expressed TLQPp, suggesting an autocrine activity to be better investigated. CONCLUSIONS During fasting, TLQPp are probably produced and immediately secreted into the blood circulation, until the hypoglycaemia is counteracted.
Collapse
Affiliation(s)
- Barbara Noli
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Carla Brancia
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Giulia Corda
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Gian-Luca Ferri
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Cristina Cocco
- NEF-Laboratory, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy.
| |
Collapse
|
13
|
Sun H, Wang J, Xing Y, Pan YH, Mao X. Gut transcriptomic changes during hibernation in the greater horseshoe bat ( Rhinolophus ferrumequinum). Front Zool 2020; 17:21. [PMID: 32690984 PMCID: PMC7366455 DOI: 10.1186/s12983-020-00366-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background The gut is the major organ for nutrient absorption and immune response in the body of animals. Although effects of fasting on the gut functions have been extensively studied in model animals (e.g. mice), little is known about the response of the gut to fasting in a natural condition (e.g. hibernation). During hibernation, animals endure the long term of fasting and hypothermia. Results Here we generated the first gut transcriptome in a wild hibernating bat (Rhinolophus ferrumequinum). We identified 1614 differentially expressed genes (DEGs) during four physiological states (Torpor, Arousal, Winter Active and Summer Active). Gene co-expression network analysis assigns 926 DEGs into six modules associated with Torpor and Arousal. Our results reveal that in response to the stress of luminal nutrient deficiency during hibernation, the gut helps to reduce food intake by overexpressing genes (e.g. CCK and GPR17) that regulate the sensitivity to insulin and leptin. At the same time, the gut contributes energy supply by overexpressing genes that increase capacity for ketogenesis (HMGCS2) and selective autophagy (TEX264). Furthermore, we identified separate sets of multiple DEGs upregulated in Torpor and Arousal whose functions are involved in innate immunity. Conclusion This is the first gut transcriptome of a hibernating mammal. Our study identified candidate genes associated with regulation of food intake and enhance of innate immunity in the gut during hibernation. By comparing with previous studies, we found that two DEGs (CPE and HSPA8) were also significantly elevated during torpor in liver and brain of R. ferrumequinum and several DEGs (e.g. TXNIP and PDK1/4) were commonly upregulated during torpor in multiple tissues of different mammals. Our results support that shared expression changes may underlie the hibernation phenotype by most mammals.
Collapse
Affiliation(s)
- Haijian Sun
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062 China
| | - Jiaying Wang
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062 China
| | - Yutong Xing
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062 China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai, 200062 China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062 China.,Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, 200062 China
| |
Collapse
|
14
|
El Gaamouch F, Audrain M, Lin WJ, Beckmann N, Jiang C, Hariharan S, Heeger PS, Schadt EE, Gandy S, Ehrlich ME, Salton SR. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener 2020; 15:4. [PMID: 31924226 PMCID: PMC6954537 DOI: 10.1186/s13024-020-0357-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiomic studies by several groups in the NIH Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) identified VGF as a major driver of Alzheimer's disease (AD), also finding that reduced VGF levels correlate with mean amyloid plaque density, Clinical Dementia Rating (CDR) and Braak scores. VGF-derived peptide TLQP-21 activates the complement C3a receptor-1 (C3aR1), predominantly expressed in the brain on microglia. However, it is unclear how mouse or human TLQP-21, which are not identical, modulate microglial function and/or AD progression. METHODS We performed phagocytic/migration assays and RNA sequencing on BV2 microglial cells and primary microglia isolated from wild-type or C3aR1-null mice following treatment with TLQP-21 or C3a super agonist (C3aSA). Effects of intracerebroventricular TLQP-21 delivery were evaluated in 5xFAD mice, a mouse amyloidosis model of AD. Finally, the human HMC3 microglial cell line was treated with human TLQP-21 to determine whether specific peptide functions are conserved from mouse to human. RESULTS We demonstrate that TLQP-21 increases motility and phagocytic capacity in murine BV2 microglial cells, and in primary wild-type but not in C3aR1-null murine microglia, which under basal conditions have impaired phagocytic function compared to wild-type. RNA sequencing of primary microglia revealed overlapping transcriptomic changes induced by treatment with TLQP-21 or C3a super agonist (C3aSA). There were no transcriptomic changes in C3aR1-null or wild-type microglia exposed to the mutant peptide TLQP-R21A, which does not activate C3aR1. Most of the C3aSA- and TLQP-21-induced differentially expressed genes were linked to cell migration and proliferation. Intracerebroventricular TLQP-21 administration for 28 days via implanted osmotic pump resulted in a reduction of amyloid plaques and associated dystrophic neurites and restored expression of subsets of Alzheimer-associated microglial genes. Finally, we found that human TLQP-21 activates human microglia in a fashion similar to activation of murine microglia by mouse TLQP-21. CONCLUSIONS These data provide molecular and functional evidence suggesting that mouse and human TLQP-21 modulate microglial function, with potential implications for the progression of AD-related neuropathology.
Collapse
Affiliation(s)
- Farida El Gaamouch
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
- Medical Research Center of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Cheng Jiang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Siddharth Hariharan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter S. Heeger
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Sema4, Stamford, CT 06902 USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
15
|
Bresciani E, Possenti R, Coco S, Rizzi L, Meanti R, Molteni L, Locatelli V, Torsello A. TLQP-21, A VGF-Derived Peptide Endowed of Endocrine and Extraendocrine Properties: Focus on In Vitro Calcium Signaling. Int J Mol Sci 2019; 21:ijms21010130. [PMID: 31878142 PMCID: PMC6982260 DOI: 10.3390/ijms21010130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
VGF gene encodes for a neuropeptide precursor of 68 kDa composed by 615 (human) and 617 (rat, mice) residues, expressed prevalently in the central nervous system (CNS), but also in the peripheral nervous system (PNS) and in various endocrine cells. This precursor undergoes proteolytic cleavage, generating a family of peptides different in length and biological activity. Among them, TLQP-21, a peptide of 21 amino acids, has been widely investigated for its relevant endocrine and extraendocrine activities. The complement complement C3a receptor-1 (C3aR1) has been suggested as the TLQP-21 receptor and, in different cell lines, its activation by TLQP-21 induces an increase of intracellular Ca2+. This effect relies both on Ca2+ release from the endoplasmic reticulum (ER) and extracellular Ca2+ entry. The latter depends on stromal interaction molecules (STIM)-Orai1 interaction or transient receptor potential channel (TRPC) involvement. After Ca2+ entry, the activation of outward K+-Ca2+-dependent currents, mainly the KCa3.1 currents, provides a membrane polarizing influence which offset the depolarizing action of Ca2+ elevation and indirectly maintains the driving force for optimal Ca2+ increase in the cytosol. In this review, we address the main endocrine and extraendocrine actions displayed by TLQP-21, highlighting recent findings on its mechanism of action and its potential in different pathological conditions.
Collapse
Affiliation(s)
- Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
- Correspondence:
| | - Roberta Possenti
- Department of Systems Medicine, University of Roma Tor Vergata, 00133 Roma, Italy;
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.C.); (L.R.); (R.M.); (L.M.); (V.L.); (A.T.)
