1
|
Shi V, Morgan EF. Estrogen and estrogen receptors mediate the mechanobiology of bone disease and repair. Bone 2024; 188:117220. [PMID: 39106937 PMCID: PMC11392539 DOI: 10.1016/j.bone.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
It is well understood that the balance of bone formation and resorption is dependent on both mechanical and biochemical factors. In addition to cell-secreted cytokines and growth factors, sex hormones like estrogen are critical to maintaining bone health. Although the direct osteoprotective function of estrogen and estrogen receptors (ERs) has been reported extensively, evidence that estrogen signaling also has a role in mediating the effects of mechanical loading on maintenance of bone mass and healing of bone injuries has more recently emerged. Recent studies have underscored the role of estrogen and ERs in many pathways of bone mechanosensation and mechanotransduction. Estrogen and ERs have been shown to augment integrin-based mechanotransduction as well as canonical Wnt/b-catenin, RhoA/ROCK, and YAP/TAZ pathways. Estrogen and ERs also influence the mechanosensitivity of not only osteocytes but also osteoblasts, osteoclasts, and marrow stromal cells. The current review will highlight these roles of estrogen and ERs in cellular mechanisms underlying bone mechanobiology and discuss their implications for management of osteoporosis and bone fractures. A greater understanding of the mechanisms behind interactions between estrogen and mechanical loading may be crucial to addressing the shortcomings of current hormonal and pharmaceutical therapies. A combined therapy approach including high-impact exercise therapy may mitigate adverse side effects and allow an effective long-term solution for the prevention, treatment, and management of bone fragility in at-risk populations. Furthermore, future implications to novel local delivery mechanisms of hormonal therapy for osteoporosis treatment, as well as the effects on bone health of applications of sex hormone therapy outside of bone disease, will be discussed.
Collapse
Affiliation(s)
- Vivian Shi
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA
| | - Elise F Morgan
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA.
| |
Collapse
|
2
|
Rebboah E, Rezaie N, Williams BA, Weimer AK, Shi M, Yang X, Liang HY, Dionne LA, Reese F, Trout D, Jou J, Youngworth I, Reinholdt L, Morabito S, Snyder MP, Wold BJ, Mortazavi A. The ENCODE mouse postnatal developmental time course identifies regulatory programs of cell types and cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598567. [PMID: 38915583 PMCID: PMC11195270 DOI: 10.1101/2024.06.12.598567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Postnatal genomic regulation significantly influences tissue and organ maturation but is under-studied relative to existing genomic catalogs of adult tissues or prenatal development in mouse. The ENCODE4 consortium generated the first comprehensive single-nucleus resource of postnatal regulatory events across a diverse set of mouse tissues. The collection spans seven postnatal time points, mirroring human development from childhood to adulthood, and encompasses five core tissues. We identified 30 cell types, further subdivided into 69 subtypes and cell states across adrenal gland, left cerebral cortex, hippocampus, heart, and gastrocnemius muscle. Our annotations cover both known and novel cell differentiation dynamics ranging from early hippocampal neurogenesis to a new sex-specific adrenal gland population during puberty. We used an ensemble Latent Dirichlet Allocation strategy with a curated vocabulary of 2,701 regulatory genes to identify regulatory "topics," each of which is a gene vector, linked to cell type differentiation, subtype specialization, and transitions between cell states. We find recurrent regulatory topics in tissue-resident macrophages, neural cell types, endothelial cells across multiple tissues, and cycling cells of the adrenal gland and heart. Cell-type-specific topics are enriched in transcription factors and microRNA host genes, while chromatin regulators dominate mitosis topics. Corresponding chromatin accessibility data reveal dynamic and sex-specific regulatory elements, with enriched motifs matching transcription factors in regulatory topics. Together, these analyses identify both tissue-specific and common regulatory programs in postnatal development across multiple tissues through the lens of the factors regulating transcription.
Collapse
Affiliation(s)
- Elisabeth Rebboah
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, USA
| | - Narges Rezaie
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, USA
| | - Brian A. Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Annika K. Weimer
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Minyi Shi
- Department of Next Generation Sequencing and Microchemistry, Proteomics and Lipidomics, Genentech, San Francisco, USA
| | - Xinqiong Yang
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Heidi Yahan Liang
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
| | | | - Fairlie Reese
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
| | - Diane Trout
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Jennifer Jou
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Ingrid Youngworth
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | | | - Samuel Morabito
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Barbara J. Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Ali Mortazavi
- Developmental and Cell Biology, University of California Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, USA
| |
Collapse
|
3
|
Upadhyay V, Singh AK, Sharma S, Sethi A, Srivastava S, Chowdhury S, Siddiqui S, Chattopadhyay N, Trivedi AK. RING finger E3 ligase, RNF138 inhibits osteoblast differentiation by negatively regulating Runx2 protein turnover. J Cell Physiol 2024; 239:e31217. [PMID: 38327035 DOI: 10.1002/jcp.31217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
A few ubiquitin ligases have been shown to target Runx2, the key osteogenic transcription factor and thereby regulate bone formation. The regulation of Runx2 expression and function are controlled both at the transcriptional and posttranslational levels. Really interesting new gene (RING) finger ubiquitin ligases of which RNF138 is a member are important players in the ubiquitin-proteasome system, contributing to the regulation of protein turnover and cellular processes. Here, we demonstrated that RNF138 negatively correlated with Runx2 protein levels in osteopenic ovariectomized rats which implied its role in bone loss. Accordingly, RNF138 overexpression potently inhibited osteoblast differentiation of mesenchyme-like C3H10T1/2 as well primary rat calvarial osteoblast (RCO) cells in vitro, whereas overexpression of catalytically inactive mutant RNF138Δ18-58 (lacks RING finger domain) had mild to no effect. Contrarily, RNF138 depletion copiously enhanced endogenous Runx2 levels and augmented osteogenic differentiation of C3H10T1/2 as well as RCOs. Mechanistically, RNF138 physically associates within multiple regions of Runx2 and ubiquitinates it leading to its reduced protein stability in a proteasome-dependent manner. Moreover, catalytically active RNF138 destabilized Runx2 which resulted in inhibition of its transactivation potential and physiological function of promoting osteoblast differentiation leading to bone loss. These findings underscore the functional involvement of RNF138 in bone formation which is primarily achieved through its modulation of Runx2 by stimulating ubiquitin-mediated proteasomal degradation. Thus, our findings indicate that RNF138 could be a promising novel target for therapeutic intervention in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Khan AS, Campbell KJ, Cameron ER, Blyth K. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Cells 2023; 12:641. [PMID: 36831308 PMCID: PMC9953914 DOI: 10.3390/cells12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Dissecting and identifying the major actors and pathways in the genesis, progression and aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this tissue represent distinct diseases and in part because the tumors themselves evolve. This review attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and their transcription co-factor CBFβ. Large-scale genomic studies that characterize genetic alterations across a disease subtype are a useful starting point and as such have identified recurring alterations in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the normal and corrupted function in mammary cells to begin to tease out how loss or gain of function can alter the cell phenotype and contribute to disease progression. We review how alterations to RUNX/CBFβ function contextually ascribe to breast cancer subtypes and discuss how the in vitro analyses and mouse model systems have contributed to our current understanding of these proteins in the pathogenesis of this complex set of diseases.
Collapse
Affiliation(s)
- Adiba S. Khan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kirsteen J. Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
| | - Ewan R. Cameron
- School of Biodiversity One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
5
|
Zhang Y, Mao X, Yu X, Huang X, He W, Yang H. Bone mineral density and risk of breast cancer: A cohort study and Mendelian randomization analysis. Cancer 2022; 128:2768-2776. [PMID: 35511874 DOI: 10.1002/cncr.34252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Estrogen is involved in both bone metabolism and breast cancer proliferation. However, evidence about the risk of breast cancer according to women's bone mineral density (BMD) is scarce, and little is known about their causal associations. METHODS Women participating in the UK Biobank cohort were used to investigate the association between BMD and the risk of breast cancer using Cox regression models. Instrumental variants associated with estimated BMD (eBMD) were extracted from genome-wide association studies with European ancestry. Logistic regression was used to calculate the genetic association with breast cancer in the UK Biobank and 2-sample Mendelian randomization (MR) analyses to assess their causal associations with breast cancer. Finally, the pleiotropic conditional false discovery rate (cFDR) method was conducted to further detect common genetic variants between BMD and breast cancer. RESULTS Compared with the general population, postmenopausal women with BMD T scores <-2.5 had a lower risk of breast cancer (hazard ratio [HR], 0.77; 95% CI, 0.59-1.00), and this effect was stronger in women with fracture (HR, 0.31; 95% CI, 0.12-0.82). In MR analysis, no causal associations between eBMD and breast cancer were observed. The cFDR method identified 63 pleiotropic loci associated with both BMD and breast cancer, of which CCDC170, ESR1, and FTO might play crucial roles in their pleiotropy. CONCLUSIONS An association between BMD and the risk of postmenopausal breast cancer in the UK Biobank was observed, whereas no evidence supported their causal association. Instead, their association could be explained by pleiotropic genetic variants leading to the pathology of osteoporosis and breast cancer.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xinhe Mao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Xingxing Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoxi Huang
- Department of Breast, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Chronic Disease Research Institute, the Children's Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, China
| | - Haomin Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Cai J, Tian X, Ren J, Lu S, Guo J. Synergistic Effect of Sesamin and γ-Tocotrienol on Promoting Osteoblast Differentiation via AMPK Signaling. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221074844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Sesamin is a rich phytochemical found in sesame seed oil that can promote osteoblast differentiation of rat BMSCs and improve rat bone structure by regulating Wnt/-Catenin pathway. Combined sesamin and γ-Tocotrienol (γ-T3) have been clarified to inhibit the proliferation of breast cancer cells, but their role in osteoporosis has not been explored. This paper aimed to discuss the synergistic effect of sesamin and γ-T3 in osteoporosis and disclose the underlying mechanism. Materials and methods: CCK-8 assay was to appraise the proliferation of hBMSCs after treated with sesamin and γ-T3. Moreover, the proteins in AMPK signaling in osteoblasts pretreated with AMPK inhibitor compound C (CC) were detected after the induction of sesamin and γ-T3. Then, CCK-8, ALP assay and ARS staining were used to analyze whether the proliferation and osteoblast differentiation of hBMSCs was via APMK pathway. RT-qPCR and western blot were conducted to quantify the levels of markers in osteoblasts. Results: It was determined that 5 g/mL sesamin and 1 μM γ-T3 exerted obvious influences on the viability of hBMSCs. Moreover, the co-treatment of sesamin and γ-T3 elevated the protein levels of related factors in AMPK pathway, which was reversed by CC. Furthermore, The proliferation and osteoblast differentiation exhibited remarkable increments upon exposure to both sesamin and γ-T3, whereas CC abolished these effects. Conclusion: In conclusion, the present study presented the first line of evidence to verify the synergystic effects of sesamin and γ-T3 on alleviating osteoporosis, and revealed their effects were realized by modulating the AMPK pathway. This paper has indicated the great potential of combined sesamin and γ-T3 in osteoporosis treatment.
