1
|
Li X, Liu Y, Zhang Z, Hai W, Pan Y, Zhang Y. Exendin-4 imaging based on gastrointestinal GLP-1R targets for IBD diagnosis and efficacy assessment. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07197-z. [PMID: 40178570 DOI: 10.1007/s00259-025-07197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE Diagnosis of inflammatory bowel disease (IBD) involves history-taking and invasive procedures that primarily evaluate localized intestinal structures. Notably, glucagon-like peptide 1 (GLP-1) and its receptor (GLP-1R) have been established as potent participants in various inflammatory diseases. This study aimed to investigate the potential of molecular imaging targeting GLP-1R in the study of gastrointestinal physiology and disease. METHODS Using dextran sulfate sodium (DSS)-induced IBD rats (n = 6), changes in GLP-1R expression in the gastrointestinal tract before and after DSS induction were determined by quantitative micro-PET/CT. Dynamic changes in GLP-1R expression after liraglutide treatment were also assessed in IBD rats. Transcription of GLP-1R and inflammatory factors in duodenal and colonic tissues were measured and subjected to correlation analysis. RESULTS In normal rats, GLP-1R was highly concentrated in the proximal duodenum, with a higher distribution density near the distal end of the colonic segment. Proximal duodenal uptake of [68Ga]Ga-NOTA-MAL-Cys39-exendin-4 was significantly increased after DSS induction compared with controls. The increased colonic uptake closely correlated with the histopathologic score of epithelial injury. In IBD rats treated with liraglutide, proximal duodenal uptake was reduced. In addition, Western blotting and quantitative PCR confirmed changes in GLP-1R expression during disease progression. CONCLUSION These findings underscore the role of molecular imaging in assessing dynamic changes in GLP-1R expression and its potential for improving diagnostic and therapeutic strategies for gastrointestinal disorders like IBD. It supports using Brunner's glands as a key site to observe GLP-1R expression, advancing research on the GLP-1R/GLP-1RA axis in complex gastrointestinal conditions.
Collapse
Affiliation(s)
- Xiaochen Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yang Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Zizhen Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
2
|
Młynarska E, Czarnik W, Dzieża N, Jędraszak W, Majchrowicz G, Prusinowski F, Stabrawa M, Rysz J, Franczyk B. Type 2 Diabetes Mellitus: New Pathogenetic Mechanisms, Treatment and the Most Important Complications. Int J Mol Sci 2025; 26:1094. [PMID: 39940862 PMCID: PMC11817707 DOI: 10.3390/ijms26031094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a prevalent chronic disease affecting over 400 million people globally, is driven by genetic and environmental factors. The pathogenesis involves insulin resistance and β-cell dysfunction, mediated by mechanisms such as the dedifferentiation of β-cells, mitochondrial dysfunction, and oxidative stress. Treatment should be based on non-pharmacological therapy. Strategies such as increased physical activity, dietary modifications, cognitive-behavioral therapy are important in maintaining normal glycemia. Advanced therapies, including SGLT2 inhibitors and GLP-1 receptor agonists, complement these treatments and offer solid glycemic control, weight control, and reduced cardiovascular risk. Complications of T2DM, such as diabetic kidney disease, retinopathy, and neuropathy, underscore the need for early diagnosis and comprehensive management to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Natasza Dzieża
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Jędraszak
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Filip Prusinowski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Stabrawa
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
3
|
Nakamori H, Niimi A, Mitsui R, Hashitani H. Lipopolysaccharide accelerates peristalsis by stimulating glucagon-like peptide-1 release from L cells in the rat proximal colon. J Physiol 2024; 602:4803-4820. [PMID: 39287487 DOI: 10.1113/jp286258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Upon epithelial barrier dysfunction, lipopolysaccharide (LPS) stimulates glucagon-like peptide-1 (GLP-1) secretion from enteroendocrine L cells by activating Toll-like receptor 4 (TLR4). Because GLP-1 accelerates peristalsis in the proximal colon, the present study aimed to explore whether LPS facilitates colonic peristalsis by stimulating L cell-derived GLP-1 release. In isolated segments of rat proximal colon that were serosally perfused with physiological salt solution and luminally perfused with 0.9% saline, peristaltic wall motion was video recorded and converted into spatio-temporal maps. Fluorescence immunohistochemistry was also carried out. Intraluminal administration of LPS (100 or 1 µg mL-1 but not 100 ng mL-1) increased the frequency of oro-aboral propagating peristaltic contractions. The LPS-induced acceleration of colonic peristalsis was blocked by TAK-242 (the TLR4 antagonist), exendin-3 (the GLP-1 receptor antagonist) or BIBN4096 (the calcitonin gene-related peptide receptor antagonist). GLP-1-positive epithelial cells co-expressed TLR4 immunoreactivity. In aspirin-pretreated preparations where epithelial barrier function had been impaired, a lower dose of LPS (100 ng mL-1) became capable of accelerating peristalsis. By contrast, luminally applied dimethyl sulphoxide, a reactive oxygen species scavenger that protects epithelial integrity, attenuated the prokinetic effects of a higher dose of LPS (100 µg mL-1). In colonic segments of a stress rat model leading to a leaky gut, LPS induced more pronounced prokinetic effects. Colonic L cells may well sense luminal LPS via TLR4 triggering the release of GLP-1 that stimulates calcitonin gene-related peptide-containing neurons. The resultant acceleration of peristalsis would facilitate excretion of Gram-negative bacteria from the intestine, and thus L cells may have a protective role against intestinal bacterial infections. KEY POINTS: Colonic epithelial cells form a barrier against bacterial invasion but also may contribute more actively to the exclusion of luminal pathogen by stimulating colonic motility. Luminal lipopolysaccharide (LPS) accelerated colonic peristalsis by stimulating calcitonin gene-related peptide-containing neurons. The prokinetic effect of LPS was mediated by the secretion of glucagon-like peptide-1 from enteroendocrine L cells in which Toll-like receptor 4 was expressed. The LPS-mediated acceleration of peristalsis depended on epithelial barrier integrity. L cells have a defensive role against Gram-negative bacterial infections by facilitating faecal excretion, and could be a potential therapeutic target for gastrointestinal infections.
Collapse
Affiliation(s)
- Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Atsuko Niimi
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
4
|
Albaghlany RM, Shahsavani MB, Hoshino M, Moosavi-Movahedi AA, Ghasemi Y, Yousefi R. Optimizing expression, purification, structural and functional assessments of a novel dimeric incretin (GLP-1cpGLP-1). Biochimie 2024; 223:133-146. [PMID: 37931794 DOI: 10.1016/j.biochi.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that reduces postprandial glycemic excursions by enhancing insulin secretion. In this study, a new dimeric GLP-1 analogue (GLP-1cpGLP-1) was designed by inserting human insulin C-peptide (CP) in the middle of a dimer of [Gly8] GLP-1 (7-36). Then, the dimeric incretin (GLP-1cpGLP-1) was ligated to human αB-crystallin (αB-Cry) to create a hybrid protein, abbreviated as αB-GLP-1cpGLP-1. The constructed gene was well expressed in the bacterial host system. After specific chemical release from the hybrid protein, the dimeric incretin was purified by size exclusion chromatography (SEC). Finally, the RP-HPLC analysis indicated a purity of >99 % for the dimeric incretin. The secondary structure assessments by various spectroscopic methods, and in silico analysis suggested that the dimeric incretin has α-helical rich structure. The dynamic light scattering (DLS) analysis indicates that our dimeric incretin forms large oligomeric structures. This incretin analogue significantly reduced blood glucose levels in both healthy and diabetic mice while effectively triggering insulin release. The size exclusion HPLC also indicates the interaction of the new incretin analogue with human serum albumin, the main carrier protein in the bloodstream. Consistent with the results obtained from the biological activity assessments, this significant interaction indicates its potential as a viable therapeutic agent with a long-lasting effect. The results of our research represent a significant breakthrough in the successful design of an active incretin dimer capable of effectively controlling blood sugar levels and inducing insulin secretion in the realm of diabetes treatment.
Collapse
Affiliation(s)
- Rawayh Muslim Albaghlany
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mohammad Bagher Shahsavani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
6
|
Cheng JJ, Wei WC, Chen CC, Shiao YJ, Huang NK, Liao CH, Wu TH, Ueng YF, Liu HK. Mulberry leaf extract exhibits multiple anti-diabetic activities and alleviates dysglycemia, systemic inflammation, hepatic steatosis, and xenobiotic metabolism abnormalities in type 2 diabetic mice. J Funct Foods 2024; 119:106330. [DOI: 10.1016/j.jff.2024.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
7
|
Stinson SE, Fernández de Retana Alzola I, Brünner Hovendal ED, Lund MAV, Fonvig CE, Holm LA, Jonsson AE, Frithioff-Bøjsøe C, Christiansen M, Pedersen O, Ängquist L, Sørensen TIA, Holst JJ, Hartmann B, Holm JC, Hansen T. Altered Glucagon and GLP-1 Responses to Oral Glucose in Children and Adolescents With Obesity and Insulin Resistance. J Clin Endocrinol Metab 2024; 109:1590-1600. [PMID: 38087928 PMCID: PMC11099488 DOI: 10.1210/clinem/dgad728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 05/18/2024]
Abstract
CONTEXT Pediatric obesity is characterized by insulin resistance, yet it remains unclear whether insulin resistance contributes to abnormalities in glucagon and incretin secretion. OBJECTIVE To examine whether fasting and stimulated glucagon, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) concentrations differ between children and adolescents with obesity and insulin resistance (OIR), obesity and normal insulin sensitivity (OIS), and controls with normal weight (NW). METHODS 80 (34 boys) children and adolescents, aged 7-17 years with OIR (n = 22), OIS (n = 22), and NW (n = 36) underwent an oral glucose tolerance test with measurements of serum insulin, plasma glucose, glucagon, total GLP-1, and total GIP. Homeostatic model assessment of insulin resistance (HOMA-IR), single point insulin sensitivity estimator (SPISE), Matsuda index, insulinogenic index (IGI), and oral disposition index (ODI) were calculated. RESULTS Fasting concentrations of glucagon and GLP-1 were higher in the OIR group, with no significant differences for GIP. The OIR group had higher glucagon total area under the curve (tAUC0-120) and lower GLP-1 incremental AUC (iAUC0-120), with no significant differences in GIP iAUC0-120. Higher fasting glucagon was associated with higher HOMA-IR, lower Matsuda index, lower SPISE, higher IGI, and higher plasma alanine transaminase, whereas higher fasting GLP-1 was associated with higher HOMA-IR, lower Matsuda index, and lower ODI. Higher glucagon tAUC0-120 was associated lower SPISE and lower Matsuda index, whereas lower GLP-1 iAUC0-120 was associated with a higher HOMA-IR, lower Matsuda index, and lower ODI. CONCLUSION Children and adolescents with OIR have elevated fasting concentrations of glucagon and GLP-1, higher glucagon and lower GLP-1 responses during an OGTT compared to those with OIS and NW. In contrast, individuals with OIS have similar hormone responses to those with NW.
