1
|
Liu S, Meng M, Huang C, He L, Wang P, Tang Z, Ran X, Gao H, Guo Y, He Y, Chen J, Hu H, He S, Zhao Y, Hou Z, Li L, Li W, Wang W, Wang X. Umbilical Cord Mesenchymal Stem Cells Attenuate Podocyte Injury in Diabetic Nephropathy Rats by Inhibiting Angpltl4/Integrin β3 in the Glomerulus. J Diabetes Res 2025; 2025:6683126. [PMID: 40256245 PMCID: PMC12008490 DOI: 10.1155/jdr/6683126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
In this study, we investigated the therapeutic effects and mechanisms of umbilical cord mesenchymal stem cells (UCMSCs) in diabetic nephropathy (DN) ZDF (FA/FA) rats. The therapeutic effects were assessed by renal function tests, the urinary albumin-creatinine ratio, PAS staining, electron microscopy, and TGF-β1 expression in renal tissue. Subsequently, podocyte injury in renal tissue was detected by immunofluorescence staining for podocin. To further explore the underlying mechanism, serum Angptl4 levels were measured, and Angptl4, integrin β3, fibronectin, and podocin levels in renal tissue were analysed by Western blotting. In vitro, podocytes are stimulated with high glucose and then treated with UCMSCs, and podocyte activity and the expression of synaptopodin, Angptl4, and integrin β3 were observed. UCMSC significantly improve renal function, pathological injury, and podocyte injury in the ZDF (FA/FA) rats. Western blot revealed increased expression of Angptl4, integrin β3, and fibronectin in renal tissues of the DN group, and UCMSC treatment significantly downregulated those proteins. However, UCMSC showed no effects on serum Angptl4 concentration. Podocin expression in renal tissues was significantly restored by UCMSC treatment. In vitro, podocyte activity was decreased after high glucose stimulation and improved by UCMSC treatment. UCMSC restored the expression of synaptopodin, and Angptl4 and downstream integrin β3 were also inhibited. Our study suggested that UCMSC therapy could improve renal function and renal pathological changes in ZDF (FA/FA) rats. In addition, inhibition of the Angptl4/integrin β3 pathway is the potential mechanism by which UCMSC attenuates podocyte injury in the DN model.
Collapse
Affiliation(s)
- Shiyuan Liu
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Mingyao Meng
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Chunkai Huang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Lijia He
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Pu Wang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Zhe Tang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Xi Ran
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hui Gao
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Yangfan Guo
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Yan He
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Jian Chen
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Haiyan Hu
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Shan He
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Yiyi Zhao
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Zongliu Hou
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Lin Li
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Wenhong Li
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Wenju Wang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| | - Xiaodan Wang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, China
- Yunnan stem cell Clinical transformation Engineering Research Center, Kunming, China
| |
Collapse
|
2
|
Xu J, Li M, Jiang X, Wang Y, Ma H, Zhou Y, Tian M, Liu Y. Omentin-1 and diabetes: more evidence but far from enough. Arch Physiol Biochem 2024; 130:599-605. [PMID: 37395595 DOI: 10.1080/13813455.2023.2230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
AIMS AND BACKGROUND Omentin-1 (oment-1) is a type of adipokines that is mainly expressed in visceral fat tissue. Based on accumulating evidence, oment-1 is closely related to diabetes and its complications. However, so far data about oment-1 and diabetes is fragmented. In this review, we focus on the role of oment-1 on diabetes, including its possible signalling pathways, the correlation of circulating omens-1 levels with diabetes and its complications. METHODS The web of PubMed was searched for articles of relevant studies published until February, 2023. RESULTS AND CONCLUSIONS Oment-1 might exert its effects by inhibiting the NF-κB pathway and activating the Akt and AMPK-dependent pathways. The level of circulating oment-1 is negatively correlated with the occurrence of type 2 diabetes and some complications, including diabetic vascular disease, cardiomyopathy, and retinopathy, which can be affected by anti-diabetic therapies. Oment-1 could be a promising marker for screening and targeted therapy for diabetes and its complications; however, more studies are still needed.
Collapse
Affiliation(s)
- Jing Xu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuling Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang City, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
4
|
Wu Y, Mo J, Liang J, Pu X, Dong Y, Zhu X, Zhao H, Qiu H, Wu S, Lu T. Multiomic study of the protective mechanism of Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross against streptozotocin-induced diabetic nephropathy in Guizhou miniature pigs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155499. [PMID: 38492367 DOI: 10.1016/j.phymed.2024.155499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross (P. capitata, PCB), a traditional drug of the Miao people in China, is potential traditional drug used for the treatment of diabetic nephropathy (DN). PURPOSE The purpose of this study is to investigate the function of P. capitata and clarify its protective mechanism against DN. METHODS We induced DN in the Guizhou miniature pig with injections of streptozotocin, and P. capitata was added to the pigs' diet to treat DN. In week 16, all the animals were slaughtered, samples were collected, and the relative DN indices were measured. 16S rRNA sequencing, metagenomics, metabolomics, RNA sequencing, and proteomics were used to explore the protective mechanism of P. capitata against DN. RESULTS Dietary supplementation with P. capitata significantly reduced the extent of the disease, not only in term of the relative disease indices but also in hematoxylin-eosin-stained tissues. A multiomic analysis showed that two microbes (Clostridium baratii and Escherichia coli), five metabolites (oleic acid, linoleic acid, 4-phenylbutyric acid, 18-β-glycyrrhetinic acid, and ergosterol peroxide), four proteins (ENTPD5, EPHX1, ARVCF and TREH), four important mRNAs (encoding ENTPD5, EPHX1, ARVCF, and TREH), six lncRNAs (TCONS_00024194, TCONS_00085825, TCONS_00006937, TCONS_00070981, TCONS_00074099, and TCONS_00097913), and two circRNAs (novel_circ_0001514 and novel_circ_0017507) are all involved in the protective mechanism of P. capitata against DN. CONCLUSIONS Our results provide multidimensional theoretical support for the study and application of P. capitata.
Collapse
Affiliation(s)
- Yanjun Wu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Jiayuan Mo
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Xiang Pu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Yuanqiu Dong
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Xiang Zhu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Hai Zhao
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Huaming Qiu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Shuguang Wu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China
| | - Taofeng Lu
- Guizhou University of Traditional Chinese Medicine, Dongqing road, Guiyang, Guizhou 550025, China.
| |
Collapse
|
5
|
Zhao Y, Niu M, Jia Y, Yuan J, Xiang L, Dai X, Wang G, Chen H. Establishment of type 2 diabetes mellitus models using streptozotocin after 3 months high-fat diet in Bama minipigs. Anim Biotechnol 2023; 34:2295-2312. [PMID: 35749713 DOI: 10.1080/10495398.2022.2088548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the past twenty years, the number of adults with diabetes has tripled. Most studies have been conducted using rodent models of type 2 diabetes mellitus (T2DM), and the developed drugs have low clinical conversion efficiency. Therefore, it is urgent to establish a more human-like large animal model to explore T2DM pathogenesis and formulate new disease prevention and control strategies. This study was designed to establish and validate a T2DM model using minipigs fed a high-fat or high-cholesterol/high-fat diet and injected with low-dose streptozotocin (STZ). We examined the influence of the STZ injection timing with a diet high in fat (HFD) compared with one high in cholesterol and fat (HCFD) on the atherosclerotic lesions accelerated by T2DM. Male Bama minipigs (n = 24) were randomly divided into five groups. The control group was fed a normal diet for 9 months. The STZ + HFD and STZ + HCFD groups were infused with 90 mg/kg STZ and then fed a high-fat diet or high-cholesterol and high-fat diet for 9 months, respectively. The HFD + STZ and HCFD + STZ groups were fed a high-fat diet or a high-cholesterol and high-fat diet, respectively, for 9 months (after 3 months, these pigs were injected intravenously with 90 mg/kg STZ). During the induction period, animal body weight, BMI, and serum GLU, INS, TG, TC, HDL-C, LDL-C, FFA, ALT, AST, CRE, and BUN were detected monthly intervals. IVGTT and insulin release tests were performed at 3-month intervals. At the end of the test, the coronary artery and abdominal aorta were examined by computed tomography and pathological observations, and the thickness of the basement membrane of the capillary of the retina and kidney glomerulus was measured under a transmission electron microscope. The serum glucose concentrations were normal in all groups except the HFD + STZ and HCFD + STZ groups. Animals fed an HFD for 9 months did not develop apparent atherosclerotic lesions, but atherosclerotic lesions were seen in the animals fed an HCFD. Hyperglycemia accelerated the formation of atherosclerotic lesions on the intimal surface of the abdominal aorta. Low-dose STZ after 3 months of HFD or HCFD successfully established a T2DM model in minipigs. The HFD did not induce apparent atherosclerotic lesions, but these were seen with the HCFD. Hyperglycemia accelerated atherosclerosis in the minipigs.