Collapse
Affiliation(s)
- Jiping Cai
- 1Department of Pharmacy, Shijiazhuang Medical College, Shijiazhuang, China
| | - Xiaochen Tian
- 2Department of Orthopedics, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Jing Ren
- 3Department of Basic Medicine, Shijiazhuang Medical College, Shijiazhuang, China
| | - Shuai Lu
- 1Department of Pharmacy, Shijiazhuang Medical College, Shijiazhuang, China
| | - Jianli Guo
- 1Department of Pharmacy, Shijiazhuang Medical College, Shijiazhuang, China
| |
Collapse
|
7
|
Peng H, Wu X, Ge F, Huo Z, Wen Y, Li C, Lin J, Liang H, Zhong R, Liu J, Wang R, He J, Liang W. Genetically predicted bipolar disorder is causally associated with an increased risk of breast cancer: a two-sample Mendelian randomization analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:401. [PMID: 33842622 PMCID: PMC8033315 DOI: 10.21037/atm-20-5372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Epidemiologic findings suggested that bipolar disorder (BD) may be associated with an increased risk of breast cancer. However, there are few studies that comprehensively evaluating their correlation and the causal effect remains unknown. With a two-sample Mendelian randomization (MR) approach, we were able to investigate the causal relationship between genetically predicted BD and breast cancer risk. Methods Utilizing 14 BD-related single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) identified by the latest genome-wide association studies (GWASs), we investigated the correlation between genetically predicted BD and breast cancer risk using summary statistics from the Breast Cancer Association Consortium, with a total of 122,977 cases and 105,974 controls. Study-specific estimates were summarized using inverse variance weighted (IVW) method. To further evaluate the pleiotropy, the weighted median and the MR-Egger regression method were implemented. Subgroup analyses according to different immunohistochemical types of breast cancer were also conducted. Results MR analyses demonstrated that genetically predicted BD was causally associated with an increased risk of breast cancer (OR =1.059; 95% CI: 1.008-1.112, P=0.0229). When results were examined by immunohistochemical type, no causal effects between genetically predicted BD and estrogen receptor (ER)-positive breast cancer (OR =1.049, 95% CI: 0.999-1.102 P=0.0556) and ER-negative breast cancer (OR =1.032, 95% CI: 0.953-1.116 P=0.4407) were observed. Additionally, the results demonstrated the absence of the horizontal pleiotropy. Conclusions Our findings provided evidence for a causal relationship between genetically predicted BD and an increased risk of breast cancer overall. Further studies are warranted to investigate the underlying mechanism.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Fan Ge
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Huo
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yaokai Wen
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinsheng Lin
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runchen Wang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Qiu M, Zhai S, Fu Q, Liu D. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MicroRNA-150-3p Promotes Osteoblast Proliferation and Differentiation in Osteoporosis. Hum Gene Ther 2021; 32:717-729. [PMID: 33107350 DOI: 10.1089/hum.2020.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
At present, much more studies have focused on the role of microRNAs in osteoporosis, but the more specific role of microRNA-150-3p (miR-150-3p) in osteoporosis still needs full exploration. We aim at investigating the role of miR-150-3p in osteoporosis and at exploring the related mechanisms. Bone marrow mesenchymal stem cells (BMSCs) were cultured, from which exosomes were isolated. Osteoporosis models were established by ovariectomy and injected with transfected BMSCs exosomes. Bone formation markers in serum, histopathological changes and miR-150-3p, runt-related transcription factor 2 (Runx2) and Osterix expression, and osteoblast apoptosis in femoral tissues were detected. Osteoblasts were isolated and co-cultured with the transfected BMSCs-derived exosomes. Osteoblast proliferation, cell differentiation, and apoptosis, along with miR-150-3p, Runx2, and Osterix expression in osteoblasts were detected. In vivo experiment demonstrated that miR-150-3p, Runx2, and Osterix expression was decreased whereas bone formation markers were decreased in osteoporosis. BMSCs exosomes attenuated osteoporosis, which was further improved by upregulated miR-150-3p in exosomes whereas it was impaired by downregulated miR-150-3p in exosomes. In vitro experiments declared decreased miR-150-3p, Runx2, and Osterix expression; suppressed proliferation; and encouraged apoptosis in osteoblasts in osteoporosis. BMSCs exosomes promoted osteoblast proliferation and differentiation and inhibited apoptosis, which was strengthened by raised exosomal miR-150-3p whereas it was disrupted by inhibited exosomal miR-150-3p. Our study elucidates that exosomal miR-150-3p promotes osteoblast proliferation and differentiation in osteoporosis and provides a new clue for the treatment of patients with osteoporosis.
Collapse
Affiliation(s)
- Min Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuheng Zhai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Sun X, Li M, Ban J, Li Z. miR-23b mediates TNF-α-Inhibited Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Targeting Runx2. Int J Med Sci 2021; 18:3674-3683. [PMID: 34790039 PMCID: PMC8579284 DOI: 10.7150/ijms.64312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Periodontitis is the most prevalent oral infection disease, which causes the destruction of periodontal supporting tissues and eventual tooth loss. This study aimed to investigate the molecular mechanism of miRNA-23b (miR-23b) in regulating the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in an inflammatory environment. Results revealed that tumor necrosis factor-α (TNF-α), a notoriously inflammatory cytokine, remarkably attenuated the osteogenic differentiation of hPDLSCs, which were partially rescued by SKL2001 (Wnt/β-catenin agonist). We further explored the underlying roles of miRNAs involved in TNF-α-inhibited osteogenesis of hPDLSCs. The miR-23b significantly increased with TNF-α stimulation, which was abolished by SKL2001. Similar to the effect of TNF-α, miR-23b agonist (agomir-23b) dramatically reduced the expression of runt-related transcription factor 2 (Runx2) and suppressed the osteogenic differentiation of hPDLSCs. The inhibition of miR-23b significantly increased Runx2, which is the major transcription factor during osteogenesis, thereby indicating that miR-23b was an endogenous regulator of Runx2 in hPDLSCs. Bioinformatic analysis and dual luciferase reporter assays confirmed that Runx2 was a target gene of miR-23b. Furthermore, the gain function assay of Runx2 revealed that the Runx2 overexpression efficiently reversed the suppression of the osteogenic differentiation of hPDLSCs with miR-23b agonist, suggesting that the suppressing effect of miR-23b on osteogenesis was mediated by Runx2 inhibition. Our study clarified that miR-23b mediated the TNF-α-inhibited osteogenic differentiation of hPDLSCs by targeting Runx2. Therefore, the expanded function of miR-23b in the osteogenesis of hPDLSCs under inflammatory conditions. This study might provide new insights and a novel therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Xuefei Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Mingwei Li
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Jinghao Ban
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University
| | - Zhidan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Kim WJ, Shin HL, Kim BS, Kim HJ, Ryoo HM. RUNX2-modifying enzymes: therapeutic targets for bone diseases. Exp Mol Med 2020; 52:1178-1184. [PMID: 32788656 PMCID: PMC8080656 DOI: 10.1038/s12276-020-0471-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Lim Shin
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Bong-Soo Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Jung Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Mo Ryoo
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
11
|
Park S, Daily JW, Song MY, Kwon HK. Gene-gene and gene-lifestyle interactions of AKAP11, KCNMA1, PUM1, SPTBN1, and EPDR1 on osteoporosis risk in middle-aged adults. Nutrition 2020; 79-80:110859. [PMID: 32619791 DOI: 10.1016/j.nut.2020.110859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/08/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Osteoporosis is associated with genetic and environmental factors. The aim of this article was to determine how the polygenic risk scores (PRS) of genetic variants that affect osteoporosis and its related signaling interact with the lifestyle of middle-aged adults. METHODS The study examined 8845 participants from Ansan/Ansung cohorts. Osteoporosis was defined as a T-score of bone mineral density ≤-2.5 in either the wrist or tibia; 1136 participants had osteoporosis. Genome-wide association studies of individuals 40 to 65 y of age were conducted and the best gene-gene interactions from the genetic variants related to osteoporosis were selected and explored using the generalized multifactor dimensionality reduction method. PRS for the best model (PRSBM) was calculated by weighted PRS that was divided into low, medium, and high groups. RESULTS The model that contributed the most influence on osteoporosis risk with gene-gene interactions included AKAP11_rs238340, KCNMA1_ rs628948, PUM1_rs7529390, SPTBN1_ rs6752877, and EPDR1_rs2722298. The risk for osteoporosis in the tibia was elevated by 1.71-fold in the high PRSBM group compared with the low PRSBM group. Energy and nutrient intake did not have any interaction with PRSBM and thus did not influence risk for osteoporosis. However, interestingly, only coffee and caffeine intake did interact with PRSBM and affected risk for osteoporosis. In patients with low coffee (<3 cup/wk) and caffeine(<60 mg/d) consumption, osteoporosis risk was higher in the high PRSBM group than the low PRSBM group by 2.27- and 2.29-fold, respectively. In the low coffee intake group, bone mineral density in the high PRSBM group was significantly higher than in the low PRSBM arm. CONCLUSIONS Carriers with high PRSBM increased susceptibility to osteoporosis, especially in low coffee and caffeine intake. The results can be applied to personalized nutrition for lowering the risk for osteoporosis.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea.