| |
Collapse
|
16
|
Lewis JE, Monnier C, Marshall H, Fowler M, Green R, Cooper S, Chiotellis A, Luckett J, Perkins AC, Coskun T, Adams AC, Samms RJ, Ebling FJP, Tsintzas K. Whole-body and adipose tissue-specific mechanisms underlying the metabolic effects of fibroblast growth factor 21 in the Siberian hamster. Mol Metab 2019; 31:45-54. [PMID: 31918921 PMCID: PMC6889485 DOI: 10.1016/j.molmet.2019.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21) has been shown to rapidly lower body weight in the Siberian hamster, a preclinical model of adiposity. This induced negative energy balance mediated by FGF21 is associated with both lowered caloric intake and increased energy expenditure. Previous research demonstrated that adipose tissue (AT) is one of the primary sites of FGF21 action and may be responsible for its ability to increase the whole-body metabolic rate. The present study sought to determine the relative importance of white (subcutaneous AT [sWAT] and visceral AT [vWAT]), and brown (interscapular brown AT [iBAT]) in governing FGF21-mediated metabolic improvements using the tissue-specific uptake of glucose and lipids as a proxy for metabolic activity. Methods We used positron emission tomography-computed tomography (PET-CT) imaging in combination with both glucose (18F-fluorodeoxyglucose) and lipid (18F-4-thiapalmitate) tracers to assess the effect of FGF21 on the tissue-specific uptake of these metabolites and compared responses to a control group pair-fed to match the food intake of the FGF21-treated group. In vivo imaging was combined with ex vivo tissue-specific functional, biochemical, and molecular analyses of the nutrient uptake and signaling pathways. Results Consistent with previous findings, FGF21 reduced body weight via reduced caloric intake and increased energy expenditure in the Siberian hamster. PET-CT studies demonstrated that FGF21 increased the uptake of glucose in BAT and WAT independently of reduced food intake and body weight as demonstrated by imaging of the pair-fed group. Furthermore, FGF21 increased glucose uptake in the primary adipocytes, confirming that these in vivo effects may be due to a direct action of FGF21 at the level of the adipocytes. Mechanistically, the effects of FGF21 are associated with activation of the ERK signaling pathway and upregulation of GLUT4 protein content in all fat depots. In response to treatment with FGF21, we observed an increase in the markers of lipolysis and lipogenesis in both the subcutaneous and visceral WAT depots. In contrast, FGF21 was only able to directly increase the uptake of lipid into BAT. Conclusions These data identify brown and white fat depots as primary peripheral sites of action of FGF21 in promoting glucose uptake and also indicate that FGF21 selectively stimulates lipid uptake in brown fat, which may fuel thermogenesis. FGF21 increases glucose and lipid uptake in adipose tissue. The selective FGF21-induced increase in lipid uptake in BAT may fuel thermogenesis. Unlike BAT, glucose uptake in WAT may be used for lipogenesis.
Collapse
Affiliation(s)
- Jo E Lewis
- Institute of Metabolic Sciences and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, CB0 0QQ, UK
| | - Chloe Monnier
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Hayley Marshall
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Maxine Fowler
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Rebecca Green
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Scott Cooper
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Aristeidis Chiotellis
- Radiological Sciences, School of Medicine, University of Nottingham, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Jeni Luckett
- Radiological Sciences, School of Medicine, University of Nottingham, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Alan C Perkins
- Radiological Sciences, School of Medicine, University of Nottingham, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Tamer Coskun
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Andrew C Adams
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Ricardo J Samms
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK
| | - Kostas Tsintzas
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Center, Nottingham, NG7 2UH, UK.
| |
Collapse
|
17
|
Sahu BS, Rodriguez P, Nguyen ME, Han R, Cero C, Razzoli M, Piaggi P, Laskowski LJ, Pavlicev M, Muglia L, Mahata SK, O'Grady S, McCorvy JD, Baier LJ, Sham YY, Bartolomucci A. Peptide/Receptor Co-evolution Explains the Lipolytic Function of the Neuropeptide TLQP-21. Cell Rep 2019; 28:2567-2580.e6. [PMID: 31484069 PMCID: PMC6753381 DOI: 10.1016/j.celrep.2019.07.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/11/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Structural and functional diversity of peptides and GPCR result from long evolutionary processes. Even small changes in sequence can alter receptor activation, affecting therapeutic efficacy. We conducted a structure-function relationship study on the neuropeptide TLQP-21, a promising target for obesity, and its complement 3a receptor (C3aR1). After having characterized the TLQP-21/C3aR1 lipolytic mechanism, a homology modeling and molecular dynamics simulation identified the TLQP-21 binding motif and C3aR1 binding site for the human (h) and mouse (m) molecules. mTLQP-21 showed enhanced binding affinity and potency for hC3aR1 compared with hTLQP-21. Consistently, mTLQP-21, but not hTLQP-21, potentiates lipolysis in human adipocytes. These findings led us to uncover five mutations in the C3aR1 binding pocket of the rodent Murinae subfamily that are causal for enhanced calculated affinity and measured potency of TLQP-21. Identifying functionally relevant peptide/receptor co-evolution mechanisms can facilitate the development of innovative pharmacotherapies for obesity and other diseases implicating GPCRs.
Collapse
Affiliation(s)
- Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Pedro Rodriguez
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Megin E Nguyen
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Ruijun Han
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Phoenix, AZ, USA
| | - Lauren J Laskowski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mihaela Pavlicev
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Louis Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Scott O'Grady
- Department of Animal Science, University of Minnesota, 480 Haecker Hall, 1364 Eckles Avenue, St. Paul, MN, USA
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Phoenix, AZ, USA
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, 2231 6(th) St. SE, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Photoperiodic changes in adiposity increase sensitivity of female Siberian hamsters to systemic VGF derived peptide TLQP-21. PLoS One 2019; 14:e0221517. [PMID: 31465472 PMCID: PMC6715173 DOI: 10.1371/journal.pone.0221517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023] Open
Abstract
TLQP-21, a peptide encoded by the highly conserved vgf gene, is expressed in neuroendocrine cells and has been the most prominent VGF-derived peptide studied in relation to control of energy balance. The recent discovery that TLQP-21 is the natural agonist for the complement 3a receptor 1 (C3aR1) has revived interest in this peptide as a potential drug target for obesity. We have investigated its function in Siberian hamsters (Phodopus sungorus), a rodent that displays natural seasonal changes in body weight and adiposity as an adaptation to survive winter. We have previously shown that intracerebroventricular administration of TLQP-21 reduced food intake and body weight in hamsters in their long-day fat state. The aim of our current study was to determine the systemic actions of TLQP-21 on food intake, energy expenditure and body weight, and to establish whether adiposity affected these responses. Peripheral infusion of TLQP-21 (1mg/kg/day for 7 days) in lean hamsters exposed to short photoperiods (SP) reduced cumulative food intake in the home cage (p<0.05), and intake when measured in metabolic cages (P<0.01). Energy expenditure was significantly increased (p<0.001) by TLQP-21 infusion, this was associated with a significant increase in uncoupling protein 1 mRNA in brown adipose tissue (BAT) (p<0.05), and body weight was significantly reduced (p<0.05). These effects of systemic TLQP-21 treatment were not observed in hamsters exposed to long photoperiod (LP) with a fat phenotype. C3aR1 mRNA and protein were abundantly expressed in the hypothalamus, brown and white adipose tissue in hamsters, but changes in expression cannot explain the differential response to TLQP-21 in lean and fat hamsters.
Collapse
|
19
|
Striberny A, Jørgensen EH, Klopp C, Magnanou E. Arctic charr brain transcriptome strongly affected by summer seasonal growth but only subtly by feed deprivation. BMC Genomics 2019; 20:529. [PMID: 31248377 PMCID: PMC6598377 DOI: 10.1186/s12864-019-5874-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Background The Arctic charr (Salvelinus alpinus) has a highly seasonal feeding cycle that comprises long periods of voluntary fasting and a short but intense feeding period during summer. Therefore, the charr represents an interesting species for studying appetite-regulating mechanisms in fish. Results In this study, we compared the brain transcriptomes of fed and feed deprived charr over a 4 weeks trial during their summer feeding season. Despite prominent differences in body condition between fed and feed deprived charr at the end of the trial, feed deprivation affected the brain transcriptome only slightly. In contrast, the transcriptome differed markedly over time in both fed and feed deprived charr, indicating strong shifts in basic cell metabolic processes possibly due to season, growth, temperature, or combinations thereof. The GO enrichment analysis revealed that many biological processes appeared to change in the same direction in both fed and feed deprived fish. In the feed deprived charr processes linked to oxygen transport and apoptosis were down- and up-regulated, respectively. Known genes encoding for appetite regulators did not respond to feed deprivation. Gene expression of Deiodinase 2 (DIO2), an enzyme implicated in the regulation of seasonal processes in mammals, was lower in response to season and feed deprivation. We further found a higher expression of VGF (non-acronymic) in the feed deprived than in the fed fish. This gene encodes for a neuropeptide associated with the control of energy metabolism in mammals, and has not been studied in relation to regulation of appetite and energy homeostasis in fish. Conclusions In the Arctic charr, external and endogenous seasonal factors for example the increase in temperature and their circannual growth cycle, respectively, evoke much stronger responses in the brain than 4 weeks feed deprivation. The absence of a central hunger response in feed deprived charr give support for a strong resilience to the lack of food in this high Arctic species. DIO2 and VGF may play a role in the regulation of energy homeostasis and need to be further studied in seasonal fish. Electronic supplementary material The online version of this article (10.1186/s12864-019-5874-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anja Striberny
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Christophe Klopp
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées UBIA, INRA, Auzeville Castanet-Tolosan, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
20
|
Dardente H, Wood S, Ebling F, Sáenz de Miera C. An integrative view of mammalian seasonal neuroendocrinology. J Neuroendocrinol 2019; 31:e12729. [PMID: 31059174 DOI: 10.1111/jne.12729] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022]
Abstract
Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid-stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF-amide neuropeptides kisspeptin and RFRP3 (RF-amide related peptide 3), are plausible relays between TH and the gonadotrophin-releasing hormone-pituitary-gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Shona Wood
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Francis Ebling
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
21
|
Yelamanchi SD, Tyagi A, Mohanty V, Dutta P, Korbonits M, Chavan S, Advani J, Madugundu AK, Dey G, Datta KK, Rajyalakshmi M, Sahasrabuddhe NA, Chaturvedi A, Kumar A, Das AA, Ghosh D, Jogdand GM, Nair HH, Saini K, Panchal M, Sarvaiya MA, Mohanraj SS, Sengupta N, Saxena P, Subramani PA, Kumar P, Akkali R, Reshma SV, Santhosh RS, Rastogi S, Kumar S, Ghosh SK, Irlapati VK, Srinivasan A, Radotra BD, Mathur PP, Wong GW, Satishchandra P, Chatterjee A, Gowda H, Bhansali A, Pandey A, Shankar SK, Mahadevan A, Prasad TSK. Proteomic Analysis of the Human Anterior Pituitary Gland. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:759-769. [PMID: 30571610 DOI: 10.1089/omi.2018.0160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.