Collapse
Affiliation(s)
- Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ierai Fernández de Retana Alzola
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Emilie Damgaard Brünner Hovendal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Morten Asp Vonsild Lund
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cilius Esmann Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Anna Elisabet Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Frithioff-Bøjsøe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Michael Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Herlev-Gentofte University Hospital, 2900 Copenhagen, Denmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens-Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- The Children's Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Holbæk Hospital, 4300 Holbæk, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Kistkins S, Moser O, Ankudovičs V, Blizņuks D, Mihailovs T, Lobanovs S, Sourij H, Pfeiffer AFH, Pīrāgs V. From classical dualistic antagonism to hormone synergy: potential of overlapping action of glucagon, insulin and GLP-1 for the treatment of diabesity. Endocr Connect 2024; 13:e230529. [PMID: 38579770 PMCID: PMC11046332 DOI: 10.1530/ec-23-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
The increasing prevalence of 'diabesity', a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behaviour, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycaemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including potential withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of 'anti-diabesity' treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.
Collapse
Affiliation(s)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany
| | | | - Dmitrijs Blizņuks
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | - Timurs Mihailovs
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | | | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetolgoy, Medical University of Graz, Graz, Austria
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm, Berlin, Germany
| | - Valdis Pīrāgs
- Pauls Stradiņš Clinical University Hospital, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
9
|
Chong ACN, Vandana JJ, Jeng G, Li G, Meng Z, Duan X, Zhang T, Qiu Y, Duran-Struuck R, Coker K, Wang W, Li Y, Min Z, Zuo X, de Silva N, Chen Z, Naji A, Hao M, Liu C, Chen S. Checkpoint kinase 2 controls insulin secretion and glucose homeostasis. Nat Chem Biol 2024; 20:566-576. [PMID: 37945898 PMCID: PMC11062908 DOI: 10.1038/s41589-023-01466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/03/2023] [Indexed: 11/12/2023]
Abstract
After the discovery of insulin, a century ago, extensive work has been done to unravel the molecular network regulating insulin secretion. Here we performed a chemical screen and identified AZD7762, a compound that potentiates glucose-stimulated insulin secretion (GSIS) of a human β cell line, healthy and type 2 diabetic (T2D) human islets and primary cynomolgus macaque islets. In vivo studies in diabetic mouse models and cynomolgus macaques demonstrated that AZD7762 enhances GSIS and improves glucose tolerance. Furthermore, genetic manipulation confirmed that ablation of CHEK2 in human β cells results in increased insulin secretion. Consistently, high-fat-diet-fed Chk2-/- mice show elevated insulin secretion and improved glucose clearance. Finally, untargeted metabolic profiling demonstrated the key role of the CHEK2-PP2A-PLK1-G6PD-PPP pathway in insulin secretion. This study successfully identifies a previously unknown insulin secretion regulating pathway that is conserved across rodents, cynomolgus macaques and human β cells in both healthy and T2D conditions.
Collapse
Affiliation(s)
- Angie Chi Nok Chong
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York City, NY, USA
| | - Ginnie Jeng
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ge Li
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Department of Biological Sciences, Bronx Community College, City University of New York, Bronx, NY, USA
| | - Zihe Meng
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York City, NY, USA
| | - Yunping Qiu
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Kimberly Coker
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yanjing Li
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Zaw Min
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xi Zuo
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Zhengming Chen
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Ali Naji
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Mingming Hao
- Department of Biochemistry, Weill Cornell Medicine, New York City, NY, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA.
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA.
| |
Collapse
|
10
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
11
|
Yang WL, Zhang CY, Ji WY, Zhao LL, Yang FY, Zhang L, Cao X. Berberine Metabolites Stimulate GLP-1 Secretion by Alleviating Oxidative Stress and Mitochondrial Dysfunction. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:253-274. [PMID: 38351702 DOI: 10.1142/s0192415x24500113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Berberine (BBR) is a principal component of Rhizoma coptidis known for its therapeutic potential in treating diseases such as type 2 diabetes mellitus (T2DM) and obesity. Despite the trace levels of BBR in plasma, it's believed that its metabolites play a pivotal role in its biological activities. While BBR is recognized to promote GLP-1 production in intestinal L cells, the cytoprotective effects of its metabolites on these cells are yet to be explored. The present study investigates the effects of BBR metabolites on GLP-1 secretion and the underlying mechanisms. Our results revealed that, out of six BBR metabolites, berberrubine (BBB) and palmatine (PMT) significantly increased the production and glucose-stimulated secretion of GLP-1 in GLUTag cells. Notably, both BBB and PMT could facilitate GLP-1 and insulin secretion and enhance glucose tolerance in standard mice. Moreover, a single dose of PMT could markedly increase plasma GLP-1 and improve glucose tolerance in mice with obesity induced by a high-fat diet. In palmitic acid or TNF[Formula: see text]-treated GLUTag cells, BBB and PMT alleviated cell death, oxidative stress, and mitochondrial dysfunction. Furthermore, they could effectively reverse inflammation-induced inhibition of the Akt signaling pathway. In general, these insights suggest that the beneficial effects of orally administered BBR on GLP-1 secretion are largely attributed to the pharmacological activity of BBB and PMT by their above cytoprotective effects on L cells, which provide important ideas for stimulating GLP-1 secretion and the treatment of T2DM.
Collapse
Affiliation(s)
- Wei-Li Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Chen-Yang Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Wen-Yi Ji
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Li-Li Zhao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Fang-Yuan Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Lin Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China
| |
Collapse
|
12
|
Shimizu K, Ono M, Mikamoto T, Urayama Y, Yoshida S, Hase T, Michinaga S, Nakanishi H, Iwasaki M, Terada T, Sakurai F, Mizuguchi H, Shindou H, Tomita K, Nishinaka T. Overexpression of lysophospholipid acyltransferase, LPLAT10/LPCAT4/LPEAT2, in the mouse liver increases glucose-stimulated insulin secretion. FASEB J 2024; 38:e23425. [PMID: 38226852 DOI: 10.1096/fj.202301594rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Moe Ono
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takenari Mikamoto
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Yuya Urayama
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Sena Yoshida
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomomi Hase
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | | | - Miho Iwasaki
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| |
Collapse
|
13
|
Narimani B, Amini MR, Sheikhhossein F, Akhgarjand C, Gholizadeh M, Askarpour M, Hekmatdoost A. The effects of purslane consumption on blood pressure, body weight, body mass index, and waist circumference: a systematic review and meta-analysis of randomised controlled. J Nutr Sci 2023; 12:e129. [PMID: 38155802 PMCID: PMC10753486 DOI: 10.1017/jns.2023.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
The effects of purslane consumption on anthropometric measurements and blood pressure have been studied in numerous experiments. However, the research findings conflict with one another. In order to assess the impact of purslane on weight, body mass index (BMI), waist circumference (WC), systolic blood pressure (SBP), and diastolic blood pressure (DBP), this meta-analysis was carried out. Up until February 2023, PubMed, Web of Science, Scopus, Google Scholar, and the reference lists of the identified pertinent randomised controlled trials (RCTs) were all searched. The random-effects model was used to calculate the effect size and then to describe it as a weighted mean difference (WMD) and 95 % confidence interval (CI) (CRD42023427955). The systematic review was able to incorporate seven RCTs. Meta-analysis showed that purslane significantly decreased body weight (WMD): -0⋅73 kg, 95 % confidence interval (CI): -1⋅37, -0⋅09, P=0⋅025), BMI (WMD: -0⋅35 kg/m2, 95 % CI: -0⋅64, -0⋅07, P=0⋅016), and SBP (WMD: -3⋅64 mmHg, 95 % CI: -6⋅42, -0⋅87, P = 0⋅01), and for WC, there was no discernible effect (WMD: -0⋅86 cm; 95 % CI, -1⋅80 to 0⋅07; P = 0⋅06) and DBP (WMD: -0⋅36 mmHg; 95 % CI, -1⋅75 to 1⋅03; P = 0⋅61). Purslane consumption, especially in participants with a BMI of <30, might play a role in decreasing SBP, body weight, BMI, and WC. Purslane consumption significantly reduced body weight, BMI, and SBP; however, WC and DBP did not experience a reduction. More investigation is needed to verify the impact of purslane consumption on anthropometric parameters and blood pressure.
Collapse
Affiliation(s)
- Behnaz Narimani
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Gholizadeh
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Wang QY, Zhang W, Zhao Y, Chen HL, Liu Q, Wang ZH, Zeng LT, Li J, Chen SJ, Wei L, Iwakuma T, Cai JP. Colonic L-cell impairment in aged subjects with type 2 diabetes leads to diminished GLP-1 production. Diabetes Metab Syndr 2023; 17:102907. [PMID: 37980723 DOI: 10.1016/j.dsx.2023.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
AIMS Glucagon-like peptide 1 (GLP-1) is produced by the L subtype of enteroendocrine cells (EECs). Patients with type 2 diabetes (T2D) exhibit reduced incretin effect, but the pathophysiology and functional change of the L-cells remain unclear. Deciphering the mechanisms of the biological changes in L-cells under T2D conditions may assist in the research of gut-based strategies for T2D therapy. METHODS We investigated the fasting serum GLP-1 levels and the distribution of colonic L-cells in young and aged participants with and without T2D. Additionally, we established an aged male T2D Wistar rat model subjected to a long-term high-fat and high-fructose (HFHF) diet. Histological investigations and single-cell RNA sequencing (scRNA-seq) analyses were performed to explore the mechanisms underlying functional changes in the colonic EECs. RESULTS We observed a decline in circulating GLP-1 levels and a reduced number of colonic L-cells in elderly patients with T2D. The mechanisms underlying impaired L-cell formation and disturbed GLP-1 production were revealed using aged T2D rats induced by a long-term HFHF diet. The scRNA-seq results showed that the transcription factors that regulate L-cell commitment, such as Foxa1, were downregulated, and the expression of genes that participate in encoding GLP-1, GLP-1 posttranslational processing, hormone secretion, and nutrient sensing was disturbed. CONCLUSIONS Taken together, the reduced L-cell lineage commitment and disturbed L-cell functions might be the major cause of the reduced GLP-1 production in aged populations with T2D. Our study provides new insights for identifying novel targets in colonic L-cells for improving endogenous GLP-1 production.