| | - James W Daily
- Department of R&D, Daily Manufacturing Inc., Rockwell, North Carolina, United States
| | - Mi Young Song
- School of Food Science and Nutrition, Woo Song University, Daejeon, South Korea
| | - Hyuk-Ku Kwon
- Department of Environmental Engineering, Hoseo University, Asan, South Korea
| |
Collapse
|
12
|
Catheline SE, Hoak D, Chang M, Ketz JP, Hilton MJ, Zuscik MJ, Jonason JH. Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-traumatic Osteoarthritis Progression in Adult Mice. J Bone Miner Res 2019; 34:1676-1689. [PMID: 31189030 PMCID: PMC7047611 DOI: 10.1002/jbmr.3737] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
RUNX2 is a transcription factor critical for chondrocyte maturation and normal endochondral bone formation. It promotes the expression of factors catabolic to the cartilage extracellular matrix and is upregulated in human osteoarthritic cartilage and in murine articular cartilage following joint injury. To date, in vivo studies of RUNX2 overexpression in cartilage have been limited to forced expression in osteochondroprogenitor cells preventing investigation into the effects of chondrocyte-specific RUNX2 overexpression in postnatal articular cartilage. Here, we used the Rosa26Runx2 allele in combination with the inducible Col2a1CreERT2 transgene or the inducible AcanCreERT2 knock-in allele to achieve chondrocyte-specific RUNX2 overexpression (OE) during embryonic development or in the articular cartilage of adult mice, respectively. RUNX2 OE was induced at embryonic day 13.5 (E13.5) for all developmental studies. Histology and in situ hybridization analyses suggest an early onset of chondrocyte hypertrophy and accelerated terminal maturation in the limbs of the RUNX2 OE embryos compared to control embryos. For all postnatal studies, RUNX2 OE was induced at 2 months of age. Surprisingly, no histopathological signs of cartilage degeneration were observed even 6 months following induction of RUNX2 OE. Using the meniscal/ligamentous injury (MLI), a surgical model of knee joint destabilization and meniscal injury, however, we found that RUNX2 OE accelerates the progression of cartilage degeneration following joint trauma. One month following MLI, the numbers of MMP13-positive and TUNEL-positive chondrocytes were significantly greater in the articular cartilage of the RUNX2 OE joints compared to control joints and 2 months following MLI, histomorphometry and Osteoarthritis Research Society International (OARSI) scoring revealed decreased cartilage area in the RUNX2 OE joints. Collectively, these results suggest that although RUNX2 overexpression alone may not be sufficient to initiate the OA degenerative process, it may predetermine the rate of OA onset and/or progression following traumatic joint injury. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Donna Hoak
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John P Ketz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Orthopedic Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
13
|
Improvement in viability and mineralization of osteoporotic bone marrow mesenchymal stem cell through combined application of photobiomodulation therapy and oxytocin. Lasers Med Sci 2019; 35:557-566. [DOI: 10.1007/s10103-019-02848-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
|
14
|
Ma ZP, Zhang ZF, Yang YF, Yang Y. Sesamin Promotes Osteoblastic Differentiation and Protects Rats from Osteoporosis. Med Sci Monit 2019; 25:5312-5320. [PMID: 31314750 PMCID: PMC6659468 DOI: 10.12659/msm.915529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Osteoporosis is a common osteopathy, resulting in fractures, especially in elder people. Sesamin has many pharmacological effects, including supplying calcium. However, how sesamin might prevent osteoporosis is still under study. Material/Methods Bone marrow stromal cells (BMSCs) extracted from rat femur were induced for osteoblastic differentiation. Cell proliferation, alkaline phosphatase (ALP), osterix (OSX), SRY-box 9 (SOX9), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), β-catenin, low density lipoprotein receptor-related protein 5 (LRP5), and glycogen synthase kinase-3β (GSK-3β) levels in BMSCs were detected in the presence or absence of sesamin (1 μM or 10 μM). In addition, FH535 (1 μM) was used to silence Wnt/β-catenin in vitro. Ovariectomized (OVX) rats were established and intragastrically administrated sesamin (80 mg/kg), and then the rat bones were analyzed by micro-computed tomography. Osteocalcin and collagen type I were measured in the rat femurs. Results Sesamin had no influence on BMSC proliferation. Higher sesamin concentration promoted Wnt/β-catenin activity and enhanced more expressions of ALP, OSX, SOX9, RUNX2, and OCN, gradually and significantly (P<0.05). Silencing Wnt/β-catenin weakened the enhancement on RUNX2 and OCN expression. Sesamin (80 mg/kg) promoted bone structure in ovariectomized rats, and significantly enhanced osteocalcin and collage type I expression (P<0.05). Conclusions Sesamin promoted osteoblastic differentiation of rat BMSCs by regulating the Wnt/β-catenin pathway, and improved rat bone structure. Sesamin could have therapeutic and preventive effects on osteoporosis.
Collapse
Affiliation(s)
- Zhong-Ping Ma
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Zhi-Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Yi-Feng Yang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Yun Yang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|
15
|
Lin X, Li L, Wu S, Tian J, Zheng W. Activation of GPR30 promotes osteogenic differentiation of MC3T3-E1 cells: An implication in osteoporosis. IUBMB Life 2019; 71:1751-1759. [PMID: 31298483 DOI: 10.1002/iub.2118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022]
Abstract
Osteoporosis is an age-related disease characterized by reduced bone volume and disturbed bone metabolism. Novel therapies to rescue or prevent reduced bone mass by guiding the differentiation of pluripotent bone marrow stromal cells away from adipocyte differentiation and toward osteoblastic differentiation may serve as a valuable treatment option against osteoporosis. Estrogen has long been recognized as a key effector of bone formation and mineralization, but the exact mechanisms involved remain poorly understood. In the present study, we investigated the role of the estrogen-specific G protein-coupled receptor 30 (GPR30/GPER) using its specific agonist G1 in MC3T3-E1 preosteoblast cells. Our findings demonstrate that expression of GPR30 is upregulated during osteoblast differentiation and that agonism of GPR30 significantly increases some key markers of mineralization including alkaline phosphatase, osteocalcin, osterix, and type I collagen. We also demonstrate that GPR30 agonism upregulates expression of Runx2, which is recognized as an essential transcription factor involved in bone formation. Additionally, through a series of adenosine monophosphate-activated protein kinase (AMPK)-inhibition experiments using compound C, we show that the positive effects of GPR30 on mineralization and differentiation of preosteoblasts are mediated through the AMPK/anti-acetyl-CoA carboxylase (ACC) pathway. Taken together, the findings of the present study demonstrate the potential of GPR30 as a novel target for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Xiaozong Lin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuliang Wu
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Tian
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Weizhuo Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
16
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
17
|
Amzaleg Y, Ji J, Kittivanichkul D, E Törnqvist A, Windahl S, Sabag E, Khalid AB, Sternberg H, West M, Katzenellenbogen JA, Krum SA, Chimge NO, Schones DE, Gabet Y, Ohlsson C, Frenkel B. Estrogens and selective estrogen receptor modulators differentially antagonize Runx2 in ST2 mesenchymal progenitor cells. J Steroid Biochem Mol Biol 2018; 183:10-17. [PMID: 29751107 PMCID: PMC6128776 DOI: 10.1016/j.jsbmb.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Estrogens attenuate bone turnover by inhibiting both osteoclasts and osteoblasts, in part through antagonizing Runx2. Apparently conflicting, stimulatory effects in osteoblast lineage cells, however, sway the balance between bone resorption and bone formation in favor of the latter. Consistent with this dualism, 17ß-estradiol (E2) both stimulates and inhibits Runx2 in a locus-specific manner, and here we provide evidence for such locus-specific regulation of Runx2 by E2 in vivo. We also demonstrate dual, negative and positive, regulation of Runx2-driven alkaline phosphatase (ALP) activity by increasing E2 concentrations in ST2 osteoblast progenitor cells. We further compared the effects of E2 to those of the Selective Estrogen Receptor Modulators (SERMs) raloxifene (ral) and lasofoxifene (las) and the phytoestrogen puerarin. We found that E2 at the physiological concentrations of 0.1-1 nM, as well as ral and las, but not puerarin, antagonize Runx2-driven ALP activity. At ≥10 nM, E2 and puerarin, but not ral or las, stimulate ALP relative to the activity measured at 0.1-1 nM. Contrasting the difference between E2 and SERMs in ST2 cells, they all shared a similar dose-response profile when inhibiting pre-osteoclast proliferation. That ral and las poorly mimic the locus- and concentration-dependent effects of E2 in mesenchymal progenitor cells may help explain their limited clinical efficacy.
Collapse
Affiliation(s)
- Yonatan Amzaleg
- Center of Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jie Ji
- Departments of Biochemistry and Molecular Medicine, Los Angeles, CA, USA; Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Anna E Törnqvist
- Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sara Windahl
- Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elias Sabag
- Center of Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Departments of Biochemistry and Molecular Medicine, Los Angeles, CA, USA
| | - Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hal Sternberg
- BioTime, Inc., 1301 Harbor Bay Parkway, Alameda, CA, USA
| | - Michael West
- BioTime, Inc., 1301 Harbor Bay Parkway, Alameda, CA, USA
| | | | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Dustin E Schones
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Baruch Frenkel
- Center of Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Departments of Biochemistry and Molecular Medicine, Los Angeles, CA, USA; Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Departments of Orthopedic Surgery, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Tang M, Liu Y, Zhang QC, Zhang P, Wu JK, Wang JN, Ruan Y, Huang Y. Antitumor efficacy of the Runx2-dendritic cell vaccine in triple-negative breast cancer in vitro. Oncol Lett 2018; 16:2813-2822. [PMID: 30127867 PMCID: PMC6096217 DOI: 10.3892/ol.2018.9001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and limited effective treatment. The rise in immunotherapeutic strategies prompted the establishment of a genetic vaccine against TNBC in vitro using a possible biological marker of TNBC. In the present study, different detection methods were used to evaluate the distribution and expression of runt-associated transcription factor 2 (Runx2) in various breast cancer cell lines. Following the development of the Runx2-dendritic cell (DC) vaccine using a lentivirus, the transfection efficacy was recorded. The T lymphocytes co-cultured with the vaccine were collected to assess the antitumor potency. Increased levels of Runx2 were expressed in breast cancer cells; however, different breast cancer cell lines expressed various levels of Runx2. Runx2 demonstrated particularly high expression in TNBC cells, compared with non-TNBC cells. A Runx2 lentivirus transfection system was successfully engineered, and Runx2 was transduced into dendritic cells whilst maintaining stable expression. The sustained and stable cytotoxic T cells induced in the transfected group had higher and more specific antitumor efficacy against TNBC, compared with the other cell lines. Runx2 may be a novel target for TNBC treatment. The Runx2-DC vaccine may induce specific and efficient antitumor effects in TNBC in vitro.