Collapse
Affiliation(s)
| | - Ankur Tyagi
- 2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- 2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Pinaki Dutta
- 3 Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Márta Korbonits
- 4 Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sandip Chavan
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jayshree Advani
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India
| | - Anil K Madugundu
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India.,6 Center for Molecular Medicine, National Institute of Mental Health & Neurosciences, Bangalore, India.,7 Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gourav Dey
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India
| | - Keshava K Datta
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - M Rajyalakshmi
- 8 Department of Biotechnology, BMS College of Engineering, Bangalore, India
| | | | - Abhishek Chaturvedi
- 9 Department of Biochemistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Amit Kumar
- 10 Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Apabrita Ayan Das
- 11 Cell Biology and Physiology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Dhiman Ghosh
- 12 Protein Engineering and Neurobiology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | - Haritha H Nair
- 13 Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Keshav Saini
- 14 Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Manoj Panchal
- 15 Department of Life Science, Central University of South Bihar, Gaya, India
| | | | - Soundappan S Mohanraj
- 17 Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nabonita Sengupta
- 18 Neuroinflammation Laboratory, National Brain Research Centre, Manesar, India
| | - Priti Saxena
- 14 Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | | | - Pradeep Kumar
- 20 Department of Biotechnology, VBS Purvanchal University, Jaunpur, India
| | - Rakhil Akkali
- 21 Department of Biotechnology, Indian Institute of Technology, Madras, India
| | | | | | - Sangita Rastogi
- 24 Microbiology Laboratory, National Institute of Pathology, New Delhi, India
| | - Sudarshan Kumar
- 25 Proteomics and Structural Biology Laboratory, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Susanta Kumar Ghosh
- 19 Department of Molecular Parasitology, National Institute of Malaria Research, Bangalore, India
| | | | - Anand Srinivasan
- 27 Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan Das Radotra
- 28 Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Premendu P Mathur
- 29 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - G William Wong
- 30 Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Aditi Chatterjee
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Harsha Gowda
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Anil Bhansali
- 3 Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akhilesh Pandey
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India.,6 Center for Molecular Medicine, National Institute of Mental Health & Neurosciences, Bangalore, India.,7 Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.,32 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,33 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland.,34 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,35 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susarla K Shankar
- 36 Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.,37 Human Brain Tissue Repository, National Institute of Mental Health and Neuro Sciences, Neurobiology Research Centre, Bangalore, India
| | - Anita Mahadevan
- 36 Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.,37 Human Brain Tissue Repository, National Institute of Mental Health and Neuro Sciences, Neurobiology Research Centre, Bangalore, India
| | - T S Keshava Prasad
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
22
|
Guo Z, Sahu BS, He R, Finan B, Cero C, Verardi R, Razzoli M, Veglia G, Di Marchi RD, Miles JM, Bartolomucci A. Clearance kinetics of the VGF-derived neuropeptide TLQP-21. Neuropeptides 2018; 71:97-103. [PMID: 29958697 PMCID: PMC6166661 DOI: 10.1016/j.npep.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
UNLABELLED TLQP-21 is a multifunctional neuropeptide and a promising new medicinal target for cardiometabolic and neurological diseases. However, to date its clearance kinetics and plasma stability have not been studied. The presence of four arginine residues led us to hypothesize that its half-life is relatively short. Conversely, its biological activities led us to hypothesize that the peptide is still taken up by adipose tissues effectively. [125I]TLQP-21 was i.v. administered in rats followed by chasing the plasma radioactivity and assessing tissue uptake. Plasma stability was measured using LC-MS. In vivo lipolysis was assessed by the palmitate rate of appearance. RESULTS A small single i.v. dose of [125I]TLQP-21 had a terminal half-life of 110 min with a terminal clearance rate constant, kt, of 0.0063/min, and an initial half-life of 0.97 min with an initial clearance rate constant, ki, of 0.71/min. The total net uptake by adipose tissue accounts for 4.4% of the entire dose equivalent while the liver, pancreas and adrenal gland showed higher uptake. Uptake by the brain was negligible, suggesting that i.v.-injected peptide does not cross the blood-brain-barrier. TLQP-21 sustained isoproterenol-stimulated lipolysis in vivo. Finally, TLQP-21 was rapidly degraded producing several N-terminal and central sequence fragments after 10 and 60 min in plasma in vitro. This study investigated the clearance and stability of TLQP-21 peptide for the first time. While its pro-lipolytic effect supports and extends previous findings, its short half-life and sequential cleavage in the plasma suggest strategies for chemical modifications in order to enhance its stability and therapeutic efficacy.
Collapse
Affiliation(s)
- ZengKui Guo
- Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Bhavani S Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rongjun He
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raffaello Verardi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - John M Miles
- Mayo Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Brancia C, Noli B, Boido M, Pilleri R, Boi A, Puddu R, Marrosu F, Vercelli A, Bongioanni P, Ferri GL, Cocco C. TLQP Peptides in Amyotrophic Lateral Sclerosis: Possible Blood Biomarkers with a Neuroprotective Role. Neuroscience 2018; 380:152-163. [PMID: 29588252 DOI: 10.1016/j.neuroscience.2018.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022]
Abstract
While the VGF-derived TLQP peptides have been shown to prevent neuronal apoptosis, and to act on synaptic strengthening, their involvement in Amyotrophic Lateral Sclerosis (ALS) remains unclarified. We studied human ALS patients' plasma (taken at early to late disease stages) and primary fibroblast cultures (patients vs controls), in parallel with SOD1-G93A transgenic mice (taken at pre-, early- and late symptomatic stages) and the mouse motor neuron cell line (NSC-34) treated with Sodium Arsenite (SA) to induce oxidative stress. TLQP peptides were measured by enzyme-linked immunosorbent assay, in parallel with gel chromatography characterization, while their localization was studied by immunohistochemistry. In controls, TLQP peptides, including forms compatible with TLQP-21 and 62, were revealed in plasma and spinal cord motor neurons, as well as in fibroblasts and NSC-34 cells. TLQP peptides were reduced in ALS patients' plasma starting in the early disease stage (14% of controls) and remaining so at the late stage (16% of controls). In mice, a comparable pattern of reduction was shown (vs wild type), in both plasma and spinal cord already in the pre-symptomatic phase (about 26% and 70%, respectively). Similarly, the levels of TLQP peptides were reduced in ALS fibroblasts (31% of controls) and in the NSC-34 treated with Sodium Arsenite (53% of decrease), however, the exogeneous TLQP-21 improved cell viability (SA-treated cells with TLQP-21, vs SA-treated cells only: about 83% vs. 75%). Hence, TLQP peptides, reduced upon oxidative stress, are suggested as blood biomarkers, while TLQP-21 exerts a neuroprotective activity.