Collapse
Affiliation(s)
- Qing-Yu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Wei Zhang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Zhao
- Clinical Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Hui-Lian Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zi-Hui Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Si-Jie Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Tomoo Iwakuma
- Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
15
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
16
|
Kalinkova M, Kadiyska T, Handjieva-Darlenska T. Pharmacogenetics of Glucagon-like-peptide-1 receptor in diabetes management. PHARMACIA 2023; 70:383-390. [DOI: 10.3897/pharmacia.70.e104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder, primarily characterized by a decrease in insulin secretion and typically accompanied by insulin resistance. When untreated, T2DM is leading to an inevitable long-term complication. However, the novel treatment of T2DM like for example Glucagon-like Peptide-1 receptor agonists (GLP-1 RAs) give new perspectives for the patients to achieve a better glycemic control and additional metabolic improvements. Pharmacogenetics is a field in pharmacotherapy, which investigates the individual response to the medical treatment, according to polymorphic variations in the receptors of the drugs. This review aims to summarize current scientific evidence on the pharmacogenetics of the GLP-1 RA /liraglutide/ and the possible implementation in the treatment of T2D.
Collapse
|
17
|
Biancolin AD, Srikrishnaraj A, Jeong H, Martchenko A, Brubaker PL. The Cytoskeletal Transport Protein, Secretagogin, Is Essential for Diurnal Glucagon-like Peptide-1 Secretion in Mice. Endocrinology 2022; 163:6678475. [PMID: 36036556 DOI: 10.1210/endocr/bqac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L-cell incretin, glucagon-like peptide-1 (GLP-1), exhibits a circadian pattern of secretion, thereby entraining diurnal insulin release. Secretagogin (Scgn), an actin-binding regulatory protein, is essential for the temporal peak of GLP-1 secretion in vitro. To interrogate the role of Scgn in diurnal GLP-1 secretion in vivo, peak and trough GLP-1 release were evaluated in knockout mice (Scgn-/-, Gcg-CreERT2/+; Scgnfl/fl and Vil-CreERT2/+; Scgnfl/fl), and RNA sequencing (RNA-Seq) was conducted in Scgn knockdown L-cells. All 3 knockout models demonstrated loss of the diurnal rhythm of GLP-1 secretion in response to oral glucose. Gcg-CreERT2/+; Scgnfl/fl mice also lost the normal pattern in glucagon secretion, while Scgn-/- and Vil-CreERT2/+; Scgnfl/fl animals demonstrated impaired diurnal secretion of the related incretin, glucose-dependent insulinotrophic polypeptide. RNA-Seq of mGLUTag L-cells showed decreased pathways regulating vesicle transport, transport and binding, and protein-protein interaction at synapse, as well as pathways related to proteasome-mediated degradation including chaperone-mediated protein complex assembly following Scgn knockdown. Scgn is therefore essential for diurnal L-cell GLP-1 secretion in vivo, likely mediated through effects on secretory granule dynamics.
Collapse
Affiliation(s)
| | - Arjuna Srikrishnaraj
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hyerin Jeong
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Alexandre Martchenko
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Patricia Lee Brubaker
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
19
|
Holter MM, Phuong DJ, Lee I, Saikia M, Weikert L, Fountain S, Anderson ET, Fu Q, Zhang S, Sloop KW, Cummings BP. 14-3-3-zeta mediates GLP-1 receptor agonist action to alter α cell proglucagon processing. SCIENCE ADVANCES 2022; 8:eabn3773. [PMID: 35867787 PMCID: PMC9307243 DOI: 10.1126/sciadv.abn3773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Recent studies demonstrate that α cells contribute to glucose-stimulated insulin secretion (GSIS). Glucagon-like peptide-1 receptor (GLP-1R) agonists potently potentiate GSIS, making these drugs useful for diabetes treatment. However, the role of α and β cell paracrine interactions in the effects of GLP-1R agonists is undefined. We previously found that increased β cell GLP-1R signaling activates α cell GLP-1 expression. Here, we characterized the bidirectional paracrine cross-talk by which α and β cells communicate to mediate the effects of the GLP-1R agonist, liraglutide. We find that the effect of liraglutide to enhance GSIS is blunted by α cell ablation in male mice. Furthermore, the effect of β cell GLP-1R signaling to activate α cell GLP-1 is mediated by a secreted protein factor that is regulated by the signaling protein, 14-3-3-zeta, in mouse and human islets. These data refine our understanding of GLP-1 pharmacology and identify 14-3-3-zeta as a potential target to enhance α cell GLP-1 production.
Collapse
Affiliation(s)
- Marlena M. Holter
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Daryl J. Phuong
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Isaac Lee
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Mridusmita Saikia
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, NY, USA
| | - Lisa Weikert
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Samantha Fountain
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Elizabeth T. Anderson
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Kyle W. Sloop
- Diabetes and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Bethany P. Cummings
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
20
|
Pan L, Xu M, Wang Q, Zou X, Han Y, Zhou Z. Long-term drench of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 protects against type 1 diabetes of NOD mice via stimulating GLP-1 secretion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2023-2031. [PMID: 34558071 DOI: 10.1002/jsfa.11541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease that results in the specific destruction of insulin-producing beta cells in the pancreas. The aim of this study was to investigate the mechanism of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 (XG5 EPS) against type 1 diabetes. RESULTS Long-term drench of XG5 EPS delayed the onset of autoimmune diabetes and had fewer islets with high-grade infiltration (an insulitis score of 3 or 4) than untreated NOD mice. Oral administration of 50 mg kg-1 d-1 XG5 EPS increased the insulin and glucagon-like peptide-1 (GLP-1) levels of serum, stimulated GLP-1 secretion and upregulated gcg mRNA expression of colon in NOD mice. Moreover, oral administration of 50 mg kg-1 d-1 XG5 EPS significantly increased total short-chain fatty acids levels in the colon contents, especially those of acetic acid and butyric acid. In NCI-H716 cells, 500 and 1000 μmol L-1 sodium butyrate promoted the secretion of GLP-1 and upregulated the mRNA expression of gcg and PC3, while XG5 EPS and sodium acetate did not stimulate the GLP-1 secretion. Therefore, long-term drench of XG5 EPS delayed the onset of autoimmune diabetes, which may be directly correlated with the increase of butyrate in the colon of NOD mice. CONCLUSION Long-term drench of 50 mg kg-1 d-1 XG5 EPS promoted the expression and secretion of GLP-1 by increasing the production of butyric acid, thereby delaying T1D onset in NOD mice. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Qi Wang
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China
| |
Collapse
|
21
|
Yeo E, Brubaker PL, Sloboda DM. The intestine and the microbiota in maternal glucose homeostasis during pregnancy. J Endocrinol 2022; 253:R1-R19. [PMID: 35099411 PMCID: PMC8942339 DOI: 10.1530/joe-21-0354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
It is now well established that, beyond its role in nutrient processing and absorption, the intestine and its accompanying gut microbiome constitute a major site of immunological and endocrine regulation that mediates whole-body metabolism. Despite the growing field of host-microbe research, few studies explore what mechanisms govern this relationship in the context of pregnancy. During pregnancy, significant maternal metabolic adaptations are made to accommodate the additional energy demands of the developing fetus and to prevent adverse pregnancy outcomes. Recent data suggest that the maternal gut microbiota may play a role in these adaptations, but changes to maternal gut physiology and the underlying intestinal mechanisms remain unclear. In this review, we discuss selective aspects of intestinal physiology including the role of the incretin hormone, glucagon-like peptide 1 (GLP-1), and the role of the maternal gut microbiome in the maternal metabolic adaptations to pregnancy. Specifically, we discuss how bacterial components and metabolites could mediate the effects of the microbiota on host physiology, including nutrient absorption and GLP-1 secretion and action, and whether these mechanisms may change maternal insulin sensitivity and secretion during pregnancy. Finally, we discuss how these pathways could be altered in disease states during pregnancy including maternal obesity and diabetes.
Collapse
Affiliation(s)
- Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics, Gynecology and Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
22
|
Yang C, Zhang T, Tian Q, Cheng Y, Gebeyew K, Liu G, Tan Z, He Z. Supplementing Mannan Oligosaccharide Reduces the Passive Transfer of Immunoglobulin G and Improves Antioxidative Capacity, Immunity, and Intestinal Microbiota in Neonatal Goats. Front Microbiol 2022; 12:795081. [PMID: 35058910 PMCID: PMC8764366 DOI: 10.3389/fmicb.2021.795081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 01/23/2023] Open
Abstract
Successful establishment of passive immunity (PIT) and regulation of intestinal microbiota are crucial for ruminants to maintain body health and reduce the risk of disease during the neonatal period. Thus, the objective of this study was to investigate the effects of mannan oligosaccharide (MOS) supplementation on passive transfer of immunoglobulin G (IgG), serum inflammatory cytokines and antioxidant levels as well as bacteria composition in the ileal digesta. A total of 14 healthy neonatal Ganxi black goats with similar birth weight (BW: 2.35 ± 0.55 kg) were selected and allocated into two groups, only fed colostrum and milk replacer (CON, n = 7) and supplemented MOS (0.06% of birth BW) in the colostrum and milk replacer (MOS, n = 7). The results indicated that MOS supplementation significantly reduced (p < 0.05) serum IgG level at 3 and 6 h after colostrum feeding. Serum GLP-1 level of goats in the MOS group was significantly lower (p = 0.001) than that in the CON group. Goats in the MOS group had higher serum CAT and lower MDA level than those in the CON group (p < 0.05). Serum anti-inflammatory cytokine level of interleukin 4 (IL-4) was increased (p < 0.05), while pro-inflammatory cytokine IL-6 level was reduced (p < 0.05) in the MOS group when compared with the CON group. In addition, MOS supplementation remarkably increased (p < 0.05) the level of secretory IgA (sIgA) in the ileal digesta. Principal coordinate analysis of 16S rRNA sequence based on Brinary jaccard, Bray curtis, and weighted UniFrac distance of ileal microbiota showed a distinct microbial differentiation between the CON and MOS groups (p < 0.05). The relative abundance of Firmicutes in the MOS group was higher than that in the CON group, while the abundance of Verrucomicrobia was lower in the MOS group than that in the CON group at the phylum level (p < 0.05). The relative abundance of Proteobacteria tended to decrease (p = 0.078) in the MOS group at the phylum level. The results of LEfSe analysis showed that MOS group was characterized by a higher relative abundance of Lactobacillus, while the CON group was represented by a higher relative abundance of Akkermansia and Ruminiclostridium_5. Our findings demonstrated that MOS supplementation during the neonatal period increases antioxidant capacity and reduces the inflammatory response, and promotes IgA secretion and Lactobacillus colonization in the ileum. Thus, MOS induced positive effects are more pronounced in neonatal goats that might be an effective approach to maintain intestinal health and improve the surviving rate of neonatal ruminants.