Collapse
Affiliation(s)
- Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Yunxiao Jia
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Guisheng Wang
- Radiology Department of No. 3 Clinical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Alkhaleq HA, Karram T, Fokra A, Hamoud S, Kabala A, Abassi Z. The Protective Pathways Activated in Kidneys of αMUPA Transgenic Mice Following Ischemia\Reperfusion-Induced Acute Kidney Injury. Cells 2023; 12:2497. [PMID: 37887341 PMCID: PMC10605904 DOI: 10.3390/cells12202497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the high prevalence of acute kidney injury (AKI), the therapeutic approaches for AKI are disappointing. This deficiency stems from the poor understanding of the pathogenesis of AKI. Recent studies demonstrate that αMUPA, alpha murine urokinase-type plasminogen activator (uPA) transgenic mice, display a cardioprotective pathway following myocardial ischemia. We hypothesize that these mice also possess protective renal pathways. Male and female αMUPA mice and their wild type were subjected to 30 min of bilateral ischemic AKI. Blood samples and kidneys were harvested 48 h following AKI for biomarkers of kidney function, renal injury, inflammatory response, and intracellular pathways sensing or responding to AKI. αMUPA mice, especially females, exhibited attenuated renal damage in response to AKI, as was evident from lower SCr and BUN, normal renal histology, and attenuated expression of NGAL and KIM-1. Notably, αMUPA females did not show a significant change in renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Moreover, αMUPA female mice exhibited the lowest levels of renal apoptotic and autophagy markers during normal conditions and following AKI. αMUPA mice, especially the females, showed remarkable expression of PGC1α and eNOS following AKI. Furthermore, MUPA mice showed a significant elevation in renal leptin expression before and following AKI. Pretreatment of αMUPA with leptin-neutralizing antibodies prior to AKI abolished their resistance to AKI. Collectively, the kidneys of αMUPA mice, especially those of females, are less susceptible to ischemic I/R injury compared to WT mice, and this is due to nephroprotective actions mediated by the upregulation of leptin, eNOS, ACE2, and PGC1α along with impaired inflammatory, fibrotic, and autophagy processes.
Collapse
Affiliation(s)
- Heba Abd Alkhaleq
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Ahmad Fokra
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Shadi Hamoud
- Internal Medicine, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
- Laboratory Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
7
|
Hu Q, Saleem K, Pandey J, Charania AN, Zhou Y, He C. Cell Adhesion Molecules in Fibrotic Diseases. Biomedicines 2023; 11:1995. [PMID: 37509634 PMCID: PMC10377070 DOI: 10.3390/biomedicines11071995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanisms underlying the pathogenesis of tissue fibrosis remain incompletely understood. Emerging evidence suggests that cell adhesion molecules (CAMs) are critical in fibrotic progression in many organs, including lung, kidney, skin, and liver. CAMs promote cell-cell and cell-extracellular matrix (ECM) interactions to maintain tissue architecture and normal function in homeostasis. However, dysregulated expression and function of CAMs can lead to chronic inflammation and tissue fibrosis. The major families of CAMs include integrins, cadherins, selectins, and immunoglobulins. Here, we review the role of the CAMs in fibrosis development across various organs with a focus on integrins and cadherins, and discuss their respective roles in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qianjiang Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Komal Saleem
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jyotsana Pandey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arzoo N. Charania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Christoffersen BØ, Kristensen CA, Lindgaard R, Kirk RK, Viuff BM, Kvist PH, Pedersen HD, Ludvigsen TP, Skovgaard T, Fels JJ, Martinussen T, Christiansen LB, Cirera S, Olsen LH. Functional and morphological renal changes in a Göttingen Minipig model of obesity-related and diabetic nephropathy. Sci Rep 2023; 13:6017. [PMID: 37045950 PMCID: PMC10097698 DOI: 10.1038/s41598-023-32674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Obesity-related glomerulopathy and diabetic nephropathy (DN) are serious complications to metabolic syndrome and diabetes. The purpose was to study effects of a fat, fructose and cholesterol-rich (FFC) diet with and without salt in order to induce hypertension on kidney function and morphology in Göttingen Minipigs with and without diabetes. Male Göttingen Minipigs were divided into 4 groups: SD (standard diet, n = 8), FFC (FFC diet, n = 16), FFC-DIA (FFC diet + diabetes, n = 14), FFC-DIA + S (FFC diet with extra salt + diabetes, n = 14). Blood and urine biomarkers, glomerular filtration rate (GFR), blood pressure (BP) and resistive index (RI) were evaluated after 6-7 months (T1) and 12-13 months (T2). Histology, electron microscopy and gene expression (excluding FFC-DIA + S) were evaluated at T2. All groups fed FFC-diet displayed obesity, increased GFR and RI, glomerulomegaly, mesangial expansion (ME) and glomerular basement membrane (GBM) thickening. Diabetes on top of FFC diet led to increased plasma glucose and urea and proteinuria and tended to exacerbate the glomerulomegaly, ME and GBM thickening. Four genes (CDKN1A, NPHS2, ACE, SLC2A1) were significantly deregulated in FFC and/or FFC-DIA compared to SD. No effects on BP were observed. Göttingen Minipigs fed FFC diet displayed some of the renal early changes seen in human obesity. Presence of diabetes on top of FFC diet exacerbated the findings and lead to changes resembling the early phases of human DN.
Collapse
Affiliation(s)
| | - Camilla Aarup Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- AJ Vaccines A/S, Copenhagen S, Denmark
| | - Rikke Lindgaard
- Novo Nordisk A/S, Måløv, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- AniCura ApS, Herlev, Denmark
| | | | | | | | | | | | - Tine Skovgaard
- Novo Nordisk A/S, Måløv, Denmark
- Unilabs, Copenhagen, Denmark
| | | | - Torben Martinussen
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte Bruun Christiansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Novo Nordisk A/S, Søborg, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
9
|
Integrin β1/Cell Surface GRP78 Complex Regulates TGFβ1 and Its Profibrotic Effects in Response to High Glucose. Biomedicines 2022; 10:biomedicines10092247. [PMID: 36140347 PMCID: PMC9496450 DOI: 10.3390/biomedicines10092247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide. Characterized by overproduction and accumulation of extracellular matrix (ECM) proteins, glomerular sclerosis is its earliest manifestation. High glucose (HG) plays a central role by increasing matrix production by glomerular mesangial cells (MC). We previously showed that HG induces translocation of GRP78 from the endoplasmic reticulum to the cell surface (csGRP78), where it acts as a signaling molecule to promote intracellular profibrotic FAK/Akt activation. Here, we identify integrin β1 as a key transmembrane signaling partner for csGRP78. We show that it is required for csGRP78-regulated FAK/Akt activation in response to HG, as well as downstream production, secretion and activity of the well characterized profibrotic cytokine transforming growth factor β1 (TGFβ1). Intriguingly, integrin β1 also itself promotes csGRP78 translocation. Furthermore, integrin β1 effects on cytoskeletal organization are not required for its function in csGRP78 translocation and signaling. These data together support an important pathologic role for csGRP78/integrin β1 in mediating key profibrotic responses to HG in kidney cells. Inhibition of their interaction will be further evaluated as a therapeutic target to limit fibrosis progression in DKD.