Collapse
Affiliation(s)
- Mi Tang
- Department of General Surgery, Chongqing General Hospital, Chongqing 400010, P.R. China
| | - Yu Liu
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Qiao-Chu Zhang
- Department of VIP, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Peng Zhang
- Department of General Surgery, Lingnan Hospital, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jue-Kun Wu
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jia-Ni Wang
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Ying Ruan
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yong Huang
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
19
|
Xin F, Smith LM, Susiarjo M, Bartolomei MS, Jepsen KJ. Endocrine-disrupting chemicals, epigenetics, and skeletal system dysfunction: exploration of links using bisphenol A as a model system. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy002. [PMID: 29732168 PMCID: PMC5920333 DOI: 10.1093/eep/dvy002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Early life exposures to endocrine-disrupting chemicals (EDCs) have been associated with physiological changes of endocrine-sensitive tissues throughout postnatal life. Although hormones play a critical role in skeletal growth and maintenance, the effects of prenatal EDC exposure on adult bone health are not well understood. Moreover, studies assessing skeletal changes across multiple generations are limited. In this article, we present previously unpublished data demonstrating dose-, sex-, and generation-specific changes in bone morphology and function in adult mice developmentally exposed to the model estrogenic EDC bisphenol A (BPA) at doses of 10 μg (lower dose) or 10 mg per kg bw/d (upper dose) throughout gestation and lactation. We show that F1 generation adult males, but not females, developmentally exposed to bisphenol A exhibit dose-dependent reductions in outer bone size resulting in compromised bone stiffness and strength. These structural alterations and weaker bone phenotypes in the F1 generation did not persist in the F2 generation. Instead, F2 generation males exhibited greater bone strength. The underlying mechanisms driving the EDC-induced physiological changes remain to be determined. We discuss potential molecular changes that could contribute to the EDC-induced skeletal effects, with an emphasis on epigenetic dysregulation. Furthermore, we assess the necessity of intact sex steroid receptors to mediate these effects. Expanding future assessments of EDC-induced effects to the skeleton may provide much needed insight into one of the many health effects of these chemicals and aid in regulatory decision making regarding exposure of vulnerable populations to these chemicals.
Collapse
Affiliation(s)
- Frances Xin
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren M Smith
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY14642, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Jeselsohn R, Cornwell M, Pun M, Buchwalter G, Nguyen M, Bango C, Huang Y, Kuang Y, Paweletz C, Fu X, Nardone A, De Angelis C, Detre S, Dodson A, Mohammed H, Carroll JS, Bowden M, Rao P, Long HW, Li F, Dowsett M, Schiff R, Brown M. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sci U S A 2017; 114:E4482-E4491. [PMID: 28507152 PMCID: PMC5465894 DOI: 10.1073/pnas.1620993114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases. Through the analysis of the ER cistrome in tamoxifen-resistant breast cancer cells, we have uncovered a role for an RUNX2-ER complex that stimulates the transcription of a set of genes, including most notably the stem cell factor SOX9, that promote proliferation and a metastatic phenotype. We show that up-regulation of SOX9 is sufficient to cause relative endocrine resistance. The gain of SOX9 as an ER-regulated gene associated with tamoxifen resistance was validated in a unique set of clinical samples supporting the need for the development of improved ER antagonists.
Collapse
Affiliation(s)
- Rinath Jeselsohn
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215;
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215
- Breast Oncology Center, Dana Farber Cancer Institute, Boston, MA 02215
| | - MacIntosh Cornwell
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Matthew Pun
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Gilles Buchwalter
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215
| | - Mai Nguyen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Clyde Bango
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Ying Huang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Yanan Kuang
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA 02215
| | - Cloud Paweletz
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA 02215
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Agostina Nardone
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Simone Detre
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JB, United Kingdom
| | - Andrew Dodson
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JB, United Kingdom
| | - Hisham Mohammed
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Li Ka Shing Centre, Cambridge, CB2 0RE, United Kingdom
| | - Jason S Carroll
- Nuclear Transcription Factor Laboratory, Cancer Research UK, Cambridge Institute, Cambridge University, Li Ka Shing Centre, Cambridge, CB2 0RE, United Kingdom
| | - Michaela Bowden
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Prakash Rao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Henry W Long
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Fugen Li
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215
| | - Mitchell Dowsett
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JB, United Kingdom
- The Breast Cancer Now Toby Robin's Research Centre, Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Myles Brown
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215;
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215
- Breast Oncology Center, Dana Farber Cancer Institute, Boston, MA 02215
| |
Collapse
|
21
|
Martin A, Yu J, Xiong J, Khalid AB, Katzenellenbogen B, Kim SH, Katzenellenbogen JA, Malaivijitnond S, Gabet Y, Krum SA, Frenkel B. Estrogens and androgens inhibit association of RANKL with the pre-osteoblast membrane through post-translational mechanisms. J Cell Physiol 2017; 232:3798-3807. [PMID: 28213978 DOI: 10.1002/jcp.25862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/26/2022]
Abstract
We have recently demonstrated that RUNX2 promoted, and 17β-Estradiol (E2) diminished, association of RANKL with the cell membrane in pre-osteoblast cultures. Here we show that, similar to E2, dihydrotestosterone (DHT) diminishes association of RANKL, and transiently transfected GFP-RANKL with the pre-osteoblast membrane without decreasing total RANKL mRNA or protein levels. Diminution of membrane-associated RANKL was accompanied with marked suppression of osteoclast differentiation from co-cultured pre-osteoclasts, even though DHT increased, not decreased, RANKL concentrations in pre-osteoblast conditioned media. A marked decrease in membrane-associated RANKL was observed after 30 min of either E2 or DHT treatment, and near-complete inhibition was observed by 1 hr, suggesting that the diminution of RANKL membrane association was mediated through non-genomic mechanisms. Further indicating dispensability of nuclear action of estrogen receptor, E2-mediated inhibition of RANKL membrane association was mimicked by an estrogen dendrimer conjugate (EDC) that cannot enter the cell nucleus. Finally, the inhibitory effect of E2 and DHT on RANKL membrane association was counteracted by the MMP inhibitor NNGH, and the effect of E2 (and not DHT) was antagonized by the Src inhibitor SU6656. Taken together, these results suggest that estrogens and androgens inhibit osteoblast-driven osteoclastogenesis through non-genomic mechanism(s) that entail, MMP-mediated RANKL dissociation from the cell membrane.
Collapse
Affiliation(s)
- Anthony Martin
- Department of Biochemistry and Molecular Medicine , Keck School of Medicine, University of Southern California, Los Angeles, California.,Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jiali Yu
- Department of Biochemistry and Molecular Medicine , Keck School of Medicine, University of Southern California, Los Angeles, California.,Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jian Xiong
- Department of Biochemistry and Molecular Medicine , Keck School of Medicine, University of Southern California, Los Angeles, California.,Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | | | - Yankel Gabet
- Sackler Faculty of Medicine, Departments of Anatomy and Anthropology and Orthopedic Surgery, Tel Aviv University, Tel Aviv, Israel
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Medicine , Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
22
|
Chimge NO, Ahmed-Alnassar S, Frenkel B. Relationship between RUNX1 and AXIN1 in ER-negative versus ER-positive Breast Cancer. Cell Cycle 2017; 16:312-318. [PMID: 28055379 DOI: 10.1080/15384101.2016.1237325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RUNX1 plays opposing roles in breast cancer: a tumor suppressor in estrogen receptor-positive (ER+) disease and an oncogenic role in ER-negative (ER-) tumors. Potentially mediating the former, we have recently reported that RUNX1 prevents estrogen-driven suppression of the mRNA encoding the tumor suppressor AXIN1. Accordingly, AXIN1 protein expression was diminished upon RUNX1 silencing in ER+ breast cancer cells and was positively correlated with AXIN1 protein expression across tumors with high levels of ER. Here we report the surprising observation that RUNX1 and AXIN1 proteins are strongly correlated in ER- tumors as well. However, this correlation is not attributable to regulation of AXIN1 by RUNX1 or vice versa. The unexpected correlation between RUNX1, playing an oncogenic role in ER- breast cancer, and AXIN1, a well-established tumor suppressor hub, may be related to a high ratio between the expression of variant 2 and variant 1 (v2/v1) of AXIN1 in ER- compared with ER+ breast cancer. Although both isoforms are similarly regulated by RUNX1 in estrogen-stimulated ER+ breast cancer cells, the higher v2/v1 ratio in ER- disease is expected to weaken the tumor suppressor activity of AXIN1 in these tumors.
Collapse
Affiliation(s)
- Nyam-Osor Chimge
- a Department of Medicine , Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA.,b Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA
| | - Sara Ahmed-Alnassar
- b Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA.,c Department of Biochemistry and Molecular Biology , Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA
| | - Baruch Frenkel
- b Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA.,c Department of Biochemistry and Molecular Biology , Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA.,d Department of Orthopedic Surgery , Keck School of Medicine of the University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
23
|
Voon DCC, Thiery JP. The Emerging Roles of RUNX Transcription Factors in Epithelial-Mesenchymal Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:471-489. [PMID: 28299674 DOI: 10.1007/978-981-10-3233-2_28] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an evolutionary conserved morphogenetic program necessary for the shaping of the body plan during development. It is guided precisely by growth factor signaling and a dedicated network of specialised transcription factors. These are supported by other transcription factor families serving auxiliary functions during EMT, beyond their general roles as effectors of major signaling pathways. EMT transiently induces in epithelial cells mesenchymal properties, such as the loss of cell-cell adhesion and a gain in cell motility. Together, these newly acquired properties enable their migration to distant sites where they eventually give rise to adult epithelia. However, it is now recognized that EMT contributes to the pathogenesis of several human diseases, notably in tissue fibrosis and cancer metastasis. The RUNX family of transcription factors are important players in cell fate determination during development, where their spatio-temporal expression often overlaps with the occurrence of EMT. Furthermore, the dysregulation of RUNX expression and functions are increasingly linked to the aberrant induction of EMT in cancer. The present chapter reviews the current knowledge of this emerging field and the common themes of RUNX involvement during EMT, with the intention of fostering future research.
Collapse
Affiliation(s)
- Dominic Chih-Cheng Voon
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
- Institute of Molecular and Cell Biology, A-STAR, Singapore, 138673, Singapore
| |
Collapse
|
24
|
Rooney N, Riggio AI, Mendoza-Villanueva D, Shore P, Cameron ER, Blyth K. Runx Genes in Breast Cancer and the Mammary Lineage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:353-368. [PMID: 28299668 DOI: 10.1007/978-981-10-3233-2_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A full understanding of RUNX gene function in different epithelial lineages has been thwarted by the lethal phenotypes observed when constitutively knocking out these mammalian genes. However temporal expression of the Runx genes throughout the different phases of mammary gland development is indicative of a functional role in this tissue. A few studies have emerged describing how these genes impact on the fate of mammary epithelial cells by regulating lineage differentiation and stem/progenitor cell potential, with implications for the transformed state. The importance of the RUNX/CBFβ core factor binding complex in breast cancer has very recently been highlighted with both RUNX1 and CBFβ appearing in a comprehensive gene list of predicted breast cancer driver mutations. Nonetheless, the evidence to date shows that the RUNX genes can have dualistic outputs with respect to promoting or constraining breast cancer phenotypes, and that this may be aligned to individual subtypes of the clinical disease. We take this opportunity to review the current literature on RUNX and CBFβ in the normal and neoplastic mammary lineage while appreciating that this is likely to be the tip of the iceberg in our knowledge.