Collapse
Affiliation(s)
- Carla Brancia
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy.
| | - Barbara Noli
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Dept. Neuroscience, University of Turin, Turin, Italy
| | - Roberta Pilleri
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Andrea Boi
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberta Puddu
- Dept. Neurology, Azienda Universitario Ospedaliera di Cagliari & University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Dept. Neurology, Azienda Universitario Ospedaliera di Cagliari & University of Cagliari, Cagliari, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Dept. Neuroscience, University of Turin, Turin, Italy
| | - Paolo Bongioanni
- Neurorehabilitation Unit, Dept. Neuroscience, University of Pisa, Pisa, Italy
| | - Gian-Luca Ferri
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Cristina Cocco
- Dept. Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
24
|
Akhter S, Chakraborty S, Moutinho D, Álvarez-Coiradas E, Rosa I, Viñuela J, Domínguez E, García A, Requena JR. The human VGF-derived bioactive peptide TLQP-21 binds heat shock 71 kDa protein 8 (HSPA8)on the surface of SH-SY5Y cells. PLoS One 2017; 12:e0185176. [PMID: 28934328 PMCID: PMC5608341 DOI: 10.1371/journal.pone.0185176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/07/2017] [Indexed: 01/16/2023] Open
Abstract
VGF (non-acronymic)is a secreted chromogranin/secretogranin that gives rise to a number of bioactive peptides by a complex proteolysis mechanism. VGF-derived peptides exert an extensive array of biological effects in energy metabolism, mood regulation, pain, gastric secretion function, reproduction and, perhaps, cancer. It is therefore surprising that very little is known about receptors and binding partners of VGF-derived peptides and their downstream molecular mechanisms of action. Here, using affinity chromatography and mass spectrometry-based protein identification, we have identified the heat shock cognate 71 kDa protein A8 (HSPA8)as a binding partner of human TLQP-21 on the surface of human neuroblastomaSH-SY5Y cells. Binding of TLQP-21 to membrane associated HSPA8 in live SH-SY5Y cells was further supported by cross-linking to live cells. Interaction between HSPA8 and TLQP-21 was confirmed in vitro by label-free Dynamic Mass Redistribution (DMR) studies. Furthermore, molecular modeling studies show that TLQP-21 can be docked into the HSPA8 peptide binding pocket. Identification of HSPA8 as a cell surface binding partner of TLQP-21 opens new avenues to explore the molecular mechanisms of its physiological actions, and of pharmacological modulation thereof.
Collapse
Affiliation(s)
- Shamim Akhter
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | | | - Daniela Moutinho
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Elia Álvarez-Coiradas
- BioFarma Research Group, CIMUS, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Isaac Rosa
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Juan Viñuela
- Immunology Laboratory, Santiago University Hospital, Santiago de Compostela, Spain
| | - Eduardo Domínguez
- BioFarma Research Group, CIMUS, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Angel García
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| |
Collapse
|
25
|
Jiang C, Lin WJ, Sadahiro M, Shin AC, Buettner C, Salton SR. Embryonic ablation of neuronal VGF increases energy expenditure and reduces body weight. Neuropeptides 2017; 64:75-83. [PMID: 28024880 PMCID: PMC5478485 DOI: 10.1016/j.npep.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
Germline ablation of VGF, a secreted neuronal, neuroendocrine, and endocrine peptide precursor, results in lean, hypermetabolic, and infertile adult mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes (Hahm et al., 1999, 2002). To assess whether this phenotype is predominantly driven by reduced VGF expression in developing and/or adult neurons, or in peripheral endocrine and neuroendocrine tissues, we generated and analyzed conditional VGF knockout mice, obtained by mating loxP-flanked (floxed) Vgf mice with either pan-neuronal Synapsin-Cre- or forebrain alpha-CaMKII-Cre-recombinase-expressing transgenic mice. Adult male and female mice, with conditional ablation of the Vgf gene in embryonic neurons had significantly reduced body weight, increased energy expenditure, and were resistant to diet-induced obesity. Conditional forebrain postnatal ablation of VGF in male mice, primarily in adult excitatory neurons, had no measurable effect on body weight nor on energy expenditure, but led to a modest increase in adiposity, partially overlapping the effect of AAV-Cre-mediated targeted ablation of VGF in the adult ventromedial hypothalamus and arcuate nucleus of floxed Vgf mice (Foglesong et al., 2016), and also consistent with results of icv delivery of the VGF-derived peptide TLQP-21 to adult mice, which resulted in increased energy expenditure and reduced adiposity (Bartolomucci et al., 2006). Because the lean, hypermetabolic phenotype of germline VGF knockout mice is to a great extent recapitulated in Syn-Cre+/-,Vgfflpflox/flpflox mice, we conclude that the metabolic profile of germline VGF knockout mice is largely the result of VGF ablation in embryonic CNS neurons, rather than peripheral endocrine and/or neuroendocrine cells, and that in forebrain structures such as hypothalamus, VGF and/or VGF-derived peptides play uniquely different roles in the developing and adult nervous system.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Wei-Jye Lin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Andrew C Shin
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Christoph Buettner
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| | - Stephen R Salton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| |
Collapse
|
26
|
Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain. PLoS One 2017; 12:e0172724. [PMID: 28235047 PMCID: PMC5325529 DOI: 10.1371/journal.pone.0172724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/08/2017] [Indexed: 12/16/2022] Open
Abstract
VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well as in the adult.
Collapse
|
27
|
Yang D, Zhang W, Padhiar A, Yue Y, Shi Y, Zheng T, Davis K, Zhang Y, Huang M, Li Y, Sha L. NPAS3 Regulates Transcription and Expression of VGF: Implications for Neurogenesis and Psychiatric Disorders. Front Mol Neurosci 2016; 9:109. [PMID: 27877109 PMCID: PMC5099284 DOI: 10.3389/fnmol.2016.00109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 01/01/2023] Open
Abstract
Neuronal PAS domain protein 3 (NPAS3) and VGF (VGF Nerve Growth Factor (NGF) Inducible) are important for neurogenesis and psychiatric disorders. Previously, we have demonstrated that NPAS3 regulates VGF at the transcriptional level. In this study, VGF (non-acronymic) was found regulated by NPAS3 in neuronal stem cells. However, the underlying mechanism of this regulation remains unclear. The aim of this study was to explore the correlation of NPAS3 and VGF, and their roles in neural cell proliferation, in the context of psychiatric illnesses. First, we focused on the structure of NPAS3, to identify the functional domain of NPAS3. Truncated NPAS3 lacking transactivation domain was also found to activate VGF, which suggested that not only transactivation domain but other structural motifs were also involved in the regulation. Second, Mutated enhancer box (E-box) of VGF promoter showed a significant response to this basic helix-loop-helix (bHLH) transcription factor, which suggested an indirect regulatory mechanism for controlling VGF expression by NPAS3. κB site within VGF promoter was identified for VGF activation induced by NPAS3, apart from direct binding to E-box. Furthermore, ectopically expressed NPAS3 in PC12 cells produced parallel responses for nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB (P65)] expression, which specifies that NPAS3 regulates VGF through the NF-κB signaling pathway. Over-expression of NPAS3 also enhances the cell proliferation, which can be blocked by knockdown of VGF. Finally, NPAS3 was found to influence proliferation of neural cells through VGF. Therefore, downstream signaling pathways that are responsible for NPAS3-VGF induced proliferation via glutamate receptors were explored. Combining this work and published literature, a potential network composed by NPAS3, NF-κB, Brain-Derived Neurotrophic Factor (BDNF), NGF and VGF, was proposed. This network collectively detailed how NPAS3 connects with VGF and intersected neural cell proliferation, synaptic activity and psychiatric disorders.
Collapse
Affiliation(s)
- Dongxue Yang
- College of Basic Medicine, Dalian Medical University Dalian, China
| | - Wenbo Zhang
- College of Basic Medicine, Dalian Medical University Dalian, China
| | - Arshad Padhiar
- College of Basic Medicine, Dalian Medical University Dalian, China
| | - Yao Yue
- College of Basic Medicine, Dalian Medical University Dalian, China
| | - Yonghui Shi
- College of Basic Medicine, Dalian Medical University Dalian, China
| | - Tiezheng Zheng
- College of Basic Medicine, Dalian Medical University Dalian, China
| | - Kaspar Davis
- Department of Physical Education, Dalian University of Technology Dalian, China
| | - Yu Zhang
- Department of Physical Education, Dalian University of Technology Dalian, China
| | - Min Huang
- College of Basic Medicine, Dalian Medical University Dalian, China
| | - Yuyuan Li
- College of Basic Medicine, Dalian Medical University Dalian, China
| | - Li Sha
- College of Basic Medicine, Dalian Medical University Dalian, China
| |
Collapse
|
28
|
Lewis JE, Brameld JM, Hill P, Wilson D, Barrett P, Ebling FJP, Jethwa PH. Thyroid hormone and vitamin D regulate VGF expression and promoter activity. J Mol Endocrinol 2016; 56:123-34. [PMID: 26643910 PMCID: PMC4705542 DOI: 10.1530/jme-15-0224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 01/20/2023]
Abstract
The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VGF expression (P<0.05) and VGF promoter activity (P<0.0001). Similarly, treatment with 1,25-dihydroxyvitamin D3 increased endogenous VGF mRNA expression (P<0.05) and VGF promoter activity (P<0.0001), whereas triiodothyronine (T3) decreased both (P<0.01 and P<0.0001). Finally, intra-hypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure.