Collapse
|
10
|
Veron D, Aggarwal PK, Li Q, Moeckel G, Kashgarian M, Tufro A. Podocyte VEGF-A Knockdown Induces Diffuse Glomerulosclerosis in Diabetic and in eNOS Knockout Mice. Front Pharmacol 2022; 12:788886. [PMID: 35280251 PMCID: PMC8906751 DOI: 10.3389/fphar.2021.788886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor-a (VEGF-A) and nitric oxide (NO) are essential for glomerular filtration barrier homeostasis, and are dysregulated in diabetic kidney disease (DKD). While NO availability is consistently low in diabetes, both high and low VEGF-A have been reported in patients with DKD. Here we examined the effect of inducible podocyte VEGF-A knockdown (VEGFKD) in diabetic mice and in endothelial nitric oxide synthase knockout mice (eNOS−/−). Diabetes was induced with streptozotocin using the Animal Models of Diabetic Complications Consortium (AMDCC) protocol. Induction of podocyte VEGFKD led to diffuse glomerulosclerosis, foot process effacement, and GBM thickening in both diabetic mice with intact eNOS and in non-diabetic eNOS−/−:VEGFKD mice. VEGFKD diabetic mice developed mild proteinuria and maintained normal glomerular filtration rate (GFR), associated with extremely high NO and thiol urinary excretion. In eNOS−/−:VEGFKD (+dox) mice severe diffuse glomerulosclerosis was associated with microaneurisms, arteriolar hyalinosis, massive proteinuria, and renal failure. Collectively, data indicate that combined podocyte VEGF-A and eNOS deficiency result in diffuse glomerulosclerosis in mice; compensatory NO and thiol generation prevents severe proteinuria and GFR loss in VEGFKD diabetic mice with intact eNOS, whereas VEGFKD induction in eNOS−/−:VEGFKD mice causes massive proteinuria and renal failure mimicking DKD in the absence of diabetes. Mechanistically, we identify VEGFKD-induced abnormal S-nitrosylation of specific proteins, including β3-integrin, laminin, and S-nitrosoglutathione reductase (GSNOR), as targetable molecular mechanisms involved in the development of advanced diffuse glomerulosclerosis and renal failure.
Collapse
Affiliation(s)
- Delma Veron
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States
| | - Pardeep K Aggarwal
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States
| | - Qi Li
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States.,Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Alda Tufro
- Department of Pediatrics, Yale University School of Medicine, Malvern, PA, United States.,Department of Cell and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Lupușoru G, Ailincăi I, Sorohan BM, Andronesi A, Achim C, Micu G, Caragheorgheopol A, Manda D, Lupușoru M, Ismail G. Serum soluble urokinase plasminogen activator receptor as a potential biomarker of renal impairment severity in diabetic nephropathy. Diabetes Res Clin Pract 2021; 182:109116. [PMID: 34728182 DOI: 10.1016/j.diabres.2021.109116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
AIMS To investigate serum soluble form of urokinase-type plasminogen activator receptor (suPAR) in patients with diabetic kidney disease (DKD) and biopsy-proven diabetic nephropathy (DN), its correlation with histological parameters and its capacity as a biomarker for renal impairment severity. METHODS We conducted a cross-sectional study on 75 patients with diabetes mellitus (DM) and DKD, among whom 28 had biopsy-proven DN. RESULTS Among the 75 patients, 9 (12%) had type 1 and 66 (88%) type 2 DM. The median value of the serum suPAR level was 2857.2 pg/mL (1916.4-3700) in the entire cohort and 2472.1 pg/mL (1782.6-3745.8) in the biopsy-proven DN subgroup, respectively. suPAR was significantly correlated with diabetes duration, diabetic retinopathy, anti-proteinuric treatment, albuminuria, kidney function, DN class, interstitial fibrosis and tubular atrophy (IFTA) score and with interstitial inflammation score. suPAR had a good accuracy for the association with chronic kidney disease (CKD) stages G3b-5, macroalbuminuria, DN class IV, IFTA score 3 and interstitial inflammation score 2. CONCLUSIONS Serum suPAR was increased in DN patients and was associated with DM duration, diabetic retinopathy, renoprotective treatment, kidney function, proteinuria, DN class, IFTA and interstitial inflammation scores. Also, suPAR had a good capacity as a biomarker for advanced renal impairment and severe histological lesions of DN.
Collapse
Affiliation(s)
- Gabriela Lupușoru
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Ioana Ailincăi
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Bogdan Marian Sorohan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania.
| | - Andreea Andronesi
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Camelia Achim
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Georgia Micu
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Andra Caragheorgheopol
- Research Department, "C.I.Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Dana Manda
- Research Department, "C.I.Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Mircea Lupușoru
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gener Ismail
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
12
|
Chen CA, Chang JM, Chen HC, Chang EE. Generation of endoplasmic reticulum stress-dependent reactive oxygen species mediates TGF-β1-induced podocyte migration. J Biochem 2021; 171:305-314. [PMID: 34993544 DOI: 10.1093/jb/mvab128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Podocyte migration results in proteinuria and glomerulonephropathy. Transforming growth factor-β1 (TGF-β1), endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) can mediate podocyte migration; however, the crosstalk between them is unclear. ThisGraphical Abstract study determined the relationships between these factors. ER stress biomarkers (GRP78, p-eIF2α or CHOP), intracellular ROS generation, integrin-β3 and cell adhesion and migration were studied in a treatment of experiment using TGF-β1 with and without the ER stress inhibitors: 4-phenylbutyric acid (4-PBA, a chemical chaperone), salubrinal (an eIF2α dephosphorylation inhibitor) and N-acetylcysteine (NAC, an antioxidant). ER stress biomarkers (p-eIF2α/eIF2α and GRP78), ROS generation and intergrin-β3 expression increased after TGF-β1 treatment. NAC down-regulated the expression of GRP78 after TGF-β1 treatment. 4-PBA attenuated TGF-β1-induced p-eIF2α/eIF2α, CHOP, ROS generation and intergrin-β3 expression. However, salubrinal did not inhibit TGF-β1-induced p-eIF2α/eIF2α, CHOP, ROS generation or integrin-β3 expression. NAC abrogated TGF-β1-induced integrin-β3 expression. At 24 h after treatment with TGF-β1, podocyte adhesion and migration increased. Furthermore, NAC, 4-PBA and an anti-interin-β3 antibody attenuated TGF-β1-induced podocyte adhesion and migration. This study demonstrated that TGF-β1-induced ER stress potentiates the generation of intracellular ROS to a high degree through the PERK/eIF2α/CHOP pathway. This intracellular ROS then mediates integrin-β3 expression, which regulates podocyte migration.