Collapse
Affiliation(s)
- Nicholas Rooney
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | | | | | - Paul Shore
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ewan R Cameron
- School of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
25
|
Jeong HM, Cho SW, Park SI. Osteoblasts Are the Centerpiece of the Metastatic Bone Microenvironment. Endocrinol Metab (Seoul) 2016; 31:485-492. [PMID: 28029019 PMCID: PMC5195822 DOI: 10.3803/enm.2016.31.4.485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is comprised of diverse stromal cell populations in addition to tumor cells. Increasing evidence now clearly supports the role of microenvironment stromal cells in tumor progression and metastasis, yet the regulatory mechanisms and interactions among tumor and stromal cells remain to be elucidated. Bone metastasis is the major problem in many types of human malignancies including prostate, breast and lung cancers, and the biological basis of bone metastasis let alone curative approaches are largely undetermined. Among the many types of stromal cells in bone, osteoblasts are shown to be an important player. In this regard, osteoblasts are a key target cell type in the development of bone metastasis, but there are currently no drugs or therapeutic approaches are available that specifically target osteoblasts. This review paper summarizes the current knowledge on osteoblasts in the metastatic tumor microenvironment, aiming to provide clues and directions for future research endeavor.
Collapse
Affiliation(s)
- Hyo Min Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
- The BK21 Plus Program, Korea University College of Medicine, Seoul, Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea
- The BK21 Plus Program, Korea University College of Medicine, Seoul, Korea
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
26
|
Thai QD, Tchoumtchoua J, Makropoulou M, Boulaka A, Meligova AK, Mitsiou DJ, Mitakou S, Michel S, Halabalaki M, Alexis MN, Skaltsounis LA. Phytochemical study and biological evaluation of chemical constituents of Platanus orientalis and Platanus × acerifolia buds. PHYTOCHEMISTRY 2016; 130:170-181. [PMID: 27179684 DOI: 10.1016/j.phytochem.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/13/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
One flavonol glycoside, two O-isoprenylated flavonols, one α,α-dimethylallyl flavonol, one dihydrochalcone, two furanocoumarins and one terpenoid previously undescribed, along with 42 known compounds were isolated from the buds of two European Platanaceae, Platanus orientalis and Platanus × acerifolia. Their chemical structures were elucidated on the basis of spectroscopic analysis, including homonuclear and heteronuclear correlation NMR (COSY, NOESY, HSQC, and HMBC) experiments, as well as HRMS data. The estrogen-like and antiestrogen-like activity of dichloromethane and methanol extracts of P. orientalis and P. × acerifolia buds and isolated compounds was evaluated using estrogen-responsive cell lines. The potency of selected estrogen agonists to regulate gene expression through ERα and/or ERβ was compared with their in vitro osteoblastogenic activity. Kaempferol and 8-C-(1,1-dimethyl-2-propen-1-yl)-5,7-dihydroxyflavonol displayed osteoblastogenic as well as ERα-mediated estrogenic activity similar to estradiol.
Collapse
Affiliation(s)
- Quoc Dang Thai
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece; Laboratoire de Pharmacognosie de l'Université Paris Descartes, UMR/CNRS 8638, Faculté de Pharmacie, 4 Avenue de l'Observatoire, F-75006, Paris, France
| | - Job Tchoumtchoua
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Maria Makropoulou
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece; Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Athina Boulaka
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Aggeliki K Meligova
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Dimitra J Mitsiou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Sophia Mitakou
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Sylvie Michel
- Laboratoire de Pharmacognosie de l'Université Paris Descartes, UMR/CNRS 8638, Faculté de Pharmacie, 4 Avenue de l'Observatoire, F-75006, Paris, France
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Michael N Alexis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece.
| |
Collapse
|
27
|
Morimoto E, Li M, Khalid AB, Krum SA, Chimge NO, Frenkel B. Glucocorticoids Hijack Runx2 to Stimulate Wif1 for Suppression of Osteoblast Growth and Differentiation. J Cell Physiol 2016; 232:145-53. [PMID: 27061521 DOI: 10.1002/jcp.25399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022]
Abstract
Inhibition of Runx2 is one of many mechanisms that suppress bone formation in glucocorticoid (GC)-induced osteoporosis (GIO). We profiled mRNA expression in ST2/Rx2(dox) cells after treatment with doxycycline (dox; to induce Runx2) and/or the synthetic GC dexamethasone (dex). As expected, dex typically antagonized Runx2-driven transcription. Select genes, however, were synergistic stimulated and this was confirmed by RT-qPCR. Among the genes synergistically stimulated by GCs and Runx2 was Wnt inhibitory Factor 1 (Wif1), and Wif1 protein was readily detectable in medium conditioned by cultures co-treated with dox and dex, but neither alone. Cooperation between Runx2 and GCs in stimulating Wif1 was also observed in primary preosteoblast cultures. GCs strongly inhibited dox-driven alkaline phosphatase (ALP) activity in control ST2/Rx2(dox) cells, but not in cells in which Wif1 was silenced. Unlike its anti-mitogenic activity in committed osteoblasts, induction of Runx2 transiently increased the percentage of cells in S-phase and accelerated proliferation in the ST2 mesenchymal pluripotent cell culture model. Furthermore, like the inhibition of Runx2-driven ALP activity, dex antagonized the transient mitogenic effect of Runx2 in ST2/Rx2(dox) cultures, and this inhibition eased upon Wif1 silencing. Plausibly, homeostatic feedback loops that rely on Runx2 activation to compensate for bone loss in GIO are thwarted, exacerbating disease progression through stimulation of Wif1. J. Cell. Physiol. 232: 145-153, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eri Morimoto
- Departments of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Meng Li
- Bioinformatics Service Program, Norris Medical Library, University of Southern California, Los Angeles, California
| | - Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nyam-Osor Chimge
- Department of Medicine, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Baruch Frenkel
- Departments of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. .,Department of Orthopedic Surgery, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
28
|
Chimge NO, Little GH, Baniwal SK, Adisetiyo H, Xie Y, Zhang T, O'Laughlin A, Liu ZY, Ulrich P, Martin A, Mhawech-Fauceglia P, Ellis MJ, Tripathy D, Groshen S, Liang C, Li Z, Schones DE, Frenkel B. RUNX1 prevents oestrogen-mediated AXIN1 suppression and β-catenin activation in ER-positive breast cancer. Nat Commun 2016; 7:10751. [PMID: 26916619 PMCID: PMC4773428 DOI: 10.1038/ncomms10751] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Recent high-throughput studies revealed recurrent RUNX1 mutations in breast cancer, specifically in oestrogen receptor-positive (ER+) tumours. However, mechanisms underlying the implied RUNX1-mediated tumour suppression remain elusive. Here, by depleting mammary epithelial cells of RUNX1 in vivo and in vitro, we demonstrate combinatorial regulation of AXIN1 by RUNX1 and oestrogen. RUNX1 and ER occupy adjacent elements in AXIN1's second intron, and RUNX1 antagonizes oestrogen-mediated AXIN1 suppression. Accordingly, RNA-seq and immunohistochemical analyses demonstrate an ER-dependent correlation between RUNX1 and AXIN1 in tumour biopsies. RUNX1 loss in ER+ mammary epithelial cells increases β-catenin, deregulates mitosis and stimulates cell proliferation and expression of stem cell markers. However, it does not stimulate LEF/TCF, c-Myc or CCND1, and it does not accelerate G1/S cell cycle phase transition. Finally, RUNX1 loss-mediated deregulation of β-catenin and mitosis is ameliorated by AXIN1 stabilization in vitro, highlighting AXIN1 as a potential target for the management of ER+ breast cancer. The tumour suppressor RUNX1 is often lost or mutated in oestrogen receptor-positive breast cancers. In this study, the authors demonstrate that the loss of RUNX1 unleashes oestrogen-mediated inhibition of AXIN1, a negative regulator of β-catenin, resulting in β-catenin signalling-mediated cancer cell proliferation and mitosis deregulation.
Collapse
Affiliation(s)
- Nyam-Osor Chimge
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Gillian H Little
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Sanjeev K Baniwal
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Helty Adisetiyo
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Tian Zhang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Andie O'Laughlin
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Zhi Y Liu
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Peaches Ulrich
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Anthony Martin
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Paulette Mhawech-Fauceglia
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Matthew J Ellis
- Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Susan Groshen
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Baruch Frenkel
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,Department of Orthopedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
29
|
Frenkel B, White W, Tuckermann J. Glucocorticoid-Induced Osteoporosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215995 DOI: 10.1007/978-1-4939-2895-8_8] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoporosis is among the most devastating side effects of glucocorticoid (GC) therapy for the management of inflammatory and auto-immune diseases. Evidence from both humans and mice indicate deleterious skeletal effects within weeks of pharmacological GC administration, both related and unrelated to a decrease in bone mineral density (BMD). Osteoclast numbers and bone resorption are also rapidly increased, and together with osteoblast inactivation and decreased bone formation, these changes lead the fastest loss in BMD during the initial disease phase. Bone resorption then decreases to sub-physiological levels, but persistent and severe inhibition of bone formation leads to further bone loss and progressively increased fracture risk, up to an order of magnitude higher than that observed in untreated individuals. Bone forming osteoblasts are thus considered the main culprits in GC-induced osteoporosis (GIO). Accordingly, we focus this review primarily on deleterious effects on osteoblasts: inhibition of cell replication and function and acceleration of apoptosis. Mediating these adverse effects, GCs target pivotal regulatory mechanisms that govern osteoblast growth, differentiation and survival. Specifically, GCs inhibit growth factor pathways, including Insulin Growth Factors, Growth Hormone, Hepatocyte Growth/Scatter Factor and IL6-type cytokines. They also inhibit downstream kinases, including PI3-kinase and the MAP kinase ERK, the latter attributable in part to direct transcriptional stimulation of MAP kinase phosphatase 1. Most importantly, however, GCs inhibit the Wnt signaling pathway, which plays a pivotal role in osteoblast replication, function and survival. They transcriptionally stimulate expression of Wnt inhibitors of both the Dkk and Sfrp families, and they induce reactive oxygen species (ROS), which result in loss of ß-catenin to ROS-activated FoxO transcription factors. Identification of dissociated GCs, which would suppress the immune system without causing osteoporosis, is proving more challenging than initially thought, and GIO is currently managed by co-treatment with bisphosphonates or PTH. These drugs, however, are not ideally suited for GIO. Future therapeutic approaches may aim at GC targets such as those mentioned above, or newly identified targets including the Notch pathway, the AP-1/Il11 axis and the osteoblast master regulator RUNX2.