Collapse
Affiliation(s)
- Jo E Lewis
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - John M Brameld
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Phil Hill
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Dana Wilson
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Perry Barrett
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Francis J P Ebling
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Preeti H Jethwa
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
29
|
Lewis JE, Brameld JM, Hill P, Barrett P, Ebling FJP, Jethwa PH. The use of a viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein (eGFP) in vitro and in vivo. J Neurosci Methods 2015; 256:22-9. [PMID: 26300182 PMCID: PMC4659456 DOI: 10.1016/j.jneumeth.2015.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 11/03/2022]
Abstract
INTRODUCTION The viral 2A sequence has become an attractive alternative to the traditional internal ribosomal entry site (IRES) for simultaneous over-expression of two genes and in combination with recombinant adeno-associated viruses (rAAV) has been used to manipulate gene expression in vitro. NEW METHOD To develop a rAAV construct in combination with the viral 2A sequence to allow long-term over-expression of the vgf gene and fluorescent marker gene for tracking of the transfected neurones in vivo. RESULTS Transient transfection of the AAV plasmid containing the vgf gene, viral 2A sequence and eGFP into SH-SY5Y cells resulted in eGFP fluorescence comparable to a commercially available reporter construct. This increase in fluorescent cells was accompanied by an increase in VGF mRNA expression. Infusion of the rAAV vector containing the vgf gene, viral 2A sequence and eGFP resulted in eGFP fluorescence in the hypothalamus of both mice and Siberian hamsters, 32 weeks post infusion. In situ hybridisation confirmed that the location of VGF mRNA expression in the hypothalamus corresponded to the eGFP pattern of fluorescence. COMPARISON WITH OLD METHOD The viral 2A sequence is much smaller than the traditional IRES and therefore allowed over-expression of the vgf gene with fluorescent tracking without compromising viral capacity. CONCLUSION The use of the viral 2A sequence in the AAV plasmid allowed the simultaneous expression of both genes in vitro. When used in combination with rAAV it resulted in long-term over-expression of both genes at equivalent locations in the hypothalamus of both Siberian hamsters and mice, without any adverse effects.
Collapse
Affiliation(s)
- Jo E Lewis
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - John M Brameld
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Phil Hill
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Perry Barrett
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Preeti H Jethwa
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
30
|
Photoperiod Regulates vgf-Derived Peptide Processing in Siberian Hamsters. PLoS One 2015; 10:e0141193. [PMID: 26555143 PMCID: PMC4640585 DOI: 10.1371/journal.pone.0141193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/05/2015] [Indexed: 12/26/2022] Open
Abstract
VGF mRNA is induced in specific hypothalamic areas of the Siberian hamster upon exposure to short photoperiods, which is associated with a seasonal decrease in appetite and weight loss. Processing of VGF generates multiple bioactive peptides, so the objective of this study was to determine the profile of the VGF-derived peptides in the brain, pituitary and plasma from Siberian hamsters, and to establish whether differential processing might occur in the short day lean state versus long day fat. Antisera against short sequences at the C- or N- termini of proVGF, as well as against NERP-1, TPGH and TLQP peptides, were used for analyses of tissues, and both immunohistochemistry and enzyme linked immunosorbent assay (ELISA) coupled with high-performance liquid (HPLC) or gel chromatography were carried out. VGF peptide immunoreactivity was found within cortex cholinergic perikarya, in multiple hypothalamic nuclei, including those containing vasopressin, and in pituitary gonadotrophs. ELISA revealed that exposure to short day photoperiod led to a down-regulation of VGF immunoreactivity in the cortex, and a less pronounced decrease in the hypothalamus and pituitary, while the plasma VGF levels were not affected by the photoperiod. HPLC and gel chromatography both confirmed the presence of multiple VGF-derived peptides in these tissues, while gel chromatography showed the presence of the VGF precursor in all tissues tested except for the cortex. These observations are consistent with the view that VGF-derived peptides have pleiotropic actions related to changing photoperiod, possibly by regulating cholinergic systems in the cortex, vasopressin hypothalamic pathways, and the reproductive axis.
Collapse
|
31
|
Schmidlin T, Boender AJ, Frese CK, Heck AJR, Adan RAH, Altelaar AFM. Diet-Induced Neuropeptide Expression: Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring. Anal Chem 2015; 87:9966-73. [DOI: 10.1021/acs.analchem.5b03334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thierry Schmidlin
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Arjen J. Boender
- Department
of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christian K. Frese
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Roger A. H. Adan
- Department
of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - A. F. Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
32
|
Teubner BJW, Leitner C, Thomas MA, Ryu V, Bartness TJ. An intact dorsomedial posterior arcuate nucleus is not necessary for photoperiodic responses in Siberian hamsters. Horm Behav 2015; 70:22-9. [PMID: 25647158 PMCID: PMC4409532 DOI: 10.1016/j.yhbeh.2014.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/29/2023]
Abstract
Seasonal responses of many animal species are triggered by changes in daylength and its transduction into a neuroendocrine signal by the pineal gland through the nocturnal duration of melatonin (MEL) release. The precise central sites necessary to receive, transduce, and relay the short day (SD) fall-winter MEL signals into seasonal responses and changes in physiology and behavior are unclear. In Siberian hamsters, SDs trigger decreases in body and lipid mass, testicular regression and pelage color changes. Several candidate genes and their central sites of expression have been proposed as components of the MEL transduction system with considerable recent focus on the arcuate nucleus (ARC) and its component, the dorsomedial posterior arcuate nucleus (dmpARC). This site has been postulated as a critical relay of SD information through the modulation of a variety of neurochemicals/receptors important for the control of energy balance. Here the necessity of an intact dmpARC for SD responses was tested by making electrolytic lesions of the Siberian hamster dmpARC and then exposing them to either long days (LD) or SDs for 12wks. The SD typical decreases in body and fat mass, food intake, testicular volume, serum testosterone concentrations, pelage color change and increased UCP-1 protein expression (a proxy for brown adipose tissue thermogenesis) all occurred despite the lack of an intact dmpARC. Although the Siberian hamster dmpARC contains photoperiod-modulated constituents, these data demonstrate that an intact dmpARC is not necessary for SD responses and not integral to the seasonal energy- and reproductive-related responses measured here.
Collapse
Affiliation(s)
- Brett J W Teubner
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Claudia Leitner
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Michael A Thomas
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Vitaly Ryu
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Timothy J Bartness
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA.
| |
Collapse
|
33
|
Schwartz C, Hampton M, Andrews MT. Hypothalamic gene expression underlying pre-hibernation satiety. GENES BRAIN AND BEHAVIOR 2015; 14:310-8. [PMID: 25640202 DOI: 10.1111/gbb.12199] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Prior to hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) enter a hypophagic period where food consumption drops by an average of 55% in 3 weeks. This occurs naturally, while the ground squirrels are in constant environmental conditions and have free access to food. Importantly, this transition occurs before exposure to hibernation conditions (5°C and constant darkness), so the ground squirrels are still maintaining a moderate level of activity. In this study, we used the Illumina HiSeq 2000 system to sequence the hypothalamic transcriptomes of ground squirrels before and after the autumn feeding transition to examine the genes underlying this extreme change in feeding behavior. The hypothalamus was chosen because it is known to play a role in the control and regulation of food intake and satiety. Overall, our analysis identified 143 genes that are significantly differentially expressed between the two groups. Specifically, we found five genes associated with feeding behavior and obesity (VGF, TRH, LEPR, ADIPOR2, IRS2) that are all upregulated during the hypophagic period, after the feeding transition has occurred. We also found that serum leptin significantly increases in the hypophagic group. Several of the genes associated with the natural autumnal feeding decline in 13-lined ground squirrels show parallels to signaling pathways known to be disrupted in human metabolic diseases, like obesity and diabetes. In addition, many other genes were identified that could be important for the control of food consumption in other animals, including humans.