Collapse
Affiliation(s)
- Chien-An Chen
- Department of Nephrology, Tainan Sinlau Hospital, Tainan 701, Taiwan.,Department of Health Care Administration, College of Health Discipline, Chang Jung Christian University, Tainan 711, Taiwan
| | - Jer-Ming Chang
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Chun Chen
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Eddy-Essen Chang
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Qin Y, Qiao Y, Wang D, Yan G, Tang C, Ma G. The Predictive Value of Soluble Urokinase-Type Plasminogen Activator Receptor in Contrast-Induced Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention. Int J Gen Med 2021; 14:6497-6504. [PMID: 34675617 PMCID: PMC8504866 DOI: 10.2147/ijgm.s339075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/01/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Soluble urokinase-type plasminogen activator receptor (SuPAR) is a circulating protein and a novel identified promising biomarker for various renal diseases and kidney injury. However, it remains unknown on the predictive value of suPAR in contrast induced acute kidney injury (CI-AKI) in patients undergoing percutaneous coronary intervention (PCI). Methods A total of 399 patients undergoing PCI were enrolled in the research from June 2020 to June 2021 in Zhongda Hospital. Patients were divided into CI-AKI and non-CI-AKI groups according to the preoperative and postoperative serum creatinine levels. Plasma suPAR level was detected through enzyme-linked immunosorbent assay on admission. Demographic data, hematological parameters, coronary angiography data and medications were recorded and compared between CI-AKI and non-CI-AKI groups. Logistic regression analysis and receiver operator characteristic (ROC) curve analysis were performed for identifying the independent risk factors of CI-AKI and assessment of the predictive value of suPAR for CI-AKI. Results CI-AKI occurred in 65 (16.3%) patients undergoing PCI. The level of suPAR in CI-AKI group was significantly higher than that in the non-CI-AKI group. Multivariate logistic regression indicated diabetes, lower LVEF, lower hydration rate, lower baseline eGFR, higher plasma suPAR (OR = 2.875, 95% CI = 2.038–3.672, P < 0.001) and volume of contrast media were all independent risk factors for CI-AKI after adjustment of the confounding factors. ROC analysis illustrated that the optimal area under the curve was 0.765, indicating plasma suPAR was a splendid predictor for CI-AKI. The corresponding cut-off value was 3.305 ng/mL, and the sensitivity and specificity were 63.1% and 82.3%, respectively. Conclusion Increased suPAR level is independently associated with elevated risk of suffering CI-AKI, and suPAR is a strong predictor for CI-AKI in patients undergoing PCI. SuPAR might act as a novel biomarker for CI-AKI in clinical practice.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Eleven genomic loci affect plasma levels of chronic inflammation marker soluble urokinase-type plasminogen activator receptor. Commun Biol 2021; 4:655. [PMID: 34079037 PMCID: PMC8172928 DOI: 10.1038/s42003-021-02144-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Soluble urokinase-type plasminogen activator receptor (suPAR) is a chronic inflammation marker associated with the development of a range of diseases, including cancer and cardiovascular disease. The genetics of suPAR remain unexplored but may shed light on the biology of the marker and its connection to outcomes. We report a heritability estimate of 60% for the variation in suPAR and performed a genome-wide association meta-analysis on suPAR levels measured in Iceland (N = 35,559) and in Denmark (N = 12,177). We identified 13 independently genome-wide significant sequence variants associated with suPAR across 11 distinct loci. Associated variants were found in and around genes encoding uPAR (PLAUR), its ligand uPA (PLAU), the kidney-disease-associated gene PLA2R1 as well as genes with relations to glycosylation, glycoprotein biosynthesis, and the immune response. These findings provide new insight into the causes of variation in suPAR plasma levels, which may clarify suPAR's potential role in associated diseases, as well as the underlying mechanisms that give suPAR its prognostic value as a unique marker of chronic inflammation.
Collapse
|
15
|
Helmer P, Damm E, Schiekofer S, Roomp K, Schneider JG. β3-integrin Leu33Pro gain of function variant does not modulate inflammatory activity in human derived macrophages in diabetes. Int J Med Sci 2021; 18:2661-2665. [PMID: 34104098 PMCID: PMC8176178 DOI: 10.7150/ijms.55648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/21/2020] [Indexed: 11/05/2022] Open
Abstract
Objective: We aimed to investigate the association between the Leu33Pro (rs5918) polymorphism in β3-integrin with diabetic complications and inflammatory function of macrophages depending on the genotype in subjects with diabetes mellitus. Material and methods: We determined the Leu33Pro polymorphism in 186 diabetic subjects and collected laboratory data. Monocytes from 24 patients were collected for macrophage differentiation to determine the inflammatory activity by treating with different stimulants. Results: We could demonstrate that human derived differentiated macrophages expressed β3‑integrin. Their secretory capacity upon inflammatory stimulation did not reveal any differences depending on the Leu33Pro variant. We found trends for an association of the polymorphism with the presence of diabetic nephropathy (p = 0.071), as well as with creatinine [1.32 mg/dL (1) vs. 0.98 mg/dL (0)] (p = 0.029 in recessive model) and glomerular filtration rate [75.6 ml/min ± 22 vs. 62.3 ml/min ± 25] (p = 0.076 in recessive model) as quantitative markers of kidney function. Conclusion: Despite the expression of β3‑integrin in human macrophages, the Leu33Pro polymorphism in β3‑integrin does not modify the inflammatory response upon stimulation but might play a role in the progression of diabetic nephropathy. Further studies are necessary to substantiate such a hypothesis.
Collapse
Affiliation(s)
- Philipp Helmer
- Saarland University, Medical Center, Dpt. of Internal Medicine II, Homburg, Saar, Germany
| | - Ellen Damm
- Saarland University, Medical Center, Dpt. of Internal Medicine II, Homburg, Saar, Germany
| | - Stephan Schiekofer
- Zentrum für Altersmedizin, Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg am Bezirksklinikum, Regensburg, Germany.,Sigmund Freud Privat-Universität, Wien, Austria
| | - Kirsten Roomp
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg, and Centre Hospitalier Emile Mayrisch, Esch/Alzette, Luxembourg
| | - Jochen G Schneider
- Saarland University, Medical Center, Dpt. of Internal Medicine II, Homburg, Saar, Germany.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg, and Centre Hospitalier Emile Mayrisch, Esch/Alzette, Luxembourg
| |
Collapse
|
16
|
Jhee JH, Nam BY, Lee CJ, Park JT, Han SH, Kang SW, Park S, Yoo TH. Soluble Urokinase-Type Plasminogen Activator Receptor, Changes of 24-Hour Blood Pressure, and Progression of Chronic Kidney Disease. J Am Heart Assoc 2020; 10:e017225. [PMID: 33325248 PMCID: PMC7955457 DOI: 10.1161/jaha.120.017225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Soluble urokinase‐type plasminogen activator receptor (suPAR) is associated with cardiovascular risks and poor renal outcomes. However, whether elevated suPAR levels are associated with 24‐hour blood pressure patterns or kidney disease progression in patients with chronic kidney disease (CKD) is unclear. Methods and Results A total of 751 patients with CKD stage 1 to 5 were recruited from CMERC‐HI (Cardiovascular and Metabolic Disease Etiology Research Center–High Risk) cohort study (2013–2018). The relationship of serum suPAR levels to 24‐hour blood pressure parameters and CKD progression was analyzed. The median serum suPAR level was 1439.0 (interquartile range, 1026.2–2150.1) pg/mL, and the mean estimated glomerular filtration rate was 52.8±28.5 mL/min per 1.73 m2 at baseline. Patients with higher suPAR levels had significantly higher levels of office, 24‐hour, daytime, and nighttime systolic blood pressure and nighttime diastolic blood pressure than those with lower suPAR levels. The highest suPAR tertile was associated with an increased risk of a reverse dipping pattern (odds ratio, 2.93; 95% CI, 1.27–6.76; P=0.01). During a follow‐up of 43.2 (interquartile range, 27.0–55.6) months, the CKD progression occurred in 271 (36.1%) patients. The highest suPAR tertile was significantly associated with higher risk of CKD progression than the lowest tertile (hazard ratio [HR], 2.09; 95% CI, 1.37–3.21; P=0.001). When the relationship was reevaluated with respect to each dipping pattern (dipper, extreme dipper, nondipper, and reverse dipper), this association was consistent only in reverse dippers in whom the risk of CKD progression increased (HR, 1.43; 95% CI, 1.02–2.01; P=0.03) with every 1‐unit increase in serum suPAR levels. Conclusions Elevated suPAR levels are independently associated with CKD progression, and this association is prominent in reverse dippers.