Collapse
Affiliation(s)
- Baruch Frenkel
- Department of Orthopaedic Surgery, Keck School of Medicine, Institute for Genetic Medicine, University of Southern California, 2250 Alcazar Street, CSC-240, Los Angeles, CA, 90033, USA,
| | | | | |
Collapse
|
30
|
Wysokinski D, Blasiak J, Pawlowska E. Role of RUNX2 in Breast Carcinogenesis. Int J Mol Sci 2015; 16:20969-93. [PMID: 26404249 PMCID: PMC4613236 DOI: 10.3390/ijms160920969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| |
Collapse
|
31
|
Saki N, Abroun S, Salari F, Rahim F, Shahjahani M, Javad MA. Molecular Aspects of Bone Resorption in β-Thalassemia Major. CELL JOURNAL 2015. [PMID: 26199898 PMCID: PMC4503833 DOI: 10.22074/cellj.2016.3713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
β-thalassemia is the most common single gene disorder worldwide, in which hemoglobin
β-chain production is decreased. Today, the life expectancy of thalassemic patients is
increased because of a variety of treatment methods; however treatment related complications
have also increased. The most common side effect is osteoporosis, which usually
occurs in early adulthood as a consequence of increased bone resorption. Increased bone
resorption mainly results from factors such as delayed puberty, diabetes mellitus, hypothyroidism,
ineffective hematopoiesis as well as hyperplasia of the bone marrow, parathyroid
gland dysfunction, toxic effect of iron on osteoblasts, growth hormone (GH) and
insulin-like growth factor-1 (IGF-1) deficiency. These factors disrupt the balance between
osteoblasts and osteoclasts by interfering with various molecular mechanisms and result
in decreased bone density. Given the high prevalence of osteopenia and osteoporosis in thalassemic patients and
complexity of their development process, the goal of this review is to evaluate the molecular
aspects involved in osteopenia and osteoporosis in thalassemic patients, which may
be useful for therapeutic purposes.
Collapse
Affiliation(s)
- Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Salari
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Hearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadi-Asl Javad
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
32
|
Martin A, Xiong J, Koromila T, Ji JS, Chang S, Song YS, Miller JL, Han CY, Kostenuik P, Krum SA, Chimge NO, Gabet Y, Frenkel B. Estrogens antagonize RUNX2-mediated osteoblast-driven osteoclastogenesis through regulating RANKL membrane association. Bone 2015; 75:96-104. [PMID: 25701138 PMCID: PMC4387095 DOI: 10.1016/j.bone.2015.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 01/17/2023]
Abstract
In addition to its thoroughly investigated role in bone formation, the osteoblast master transcription factor RUNX2 also promotes osteoclastogenesis and bone resorption. Here we demonstrate that 17β-estradiol (E2), strongly inhibits RUNX2-mediated osteoblast-driven osteoclastogenesis in co-cultures. Towards deciphering the underlying mechanism, we induced premature expression of RUNX2 in primary murine pre-osteoblasts, which resulted in robust differentiation of co-cultured splenocytes into mature osteoclasts. This was attributable to RUNX2-mediated increase in RANKL secretion, determined by ELISA, as well as to RUNX2-mediated increase in RANKL association with the osteoblast membrane, demonstrated using confocal fluorescence microscopy. The increased association with the osteoblast membrane was recapitulated by transiently expressed GFP-RANKL. E2 abolished the RUNX2-mediated increase in membrane-associated RANKL and GFP-RANKL, as well as the concomitant osteoclastogenesis. RUNX2-mediated RANKL cellular redistribution was attributable in part to a decrease in Opg expression, but E2 did not influence Opg expression either in the presence or absence of RUNX2. Diminution of RUNX2-mediated osteoclastogenesis by E2 occurred regardless of whether the pre-osteoclasts were derived from wild type or estrogen receptor alpha (ERα)-knockout mice, suggesting that activated ERα inhibited osteoblast-driven osteoclastogenesis by acting in osteoblasts, possibly targeting RUNX2. Indeed, microarray analysis demonstrated global attenuation of the RUNX2 response by E2, including abrogation of Pstpip2 expression, which likely plays a critical role in membrane trafficking. Finally, the selective ER modulators (SERMs) tamoxifen and raloxifene mimicked E2 in abrogating the stimulatory effect of osteoblastic RUNX2 on osteoclast differentiation in the co-culture assay. Thus, E2 antagonizes RUNX2-mediated RANKL trafficking and subsequent osteoclastogenesis. Targeting RUNX2 and/or downstream mechanisms that regulate RANKL trafficking may lead to the development of improved SERMs and possibly non-hormonal therapeutic approaches to high turnover bone disease.
Collapse
Affiliation(s)
- Anthony Martin
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jian Xiong
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Theodora Koromila
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jie S. Ji
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Stephanie Chang
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Yae S. Song
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jonathan L. Miller
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Chun-Ya Han
- Metabolic Disorders Research, Amgen Inc., 1 Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Paul Kostenuik
- Metabolic Disorders Research, Amgen Inc., 1 Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Susan A. Krum
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave, Los Angeles, CA, 90095 USA
| | - Nyam-Osor Chimge
- Department of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv, 69978 Israel
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Biology, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Department of Orthopaedic Surgery, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 1795 Zonal Ave, Los Angeles, CA, 90033, USA
| |
Collapse
|
33
|
Myeloma cell-derived Runx2 promotes myeloma progression in bone. Blood 2015; 125:3598-608. [PMID: 25862559 DOI: 10.1182/blood-2014-12-613968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/31/2015] [Indexed: 12/15/2022] Open
Abstract
The progression of multiple myeloma (MM) is governed by a network of molecular signals, the majority of which remain to be identified. Recent studies suggest that Runt-related transcription factor 2 (Runx2), a well-known bone-specific transcription factor, is also expressed in solid tumors, where expression promotes both bone metastasis and osteolysis. However, the function of Runx2 in MM remains unknown. The current study demonstrated that (1) Runx2 expression in primary human MM cells is significantly greater than in plasma cells from healthy donors and patients with monoclonal gammopathy of undetermined significance; (2) high levels of Runx2 expression in MM cells are associated with a high-risk population of MM patients; and (3) overexpression of Runx2 in MM cells enhanced tumor growth and disease progression in vivo. Additional studies demonstrated that MM cell-derived Runx2 promotes tumor progression through a mechanism involving the upregulation of Akt/β-catenin/Survivin signaling and enhanced expression of multiple metastatic genes/proteins, as well as the induction of a bone-resident cell-like phenotype in MM cells. Thus, Runx2 expression supports the aggressive phenotype of MM and is correlated with poor prognosis. These data implicate Runx2 expression as a major regulator of MM progression in bone and myeloma bone disease.
Collapse
|
34
|
Sun SS, Zhang L, Yang J, Zhou X. Role of runt-related transcription factor 2 in signal network of tumors as an inter-mediator. Cancer Lett 2015; 361:1-7. [PMID: 25727319 DOI: 10.1016/j.canlet.2015.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
Runt-related transcription factor 2 (RUNX2) is a member of the polyomavirus enhancer-binding protein 2/core-binding factor superfamily. RUNX2 is known for its contribution to osteoblast phenotype and bone formation. In recent years, increasing attention has been focused on the relationship of Runx2 with tumorigenesis. In different types of tumor cells, RUNX2 cooperates with its co-activators or co-inhibitors, and mediates the responses of cells to various signaling pathways that are hyperactive in tumors. Thus, several downstream target genes of RUNX2 are activated when RUNX2 interacts with its co-factors, leading to a variety of effects on tumor cells (epithelial-mesenchymal transition, metastasis, proliferation, and osteolytic lesion). This review focuses on the involvement of RUNX2 in tumor cells in the crosstalk of diverse signaling pathways and its multiple functions to develop optimal and feasible approaches for clinical treatment based on the functions of RUNX2.
Collapse
Affiliation(s)
- Shan-Shan Sun
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Lun Zhang
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Jingxuan Yang
- Department of Medicine, University of Oklahoma Health Science Center, Stanton L. Young Biomedical, Research Center, BRC I264, Oklahoma City, OK 73 104, USA
| | - Xuan Zhou
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China.
| |
Collapse
|
35
|
Abstract
RUNX proteins belong to a family of metazoan transcription factors that serve as master regulators of development. They are frequently deregulated in human cancers, indicating a prominent and, at times, paradoxical role in cancer pathogenesis. The contextual cues that direct RUNX function represent a fast-growing field in cancer research and could provide insights that are applicable to early cancer detection and treatment. This Review describes how RUNX proteins communicate with key signalling pathways during the multistep progression to malignancy; in particular, we highlight the emerging partnership of RUNX with p53 in cancer suppression.
Collapse
Affiliation(s)
- Yoshiaki Ito
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| | - Suk-Chul Bae
- 1] Department of Biochemistry, School of Medicine, and Institute for Tumour Research, Chungbuk National University, Cheongju, 361763, South Korea. [2]
| | - Linda Shyue Huey Chuang
- 1] Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive #12-01, 117599, Singapore. [2]
| |
Collapse
|
36
|
Yang Z, Zhang B, Liu B, Xie Y, Cao X. Combined Runx2 and Snail overexpression is associated with a poor prognosis in breast cancer. Tumour Biol 2015; 36:4565-73. [PMID: 25608841 DOI: 10.1007/s13277-015-3101-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to investigate the prognostic value of Runx2 and Snail expression in breast cancer. The expression of Runx2 and Snail in clinical specimens from 125 breast cancer patients was detected by immunohistochemistry. The results showed there is a link between Runx2 and Snail expression at protein levels (p = 0.007). The Kaplan-Meier survival analysis showed that Runx2 or Snail expression was correlated with shortened disease-free survival (DFS) (p = 0.002, p = 0.004, respectively) and overall survival (OS) (p = 0.002, p = 0.009, respectively). In addition, Runx2-positive/Snail-positive patients had the worst DFS and OS (p = 0.001, p < 0.001, respectively). In multivariate survival analysis, Runx2, Snail, and combined Runx2/Snail were still remained as independent prognostic factors for DFS (p = 0.020, p = 0.013, and p = 0.001, respectively) and OS (p = 0.027, p = 0.030 and p = 0.005, respectively). These results suggest that a combined Runx2/Snail expression could be used as a new significant prognostic biomarker for patients with breast cancer.
Collapse
Affiliation(s)
- Zhengjun Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | | | | | | | | |
Collapse
|
37
|
Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C. Sex steroid actions in male bone. Endocr Rev 2014; 35:906-60. [PMID: 25202834 PMCID: PMC4234776 DOI: 10.1210/er.2014-1024] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority.