Collapse
Affiliation(s)
- Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianxi Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quanhua Tian
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guowei Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Cen HH, Hussein B, Botezelli JD, Wang S, Zhang JA, Noursadeghi N, Jessen N, Rodrigues B, Timmons JA, Johnson JD. Human and mouse muscle transcriptomic analyses identify insulin receptor mRNA downregulation in hyperinsulinemia-associated insulin resistance. FASEB J 2022; 36:e22088. [PMID: 34921686 PMCID: PMC9255858 DOI: 10.1096/fj.202100497rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have demonstrated that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with INSR mRNA in skeletal muscle. To establish causality and study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 h, followed by 6 h of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin receptor (INSR) signaling, FOXO signaling, and glucose metabolism pathways indicative of 'hyperinsulinemia' and 'starvation' programs. Consistently, we observed that hyperinsulinemia led to a substantial reduction in Insr gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo. Bioinformatic modeling combined with RNAi identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.
Collapse
Affiliation(s)
- Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - José Diego Botezelli
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Su Wang
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiashuo Aaron Zhang
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nilou Noursadeghi
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - James A Timmons
- Augur Precision Medicine LTD, Stirling University Innovation Park, Stirling, Scotland.,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Anti-stress effects of the glucagon-like peptide-1 receptor agonist liraglutide in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110388. [PMID: 34147534 DOI: 10.1016/j.pnpbp.2021.110388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Stress-related disorders are extremely harmful and cause significant impacts on the individual and society. Despite the limited evidence regarding glucagon-like peptide-1 receptor (GLP-1R) and mental disorders, a few clinical and preclinical studies suggest that modulating this system could improve symptoms of stress-related disorders. This study aimed to investigate the effects of liraglutide, a GLP-1R agonist, on neurobehavioral phenotypes and brain oxidative status in adult zebrafish. Acute liraglutide promoted anxiolytic-like effects in the light/dark test, while chronic treatment blocked the impact of unpredictable chronic stress on behavioral and physiological parameters. Taken together, our study demonstrates that liraglutide is active on the zebrafish brain and may counteract some of the effects induced by stress. More studies are warranted to further elucidate the potential of GLP-1R agonists for the management of brain disorders.
Collapse
|
25
|
Le J, Ji H, Zhou X, Wei X, Chen Y, Fu Y, Ma Y, Han Q, Sun Y, Gao Y, Wu H. Pharmacology, Toxicology, and Metabolism of Sennoside A, A Medicinal Plant-Derived Natural Compound. Front Pharmacol 2021; 12:714586. [PMID: 34764866 PMCID: PMC8576406 DOI: 10.3389/fphar.2021.714586] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sennoside A (SA) is a natural dianthrone glycoside mainly from medicinal plants of Senna and Rhubarb, and used as a folk traditional irritant laxative and slimming health food. Accumulating evidences suggest that SA possesses numerous pharmacological properties, such as laxative, anti-obesity, hypoglycemic, hepatoprotective, anti-fibrotic, anti-inflammatory, anti-tumor, anti-bacterial, anti-fungal, anti-viral, and anti-neurodegenerative activities. These pharmacological effects lay the foundation for its potential application in treating a variety of diseases. However, numerous published studies suggest that a long-term use of SA in large doses may have some adverse effects, including the occurrence of melanosis coli and carcinogenesis of colon cancer, thereby limiting its clinical use. It remains to be established whether SA or its metabolites are responsible for the pharmacological and toxicity effects. In this review, the latest advances in the pharmacology, toxicology, and metabolism of SA were summarizedbased on its biological characteristics and mechanism.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Houlin Ji
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Zhou
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xindong Wei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Nanjing University of Chinese Medicine Affiliated 81st Hospital, Nanjing, China
| | - Yifan Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Fu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yongning Sun
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Cellular Immunity, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
26
|
Srivastava S, Singh PR. Oral Administration of Lactobacillus casei and Bifidobacterium bifidum Improves Glucagon like Peptide-1(GLP-1) and Glucose-Dependent Insulinotropic Polypeptide (GIP) Level in Streptozotocin Induced Diabetic Rats. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.2.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gut microbiome plays significant role in the function and integrity of the gastrointestinal tract. They also maintain immune homeostasis and host energy metabolism. The metabolic products of these intestinal microbes can alter carbohydrate metabolism, nutrient absorption and reduce appetite to promote healthy lifestyle. Intestinal disbiosis observed in metabolic disorders like obesity and diabetes. Restoration of dysbiosed gut microbiome through oral administration of probiotics that may have profound health effect in diabetes. In case of diabetes, reports postulated impaired level of incretin, therefore we explored the effect of oral administration of probiotic bacteria Lactobacillus casei NCDC 017 (LC017) and Bifidobacterium bifidum NCDC 231 (BB231) alone and in combination on secretion of incretin hormones such as glucagon like peptide-1 and glucose dependent insulinotropic polypeptide. Thirty six male Wistar rats were randomly divided into six groups and diabetes was induced by single dose of streptozotocin (50 mg/kg body weight) in experimental rats intraperitonially except a group of healthy rats. The diabetic rats were daily administered orally with single dose (~107cfu/ml) of LC017 and BB231 alone and in combination for 28 days. Also, one group of diabetic rats was treated with an anti-diabetic drug, acarbose (10mg/kg body weight) and used a standard control. The change in body weight, sucrose tolerance test, GLP-1, GIP level in serum and GLP-1 level in different part of intestine were observed. The results have shown reduction in body weight in diabetic rats as compared to non-diabetic rats but improved after treatment of probiotic bacteria. Administration of LC017 and BB231 significantly improved GLP-1 and GIP level which were initially impaired in diabetic rats and their combination significantly decreased glucose level in sucrose tolerance test. This study indicated that LC017 and BB231 have significant hypoglycaemic potential in diabetic rats by increasing GLP-1 and GIP level. These findings offered a base for the use of LC017 and BB231 for improvement and treatment of diabetes.
Collapse
Affiliation(s)
- Sumiran Srivastava
- 1Department of Biotechnology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Prof. Rambir Singh
- 2Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
27
|
Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf 2021; 20:5173-5196. [PMID: 34350681 DOI: 10.1111/1541-4337.12808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Dysregulated glucose metabolism is associated with many chronic diseases such as obesity and type 2 diabetes mellitus (T2DM), and strategies to restore and maintain glucose homeostasis are essential to health. The incretin hormone of glucagon-like peptide-1 (GLP-1) is known to play a critical role in regulating glucose homeostasis and dietary nutrients are the primary stimuli to the release of intestinal GLP-1. However, the GLP-1 producing enteroendocrine L-cells are mainly distributed in the distal region of the gastrointestinal tract where there are almost no nutrients to stimulate the secretion of GLP-1 under normal situations. Thus, a dietary strategy to sustain the release of GLP-1 was proposed, and the slow digestion property and dipeptidyl peptidase IV (DPP-IV) inhibitory activity of food components, approaches to reduce the rate of food digestion, and mechanisms to sustain the release of GLP-1 were reviewed. A slow digestion-oriented dietary approach through encapsulation of nutrients, incorporation of viscous dietary fibers, and enzyme inhibitors of phytochemicals in a designed whole food matrix will be implemented to efficiently reduce the digestion rate of food nutrients, potentiate their distal deposition and a sustained secretion of GLP-1, which will be beneficial to improved glucose homeostasis and health.
Collapse
Affiliation(s)
- Wangyan Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wang Ying
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Verbeure W, van Goor H, Mori H, van Beek AP, Tack J, van Dijk PR. The Role of Gasotransmitters in Gut Peptide Actions. Front Pharmacol 2021; 12:720703. [PMID: 34354597 PMCID: PMC8329365 DOI: 10.3389/fphar.2021.720703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
Although gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) receive a bad connotation; in low concentrations these play a major governing role in local and systemic blood flow, stomach acid release, smooth muscles relaxations, anti-inflammatory behavior, protective effect and more. Many of these physiological processes are upstream regulated by gut peptides, for instance gastrin, cholecystokinin, secretin, motilin, ghrelin, glucagon-like peptide 1 and 2. The relationship between gasotransmitters and gut hormones is poorly understood. In this review, we discuss the role of NO, CO and H2S on gut peptide release and functioning, and whether manipulation by gasotransmitter substrates or specific blockers leads to physiological alterations.
Collapse
Affiliation(s)
- Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Harry van Goor
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Hideki Mori
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - André P. van Beek
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Peter R. van Dijk
- Departement of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
29
|
Wang J, Liu S, Ma J, Piao X. Changes in Growth Performance and Ileal Microbiota Composition by Xylanase Supplementation in Broilers Fed Wheat-Based Diets. Front Microbiol 2021; 12:706396. [PMID: 34335542 PMCID: PMC8319766 DOI: 10.3389/fmicb.2021.706396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Xylanase exerts key roles in improving growth performance and intestinal health of broilers fed wheat-based diets. However, knowledge is limited regarding effects of xylanase supplementation on ileal microbiota in broilers. A total of 128 one-day-old broilers (initial BW 48.03 ± 0.33 g) were selected to investigate effects of xylanase (AT-xynA) on growth performance, ileal morphology, microbiota composition, immune response, antioxidant capacity, and endocrine peptide levels in broilers. Broilers were randomly allotted into two dietary treatments (n = 8), namely, a wheat-soybean basal diet and a basal diet with 4,000 U/kg AT-xynA (XY). On days 7, 14, 21, and 42, broilers were weighted and ileal tissues were sampled. Ileal digesta samples were collected for analyzing microbiota composition on days 21 and 42. The results showed that AT-xynA could improve average daily weight gain and average daily feed intake, and there were interactions between diet and age of broilers (p < 0.05). On days 21 and 42, xylanase supplementation decreased ileal microbiota α-diversity, and the relative abundance of potentially pathogenic microbiota, such as phylum Proteobacteria, family Moraxellaceae and Staphylococcaceae, genus Staphylococcus, Pseudomonas, Streptococcus, and Enterococcus, increased the abundance of Lactobacillus (p < 0.05). Moreover, the reduction in acetate concentration and abundance of short-chain fatty acid-producing bacteria was also observed in broilers from XY group (p < 0.05). AT-xynA increased ileal villus height, glucagon-like peptide-1, and insulin-like growth factor-1 concentrations and decreased interleukin-1β, interleukin-6, tumor necrosis factor-α, and malondialdehyde content in broilers, and these positive effects on intestinal health were greater in young broilers. In conclusion, xylanase supplementation to wheat-based diets could improve ileal intestinal morphology and immune function, and alleviate excess fermentation of bacteria, which may be related to changes of intestinal microbiota. In addition, the positive effects of xylanase on intestinal health were more pronounced in young broilers, thus contributing to subsequent improvement in growth performance of broilers.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Brierley DI, de Lartigue G. Reappraising the role of the vagus nerve in GLP-1-mediated regulation of eating. Br J Pharmacol 2021; 179:584-599. [PMID: 34185884 PMCID: PMC8714868 DOI: 10.1111/bph.15603] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Here, we provide a focused review of the evidence for the roles of the vagus nerve in mediating the regulatory effects of peripherally and centrally produced GLP-1 on eating behaviour and energy balance. We particularly focus on recent studies which have used selective genetic, viral, and transcriptomic approaches to provide important insights into the anatomical and functional organisation of GLP-1-mediated gut-brain signalling pathways. A number of these studies have challenged canonical ideas of how GLP-1 acts in the periphery and the brain to regulate eating behaviour, with important implications for the development of pharmacological treatments for obesity.