Collapse
Affiliation(s)
- Jong Hyun Jhee
- Division of Nephrology Department of Internal Medicine Gangnam Severance HospitalYonsei University College of Medicine Seoul Korea
| | - Bo Young Nam
- Department of Internal Medicine College of Medicine Severance Biomedical Science Institute Brain Korea 21 PLUS Yonsei University Seoul Korea
| | - Chan Joo Lee
- Division of Cardiology Severance Cardiovascular Hospital and Severance Cardiovascular Hospital and Integrated Research Center for Cerebrovascular and Cardiovascular Diseases Yonsei University College of Medicine Seoul Korea
| | - Jung Tak Park
- Department of Internal Medicine College of Medicine Institute of Kidney Disease Research Yonsei University Seoul Korea
| | - Seung Hyeok Han
- Department of Internal Medicine College of Medicine Institute of Kidney Disease Research Yonsei University Seoul Korea
| | - Shin-Wook Kang
- Department of Internal Medicine College of Medicine Severance Biomedical Science Institute Brain Korea 21 PLUS Yonsei University Seoul Korea.,Department of Internal Medicine College of Medicine Institute of Kidney Disease Research Yonsei University Seoul Korea
| | - Sungha Park
- Division of Cardiology Severance Cardiovascular Hospital and Severance Cardiovascular Hospital and Integrated Research Center for Cerebrovascular and Cardiovascular Diseases Yonsei University College of Medicine Seoul Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine College of Medicine Institute of Kidney Disease Research Yonsei University Seoul Korea
| |
Collapse
|
17
|
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21113798. [PMID: 32471207 PMCID: PMC7312633 DOI: 10.3390/ijms21113798] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Collapse
|
18
|
Niu M, Liu Y, Xiang L, Zhao Y, Yuan J, Jia Y, Dai X, Chen H. Long-term case study of a Wuzhishan miniature pig with diabetes. Animal Model Exp Med 2020; 3:22-31. [PMID: 32318656 PMCID: PMC7167240 DOI: 10.1002/ame2.12098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Miniature pigs are attractive animal models for exploring diabetes because they are similar to humans in terms of physiological structure and metabolism. However, little is known about the complications of diabetes in pigs. METHODS In this study, a 28-month observation of a Wuzhishan miniature pig with streptozotocin (STZ)-induced (120 mg/kg) diabetes was conducted, to investigate diabetes-related complications and the possibility of self-recovery in miniature pigs. Blood glucose, serum and urinary biochemistry was measured, and histopathologic examinations of eyes, kidney and pancreas were made. RESULTS During the observation, diabetic complications of eyes and kidney were observed. The eye complications included bilateral cataracts in the 15th month and degeneration of inner retina and microaneurysm in the 28th month. Kidney complications included glomerular mesangial expansion, focal segmental glomerular sclerosis, and renal tubular epithelial degeneration, but no proteinuria was observed. By 28 months after the application of STZ, with no treatment given, blood glucose had recovered and the number of pancreatic islet beta-cells had increased significantly. CONCLUSIONS We showed that the STZ-induced diabetes model in miniature pigs could accurately mimic the pathological changes of human diabetes, and that pancreatic islet beta-cell regeneration did occur in an adult miniature pig, providing a new means for exploring diabetic complications and pancreatic islet beta-cell regeneration.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yaqian Liu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Lei Xiang
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yuqiong Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Jifang Yuan
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yunxiao Jia
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Xin Dai
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Hua Chen
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
- State Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijingPR China
| |
Collapse
|
19
|
Hayek SS, Leaf DE, Samman Tahhan A, Raad M, Sharma S, Waikar SS, Sever S, Camacho A, Wang X, Dande RR, Ibrahim NE, Baron RM, Altintas MM, Wei C, Sheikh-Hamad D, Pan JSC, Holliday MW, Januzzi JL, Weisbord SD, Quyyumi AA, Reiser J. Soluble Urokinase Receptor and Acute Kidney Injury. N Engl J Med 2020; 382:416-426. [PMID: 31995687 PMCID: PMC7065830 DOI: 10.1056/nejmoa1911481] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Acute kidney injury is common, with a major effect on morbidity and health care utilization. Soluble urokinase plasminogen activator receptor (suPAR) is a signaling glycoprotein thought to be involved in the pathogenesis of kidney disease. We investigated whether a high level of suPAR predisposed patients to acute kidney injury in multiple clinical contexts, and we used experimental models to identify mechanisms by which suPAR acts and to assess it as a therapeutic target. METHODS We measured plasma levels of suPAR preprocedurally in patients who underwent coronary angiography and patients who underwent cardiac surgery and at the time of admission to the intensive care unit in critically ill patients. We assessed the risk of acute kidney injury at 7 days as the primary outcome and acute kidney injury or death at 90 days as a secondary outcome, according to quartile of suPAR level. In experimental studies, we used a monoclonal antibody to urokinase plasminogen activator receptor (uPAR) as a therapeutic strategy to attenuate acute kidney injury in transgenic mice receiving contrast material. We also assessed cellular bioenergetics and generation of reactive oxygen species in human kidney proximal tubular (HK-2) cells that were exposed to recombinant suPAR. RESULTS The suPAR level was assessed in 3827 patients who were undergoing coronary angiography, 250 who were undergoing cardiac surgery, and 692 who were critically ill. Acute kidney injury developed in 318 patients (8%) who had undergone coronary angiography. The highest suPAR quartile (vs. the lowest) had an adjusted odds ratio of 2.66 (95% confidence interval [CI], 1.77 to 3.99) for acute kidney injury and 2.29 (95% CI, 1.71 to 3.06) for acute kidney injury or death at 90 days. Findings were similar in the surgical and critically ill cohorts. The suPAR-overexpressing mice that were given contrast material had greater functional and histologic evidence of acute kidney injury than wild-type mice. The suPAR-treated HK-2 cells showed heightened energetic demand and mitochondrial superoxide generation. Pretreatment with a uPAR monoclonal antibody attenuated kidney injury in suPAR-overexpressing mice and normalized bioenergetic changes in HK-2 cells. CONCLUSIONS High suPAR levels were associated with acute kidney injury in various clinical and experimental contexts. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Salim S Hayek
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - David E Leaf
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Ayman Samman Tahhan
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Mohamad Raad
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Shreyak Sharma
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Sushrut S Waikar
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Sanja Sever
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Alex Camacho
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Xuexiang Wang
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Ranadheer R Dande
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Nasrien E Ibrahim
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Rebecca M Baron
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Mehmet M Altintas
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Changli Wei
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - David Sheikh-Hamad
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Jenny S-C Pan
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Michael W Holliday
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - James L Januzzi
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Steven D Weisbord
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Arshed A Quyyumi
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| | - Jochen Reiser
- From the Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor (S.S.H.); the Divisions of Renal Medicine (D.E.L., S. Sharma, S.S.W.) and Pulmonary and Critical Care Medicine (R.M.B.), Brigham and Women's Hospital, the Section of Nephrology, Department of Medicine, Boston University School of Medicine (S.S.W.), and the Divisions of Nephrology (S. Sever) and Cardiology (A.C., N.E.I., J.L.J.), Massachusetts General Hospital - all in Boston; Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta (A.S.T., M.R., A.A.Q.); the Department of Medicine, Rush University Medical Center, Chicago (X.W., R.R.D., M.M.A., C.W., J.R.); the Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston (D.S.-H., J.S.-C.P., M.W.H.); and the Veterans Affairs Pittsburgh Healthcare System and the University of Pittsburgh School of Medicine, Pittsburgh (S.D.W.)
| |
Collapse
|
20
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|
21
|
Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal Models of Diabetes-Associated Renal Injury. J Diabetes Res 2020; 2020:9416419. [PMID: 32566684 PMCID: PMC7256713 DOI: 10.1155/2020/9416419] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/28/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetic nephropathy (DN) is the main factor leading to end-stage renal disease (ESRD) and subsequent morbidity and mortality. Importantly, the prevalence of DN is continuously increasing in developed countries. Many rodent models of type 1 and type 2 diabetes have been established to elucidate the pathogenesis of diabetes and examine novel therapies against DN. These models are developed by chemical, surgical, genetic, drug, and diet/nutrition interventions or combination of two or more methods. The main characteristics of DN including a decrease in renal function, albuminuria and mesangiolysis, mesangial expansion, and nodular glomerulosclerosis should be exhibited by an animal model of DN. However, a rodent model possessing all of the abovementioned features of human DN has not yet been developed. Furthermore, mice of different genetic backgrounds and strains show different levels of susceptibility to DN with respect to albuminuria and development of glomerular and tubulointerstitial lesions. Therefore, the type of diabetes, development of nephropathy, duration of the study, cost of maintaining and breeding, and animals' mortality rate are important factors that might be affected by the type of DN model. In this review, we discuss the pros and cons of different rodent models of diabetes that are being used to study DN.