Collapse
Affiliation(s)
- Dirk Vanderschueren
- Clinical and Experimental Endocrinology (D.V.) and Gerontology and Geriatrics (M.R.L., E.G.), Department of Clinical and Experimental Medicine; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine (M.R.L., F.C.); and Centre for Metabolic Bone Diseases (D.V., M.R.L., E.G.), KU Leuven, B-3000 Leuven, Belgium; and Center for Bone and Arthritis Research (M.K.L., L.V., A.E.B., C.O.), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cardelli M, Aubin JE. ERRγ is not required for skeletal development but is a RUNX2-dependent negative regulator of postnatal bone formation in male mice. PLoS One 2014; 9:e109592. [PMID: 25313644 PMCID: PMC4196935 DOI: 10.1371/journal.pone.0109592] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/08/2014] [Indexed: 01/20/2023] Open
Abstract
To assess the effects of the orphan nuclear Estrogen receptor-related receptor gamma (ERRγ) deficiency on skeletal development and bone turnover, we utilized an ERRγ global knockout mouse line. While we observed no gross morphological anomalies or difference in skeletal length in newborn mice, by 8 weeks of age ERRγ +/− males but not females exhibited increased trabecular bone, which was further increased by 14 weeks. The increase in trabecular bone was due to an increase in active osteoblasts on the bone surface, without detectable alterations in osteoclast number or activity. Consistent with the histomorphometric results, we observed an increase in gene expression of the bone formation markers alkaline phosphatase (Alp) and bone sialoprotein (Bsp) in bone and increase in serum ALP, but no change in the osteoclast regulators receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) or the resorption marker carboxy-terminal collagen crosslinks (CTX). More colony forming units-alkaline phosphatase and -osteoblast (CFU-ALP, CFU-O respectively) but not CFU-fibroblast (CFU-F) formed in ERRγ +/− versus ERRγ +/+ stromal cell cultures, suggesting that ERRγ negatively regulates osteoblast differentiation and matrix mineralization but not mesenchymal precursor number. By co-immunoprecipitation experiments, we found that ERRγ and RUNX2 interact in an ERRγ DNA binding domain (DBD)-dependent manner. Treatment of post-confluent differentiating bone marrow stromal cell cultures with Runx2 antisense oligonucleotides resulted in a reduction of CFU-ALP/CFU-O in ERRγ +/− but not ERRγ +/+ mice compared to their corresponding sense controls. Our data indicate that ERRγ is not required for skeletal development but is a sex-dependent negative regulator of postnatal bone formation, acting in a RUNX2- and apparently differentiation stage-dependent manner.
Collapse
Affiliation(s)
- Marco Cardelli
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jane E. Aubin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
39
|
The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis. Biochem Biophys Res Commun 2014; 453:552-6. [PMID: 25281901 DOI: 10.1016/j.bbrc.2014.09.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/30/2023]
Abstract
During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.
Collapse
|
40
|
Chang CH, Fan TC, Yu JC, Liao GS, Lin YC, Shih ACC, Li WH, Yu ALT. The prognostic significance of RUNX2 and miR-10a/10b and their inter-relationship in breast cancer. J Transl Med 2014; 12:257. [PMID: 25266482 PMCID: PMC4189660 DOI: 10.1186/s12967-014-0257-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
Background The major cancer related mortality is caused by metastasis and invasion. It is important to identify genes regulating metastasis and invasion in order to curtail metastatic spread of cancer cells. Methods This study investigated the association between RUNX2 and miR-10a/miR-10b and the risk of breast cancer relapse. Expression levels of RUNX2 and miR-10a/b in108 pairs of tumor and non-tumor tissue of breast cancer were assayed by quantitative PCR analysis and evaluated for their prognostic implications. Results The median expression levels of RUNX2 and miR-10b in tumor tissue normalized using adjacent non-tumor tissue were significantly higher in relapsed patients than in relapse-free patients. Higher expression of these three genes were significantly correlated with the hazard ratio for breast cancer recurrence (RUNX2: 3.02, 95% CI = 1.50 ~ 6.07; miR-10a: 2.31, 95% CI = 1.00 ~ 5.32; miR-10b: 3.96, 95% CI = 1.21 ~ 12.98). The joint effect of higher expression of all three genes was associated with a hazard ratio of 12.37 (95% CI = 1.62 ~ 94.55) for relapse. In a breast cancer cell line, RUNX2 silencing reduced the expression of miR-10a/b and also impaired cell motility, while RUNX2 overexpression elicited opposite effects. Conclusions These findings indicate that higher expression of RUNX2 and miR-10a/b was associated with adverse outcome of breast cancer. Expression levels of RUNX2 and miR-10a/b individually or jointly are potential prognostic factors for predicting breast cancer recurrence. Data from in vitro studies support the notion that RUNX2 promoted cell motility by upregulating miR-10a/b. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0257-3) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Koromila T, Baniwal SK, Song YS, Martin A, Xiong J, Frenkel B. Glucocorticoids antagonize RUNX2 during osteoblast differentiation in cultures of ST2 pluripotent mesenchymal cells. J Cell Biochem 2014; 115:27-33. [PMID: 23943595 DOI: 10.1002/jcb.24646] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022]
Abstract
The efficacy of glucocorticoids (GCs) in treating a wide range of autoimmune and inflammatory conditions is blemished by severe side effects, including osteoporosis. The chief mechanism leading to GC-induced osteoporosis is inhibition of bone formation, but the role of RUNX2, a master regulator of osteoblast differentiation and bone formation, has not been well studied. We assessed effects of the synthetic GC dexamethasone (dex) on transcription of RUNX2-stimulated genes during the differentiation of mesenchymal pluripotent cells into osteoblasts. Dex inhibited a RUNX2 reporter gene and attenuated locus-dependently RUNX2-driven expression of several endogenous target genes. The anti-RUNX2 activity of dex was not attributable to decreased RUNX2 expression, but rather to physical interaction between RUNX2 and the GC receptor (GR), demonstrated by co-immunoprecipitation assays and co-immunofluorescence imaging. Investigation of the RUNX2/GR interaction may lead to the development of bone-sparing GC treatment modalities for the management of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Theodora Koromila
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
42
|
Li GL, Xu XH, Wang BA, Yao YM, Qin Y, Bai SR, Rong J, Deng T, Hu YH. Analysis of protein-protein interaction network and functional modules on primary osteoporosis. Eur J Med Res 2014; 19:15. [PMID: 24656062 PMCID: PMC3994448 DOI: 10.1186/2047-783x-19-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 02/19/2014] [Indexed: 11/22/2022] Open
Abstract
Background Primary osteoporosis is an age-related disease, and the main cause of this disease is the failure of bone homeostasis. Previous studies have shown that primary osteoporosis is associated with gene mutations. To explore the functional modules of the PPI (protein-protein interaction) network of differentially expressed genes (DEGs), and the related pathways participating in primary osteoporosis. Methods The gene expression profile of primary osteoporosis GSE35956 was downloaded from the GEO (Gene Expression Omnibus) database and included five MSC (mesenchymal stem cell) specimens of normal osseous tissue and five MSC specimens of osteoporosis. The DEGs between the two types of MSC specimens were identified by the samr package in R language. In addition, the functions and pathways of DEGs were enriched. Then the DEGs were mapped to String to acquire PPI pairs and the PPI network was constructed with by these PPI pairs. Topological properties of the network were calculated by Network Analyzer, and modules in the network were screened by Cluster ONE software. Subsequently, the fronting five modules whose P-value was less than 1.0e-05 were identified and function analysis was conducted. Results A total of 797 genes were filtered as DEGs from these ten specimens of GSE35956 with 660 up-regulated genes and 137 down-regulated genes. Meanwhile, up-regulated DEGs were mainly enriched in functions and pathways related to cell cycle and DNA replication. Furthermore, there were 4,135 PPI pairs and 377 nodes in the PPI network. Four modules were enriched in different pathways, including cell cycle and DNA replication pathway in module 2. Conclusions In this paper, we explored the genes and pathways involved in primary osteoporosis based on gene expression profiles, and the present findings have the potential to be used clinically for the future treatment of primary osteoporosis.
Collapse
Affiliation(s)
| | | | - Bing-Ang Wang
- Department of Geriatrics, Chengdu Military General Hospital, No, 270, Rongdu Avenue, Jinniu District, Chengdu 610083, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Little GH, Baniwal SK, Adisetiyo H, Groshen S, Chimge NO, Kim SY, Khalid O, Hawes D, Jones JO, Pinski J, Schones DE, Frenkel B. Differential effects of RUNX2 on the androgen receptor in prostate cancer: synergistic stimulation of a gene set exemplified by SNAI2 and subsequent invasiveness. Cancer Res 2014; 74:2857-68. [PMID: 24648349 DOI: 10.1158/0008-5472.can-13-2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Changes to androgen signaling during prostate carcinogenesis are associated with both inhibition of cellular differentiation and promotion of malignant phenotypes. The androgen receptor (AR)-binding transcription factor RUNX2 has been linked to prostate cancer progression but the underlying mechanisms have not been fully defined. In this study, we investigated the genome-wide influence of RUNX2 on androgen-induced gene expression and AR DNA binding in prostate cancer cells. RUNX2 inhibited the androgen response partly by promoting the dissociation of AR from its target genes such as the tumor suppressor NKX3-1. However, AR activity persists in the presence of RUNX2 at other AR target genes, some of which are cooperatively stimulated by androgen and RUNX2 signaling. These genes are associated with putative enhancers co-occupied by AR and RUNX2. One such gene, the invasion-promoting Snail family transcription factor SNAI2, was co-activated by AR and RUNX2. Indeed, these two transcription factors together, but neither alone stimulated prostate cancer cell invasiveness, which could be abolished by SNAI2 silencing. Furthermore, an immunohistochemical analysis of SNAI2 in archived primary prostate cancer specimens revealed a correlation with the RUNX2 histoscore, and simultaneous strong staining for SNAI2, RUNX2, and AR (but not any pair alone) was associated with disease recurrence. Overall, our findings suggest cooperation between AR and RUNX in the stimulation of oncogenes such as SNAI2, which might be targeted for individualized prostate cancer therapy.