Collapse
Affiliation(s)
- Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Guillaume de Lartigue
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Tomotaki S, Araki R, Motokura K, Tomobe Y, Yamauchi T, Hanaoka S, Tomotaki H, Iwanaga K, Niwa F, Takita J, Kawai M. Effects of passage through the digestive tract on incretin secretion: Before and after birth. J Diabetes Investig 2021; 12:970-977. [PMID: 33095973 PMCID: PMC8169361 DOI: 10.1111/jdi.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022] Open
Abstract
AIMS/INTRODUCTION It was reported that fetuses secrete endogenous incretin; however, the stimulants of fetal incretin secretion are not fully understood. To investigate the association between the passage of amniotic fluid through the intestinal tract and fetal secretion of incretin, we analyzed umbilical cord incretin levels of infants with duodenum atresia. MATERIALS AND METHODS Infants born from July 2017 to July 2019 (infants with duodenum atresia and normal term or preterm infants) were enrolled. We measured and compared the concentrations of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide/glucose-dependent insulinotropic polypeptide (GIP) in the umbilical vein and preprandial blood samples after birth. RESULTS A total of 98 infants (47 term, 46 preterm and 5 with duodenum atresia) were included. In patients with duodenum atresia, umbilical vein GLP-1 and GIP levels were the same as those in normal infants. In postnatal samples, there were positive correlations between the amount of enteral feeding and preprandial serum concentrations of GLP-1 (r = 0.47) or GIP (r = 0.49). CONCLUSIONS Our results show that enteral feeding is important for secretion of GLP-1 and GIP in postnatal infants, whereas the passage of amniotic fluid is not important for fetal secretion of GLP-1 and GIP. The effect of ingested material passing through the digestive tract on incretin secretion might change before and after birth. Other factors might stimulate secretion of GLP-1 and GIP during the fetal period.
Collapse
Affiliation(s)
- Seiichi Tomotaki
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryosuke Araki
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kouji Motokura
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yutaro Tomobe
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takeru Yamauchi
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Shintaro Hanaoka
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroko Tomotaki
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kougoro Iwanaga
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Fusako Niwa
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Junko Takita
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Masahiko Kawai
- Department of PediatricsGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
32
|
Gilijamse PW, Demirkiran A, van Wagensveld BA, Ackermans MT, Romijn JA, Nieuwdorp M, Ter Horst KW, Serlie MJ. The relation between postprandial glucagon-like peptide-1 release and insulin sensitivity before and after bariatric surgery in humans with class II/III obesity. Surg Obes Relat Dis 2021; 17:1440-1448. [PMID: 34083134 DOI: 10.1016/j.soard.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/31/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) receptor agonist treatment is beneficial for the human glucose metabolism, and GLP-1 secretion is greatly enhanced following Roux-en-Y gastric bypass (RYGB). OBJECTIVES To elucidate the relationship between GLP-1 concentrations and insulin sensitivity in subjects with class II/III obesity without diabetes and to assess the relation between GLP-1 and the improvements in glucose metabolism following RYGB. SETTING Clinical research facility in a university hospital. METHODS We recruited 35 patients scheduled for RYGB and assessed their plasma GLP-1, insulin, and glucose responses to a high-fat mixed meal. Basal and insulin-mediated glucose fluxes were determined during a 2-step hyperinsulinemic-euglycemic clamp with stable isotope-labeled tracers. Out of 35 subjects, 10 were studied both before surgery and at 1 year of follow-up. RESULTS Plasma GLP-1 increased following the high-fat mixed meal. Postprandial GLP-1 excursions correlated positively with hepatic and peripheral insulin sensitivity, but not with body mass index. At 1 year after RYGB, participants had lost 24% ± 6% of their body weight. Plasma GLP-1, insulin, and glucose levels peaked earlier and higher after the mixed meal. The positive association between the postprandial GLP-1 response and peripheral insulin sensitivity persisted. CONCLUSIONS Postprandial GLP-1 concentrations correlate with insulin sensitivity in subjects with class II/III obesity without diabetes before and 1 year after RYGB. Increased GLP-1 signaling in postbariatric patients may, directly or indirectly, contribute to the observed improvements in insulin sensitivity and metabolic health.
Collapse
Affiliation(s)
- Pim W Gilijamse
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ahmet Demirkiran
- Department of Surgery, Red Cross Hospital, Beverwijk, The Netherlands
| | | | - Mariette T Ackermans
- Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes A Romijn
- Department of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Stinson SE, Jonsson AE, Lund MAV, Frithioff-Bøjsøe C, Aas Holm L, Pedersen O, Ängquist L, Sørensen TIA, Holst JJ, Christiansen M, Holm JC, Hartmann B, Hansen T. Fasting Plasma GLP-1 Is Associated With Overweight/Obesity and Cardiometabolic Risk Factors in Children and Adolescents. J Clin Endocrinol Metab 2021; 106:1718-1727. [PMID: 33596309 PMCID: PMC8118577 DOI: 10.1210/clinem/dgab098] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT The importance of fasting glucagon-like peptide-1 (GLP-1) in altered metabolic outcomes has been questioned. OBJECTIVE This work aimed to assess whether fasting GLP-1 differs in children and adolescents with overweight/obesity compared to a population-based reference, and whether concentrations predict cardiometabolic risk (CMR) factors. METHODS Analyses were based on The Danish Childhood Obesity Data- and Biobank, a cross-sectional study including children and adolescents, aged 6 to 19 years, from an obesity clinic group (n = 1978) and from a population-based group (n = 2334). Fasting concentrations of plasma total GLP-1 and quantitative CMR factors were assessed. The effects of GLP-1 as a predictor of CMR risk outcomes were examined by multiple linear and logistic regression modeling. RESULTS The obesity clinic group had higher fasting GLP-1 concentrations (median 3.3 pmol/L; interquartile range, 2.3-4.3 pmol/L) than the population-based group (2.8 pmol/L; interquartile range, 2.1-3.8 pmol/L; P < 2.2E-16). Body mass index SD score (SDS), waist circumference, and total body fat percentage were significant predictors of fasting GLP-1 concentrations in boys and girls. Fasting GLP-1 concentrations were positively associated with homeostasis model assessment of insulin resistance, fasting values of insulin, high-sensitivity C-reactive protein, C-peptide, triglycerides, alanine transaminase (ALT), glycated hemoglobin A1c, and SDS of diastolic and systolic blood pressure. A 1-SD increase in fasting GLP-1 was associated with an increased risk of insulin resistance (odds ratio [OR] 1.59), dyslipidemia (OR 1.16), increased ALT (OR 1.14), hyperglycemia (OR 1.12) and hypertension (OR 1.12). CONCLUSION Overweight/obesity in children and adolescents is associated with increased fasting plasma total GLP-1 concentrations, which was predictive of higher CMR factors.
Collapse
Affiliation(s)
- Sara E Stinson
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Anna E Jonsson
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Morten A V Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Christine Frithioff-Bøjsøe
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Louise Aas Holm
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Lars Ängquist
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Thorkild I A Sørensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jens J Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen S, Denmark
| | - Jens-Christian Holm
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Pediatrics, Copenhagen University Hospital Holbæk, Holbæk, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Bolette Hartmann
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
- Correspondence: Torben Hansen, MD, PhD, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
34
|
Cremonini E, Daveri E, Mastaloudis A, Oteiza PI. (-)-Epicatechin and Anthocyanins Modulate GLP-1 Metabolism: Evidence from C57BL/6J Mice and GLUTag Cells. J Nutr 2021; 151:1497-1506. [PMID: 33693759 PMCID: PMC8659349 DOI: 10.1093/jn/nxab029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Generated in intestinal L cells through cleavage of proglucagon (Gcg), glucagon-like peptide 1 (GLP-1) is secreted and rapidly inactivated by dipeptidyl peptidase IV (DPP-IV). GLP-1 regulates insulin secretion and overall glucose homeostasis. The capacity of dietary bioactives to increase GLP-1 circulating levels, and therefore increase insulin secretion and glucose metabolism, has gained significant interest of late. OBJECTIVES We evaluated the effects of (-)-epicatechin (EC) and different anthocyanins (ACs) and AC metabolites on GLP-1 metabolism in mice and on GLUTag cells. METHODS We fed 6-week-old C57BL/6J male mice a control diet or a control diet supplemented with either 40 mg AC or 20 mg EC/kg body weight for 14 weeks (AC) or 15 weeks (EC). Intestinal mRNA levels of Gcg and Dpp-iv were measured. In vitro, GLUTag cells were incubated in the presence or absence of different ACs, the AC metabolite protocatechuic acid (PCA), and EC. GLP-1 secretion and the main pathways involved in its release were assessed. RESULTS Long-term supplementation with EC or AC increased mouse GLP-1 plasma concentrations (55% and 98%, respectively; P < 0.05). In mice, 1) EC and AC increased Gcg mRNA levels in the ileum (91%) and colon (41%), respectively (P < 0.05); and 2) AC lowered ileum Dpp-iv mRNA levels (35%), while EC decreased plasma DPP-IV activity (15%; P < 0.05). In GLUTag cells, 1) cyanidin, delphinidin, PCA, and EC increased GLP-1 secretion (53%, 33%, 53%, and 68%, respectively; P < 0.05); and 2) cyanidin, delphinidin, EC, and PCA increased cyclin adenosine monophosphate levels (25-50%; P < 0.05) and activated protein kinase A (PKA; 100%, 50%, 80%, and 86%, respectively; P < 0.05). CONCLUSIONS In mice, EC and ACs regulated different steps in GLP-1 regulation, leading to increased plasma GLP-1. Cyanidin, delphinidin, PCA, and EC promoted GLP-1 secretion from GLUTag cells by activating the PKA-dependent pathway. These findings support the beneficial actions of these flavonoids in sustaining intestinal and glucose homeostasis through the modulation of the GLP-1 metabolism.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Nutrition and of Environmental Toxicology, University of California, Davis, CA, USA
| | - Elena Daveri
- Department of Nutrition and of Environmental Toxicology, University of California, Davis, CA, USA
| | | | | |
Collapse
|
35
|
Lewis PL, Wells JM. Engineering-inspired approaches to study β-cell function and diabetes. Stem Cells 2021; 39:522-535. [PMID: 33497522 DOI: 10.1002/stem.3340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Strategies to mitigate the pathologies from diabetes range from simply administering insulin to prescribing complex drug/biologic regimens combined with lifestyle changes. There is a substantial effort to better understand β-cell physiology during diabetes pathogenesis as a means to develop improved therapies. The convergence of multiple fields ranging from developmental biology to microfluidic engineering has led to the development of new experimental systems to better study complex aspects of diabetes and β-cell biology. Here we discuss the available insulin-secreting cell types used in research, ranging from primary human β-cells, to cell lines, to pluripotent stem cell-derived β-like cells. Each of these sources possess inherent strengths and weaknesses pertinent to specific applications, especially in the context of engineered platforms. We then outline how insulin-expressing cells have been used in engineered platforms and how recent advances allow for better mimicry of in vivo conditions. Chief among these conditions are β-cell interactions with other endocrine organs. This facet is beginning to be thoroughly addressed by the organ-on-a-chip community, but holds enormous potential in the development of novel diabetes therapeutics. Furthermore, high throughput strategies focused on studying β-cell biology, improving β-cell differentiation, or proliferation have led to enormous contributions in the field and will no doubt be instrumental in bringing new diabetes therapeutics to the clinic.