Collapse
Affiliation(s)
- Zahra Samadi Noshahr
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Qin Z, Hoh CK, Olson ES, Jahromi AH, Hall DJ, Barback CV, You YH, Yanagita M, Sharma K, Vera DR. Molecular Imaging of the Glomerulus via Mesangial Cell Uptake of Radiolabeled Tilmanocept. J Nucl Med 2019; 60:1325-1332. [PMID: 30796169 PMCID: PMC6910642 DOI: 10.2967/jnumed.118.223727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
An unmet need for the clinical management of chronic kidney disease is a predictive tool of kidney function during the first decade of the disease, when there is silent loss of glomerular function. The objective of this study was to demonstrate receptor-mediated binding of tilmanocept to CD206 within the kidney and provide evidence of kinetic sensitivity of this binding to renal function. Methods: Rats were positioned in a PET scanner with the liver and kidneys within the field of view. After an intravenous injection of 68Ga-IRDye800-tilmanocept, using 1 of 2 scaled molar doses (0.02 nmol/g, n = 5; or 0.10 nmol/g, n = 5), or coinjection (n = 3) of 68Ga-IRDye800-tilmanocept (0.10 nmol/g) and unlabeled tilmanocept (5.0 nmol/g), or a negative control, 68Ga-IRDye800-DTPA-galactosyl-dextran (0.02 nmol/g, n = 5), each animal was imaged for 20 min followed by a whole-body scan. Frozen kidney sections were stained for podocytes and CD206 using immunofluorescence. Molecular imaging of diabetic db/db mice (4.9 wk, n = 6; 7.3 wk, n = 4; 13.3 wk, n = 6) and nondiabetic db/m mice (n = 6) was performed with fluorescence-labeled 99mTc-tilmanocept (18.5 MBq, 2.6 nmol). Thirty minutes after injection, blood, liver, kidneys, and urine were assayed for radioactivity. Renal time-activity curves were generated. Results: Rat PET whole-body images and time-activity curves of 68Ga-IRDye800-tilmanocept demonstrated receptor-mediated renal accumulation with evidence of glomerular uptake. Activity within the renal cortex persisted during the 40-min study. Histologic examination demonstrated colocalization of CD206 and IRDye800-tilmanocept within the glomerulus. The glomerular accumulation of the coinjection and the negative control studies were significantly less than the CD206-targeted agent. The db/db mice displayed a multiphasic renal time-activity curve with high urinary bladder accumulation; the nondiabetic mice exhibited renal uptake curves dominated by a single phase with low bladder accumulation. Conclusion: This study demonstrated receptor-mediated binding to the glomerular mesangial cells and kinetic sensitivity of tilmanocept to chronic renal disease. Given the role of mesangial cells during the progression of diabetic nephropathy, PET or SPECT renal imaging with radiolabeled tilmanocept may provide a noninvasive quantitative assessment of glomerular function.
Collapse
Affiliation(s)
- Zhengtao Qin
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Carl K Hoh
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Emilia S Olson
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Amin Haghighat Jahromi
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - David J Hall
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Christopher V Barback
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| | - Young-Hyun You
- Center for Renal Translational Medicine, University of California, San Diego, La Jolla, California
- Department of Medicine, Division of Nephrology, University of California, San Diego, La Jolla, California; and
| | | | - Kumar Sharma
- Center for Renal Translational Medicine, University of California, San Diego, La Jolla, California
- Department of Medicine, Division of Nephrology, University of California, San Diego, La Jolla, California; and
| | - David R Vera
- Department of Radiology, University of California, San Diego, La Jolla, California
- In Vivo Cancer and Molecular Imaging Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
23
|
Rauchman M, Griggs D. Emerging strategies to disrupt the central TGF-β axis in kidney fibrosis. Transl Res 2019; 209:90-104. [PMID: 31085163 PMCID: PMC6850218 DOI: 10.1016/j.trsl.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022]
Abstract
Chronic kidney disease (CKD) affects more than 20 million people in the United States and the global burden of this disorder is increasing. Many affected individuals will progress to end stage kidney disease necessitating dialysis or transplantation. CKD is also a major independent contributor to the risk of cardiovascular morbidity and mortality. Tubulointerstitial fibrosis is a final common pathway for most causes of progressive CKD. Currently, there are no clinically available therapies targeting fibrosis that can slow the decline in kidney function. Although it has long been known that TGF-β signaling is a critical mediator of kidney fibrosis, translating this knowledge to the clinic has been challenging. In this review, we highlight some recent insights into the mechanisms of TGF-β signaling that target activation of this cytokine at the site of injury or selectively inhibit pro-fibrotic gene expression. Molecules directed at these targets hold the promise of attaining therapeutic efficacy while limiting toxicity seen with global inhibition of TGF-β. Kidney injury has profound epigenetic effects leading to altered expression of more than a thousand genes. We discuss how drugs targeting epigenetic modifications, some of which are in use for cancer therapy, have the potential to reprogram gene regulatory networks to favor adaptive repair and prevent fibrosis. The lack of reliable biomarkers of kidney fibrosis is a major limitation in designing clinical trials for testing CKD treatments. We conclude by reviewing recent advances in fibrosis biomarker development.
Collapse
Affiliation(s)
- Michael Rauchman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri; VA St. Louis Health Care System, Saint Louis, Missouri.
| | - David Griggs
- Department of Molecular Microbiology and Immunology, Edward A. Doisy Research Center, Saint Louis University, Saint Louis, Missouri.
| |
Collapse
|
24
|
Hayek SS, Landsittel DP, Wei C, Zeier M, Yu ASL, Torres VE, Roth S, Pao CS, Reiser J. Soluble Urokinase Plasminogen Activator Receptor and Decline in Kidney Function in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2019; 30:1305-1313. [PMID: 31171572 DOI: 10.1681/asn.2018121227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Levels of soluble urokinase plasminogen activator receptor (suPAR), an inflammation marker, are strongly predictive of incident kidney disease. Patients with autosomal dominant polycystic kidney disease (ADPKD) experience progressive decline in renal function, but rates of decline and outcomes vary greatly. Whether suPAR levels are predictive of declining kidney function in patients with ADPKD is unknown. METHODS We assessed suPAR levels in 649 patients with ADPKD who underwent scheduled follow-up for at least 3 years, with repeated measurements of height-adjusted total kidney volume and creatinine-derived eGFR. We used linear mixed models for repeated measures and Cox proportional hazards to characterize associations between baseline suPAR levels and follow-up eGFR or incident ESRD. RESULTS The median suPAR level was 2.47 ng/ml and median height-adjusted total kidney volume was 778, whereas mean eGFR was 84 ml/min per 1.73 m2. suPAR levels were associated with height-adjusted total kidney volume (β=0.02; 95% confidence interval, 0.01 to 0.03), independent of age, sex, race, hypertension, and eGFR. Patients in the lowest suPAR tertile (<2.18 ng/ml) had a 6.8% decline in eGFR at 3 years and 22% developed CKD stage 3, whereas those in the highest tertile (suPAR>2.83 ng/ml) had a 19.4% decline in eGFR at 3 years and 68% developed CKD stage 3. suPAR levels >2.82 ng/ml had a 3.38-fold increase in the risk of incident ESRD. CONCLUSIONS suPAR levels were associated with progressive decline in renal function and incident ESRD in patients with ADPKD, and may aid early identification of patients at high risk of disease progression.
Collapse
Affiliation(s)
- Salim S Hayek
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor Michigan;
| | | | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, Illinois
| | - Martin Zeier
- Division of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Alan S L Yu
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Sharin Roth
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland
| | - Christina S Pao
- Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, Maryland
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois;
| |
Collapse
|
25
|
Koh KH, Cao Y, Mangos S, Tardi NJ, Dande RR, Lee HW, Samelko B, Altintas MM, Schmitz VP, Lee H, Mukherjee K, Peev V, Cimbaluk DJ, Reiser J, Hahm E. Nonimmune cell-derived ICOS ligand functions as a renoprotective αvβ3 integrin-selective antagonist. J Clin Invest 2019; 129:1713-1726. [PMID: 30747722 PMCID: PMC6436851 DOI: 10.1172/jci123386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Soluble urokinase receptor (suPAR) is a circulatory molecule that activates αvβ3 integrin on podocytes, causes foot process effacement, and contributes to proteinuric kidney disease. While active integrin can be targeted by antibodies and small molecules, endogenous inhibitors haven't been discovered yet. Here we report what we believe is a novel renoprotective role for the inducible costimulator ligand (ICOSL) in early kidney disease through its selective binding to podocyte αvβ3 integrin. Contrary to ICOSL's immune-regulatory role, ICOSL in nonhematopoietic cells limited the activation of αvβ3 integrin. Specifically, ICOSL contains the arginine-glycine-aspartate (RGD) motif, which allowed for a high-affinity and selective binding to αvβ3 and modulation of podocyte adhesion. This binding was largely inhibited either by a synthetic RGD peptide or by a disrupted RGD sequence in ICOSL. ICOSL binding favored the active αvβ3 rather than the inactive form and showed little affinity for other integrins. Consistent with the rapid induction of podocyte ICOSL by inflammatory stimuli, glomerular ICOSL expression was increased in biopsies of early-stage human proteinuric kidney diseases. Icosl deficiency in mice resulted in an increased susceptibility to proteinuria that was rescued by recombinant ICOSL. Our work identified a potentially novel role for ICOSL, which serves as an endogenous αvβ3-selective antagonist to maintain glomerular filtration.