Collapse
Affiliation(s)
- Gillian H Little
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CaliforniaAuthors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Sanjeev K Baniwal
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CaliforniaAuthors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Helty Adisetiyo
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CaliforniaAuthors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Susan Groshen
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CaliforniaAuthors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Nyam-Osor Chimge
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CaliforniaAuthors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Sun Young Kim
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Omar Khalid
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Debra Hawes
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Jeremy O Jones
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Jacek Pinski
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CaliforniaAuthors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Dustin E Schones
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| | - Baruch Frenkel
- Authors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CaliforniaAuthors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CaliforniaAuthors' Affiliations: Departments of Biochemistry and Molecular Biology, Orthopedic Surgery, Preventive Medicine, and Medicine; Institute for Genetic Medicine; USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles; Departments of Molecular Pharmacology and Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California
| |
Collapse
|
44
|
McDonald L, Ferrari N, Terry A, Bell M, Mohammed ZM, Orange C, Jenkins A, Muller WJ, Gusterson BA, Neil JC, Edwards J, Morris JS, Cameron ER, Blyth K. RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Dis Model Mech 2014; 7:525-34. [PMID: 24626992 PMCID: PMC4007404 DOI: 10.1242/dmm.015040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RUNX2, a master regulator of osteogenesis, is oncogenic in the lymphoid lineage; however, little is known about its role in epithelial cancers. Upregulation of RUNX2 in cell lines correlates with increased invasiveness and the capacity to form osteolytic disease in models of breast and prostate cancer. However, most studies have analysed the effects of this gene in a limited number of cell lines and its role in primary breast cancer has not been resolved. Using a human tumour tissue microarray, we show that high RUNX2 expression is significantly associated with oestrogen receptor (ER)/progesterone receptor (PR)/HER2-negative breast cancers and that patients with high RUNX2 expression have a poorer survival rate than those with negative or low expression. We confirm RUNX2 as a gene that has a potentially important functional role in triple-negative breast cancer. To investigate the role of this gene in breast cancer, we made a transgenic model in which Runx2 is specifically expressed in murine mammary epithelium under the control of the mouse mammary tumour virus (MMTV) promoter. We show that ectopic Runx2 perturbs normal development in pubertal and lactating animals, delaying ductal elongation and inhibiting lobular alveolar differentiation. We also show that the Runx2 transgene elicits age-related, pre-neoplastic changes in the mammary epithelium of older transgenic animals, suggesting that elevated RUNX2 expression renders such tissue more susceptible to oncogenic changes and providing further evidence that this gene might have an important, context-dependent role in breast cancer.
Collapse
Affiliation(s)
- Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wood SL, Brown JE. The Application of ‘Omics’ Techniques for Cancers That Metastasise to Bone: From Biological Mechanism to Biomarkers. CANCER METASTASIS - BIOLOGY AND TREATMENT 2014:125-153. [DOI: 10.1007/978-94-007-7569-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Titorencu I, Pruna V, Jinga VV, Simionescu M. Osteoblast ontogeny and implications for bone pathology: an overview. Cell Tissue Res 2013; 355:23-33. [PMID: 24292720 DOI: 10.1007/s00441-013-1750-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/04/2013] [Indexed: 01/06/2023]
Abstract
Osteoblasts are specialized mesenchyme-derived cells accountable for bone synthesis, remodelling and healing. Differentiation of osteoblasts from mesenchymal stem cells (MSC) towards osteocytes is a multi-step process strictly controlled by various genes, transcription factors and signalling proteins. The aim of this review is to provide an update on the nature of bone-forming osteoblastic cells, highlighting recent data on MSC-osteoblast-osteocyte transformation from a molecular perspective and to discuss osteoblast malfunctions in various bone diseases. We present here the consecutive stages occurring in the differentiation of osteoblasts from MSC, the transcription factors involved and the role of miRNAs in the process. Recent data concerning the pathogenic mechanisms underlying the loss of bone mass and architecture caused by malfunctions in the synthetic activity and metabolism of osteoblasts in osteoporosis, osteogenesis imperfecta, osteoarthritis and rheumatoid arthritis are discussed. The newly acquired knowledge of the ontogeny of osteoblasts will assist in unravelling the abnormalities taking place during their differentiation and will facilitate the prevention and/or treatment of bone diseases by therapy directed against altered molecules and mechanisms.
Collapse
Affiliation(s)
- Irina Titorencu
- Regenerative Medicine Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
47
|
Kammerer M, Gutzwiller S, Stauffer D, Delhon I, Seltenmeyer Y, Fournier B. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα) are both transcriptional regulators of the Runx2-I isoform. Mol Cell Endocrinol 2013; 369:150-60. [PMID: 23403054 DOI: 10.1016/j.mce.2013.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 01/09/2013] [Accepted: 01/29/2013] [Indexed: 01/18/2023]
Abstract
Runx2 is a master regulator of bone development and has also been described as an oncogene. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα), both implicated in bone metabolism and breast cancer, have been shown to share common transcriptional targets. Here, we show that ERα is a positive regulator of Runx2-I transcription. Moreover, ERRα can act as a transcriptional activator of Runx2-I in presence of peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α). In contrast, ERRα behaves as a negative regulator of Runx2-I transcription in presence of PGC-1β. ERα and ERRα cross-talk via a common estrogen receptor response element on the Runx2-I promoter. In addition, estrogen regulates PGC-1β that in turn is able to modulate both ERα and ERRα transcriptional activity.
Collapse
Affiliation(s)
- Martial Kammerer
- Novartis Institutes for BioMedical Research, Musculoskeletal Disease Unit, CH-4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Chimge NO, Frenkel B. The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 2013; 32:2121-30. [PMID: 23045283 PMCID: PMC5770236 DOI: 10.1038/onc.2012.328] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The three RUNX family members are lineage specific master regulators, which also have important, context-dependent roles in carcinogenesis as either tumor suppressors or oncogenes. Here we review evidence for such roles in breast cancer (BCa). RUNX1, the predominant RUNX family member in breast epithelial cells, has a tumor suppressor role reflected by many somatic mutations found in primary tumor biopsies. The classical tumor suppressor gene RUNX3 does not consist of such a mutation hot spot, but it too seems to inhibit BCa; it is often inactivated in human BCa tumors and its haploinsufficiency in mice leads to spontaneous BCa development. The tumor suppressor activities of RUNX1 and RUNX3 are mediated in part by antagonism of estrogen signaling, a feature recently attributed to RUNX2 as well. Paradoxically, however RUNX2, a master osteoblast regulator, has been implicated in various aspects of metastasis in general and bone metastasis in particular. Reciprocating the anti-estrogenic tumor suppressor activity of RUNX proteins, inhibition of RUNX2 by estrogens may help explain their context-dependent anti-metastatic roles. Such roles are reserved to non-osseous metastasis, because ERα is associated with increased, not decreased skeletal dissemination of BCa cells. Finally, based on diverse expression patterns in BCa subtypes, the successful use of future RUNX-based therapies will most likely require careful patient selection.
Collapse
Affiliation(s)
- N-O Chimge
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - B Frenkel
- Departments of Orthopaedic Surgery and Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
49
|
Ferrari N, McDonald L, Morris JS, Cameron ER, Blyth K. RUNX2 in mammary gland development and breast cancer. J Cell Physiol 2013; 228:1137-42. [PMID: 23169547 DOI: 10.1002/jcp.24285] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022]
Abstract
Runx2 is best known as an essential factor in osteoblast differentiation and bone development but, like many other transcription factors involved in development, is known to operate over a much wider tissue range. Our understanding of these other aspects of Runx2 function is still at a relatively early stage and the importance of its role in cell fate decisions and lineage maintenance in non-osseous tissues is only beginning to emerge. One such tissue is the mammary gland, where Runx2 is known to be expressed and participate in the regulation of mammary specific genes. Furthermore, differential and temporal expression of this gene is observed during mammary epithelial differentiation in vivo, strongly indicative of an important functional role. Although the precise nature of that role remains elusive, preliminary evidence hints at possible involvement in the regulation of mammary stem and/or progenitor cells. As with many genes important in regulating cell fate, RUNX2 has also been linked to metastatic cancer where in some established breast cell lines, retention of expression is associated with a more invasive phenotype. More recently, expression analysis has been extended to primary breast cancers where high levels of RUNX2 align with a specific subtype of the disease. That RUNX2 expression correlates with the so called "Triple Negative" subtype is particularly interesting given the known cross talk between Runx2 and estrogen receptor signaling pathways. This review summaries our current understanding of Runx2 in mammary gland development and cancer, and postulates a role that may link both these processes.
Collapse
Affiliation(s)
- Nicola Ferrari
- The Beatson Institute for Cancer Research, Bearsden, Glasgow, UK
| | | | | | | | | |
Collapse
|
50
|
Galea GL, Meakin LB, Sugiyama T, Zebda N, Sunters A, Taipaleenmaki H, Stein GS, van Wijnen AJ, Lanyon LE, Price JS. Estrogen receptor α mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the Wnt antagonist Sost is mediated by estrogen receptor β. J Biol Chem 2013; 288:9035-48. [PMID: 23362266 PMCID: PMC3610976 DOI: 10.1074/jbc.m112.405456] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mechanical strain and estrogens both stimulate osteoblast proliferation through estrogen receptor (ER)-mediated effects, and both down-regulate the Wnt antagonist Sost/sclerostin. Here, we investigate the differential effects of ERα and -β in these processes in mouse long bone-derived osteoblastic cells and human Saos-2 cells. Recruitment to the cell cycle following strain or 17β-estradiol occurs within 30 min, as determined by Ki-67 staining, and is prevented by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride. ERβ inhibition with 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-β]pyrimidin-3-yl] phenol (PTHPP) increases basal proliferation similarly to strain or estradiol. Both strain and estradiol down-regulate Sost expression, as does in vitro inhibition or in vivo deletion of ERα. The ERβ agonists 2,3-bis(4-hydroxyphenyl)-propionitrile and ERB041 also down-regulated Sost expression in vitro, whereas the ERα agonist 4,4′,4″-[4-propyl-(1H)-pyrazol-1,3,5-triyl]tris-phenol or the ERβ antagonist PTHPP has no effect. Tamoxifen, a nongenomic ERβ agonist, down-regulates Sost expression in vitro and in bones in vivo. Inhibition of both ERs with fulvestrant or selective antagonism of ERβ, but not ERα, prevents Sost down-regulation by strain or estradiol. Sost down-regulation by strain or ERβ activation is prevented by MEK/ERK blockade. Exogenous sclerostin has no effect on estradiol-induced proliferation but prevents that following strain. Thus, in osteoblastic cells the acute proliferative effects of both estradiol and strain are ERα-mediated. Basal Sost down-regulation follows decreased activity of ERα and increased activity of ERβ. Sost down-regulation by strain or increased estrogens is mediated by ERβ, not ERα. ER-targeting therapy may facilitate structurally appropriate bone formation by enhancing the distinct ligand-independent, strain-related contributions to proliferation of both ERα and ERβ.
Collapse
Affiliation(s)
- Gabriel L Galea
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|