Collapse
Affiliation(s)
- Phillip L Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
36
|
Hong JH, Kim DH, Lee MK. Glucolipotoxicity and GLP-1 secretion. BMJ Open Diabetes Res Care 2021; 9:9/1/e001905. [PMID: 33627316 PMCID: PMC7908300 DOI: 10.1136/bmjdrc-2020-001905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and/or fatty acid levels. RESEARCH DESIGN AND METHODS To investigate the effects of chronic glucolipotoxicity on glucagon-like peptide-1-(7-36) amide (GLP-1) secretion, we generated glucolipotoxic conditions in human NCI-H716 enteroendocrine cells using either 5 or 25 mM glucose with or without 500 µM palmitate for 72 hours. For in vivo study, we have established a chronic nutrient infusion model in the rat. Serial blood samples were collected for 2 hours after the consumption of a mixed meal to evaluate insulin sensitivity and β-cell function. RESULTS Chronic glucolipotoxic conditions decreased GLP-1 secretion and the expressions of pCREB, pGSK3β, β-catenin, and TCF7L2 in NCI-H716 cells. Glucolipotoxicity conditions reduced glucose transporter expression, glucose uptake, and nicotinamide-adenine dinucleotide phosphate (NADPH) levels in L-cells, and increased triglyceride accumulation. In contrast, PPARα and ATP levels were reduced, which correlated well with decreased levels of SUR1 and Kir6.2, cAMP contents and expressions of pCAMK2, EPAC and PKA. We also observed an increase in reactive oxygen species production, UCP2 expression and Complex I activity. Simultaneous treatment with insulin restored the GLP-1 secretion. Glucolipotoxic conditions decreased insulin secretion in a time-dependent manner in INS-1 cells, which was recovered with exendin-4 cotreatment. Glucose and SMOFlipid infusion for 6 hours decreased GLP-1 secretion and proglucagon mRNA levels as well as impaired the glucose tolerance, insulin and C-peptide secretion in rats. CONCLUSION These results provide evidence for the first time that glucolipotoxicity could affect GLP-1 secretion through changes in glucose and lipid metabolism, gene expressions, and proglucagon biosynthesis and suggest the interrelationship between glucolipotoxicities of L-cells and β-cells which develops earlier than that of L-cells.
Collapse
Affiliation(s)
- Jung-Hee Hong
- Division of Endocrinology & Metabolism, Samsung Biomedical Research Institute, Seoul, South Korea
| | - Dae-Hee Kim
- Division of Cell Therapy, Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Moon-Kyu Lee
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Uijungbu Eulji Medical Center, Eulji University School of Medicine, Uijungbu, South Korea
| |
Collapse
|
37
|
Idrovo JP, Shults JA, Curtis BJ, Chen MM, Kovacs EJ. Alcohol Intoxication and the Postburn Gastrointestinal Hormonal Response. J Burn Care Res 2020; 40:785-791. [PMID: 31102437 DOI: 10.1093/jbcr/irz083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastrointestinal hormones are essential in postburn metabolism. Since near 50% of burn victims test positive for blood alcohol levels at hospital admission and have inferior outcomes compared to nonintoxicated burn patients; we hypothesized that the gastrointestinal hormone secretion is compromised in intoxicated burn victims. To test our theory, we quantified gastrointestinal hormones serum levels in a combine ethanol intoxication and burn injury mouse model. Thus, mice received a daily dose of ethanol for 3 days, rested 4 days, and were given ethanol 3 additional days. Mice underwent 15% TBSA scald burn 30 minutes after their last ethanol dose. Serum samples were collected 24 hours after burn injury. Nonintoxicated burned mice exhibited an increase in glucose, insulin, ghrelin, plasminogen activator inhibitor-1, leptin, and resistin by 1.4-, 3-, 13.5-, 6.2-, 9.4-, and 2.4-fold, respectively, compared to sham vehicle mice (P < .05). Burn injury also reduced serum gastric inhibitory polypeptide (GIP) by 32% compared to sham-injured, vehicle-treated mice. Leptin, resistin, glucagon-like peptide-1, as well as insulin, were not different from sham groups when intoxication preceded burn injury. Nevertheless, in burned mice treated with ethanol, gastric inhibitory polypeptide and glucagon serum levels exhibited a significant fold increase of 3.5 and 4.7, respectively. With these results, we conclude that 24 hours after burn injury, mice developed significant changes in gastrointestinal hormones, along with hyperglycemia. Moreover, the combined insult of burn and ethanol intoxication led to additional hormonal changes that may be attributed to a potential pancreatic dysfunction. Further multiday studies are required to investigate the etiology, behavior, and clinical significance of these hormonal changes.
Collapse
Affiliation(s)
- Juan-Pablo Idrovo
- Division of GI, Trauma and Endocrine Surgery, Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado, Denver, Aurora, Colorado
| | - Jill A Shults
- Department of Surgery, Alcohol Research Program, Loyola University Chicago, Maywood, Illinois
| | - Brenda J Curtis
- Division of GI, Trauma and Endocrine Surgery, Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado, Denver, Aurora, Colorado
| | - Michael M Chen
- Department of Surgery, Loyola University Chicago, Maywood, Illinois
| | - Elizabeth J Kovacs
- Division of GI, Trauma and Endocrine Surgery, Department of Surgery, Burn Research and Alcohol Research Programs, University of Colorado, Denver, Aurora, Colorado
| |
Collapse
|
38
|
Campbell JR, Martchenko A, Sweeney ME, Maalouf MF, Psichas A, Gribble FM, Reimann F, Brubaker PL. Essential Role of Syntaxin-Binding Protein-1 in the Regulation of Glucagon-Like Peptide-1 Secretion. Endocrinology 2020; 161:5788420. [PMID: 32141504 PMCID: PMC7124137 DOI: 10.1210/endocr/bqaa039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Circadian secretion of the incretin, glucagon-like peptide-1 (GLP-1), correlates with expression of the core clock gene, Bmal1, in the intestinal L-cell. Several SNARE proteins known to be circadian in pancreatic α- and β-cells are also necessary for GLP-1 secretion. However, the role of the accessory SNARE, Syntaxin binding protein-1 (Stxbp1; also known as Munc18-1) in the L-cell is unknown. The aim of this study was to determine whether Stxbp1 is under circadian regulation in the L-cell and its role in the control of GLP-1 secretion. Stxbp1 was highly-enriched in L-cells, and STXBP1 was expressed in a subpopulation of L-cells in mouse and human intestinal sections. Stxbp1 transcripts and protein displayed circadian patterns in mGLUTag L-cells line, while chromatin-immunoprecipitation revealed increased interaction between BMAL1 and Stxbp1 at the peak time-point of the circadian pattern. STXBP1 recruitment to the cytosol and plasma membrane within 30 minutes of L-cell stimulation was also observed at this time-point. Loss of Stxbp1 in vitro and in vivo led to reduced stimulated GLP-1 secretion at the peak time-point of circadian release, and impaired GLP-1 secretion ex vivo. In conclusion, Stxbp1 is a circadian regulated exocytotic protein in the intestinal L-cell that is an essential regulatory component of GLP-1 secretion.