Collapse
Affiliation(s)
- Kwi Hye Koh
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Yanxia Cao
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Steve Mangos
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nicholas J. Tardi
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ranadheer R. Dande
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ha Won Lee
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Beata Samelko
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Mehmet M. Altintas
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Vincent P. Schmitz
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Hyun Lee
- Center for Biomolecular Science and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kamalika Mukherjee
- Department of Medicine, Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Vasil Peev
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - David J. Cimbaluk
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Eunsil Hahm
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
26
|
Chen CA, Chang JM, Chang EE, Chen HC, Yang YL. TGF-β1 modulates podocyte migration by regulating the expression of integrin-β1 and -β3 through different signaling pathways. Biomed Pharmacother 2018; 105:974-980. [DOI: 10.1016/j.biopha.2018.06.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/05/2023] Open
|
27
|
Zhou X, Zhang J, Haimbach R, Zhu W, Mayer-Ezell R, Garcia-Calvo M, Smith E, Price O, Kan Y, Zycband E, Zhu Y, Hoek M, Cox JM, Ma L, Kelley DE, Pinto S. An integrin antagonist (MK-0429) decreases proteinuria and renal fibrosis in the ZSF1 rat diabetic nephropathy model. Pharmacol Res Perspect 2018; 5. [PMID: 28971604 PMCID: PMC5625158 DOI: 10.1002/prp2.354] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023] Open
Abstract
Multiple integrins have been implicated in modulating renal function. Modulation of integrin function can lead to pathophysiological processes associated with diabetic nephropathy such as alterations in the glomerular filtration barrier and kidney fibrosis. The complexity of these pathophysiological changes implies that multiple integrin subtypes might need to be targeted to ameliorate the progression of renal disease. To address this hypothesis, we investigated the effects of MK‐0429, a compound that was originally developed as an αvβ3 inhibitor for the treatment of osteoporosis, on renal function and fibrosis. We demonstrated that MK‐0429 is an equipotent pan‐inhibitor of multiple av integrins. MK‐0429 dose‐dependently inhibited podocyte motility and also suppressed TGF‐β‐induced fibrosis marker gene expression in kidney fibroblasts. Moreover, in the obese ZSF1 rat model of diabetic nephropathy, chronic treatment with MK‐0429 resulted in significant reduction in proteinuria, kidney fibrosis, and collagen accumulation. In summary, our results suggest that inhibition of multiple integrin subtypes might lead to meaningful impact on proteinuria and renal fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Ji Zhang
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Robin Haimbach
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Wei Zhu
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Rosemary Mayer-Ezell
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Margarita Garcia-Calvo
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Elizabeth Smith
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Olga Price
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Yanqing Kan
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Emanuel Zycband
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Yonghua Zhu
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Maarten Hoek
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Jason M Cox
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Lijun Ma
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - David E Kelley
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Shirly Pinto
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| |
Collapse
|
28
|
Actin dynamics at focal adhesions: a common endpoint and putative therapeutic target for proteinuric kidney diseases. Kidney Int 2018; 93:1298-1307. [PMID: 29678354 DOI: 10.1016/j.kint.2017.12.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023]
Abstract
Proteinuria encompasses diverse causes including both genetic diseases and acquired forms such as diabetic and hypertensive nephropathy. The basis of proteinuria is a disturbance in size selectivity of the glomerular filtration barrier, which largely depends on the podocyte: a terminally differentiated epithelial cell type covering the outer surface of the glomerulus. Compromised podocyte structure is one of the earliest signs of glomerular injury. The phenotype of diverse animal models and podocyte cell culture firmly established the essential role of the actin cytoskeleton in maintaining functional podocyte structure. Podocyte foot processes, actin-based membrane extensions, contain 2 molecularly distinct "hubs" that control actin dynamics: a slit diaphragm and focal adhesions. Although loss of foot processes encompasses disassembly of slit diaphragm multiprotein complexes, as long as cells are attached to the glomerular basement membrane, focal adhesions will be the sites in which stress due to filtration flow is counteracted by forces generated by the actin network in foot processes. Numerous studies within last 20 years have identified actin binding and regulatory proteins as well as integrins as essential components of signaling and actin dynamics at focal adhesions in podocytes, suggesting that some of them may become novel, druggable targets for proteinuric kidney diseases. Here we review evidence supporting the idea that current treatments for chronic kidney diseases beneficially and directly target the podocyte actin cytoskeleton associated with focal adhesions and suggest that therapeutic reagents that target the focal adhesion-regulated actin cytoskeleton in foot processes have potential to modernize treatments for chronic kidney diseases.
Collapse
|
29
|
Ying Q, Wu G. Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: an update. Ren Fail 2017; 39:474-483. [PMID: 28413908 PMCID: PMC6014344 DOI: 10.1080/0886022x.2017.1313164] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a tightly regulated process by which epithelial cells lose their hallmark epithelial characteristics and gain the features of mesenchymal cells. For podocytes, expression of nephrin, podocin, P-cadherin, and ZO-1 is downregulated, the slit diaphragm (SD) will be altered, and the actin cytoskeleton will be rearranged. Diabetes, especially hyperglycemia, has been demonstrated to incite podocyte EMT through several molecular mechanisms such as TGF-β/Smad classic pathway, Wnt/β-catenin signaling pathway, Integrins/integrin-linked kinase (ILK) signaling pathway, MAPKs signaling pathway, Jagged/Notch signaling pathway, and NF-κB signaling pathway. As one of the most fundamental prerequisites to develop ground-breaking therapeutic options to prevent the development and progression of diabetic kidney disease (DKD), a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of podocyte EMT is compulsory. Therefore, the purpose of this paper is to update the research progress of these underlying signaling pathways and expound the podocyte EMT-related DKDs.