Collapse
Affiliation(s)
- C Schwartz
- Department of Biology, University of Minnesota Duluth, Duluth, MN, USA
| | | | | |
Collapse
|
34
|
Abstract
The vgf gene (non-acronymic) is highly conserved and was identified on the basis of its rapid induction in vitro by nerve growth factor, although can also be induced by brain-derived neurotrophic factor, and glial-derived growth factor. The VGF gene gives rise to a 68 kDa precursor polypeptide, which is induced robustly, relatively selectively and is synthesized exclusively in neuronal and neuroendocrine cells. Post-translational processing by neuroendocrine specific prohormone convertases in these cells results in the production of a number of smaller peptides. The VGF gene and peptides are widely expressed throughout the brain, particularly in the hypothalamus and hippocampus, in peripheral tissues including the pituitary gland, the adrenal glands, and the pancreas, and in the gastrointestinal tract in both the myenteric plexus and in endocrine cells. VGF peptides have been associated with a number of neuroendocrine roles, and in this review, we aim to describe these roles to highlight the importance of VGF as therapeutic target for a number of disorders, particularly those associated with energy metabolism, pain, reproduction, and cognition.
Collapse
Affiliation(s)
- Jo E. Lewis
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | - John M. Brameld
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Preeti H. Jethwa
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
- *Correspondence: Preeti H. Jethwa, Division of Nutritional Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK e-mail:
| |
Collapse
|
35
|
Cero C, Vostrikov VV, Verardi R, Severini C, Gopinath T, Braun PD, Sassano MF, Gurney A, Roth BL, Vulchanova L, Possenti R, Veglia G, Bartolomucci A. The TLQP-21 peptide activates the G-protein-coupled receptor C3aR1 via a folding-upon-binding mechanism. Structure 2014; 22:1744-1753. [PMID: 25456411 DOI: 10.1016/j.str.2014.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/08/2014] [Accepted: 10/06/2014] [Indexed: 01/02/2023]
Abstract
TLQP-21, a VGF-encoded peptide is emerging as a novel target for obesity-associated disorders. TLQP-21 is found in the sympathetic nerve terminals in the adipose tissue and targets the G-protein-coupled receptor complement-3a receptor1 (C3aR1). The mechanisms of TLQP-21-induced receptor activation remain unexplored. Here, we report that TLQP-21 is intrinsically disordered and undergoes a disorder-to-order transition, adopting an α-helical conformation upon targeting cells expressing the C3aR1. We determined that the hot spots for TLQP-21 are located at the C terminus, with mutations in the last four amino acids progressively reducing the bioactivity and, a single site mutation (R21A) or C-terminal amidation abolishing its function completely. Additionally, the human TLQP-21 sequence carrying a S20A substitution activates the human C3aR1 receptor with lower potency compared to the rodent sequence. These studies reveal the mechanism of action of TLQP-21 and provide molecular templates for designing agonists and antagonists to modulate C3aR1 functions.
Collapse
Affiliation(s)
- Cheryl Cero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vitaly V Vostrikov
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raffaello Verardi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cinzia Severini
- Institute of Cell Biology and Neurobiology, National Research Council, 00143 Rome, Italy
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Patrick D Braun
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maria F Sassano
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Allison Gurney
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryan L Roth
- Department of Pharmacology and National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roberta Possenti
- Institute of Cell Biology and Neurobiology, National Research Council, 00143 Rome, Italy; Department of Medicine of System, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
36
|
Saderi N, Buijs F, Salgado-Delgado R, Merkenstein M, Basualdo M, Ferri GL, Escobar C, Buijs R. A role for VGF in the hypothalamic arcuate and paraventricular nuclei in the control of energy homeostasis. Neuroscience 2014; 265:184-95. [DOI: 10.1016/j.neuroscience.2014.01.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
|
37
|
Petri I, Dumbell R, Scherbarth F, Steinlechner S, Barrett P. Effect of exercise on photoperiod-regulated hypothalamic gene expression and peripheral hormones in the seasonal Dwarf Hamster Phodopus sungorus. PLoS One 2014; 9:e90253. [PMID: 24603871 PMCID: PMC3946023 DOI: 10.1371/journal.pone.0090253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/31/2014] [Indexed: 12/30/2022] Open
Abstract
The Siberian hamster (Phodopus sungorus) is a seasonal mammal responding to the annual cycle in photoperiod with anticipatory physiological adaptations. This includes a reduction in food intake and body weight during the autumn in anticipation of seasonally reduced food availability. In the laboratory, short-day induction of body weight loss can be reversed or prevented by voluntary exercise undertaken when a running wheel is introduced into the home cage. The mechanism by which exercise prevents or reverses body weight reduction is unknown, but one hypothesis is a reversal of short-day photoperiod induced gene expression changes in the hypothalamus that underpin body weight regulation. Alternatively, we postulate an exercise-related anabolic effect involving the growth hormone axis. To test these hypotheses we established photoperiod-running wheel experiments of 8 to 16 weeks duration assessing body weight, food intake, organ mass, lean and fat mass by magnetic resonance, circulating hormones FGF21 and insulin and hypothalamic gene expression. In response to running wheel activity, short-day housed hamsters increased body weight. Compared to short-day housed sedentary hamsters the body weight increase was accompanied by higher food intake, maintenance of tissue mass of key organs such as the liver, maintenance of lean and fat mass and hormonal profiles indicative of long day housed hamsters but there was no overall reversal of hypothalamic gene expression regulated by photoperiod. Therefore the mechanism by which activity induces body weight gain is likely to act largely independently of photoperiod regulated gene expression in the hypothalamus.
Collapse
Affiliation(s)
- Ines Petri
- Department of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Rebecca Dumbell
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Frank Scherbarth
- Department of Zoology, University of Veterinary Medicine, Hannover, Germany
| | | | - Perry Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Fargali S, Garcia AL, Sadahiro M, Jiang C, Janssen WG, Lin WJ, Cogliani V, Elste A, Mortillo S, Cero C, Veitenheimer B, Graiani G, Pasinetti GM, Mahata SK, Osborn JW, Huntley GW, Phillips GR, Benson DL, Bartolomucci A, Salton SR. The granin VGF promotes genesis of secretory vesicles, and regulates circulating catecholamine levels and blood pressure. FASEB J 2014; 28:2120-33. [PMID: 24497580 DOI: 10.1096/fj.13-239509] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.
Collapse
Affiliation(s)
- Samira Fargali
- 1Department of Neuroscience, Box 1065, Ichan School of Medicine at Mt. Sinai, 1 Gustave L. Levy Pl., New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Baloyianni N, Tsangaris GT. The audacity of proteomics: a chance to overcome current challenges in schizophrenia research. Expert Rev Proteomics 2014; 6:661-74. [DOI: 10.1586/epr.09.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Hannedouche S, Beck V, Leighton-Davies J, Beibel M, Roma G, Oakeley EJ, Lannoy V, Bernard J, Hamon J, Barbieri S, Preuss I, Lasbennes MC, Sailer AW, Suply T, Seuwen K, Parker CN, Bassilana F. Identification of the C3a receptor (C3AR1) as the target of the VGF-derived peptide TLQP-21 in rodent cells. J Biol Chem 2013; 288:27434-27443. [PMID: 23940034 DOI: 10.1074/jbc.m113.497214] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TLQP-21, a peptide derived from VGF (non-acronymic) by proteolytic processing, has been shown to modulate energy metabolism, differentiation, and cellular response to stress. Although extensively investigated, the receptor for this endogenous peptide has not previously been described. This study describes the use of a series of studies that show G protein-coupled receptor-mediated biological activity of TLQP-21 signaling in CHO-K1 cells. Unbiased genome-wide sequencing of the transcriptome from responsive CHO-K1 cells identified a prioritized list of possible G protein-coupled receptors bringing about this activity. Further experiments using a series of defined receptor antagonists and siRNAs led to the identification of complement C3a receptor-1 (C3AR1) as a target for TLQP-21 in rodents. We have not been able to demonstrate so far that this finding is translatable to the human receptor. Our results are in line with a large number of physiological observations in rodent models of food intake and metabolic control, where TLQP-21 shows activity. In addition, the sensitivity of TLQP-21 signaling to pertussis toxin is consistent with the known signaling pathway of C3AR1. The binding of TLQP-21 to C3AR1 not only has effects on signaling but also modulates cellular functions, as TLQP-21 was shown to have a role in directing migration of mouse RAW264.7 cells.