Collapse
Affiliation(s)
| | | | - Maegan E Sweeney
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael F Maalouf
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
| | - Arianna Psichas
- Departments of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fiona M Gribble
- Departments of Medicine, University of Toronto, Toronto, ON, Canada
| | - Frank Reimann
- Departments of Medicine, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Departments of Physiology, University of Toronto, Toronto, ON, Canada
- Wellcome Trust-MRC Institute of Metabolic Science – Metabolic Research Laboratories (IMS-MRL), University of Cambridge, Cambridge, UK
- Correspondence: P.L. Brubaker, Rm. 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8. E-mail:
| |
Collapse
|
39
|
Abstract
The discovery that glucagon-like peptide 1 (GLP-1) mediates a significant proportion of the incretin effect during the postprandial period and the subsequent observation that GLP-1 bioactivity is retained in type 2 diabetes (T2D) led to new therapeutic strategies being developed for T2D treatment based on GLP-1 action. Although owing to its short half-life exogenous GLP-1 has no use therapeutically, GLP-1 mimetics, which have a much longer half-life than native GLP-1, have proven to be effective for T2D treatment since they prolong the incretin effect in patients. These GLP-1 mimetics are a desirable therapeutic option for T2D since they do not provoke hypoglycaemia or weight gain and have simple modes of administration and monitoring. Additionally, over more recent years, GLP-1 action has been found to mediate systemic physiological beneficial effects and this has high clinical relevance due to the post-diagnosis complications of T2D. Indeed, recent studies have found that certain GLP-1 analogue therapies improve the cardiovascular outcomes for people with diabetes. Furthermore, GLP-1-based therapies may enable new therapeutic strategies for diseases that can also arise independently of the clinical manifestation of T2D, such as dementia and Parkinson's disease. GLP-1 functions by binding to its receptor (GLP-1R), which expresses mainly in pancreatic islet beta cells. A better understanding of the mechanisms and signalling pathways by which acute and chronic GLP-1R activation alleviates disease phenotypes and induces desirable physiological responses during healthy conditions will likely lead to the development of new therapeutic GLP-1 mimetic-based therapies, which improve prognosis to a greater extent than current therapies for an array of diseases.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Stephen C. Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | | |
Collapse
|
40
|
Higgins V, Asgari S, Hamilton JK, Wolska A, Remaley AT, Hartmann B, Holst JJ, Adeli K. Postprandial Dyslipidemia, Hyperinsulinemia, and Impaired Gut Peptides/Bile Acids in Adolescents with Obesity. J Clin Endocrinol Metab 2020; 105:dgz261. [PMID: 31825485 PMCID: PMC7065844 DOI: 10.1210/clinem/dgz261] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND With increased rates of obesity and insulin resistance in youth, development of postprandial dyslipidemia, an important cardiovascular disease risk factor, is a concern. Glucagon-like peptides (ie, GLP-1 and GLP-2) and bile acids have been shown to regulate dietary fat absorption and postprandial lipids in animal models and humans. We hypothesize that the physiological response of GLPs and bile acids to dietary fat ingestion is impaired in adolescents with obesity and this associates with marked postprandial dyslipidemia and insulin resistance. METHODS In this cross-sectional study, normal weight adolescents and adolescents with obesity underwent a 6-hour oral fat tolerance test. The postprandial lipoprotein phenotype profile was determined using various assays, including nuclear magnetic resonance spectroscopy, to characterize lipoprotein particle number, size, lipid content, and apolipoproteins. GLP-1 and GLP-2 were quantified by electrochemiluminescent immunoassays. Total bile acids were measured by an automated enzymatic cycling colorimetric method and the bile acid profile by mass spectrometry. RESULTS Adolescents with obesity exhibited fasting and postprandial dyslipidemia, particularly augmented postprandial excursion of large triglyceride-rich lipoproteins. Postprandial GLPs were reduced and inversely correlated with postprandial dyslipidemia and insulin resistance. Postprandial bile acids were also diminished, particularly lithocholic acid, a potent stimulator of GLP-1 secretion. CONCLUSION Blunted postprandial GLP and bile acid response to dietary fat ingestion strongly associates with marked postprandial dyslipidemia. Further investigation is needed to assess their potential utility as early biomarkers for postprandial dyslipidemia in adolescents with obesity.
Collapse
Affiliation(s)
- Victoria Higgins
- Molecular Medicine and Pediatric Laboratory Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shervin Asgari
- Molecular Medicine and Pediatric Laboratory Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jill K Hamilton
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Anna Wolska
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Khosrow Adeli
- Molecular Medicine and Pediatric Laboratory Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
|
42
|
Farokhnia M, McDiarmid GR, Newmeyer MN, Munjal V, Abulseoud OA, Huestis MA, Leggio L. Effects of oral, smoked, and vaporized cannabis on endocrine pathways related to appetite and metabolism: a randomized, double-blind, placebo-controlled, human laboratory study. Transl Psychiatry 2020; 10:71. [PMID: 32075958 PMCID: PMC7031261 DOI: 10.1038/s41398-020-0756-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
As perspectives on cannabis continue to shift, understanding the physiological and behavioral effects of cannabis use is of paramount importance. Previous data suggest that cannabis use influences food intake, appetite, and metabolism, yet human research in this regard remains scant. The present study investigated the effects of cannabis administration, via different routes, on peripheral concentrations of appetitive and metabolic hormones in a sample of cannabis users. This was a randomized, crossover, double-blind, placebo-controlled study. Twenty participants underwent four experimental sessions during which oral cannabis, smoked cannabis, vaporized cannabis, or placebo was administered. Active compounds contained 6.9 ± 0.95% (~50.6 mg) ∆9-tetrahydrocannabinol (THC). Repeated blood samples were obtained, and the following endocrine markers were measured: total ghrelin, acyl-ghrelin, leptin, glucagon-like peptide-1 (GLP-1), and insulin. Results showed a significant drug main effect (p = 0.001), as well as a significant drug × time-point interaction effect (p = 0.01) on insulin. The spike in blood insulin concentrations observed under the placebo condition (probably due to the intake of brownie) was blunted by cannabis administration. A significant drug main effect (p = 0.001), as well as a trend-level drug × time-point interaction effect (p = 0.08) was also detected for GLP-1, suggesting that GLP-1 concentrations were lower under cannabis, compared to the placebo condition. Finally, a significant drug main effect (p = 0.01) was found for total ghrelin, suggesting that total ghrelin concentrations during the oral cannabis session were higher than the smoked and vaporized cannabis sessions. In conclusion, cannabis administration in this study modulated blood concentrations of some appetitive and metabolic hormones, chiefly insulin, in cannabis users. Understanding the mechanisms underpinning these effects may provide additional information on the cross-talk between cannabinoids and physiological pathways related to appetite and metabolism.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD USA ,grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Gray R. McDiarmid
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA
| | - Matthew N. Newmeyer
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA ,grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Vikas Munjal
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA
| | - Osama A. Abulseoud
- grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Marilyn A. Huestis
- grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA ,grid.265008.90000 0001 2166 5843Lambert Center for the Study of Medicinal Cannabis and Hemp, Thomas Jefferson University, Philadelphia, PA USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA. .,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA. .,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA. .,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
43
|
Rubio C, Puerto M, García-Rodríquez JJ, Lu VB, García-Martínez I, Alén R, Sanmartín-Salinas P, Toledo-Lobo MV, Saiz J, Ruperez J, Barbas C, Menchén L, Gribble FM, Reimann F, Guijarro LG, Carrascosa JM, Valverde ÁM. Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice. Mol Metab 2020; 35:100954. [PMID: 32244182 PMCID: PMC7082558 DOI: 10.1016/j.molmet.2020.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Non-alcoholic steatohepatitis (NASH) is characterized by a robust pro-inflammatory component at both hepatic and systemic levels together with a disease-specific gut microbiome signature. Protein tyrosine phosphatase 1 B (PTP1B) plays distinct roles in non-immune and immune cells, in the latter inhibiting pro-inflammatory signaling cascades. In this study, we have explored the role of PTP1B in the composition of gut microbiota and gut barrier dynamics in methionine and choline-deficient (MCD) diet-induced NASH in mice. METHODS Gut features and barrier permeability were characterized in wild-type (PTP1B WT) and PTP1B-deficient knockout (PTP1B KO) mice fed a chow or methionine/choline-deficient (MCD) diet for 4 weeks. The impact of inflammation was studied in intestinal epithelial and enteroendocrine cells. The secretion of GLP-1 was evaluated in primary colonic cultures and plasma of mice. RESULTS We found that a shift in the gut microbiota shape, disruption of gut barrier function, higher levels of serum bile acids, and decreased circulating glucagon-like peptide (GLP)-1 are features during NASH. Surprisingly, despite the pro-inflammatory phenotype of global PTP1B-deficient mice, they were partly protected against the alterations in gut microbiota composition during NASH and presented better gut barrier integrity and less permeability under this pathological condition. These effects concurred with higher colonic mucosal inflammation, decreased serum bile acids, and protection against the decrease in circulating GLP-1 levels during NASH compared with their WT counterparts together with increased expression of GLP-2-sensitive genes in the gut. At the molecular level, stimulation of enteroendocrine STC-1 cells with a pro-inflammatory conditioned medium (CM) from lipopolysaccharide (LPS)-stimulated macrophages triggered pro-inflammatory signaling cascades that were further exacerbated by a PTP1B inhibitor. Likewise, the pro-inflammatory CM induced GLP-1 secretion in primary colonic cultures, an effect augmented by PTP1B inhibition. CONCLUSION Altogether our results have unraveled a potential role of PTP1B in the gut-liver axis during NASH, likely mediated by increased sensitivity to GLPs, with potential therapeutic value.
Collapse
Affiliation(s)
- Carmen Rubio
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain; Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Marta Puerto
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBERHED), ISCIII, Madrid, Spain
| | - Juan J García-Rodríquez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Van B Lu
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Irma García-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Rosa Alén
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | | | - M Val Toledo-Lobo
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Jorge Saiz
- CEMBIO, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Coral Barbas
- CEMBIO, Universidad San Pablo-CEU, Madrid, Spain
| | - Luis Menchén
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBERHED), ISCIII, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Fiona M Gribble
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Luis G Guijarro
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Jose M Carrascosa
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
44
|
Ma L, Cao X, Ye X, Ye J, Sun Y. Sennoside A Induces GLP-1 Secretion Through Activation of the ERK1/2 Pathway in L-Cells. Diabetes Metab Syndr Obes 2020; 13:1407-1415. [PMID: 32425572 PMCID: PMC7196792 DOI: 10.2147/dmso.s247251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/07/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Glucagon-like peptide-1 (GLP-1) is secreted from the intestinal L-cells to stimulate insulin secretion in the blood glucose control. Our previous study indicates that Sennoside A (SA) can increase the plasma GLP-1 level in a mouse model of type 2 diabetes. However, the mechanism of SA activity remains largely unknown. This issue was explored in this study. MATERIALS AND METHODS C57BL/6 mice were randomly divided into four groups: a control group without drug treatment, and the other groups with different SA dosages, respectively. Blood glucose was assayed by oral glucose tolerance test (OGTT). Plasma GLP-1 and insulin were investigated. Colon tissues were collected for mRNA or Western blot analysis. Immunofluorescence staining assays were performed to evaluate the number of β-cells and L-cells. In NCI-H716 cells, extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors were employed to investigate the SA-induced GLP-1 secretion mechanism. RESULTS In this work, the SA was found to improve OGTT in mice. Plasma GLP-1 and insulin were markedly elevated by SA at the dosage of 45 mg/kg/day. Meanwhile, the increased phosphorylation status of EKR1/2 and prohormone convertase 1/3 (PC1/3) proteins were observed in the colon of SA-treated mice. The number of L-cells exhibited no change in each group. In the NCI-H716 cells, GLP-1 secretion induced by SA was blocked by the ERK1/2 inhibitor. CONCLUSION The present study provides a direct evidence for the interaction between SA and L cells for induction of GLP-1 secretion. These data suggest that GLP-1 secretion induced by SA is dependent on the ERK1/2 signaling pathway. Therefore, the SA is a new drug candidate for the type 2 diabetes treatment by induction of GLP-1 secretion.