Collapse
Affiliation(s)
| | - Valerie Beck
- From Novartis AG, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Martin Beibel
- From Novartis AG, Novartis Campus, CH-4056 Basel, Switzerland
| | - Guglielmo Roma
- From Novartis AG, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | | | - Jacques Hamon
- From Novartis AG, Novartis Campus, CH-4056 Basel, Switzerland
| | - Samuel Barbieri
- From Novartis AG, Novartis Campus, CH-4056 Basel, Switzerland
| | - Inga Preuss
- From Novartis AG, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | - Thomas Suply
- From Novartis AG, Novartis Campus, CH-4056 Basel, Switzerland
| | - Klaus Seuwen
- From Novartis AG, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
41
|
Klosen P, Sébert M, Rasri K, Laran‐Chich M, Simonneaux V. TSH restores a summer phenotype in photoinhibited mammals
via
the RF‐amides RFRP3 and kisspeptin. FASEB J 2013; 27:2677-86. [DOI: 10.1096/fj.13-229559] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paul Klosen
- Département de Neurobiologie des RythmesInstitut des Neurosciences Cellulaires et IntégrativesCentre National de la Recherche Scientifique (CNRS) Unité Propres de Recherche (UPR) 3212Université de StrasbourgStrasbourgFrance
| | - Marie‐Emilie Sébert
- Département de Neurobiologie des RythmesInstitut des Neurosciences Cellulaires et IntégrativesCentre National de la Recherche Scientifique (CNRS) Unité Propres de Recherche (UPR) 3212Université de StrasbourgStrasbourgFrance
| | - Kamontip Rasri
- Department of Pre‐Clinical ScienceFaculty of MedicineThammasart UniversityRangsitThailand
| | - Marie‐Pierre Laran‐Chich
- Département de Neurobiologie des RythmesInstitut des Neurosciences Cellulaires et IntégrativesCentre National de la Recherche Scientifique (CNRS) Unité Propres de Recherche (UPR) 3212Université de StrasbourgStrasbourgFrance
| | - Valérie Simonneaux
- Département de Neurobiologie des RythmesInstitut des Neurosciences Cellulaires et IntégrativesCentre National de la Recherche Scientifique (CNRS) Unité Propres de Recherche (UPR) 3212Université de StrasbourgStrasbourgFrance
| |
Collapse
|
42
|
Murphy M, Samms R, Warner A, Bolborea M, Barrett P, Fowler MJ, Brameld JM, Tsintzas K, Kharitonenkov A, Adams AC, Coskun T, Ebling FJP. Increased responses to the actions of fibroblast growth factor 21 on energy balance and body weight in a seasonal model of adiposity. J Neuroendocrinol 2013; 25:180-9. [PMID: 22958332 DOI: 10.1111/j.1365-2826.2012.02383.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/24/2012] [Accepted: 09/02/2012] [Indexed: 12/17/2022]
Abstract
The present study aimed to investigate the actions of fibroblast growth factor 21 (FGF21) on energy balance in a natural model of relative fatness, the Siberian hamster. Hamsters were studied under long days (LD) to promote weight gain, or short days to induce weight loss, and treated with rhFGF21 (3 mg/kg/day) via s.c. minipumps for 14 days. On days 7-9, detailed assessments of ingestive behaviour, metabolic gas exchange and locomotor activity were made. FGF21 caused substantial (P < 0.0001) weight loss in the fat LD state but not in the lean SD state: at the end of the study, FGF21-treated hamsters in LD lost 18% of body weight compared to vehicle controls, which is comparable to the natural body weight loss observed in SD. Epididymal fat pads, a correlate of total carcass fat content, were reduced by 19% in FGF21 treated hamsters in LD, whereas no difference was found in SD. Body weight loss in LD was associated with a reduction in food intake (P < 0.001) and a decreased respiratory exchange ratio (P < 0.001), indicating increased fat oxidation. Treatment with FGF21 maintained the normal nocturnal increase in oxygen consumption and carbon dioxide production into the early light phase in hamsters in LD, indicating increased energy expenditure, although locomotor activity was unaffected. These data suggest a greater efficacy of FGF21 in hamsters in LD compared to those in SD, which is consistent with both the peripheral and possibly central actions of FGF21 with respect to promoting a lean phenotype. The observed differences in FGF21 sensitivity may relate to day length-induced changes in adipose tissue mass.
Collapse
Affiliation(s)
- M Murphy
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aguilar E, Pineda R, Gaytán F, Sánchez-Garrido MA, Romero M, Romero-Ruiz A, Ruiz-Pino F, Tena-Sempere M, Pinilla L. Characterization of the reproductive effects of the Vgf-derived peptide TLQP-21 in female rats: in vivo and in vitro studies. Neuroendocrinology 2013; 98:38-50. [PMID: 23485923 DOI: 10.1159/000350323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND VGF (non-acronymic), a protein expressed in the hypothalamus and pituitary, is involved in the control of metabolism and body weight homeostasis. Different active peptide fragments are generated from VGF, including TLQP-21. Previous studies of our group reported that this molecule participates also in the regulation of reproductive function in male rats, with predominant stimulatory effects. METHODS We report herein a series of studies on the reproductive effects of TLQP-21 in female rats, as evaluated by a combination of in vivo and in vitro analyses. RESULTS TLQP-21 modestly increased serum LH levels after systemic administration and directly stimulated pituitary LH and FSH secretion in prepubertal female rats, while acute central injection of TLQP-21 was unable to modify LH secretion at this age. Repeated central administration of TLQP-21 during the pubertal transition (between PND-28 and -35) to female rats fed ad libitum advanced the timing of vaginal opening and increased the percentage of animals with signs of ovulation. Moreover, an analogous treatment slightly enhanced ovarian maturation in pubertal female rats subjected to chronic undernutrition, but was unable to rescue the delay of vaginal opening induced by food deprivation. In addition, TLQP-21 oppositely modified LH secretion in adult female rats depending on the stage of the ovarian cycle: it stimulated LH secretion when injected in the morning of diestrus and decreased the magnitude of the preovulatory LH (but not FSH) surge when injected in the afternoon of proestrus. CONCLUSIONS Our data are the first to document the potential involvement of TLQP-21 in the control of reproductive function in female rats.
Collapse
Affiliation(s)
- Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, CIBER Fisiopatología de la Obesidad y Nutrición, and Instituto Maimónides de Investigaciones Biomédicas-IMIBIC/Hospital Reina Sofía, Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Petrocchi Passeri P, Biondini L, Mongiardi MP, Mordini N, Quaresima S, Frank C, Baratta M, Bartolomucci A, Levi A, Severini C, Possenti R. Neuropeptide TLQP-21, a VGF internal fragment, modulates hormonal gene expression and secretion in GH3 cell line. Neuroendocrinology 2013; 97:212-24. [PMID: 22699300 DOI: 10.1159/000339855] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 06/04/2012] [Indexed: 11/19/2022]
Abstract
In the present study we demonstrated that TLQP-21, a biologically active peptide derived from the processing of the larger pro-VGF granin, plays a role in mammotrophic cell differentiation. We used an established in vitro model, the GH3 cell line, which upon treatment with epidermal growth factor develops a mammotrophic phenotype consisting of induction of prolactin expression and secretion, and inhibition of growth hormone. Here we determined for the first time that during mammotrophic differentiation, epidermal growth factor also induces Vgf gene expression and increases VGF protein precursor processing and peptide secretion. After this initial observation we set out to determine the specific role of the VGF encoded TLQP-21 peptide on this model. TLQP-21 induced a trophic effect on GH3 cells and increased prolactin expression and its own gene transcription without affecting growth hormone expression. TLQP-21 was also able to induce a significant rise of cytoplasmic calcium, as measured by Fura2AM, due to the release from a thapsigargin-sensitive store. TLQP-21-dependent rise in cytoplasmic calcium was, at least in part, dependent on the activation of phospholipase followed by phosphorylation of PKC and ERK. Taken together, the present results demonstrate that TLQP-21 contributes to differentiation of the GH3 cell line toward a mammotrophic phenotype and suggest that it may exert a neuroendocrine role in vivo on lactotroph cells in the pituitary gland.
Collapse
Affiliation(s)
- Pamela Petrocchi Passeri
- Institute of Cell Biology and Neurobiology and Institute of Translational Pharmacology, CNR Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Biophysical characterization of a binding site for TLQP-21, a naturally occurring peptide which induces resistance to obesity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:455-60. [PMID: 23122777 DOI: 10.1016/j.bbamem.2012.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 01/17/2023]
Abstract
Recently, we demonstrated that TLQP-21 triggers lipolysis and induces resistance to obesity by reducing fat accumulation [1]. TLQP-21 is a 21 amino acid peptide cleavage product of the neuroprotein VGF and was first identified in rat brain. Although TLQP-21 biological activity and its molecular signaling is under active investigation, a receptor for TLQP-21 has not yet been characterized. We now demonstrate that TLQP-21 stimulates intracellular calcium mobilization in CHO cells. Furthermore, using Atomic Force Microscopy (AFM), we also provide evidence of TLQP-21 binding-site characteristics in CHO cells. AFM was used in force mapping mode equipped with a cantilever suitably functionalized with TLQP-21. Attraction of this functionalized probe to the cell surface was specific and consistent with the biological activity of TLQP-21; by contrast, there was no attraction of a probe functionalized with biologically inactive analogues. We detected interaction of the peptide with the binding-site by scanning the cell surface with the cantilever tip. The attractive force between TLQP-21 and its binding site was measured, statistically analyzed and quantified at approximately 40 pN on average, indicating a single class of binding sites. Furthermore we observed that the distribution of these binding sites on the surface was relatively uniform.
Collapse
|
46
|
Moin ASM, Yamaguchi H, Rhee M, Kim JW, Toshinai K, Waise TMZ, Naznin F, Matsuo T, Sasaki K, Minamino N, Yoon KH, Nakazato M. Neuroendocrine regulatory peptide-2 stimulates glucose-induced insulin secretion in vivo and in vitro. Biochem Biophys Res Commun 2012; 428:512-7. [PMID: 23111332 DOI: 10.1016/j.bbrc.2012.10.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/20/2012] [Indexed: 01/17/2023]
Abstract
Neuroendocrine regulatory peptide (NERP)-2, recently identified as a bioactive peptide involved in vasopressin secretion and feeding regulation in the central nervous system, is abundantly expressed in endocrine cells in peripheral tissues. To explore the physiological roles of NERP-2 in the pancreas, we examined its effects on insulin secretion. NERP-2 increased glucose-stimulated insulin secretion (GSIS) in a dose-dependent manner, with a lowest effective dose of 10(-7) M, from the pancreatic β-cell line MIN6 and isolated mouse pancreatic islets. NERP-2 did not affect insulin secretion under the low-glucose conditions. Neither NERP-1 nor NERP-2-Gly (nonamidated NERP-2) stimulated insulin secretion. NERP-2 significantly augmented GSIS after intravenous administration to anesthetized rats or intraperitoneal injection to conscious mice. We detected NERP-2 in pancreatic islets, where it co-localized extensively with insulin. Calcium-imaging analysis demonstrated that NERP-2 increased the calcium influx in MIN6 cells. These findings reveal that NERP-2 regulates GSIS by elevating intracellular calcium concentrations.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stephens SB, Schisler JC, Hohmeier HE, An J, Sun AY, Pitt GS, Newgard CB. A VGF-derived peptide attenuates development of type 2 diabetes via enhancement of islet β-cell survival and function. Cell Metab 2012; 16:33-43. [PMID: 22768837 PMCID: PMC3695697 DOI: 10.1016/j.cmet.2012.05.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 04/04/2012] [Accepted: 05/11/2012] [Indexed: 12/28/2022]
Abstract
Deterioration of functional islet β-cell mass is the final step in progression to Type 2 diabetes. We previously reported that overexpression of Nkx6.1 in rat islets has the dual effects of enhancing glucose-stimulated insulin secretion (GSIS) and increasing β-cell replication. Here we show that Nkx6.1 strongly upregulates the prohormone VGF in rat islets and that VGF is both necessary and sufficient for Nkx6.1-mediated enhancement of GSIS. Moreover, the VGF-derived peptide TLQP-21 potentiates GSIS in rat and human islets and improves glucose tolerance in vivo. Chronic injection of TLQP-21 in prediabetic ZDF rats preserves islet mass and slows diabetes onset. TLQP-21 prevents islet cell apoptosis by a pathway similar to that used by GLP-1, but independent of the GLP-1, GIP, or VIP receptors. Unlike GLP-1, TLQP-21 does not inhibit gastric emptying or increase heart rate. We conclude that TLQP-21 is a targeted agent for enhancing islet β-cell survival and function.
Collapse
Affiliation(s)
- Samuel B Stephens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Herwig A, Petri I, Barrett P. Hypothalamic gene expression rapidly changes in response to photoperiod in juvenile Siberian hamsters (Phodopus sungorus). J Neuroendocrinol 2012; 24:991-8. [PMID: 22487258 DOI: 10.1111/j.1365-2826.2012.02324.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Siberian hamsters are seasonal mammals that survive a winter climate by making adaptations in physiology and behaviour. This includes gonadal atrophy, reduced food intake and body weight. The underlying central mechanisms responsible for the physiological adaptations are not fully established but involve reducing hypothalamic tri-iodthyronine (T3) levels. Juvenile Siberian hamsters born or raised in short days (SD) respond in a similar manner, although with an inhibition of gonadal development and growth instead of reversing an established long day (LD) phenotype. Using juvenile male hamsters, the present study aimed to investigate whether the central mechanisms are similar before the establishment of the mature LD phenotype. By in situ hybridisation, we examined the response of genes involved in thyroid hormone (Dio2 and Dio3, which determine hypothalamic T3 levels) and glucose/glutamate metabolism in the ependymal layer, histamine H3 receptor and VGF as representatives of the highly responsive dorsomedial posterior arcuate nucleus (dmpARC), and somatostatin, a hypothalamic neuropeptide involved in regulating the growth axis. Differential gene expression of type 2 and type 3 deiodinase in the ependymal layer, histamine H3 receptor in the dmpARC and somatostatin in the ARC was established by the eighth day in SD. These changes are followed by alterations in glucose metabolism related genes in the ependymal layer by day 16 and increased secretogranin expression in the dmpARC by day 32. In conclusion, our data demonstrate similar but rapid and highly responsive changes in gene expression in the brain of juvenile Siberian hamsters in response to a switch from LD to SD. The data also provide a temporal definition of gene expression changes relative to physiological adaptations of body weight and testicular development and highlight the likely importance of thyroid hormone availability as an early event in the adaptation of physiology to a winter climate in juvenile Siberian hamsters.
Collapse
Affiliation(s)
- A Herwig
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
49
|
D’Amato F, Cocco C, Noli B, Cabras T, Messana I, Ferri GL. VGF peptides upon osmotic stimuli: Changes in neuroendocrine regulatory peptides 1 and 2 in the hypothalamic–pituitary-axis and plasma. J Chem Neuroanat 2012; 44:57-65. [DOI: 10.1016/j.jchemneu.2012.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 01/17/2023]
|
50
|
Abstract
Seasonal mammals typically of temperate or boreal habitats use the predictable annual cycle of daylength to initiate a suite of physiological and behavioural changes in anticipation of adverse environmental winter conditions, unfavourable for survival and reproduction. Daylength is encoded as the duration of production of the pineal hormone melatonin, but how the melatonin signal is decoded has been elusive. From the studies carried out in birds and mammals together with the advent of technologies such as microarray analysis of gene expression, progress has been achieved to demystify how seasonal physiology is regulated in response to the duration of melatonin signalling. The critical tissue for the action of melatonin is the pars tuberalis (PT) where melatonin receptors are located. At the molecular level, regulation of cyclic adenosine monophosphate (cAMP) signalling in this tissue is likely to be a key event for melatonin action, either an acute inhibitory action or sensitization of this pathway by prolonged stimulation of melatonin receptors reflecting durational melatonin presence. Melatonin action at the PT has been shown to have both positive and negative effects on gene transcription, incorporating components of the circadian clock as part of the mechanism of decoding the melatonin signal and regulating thyrotrophin-stimulating hormone (TSH) expression, a key output hormone of the PT. Microarray analysis of gene expression of PT tissue exposed to long and short photoperiods has identified important new genes that may be regulated by melatonin and contributing to the seasonal regulation of TSH production by this tissue. In the brain, tanycytes lining the third ventricle of the hypothalamus and regulation of thyroid hormone synthesis by PT-derived TSH in these cells are now established as an important component of the pathway leading to seasonal changes in physiology. Beyond the tanycyte, identified changes in gene expression for neuropeptides, receptors and other signalling molecules pinpoint some of the areas of the brain, the hypothalamus in particular, that are likely to be involved in the regulation of seasonal physiology.
Collapse
Affiliation(s)
- Perry Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK.
| | | |
Collapse
|