Collapse
Affiliation(s)
- Li Ma
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai200233, People’s Republic of China
| | - Xinyu Cao
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai201306, People’s Republic of China
| | - Xiaotong Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai201306, People’s Republic of China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai201306, People’s Republic of China
| | - Yongning Sun
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai200233, People’s Republic of China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai200071, People’s Republic of China
- Correspondence: Yongning Sun; Jianping Ye Tel +86-18930177579; +86-13818929364 Email ;
| |
Collapse
|
45
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1102] [Impact Index Per Article: 183.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
46
|
Alli-Oluwafuyi AM, Luis PB, Nakashima F, Giménez-Bastida JA, Presley SH, Duvernay MT, Iwalewa EO, Schneider C. Curcumin induces secretion of glucagon-like peptide-1 through an oxidation-dependent mechanism. Biochimie 2019; 165:250-257. [PMID: 31470039 DOI: 10.1016/j.biochi.2019.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Curcumin shows antiglycemic effects in animals. Curcumin is chemically unstable at physiological pH, and its oxidative degradation products were shown to contribute to its anti-inflammatory effects. Since the degradation products may also contribute to other effects, we analyzed their role in the antiglycemic activity of curcumin. We quantified curcumin-induced release of glucagon-like peptide 1 (GLP-1) from mouse STC-1 cells that represent enteroendocrine L-cells as a major source of this anti-diabetic hormone. Curcumin induced secretion of GLP-1 in a dose-dependent manner. Two chemically stable analogues of curcumin that do not readily undergo degradation, were less active while two unstable analogues were active secretagogues. Chromatographically isolated spiroepoxide, an unstable oxidative metabolite of curcumin with anti-inflammatory activity, also induced secretion of GLP-1. Stable compounds like the final oxidative metabolite bicyclopentadione, and the major plasma metabolite, curcumin-glucuronide, were inactive. GLP-1 secretion induced by curcumin and its oxidative degradation products was associated with activation of PKC, ERK, and CaM kinase II. Since activity largely correlated with instability of curcumin and the analogues, we tested the extent of covalent binding to proteins in STC-1 cells and found it occurred with similar affinity as N-ethylmaleimide, indicating covalent binding occurred with nucleophilic cysteine residues. These results suggest that oxidative metabolites of curcumin are involved in the antiglycemic effects of curcumin. Our findings support the hypothesis that curcumin functions as a pro-drug requiring oxidative activation to reveal its bioactive metabolites that act by binding to target proteins thereby causing a change in function.
Collapse
Affiliation(s)
- Abdul-Musawwir Alli-Oluwafuyi
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA; Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Paula B Luis
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Fumie Nakashima
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Juan A Giménez-Bastida
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Sai Han Presley
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Matthew T Duvernay
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| | - Ezekiel O Iwalewa
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Claus Schneider
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA.
| |
Collapse
|
47
|
O'Brien R, Buckley MM, Kelliher A, O'Malley D. PI 3-kinase- and ERK-MAPK-dependent mechanisms underlie Glucagon-Like Peptide-1-mediated activation of Sprague Dawley colonic myenteric neurons. Neurogastroenterol Motil 2019; 31:e13631. [PMID: 31121089 DOI: 10.1111/nmo.13631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glucagon-like peptide (GLP-1) can modify colonic function, with beneficial effects reported in the functional bowel disorder, irritable bowel syndrome (IBS). IBS pathophysiology is characterized by hyper-activation of the hypothalamic-pituitary-adrenal stress axis and altered microbial profiles. This study aims to characterize the neuronal and functional effects of GLP-1 in healthy rat colons to aid understanding of its beneficial effects in moderating bowel dysfunction. METHODS Immunofluorescent and calcium imaging of myenteric neurons prepared from Sprague Dawley rat colons was carried out to elucidate the neuromodulatory actions of the GLP-1 receptor agonist, exendin-4 (Ex-4). Colonic contractile activity was assessed using organ bath physiological recordings. KEY RESULTS Ex-4 induced an elevation of intracellular calcium arising from store release and influx via voltage-gated calcium channels. Ex-4 activated both ERK-MAPK and PI 3-kinase signaling cascades. Neuronal activation was found to underlie suppression of contractile activity in colonic circular muscle. Although the stress hormone, corticotropin-releasing factor (CRF) potentiated the neuronal response to Ex-4, and the functional effects of Ex-4 on colonic circular muscle activity were not altered. CONCLUSIONS AND INFERENCES Ex-4 evoked neurally regulated suppression of rat colonic circular muscle activity. In myenteric neurons, the neurostimulatory effects of Ex-4 were dependent upon activation of PI 3-kinase and ERK-MAPK signaling cascades. No further change in circular muscle function was noted in the presence of CRF suggesting that stress does not impact on colonic function in health. Further studies in a model of IBS are needed to determine whether mechanisms are modified in the context of bowel dysfunction.
Collapse
Affiliation(s)
- Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Amy Kelliher
- Department of Physiology, University College Cork, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Role of glucagon-like peptides in inflammatory bowel diseases-current knowledge and future perspectives. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1321-1330. [PMID: 31359088 DOI: 10.1007/s00210-019-01698-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic, relapsing, intestinal inflammatory disorders with complex and yet unrevealed pathogenesis in which genetic, immunological, and environmental factors play a role. Nowadays, a higher proportion of elderly IBD patients with coexisting conditions, such as cardiovascular disease and/or diabetes is recorded, who require more complex treatment and became a great challenge for gastroenterologists. Furthermore, some patients do not respond to anti-IBD therapy. These facts, together with increasing comorbidities in patients with IBD, imply that urgent, more complex, novel therapeutic strategies in the treatment are needed. Glucagon-like peptides (GLPs) possess numerous functions in the human body such as lowering blood glucose level, controlling body weight, inhibiting gastric emptying, reducing food ingestion, increasing crypt cell proliferation, and improving intestinal growth and nutrient absorption. Thus, GLPs and dipeptidyl peptidase IV (DPP-IV) inhibitors have recently gained attention in IBD research. Several animal models showed that treatment with GLPs may lead to improvement of colitis. This review presents data on the multitude effects of GLPs in the inflammatory intestinal diseases and summarizes the current knowledge on GLPs, which have the potential to become a novel therapeutic option in IBD therapy.
Collapse
|
49
|
Lee SP, Kuo FY, Cheng JT, Wu MC. Thymoquinone activates imidazoline receptor to enhance glucagon-like peptide-1 secretion in diabetic rats. Arch Med Sci 2019; 19:209-215. [PMID: 36817688 PMCID: PMC9897103 DOI: 10.5114/aoms.2019.86938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Thymoquinone (TQ) is one of the principal bioactive ingredients proven to exhibit anti-diabetic effects. Recently, glucagon-like peptide-1 (GLP-1) has been found to be involved in antidiabetic effects in rats. The aim of this study was to evaluate the mediation of GLP-1 in the antidiabetic effect of TQ and to understand the possible mechanisms. MATERIAL AND METHODS NCI-H716 cells and CHO-K1 cells were used to investigate the effects of TQ on GLP-1 secretion in vitro. In type 1 diabetic rats, the changes in plasma glucose and GLP-1 levels were evaluated with TQ treatment. RESULTS The direct effect of TQ on imidazoline receptors (I-Rs) was identified in CHO-K1 cells overexpressing I-Rs. Additionally, in the intestinal NCI-H716 cells that may secrete GLP-1, TQ treatment enhanced GLP-1 secretion in a dose-dependent manner. However, these effects of TQ were reduced by ablation of I-Rs with siRNA in NCI-H716 cells. Moreover, these effects were inhibited by BU224, the imidazoline I2 receptor (I-2R) antagonist. In diabetic rats, TQ increased plasma GLP-1 levels, which were inhibited by BU-224 treatment. Functionally, TQ-attenuated hyperglycemia is also evidenced through GLP-1 using pharmacological manipulations. CONCLUSIONS This report demonstrates that TQ may promote GLP-1 secretion through I-R activation to reduce hyperglycemia in type-1 diabetic rats.
Collapse
Affiliation(s)
- Shu Ping Lee
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Neipu Township, Pingtung County, Taiwan
| | - Feng Yu Kuo
- Cardiovascular Center, Kaohsiung Veterans General Hospital, Kaohsiung City, Zuoying District, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan City, Yongkang District, Taiwan
| | - Ming Chang Wu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Neipu Township, Pingtung County, Taiwan
| |
Collapse
|
50
|
3-Deoxyglucosone interferes with insulin signaling and attenuates insulin action on glucose-induced GLP-1 secretion in the enteroendocrine L cell line STC-1. Mol Biol Rep 2019; 46:4799-4808. [PMID: 31228040 DOI: 10.1007/s11033-019-04926-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Maintenance of glucose homeostasis is reciprocally regulated by insulin and glucagon-like peptide-1 (GLP-1). We previously reported that GLP-1 secretion in response to an oral glucose load was impaired following an administration of 3-deoxyglucosone (3DG), an independent factor associated with the development of pre-diabetes. Here we investigated the effects of 3DG on insulin signaling and insulin-induced GLP-1 secretion under high-glucose conditions in the enteroendocrine L cell line STC-1. STC-1 cells were exposed to 3DG (80, 300, and 1000 ng/ml) in the presence of 10-7 M insulin and 25 mM glucose. GLP-1 secretion was determined by ELISA, glucose uptake was monitored with 2-NBDG (2-(N(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose), glucose consumption was detected by glucoseoxidase, and protein expression of insulin signaling molecules was examined by western blot. Results showed a decrease in insulin-induced GLP-1 secretion and insulin receptor phosphorylation after 3DG treatment. Concomitantly, 3DG treatment inhibited insulin-induced phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway activation. In the presence, but not absence, of insulin, 3DG treatment decreased insulin-stimulated glucose consumption. Inhibition of PI3K with Wortmannin attenuated insulin-induced increment in glucose transporter 2 (GLUT2) expression and 2-NBDG uptake. Accordingly, insulin-induced increase in GLUT2 expression and 2-NBGD uptake was significantly inhibited by 3DG treatment. 3DG-mediated reduction in GLUT2 expression contributes to the attenuation of insulin-induced GLP-1 secretion under high-glucose conditions in part through the insulin-PI3K/Akt/GLUT2 pathway in STC-1 cells. We conclude that 3DG interferes with insulin signaling and attenuates insulin action on glucose-induced GLP-1 secretion in STC-1 cells.
Collapse
|