Collapse
Affiliation(s)
- Qidi Ying
- a Department of Pharmacology, Pharmacy , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Guanzhong Wu
- a Department of Pharmacology, Pharmacy , China Pharmaceutical University , Nanjing , Jiangsu , China
| |
Collapse
|
30
|
Kim EY, Roshanravan H, Dryer SE. Changes in podocyte TRPC channels evoked by plasma and sera from patients with recurrent FSGS and by putative glomerular permeability factors. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2342-2354. [PMID: 28629718 PMCID: PMC5557291 DOI: 10.1016/j.bbadis.2017.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Primary forms of focal and segmental glomerulosclerosis (FSGS) are driven by circulating factors that cause dysfunction or loss podocytes. Rare genetic forms of FSGS can be caused by mutations in TRPC6, which encodes a Ca2+-permeable cationic channel expressed in mesangial cells and podocytes; and NPHS2, which encodes podocin, a TRPC6-binding protein expressed in podocyte slit diaphragm domains. Here we observed that exposing immortalized mouse podocytes to serum or plasma from recurrent FSGS patients for 24h increased the steady-state cell-surface abundance of TRPC6, accompanied by an increase in currents through endogenous TRPC6 channels evoked by a hypoosmotic stretch stimulus. These effects were mimicked by the soluble urokinase receptor (suPAR) and by tumor necrosis factor (TNF), circulating factors implicated in nephrotic syndromes. Most but not all of the recurrent FSGS plasma samples that we examined also caused a loss of podocin over a period of several hours. The loss of podocin was also seen following exposure to suPAR but not TNF. However, TNF increased the effects of suPAR on TRPC6 and podocin, and TNF and suPAR are required for the full effects of one of the recurrent FSGS plasma samples. The actions of FSGS plasma, suPAR and TNF on surface abundance of TRPC6 were blocked by cilengitide, an inhibitor of αvβ3-integrin signaling. These data suggest that primary FSGS is a heterogeneous condition mediated by multiple circulating factors, and support TRPC6 and αvβ3-integrin as potential therapeutic targets.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
31
|
Drechsler C, Hayek SS, Wei C, Sever S, Genser B, Krane V, Meinitzer A, März W, Wanner C, Reiser J. Soluble Urokinase Plasminogen Activator Receptor and Outcomes in Patients with Diabetes on Hemodialysis. Clin J Am Soc Nephrol 2017; 12:1265-1273. [PMID: 28495863 PMCID: PMC5544516 DOI: 10.2215/cjn.10881016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/10/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Soluble urokinase plasminogen activator receptor is a novel biomarker strongly predictive of cardiovascular outcomes implicated in the pathogenesis of kidney disease. Soluble urokinase plasminogen activator receptor levels, however, correlate with declining kidney function. It is unclear whether soluble urokinase plasminogen activator receptor levels remain associated with outcomes in patients with ESRD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We measured plasma soluble urokinase plasminogen activator receptor levels in 1175 patients (mean age =66±8 years old, 54% men) with type 2 diabetes mellitus on hemodialysis participating in the German Diabetes and Dialysis Study followed for a median of 4 years for outcomes including all-cause death, cardiovascular events, and infection-related mortality. Survival analysis was performed using stepwise Cox proportional hazards models adjusted for potential confounders. Also, adjustments were made for inflammatory markers (C-reactive protein and leukocyte count) and the oxidative stress marker asymmetric dimethyl arginine to investigate potential mediators of the relationship between soluble urokinase plasminogen activator receptor and outcomes. RESULTS Median soluble urokinase plasminogen activator receptor levels were 10,521 pg/ml (interquartile range, 9105-12,543 pg/ml). When stratified by tertiles, patients with soluble urokinase plasminogen activator receptor >11,633 pg/ml (third tertile) had adjusted 1.6-fold higher mortality (hazard ratio, 1.60; 95% confidence interval, 1.27 to 2.03) compared with those with low soluble urokinase plasminogen activator receptor <9599 pg/ml (first tertile). Risks of sudden death and stroke were higher (adjusted hazard ratio, 1.98; 95% confidence interval, 1.27 to 3.09 and adjusted hazard ratio, 1.74; 95% confidence interval, 1.05 to 2.90, respectively), together accounting for higher incidence of cardiovascular events (adjusted hazard ratio, 1.48; 95% confidence interval, 1.15 to 1.89). Associations with outcomes persisted after adjusting for C-reactive protein, leukocyte count, and asymmetric dimethyl arginine. Addition of soluble urokinase plasminogen activator receptor to a risk factor model modestly improved risk discrimination for all-cause death (ΔC statistic, 0.02; 95% confidence interval, 0.00 to 0.03) and cardiovascular events (ΔC statistic, 0.02; 95% confidence interval, 0.00 to 0.05). CONCLUSIONS The association of soluble urokinase plasminogen activator receptor levels with outcomes persists in patients on hemodialysis. Additional study is warranted to characterize the underlying pathways of that association, which may yield opportunities to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Christiane Drechsler
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hayek SS, Ko YA, Awad M, Ahmed H, Gray B, Hosny KM, Aida H, Tracy MJ, Wei C, Sever S, Reiser J, Quyyumi AA. Cardiovascular Disease Biomarkers and suPAR in Predicting Decline in Renal Function: A Prospective Cohort Study. Kidney Int Rep 2017; 2:425-432. [PMID: 29142970 PMCID: PMC5678674 DOI: 10.1016/j.ekir.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Soluble urokinase-type plasminogen activator receptor (suPAR) strongly predicts outcomes and incident chronic kidney disease (CKD) in patients with cardiovascular disease (CVD). Whether the association between suPAR and CKD is a reflection of its overall association with chronic inflammation and poor CVD outcomes is unclear. We examined whether CVD biomarkers, including high-sensitivity C-reactive protein (hs-CRP), fibrin-degradation products (FDPs), heat-shock protein 70 (HSP-70), and high-sensitivity troponin I (hs-TnI) were associated with a decline in kidney function in the Emory Cardiovascular Biobank cohort, in which suPAR levels were shown to be predictive of both incident CKD and CVD outcomes. METHODS We measured suPAR, hs-CRP, HSP-70, FDP, and hs-TnI plasma levels in 3282 adults (mean age 63 years, 64% male, 75% estimated glomerular filtration rate [eGFR] >60 ml/min per 1.73 m2). Glomerular filtration rate was estimated using Chronic Kidney Disease-Epidemiology Collaboration (eGFR) at enrollment (n = 3282) and follow-up (n = 2672; median 3.5 years). Urine protein by dipstick at baseline was available for 1335 subjects. RESULTS There was a weak correlation among biomarkers (r range: 0.17-0.28). hs-CRP, FDPs, hs-TnI, and suPAR were independently associated with baseline eGFR and proteinuria. The median yearly decline in eGFR was -0.6 ml/min per 1.73 m2. hs-CRP (β: -0.04; P = 0.46), FDPs (β: -0.13; P = 0.08), HSP-70 (β: 0.05; P = 0.84), or hs-TnI (β: -0.01; P = 0.76) were associated with eGFR decline. suPAR remained predictive of eGFR decline even after adjusting for all biomarkers. DISCUSSION hs-CRP, FDP, HSP-70, and hs-TnI were not associated with eGFR decline. The specific association of suPAR with eGFR decline supported its involvement in pathways specific to the pathogenesis of kidney disease.
Collapse
Affiliation(s)
- Salim S. Hayek
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi-An Ko
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, USA
| | - Mosaab Awad
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hina Ahmed
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brandon Gray
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Hiroshi Aida
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Melissa J. Tracy
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Sanja Sever
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Arshed A. Quyyumi
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Lacava V, Pellicanò V, Ferrajolo C, Cernaro V, Visconti L, Conti G, Buemi M, Santoro D. Novel avenues for treating diabetic nephropathy: new investigational drugs. Expert Opin Investig Drugs 2017; 26:445-462. [PMID: 28277032 DOI: 10.1080/13543784.2017.1293039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
At present, treatment of diabetic kidney disease (DKD) is still mainly based on drugs acting on glycemic and blood pressure control, as there is no validated therapy able to halt the progression of renal failure. Because of the high incidence of DKD, due to the increase of diabetes mellitus in general population, new therapeutic strategies are needed. Areas covered: We analysed ongoing and already completed clinical trials, from clinicaltrials.gov and PubMed, dealing with new therapies for DKD. Expert opinion: Among the drugs currently being explored, the most promising molecules are those that interfere with glucose-dependent pathways, in particular polyol, protein kinase, hexosamine and AGEs metabolic pathways, and impaired renal vascular regulation. One of the recent goals achieved by molecular biology is the development of monoclonal antibodies able to interfere with extracellular matrix accumulation and fibrosis. Other interesting therapies are under investigation and further studies with a greater number of patients will establish a better approach for diabetic nephropathy.
Collapse
Affiliation(s)
- Viviana Lacava
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Vincenzo Pellicanò
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Carmen Ferrajolo
- b Department of Experimental Medicine , Second University of Naples , Napoli , Italy
| | - Valeria Cernaro
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Luca Visconti
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Giovanni Conti
- c Unit of Pediatric Nephrology and Rheumatology , University of Messina , Messina , Italy
| | - Michele Buemi
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| | - Domenico Santoro
- a Unit of Nephrology and Dialysis , University of Messina , Messina , Italy
| |
Collapse
|
34
|
Patent highlights August-September 2016. Pharm Pat Anal 2017; 6:17-24. [PMID: 28155581 DOI: 10.4155/ppa-2016-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
35
|
Maile LA, Busby WH, Xi G, Gollahan KP, Flowers W, Gafbacik N, Gafbacik S, Stewart K, Merricks EP, Nichols TC, Bellinger DA, Clemmons DR. An anti-αVβ3 antibody inhibits coronary artery atherosclerosis in diabetic pigs. Atherosclerosis 2017; 258:40-50. [PMID: 28189040 DOI: 10.1016/j.atherosclerosis.2017.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Diabetes is a major risk factor for the development of atherosclerosis. Hyperglycemia stimulates vascular smooth muscle cells (VSMC) to secrete ligands that bind to the αVβ3 integrin, a receptor that regulates VSMC proliferation and migration. This study determined whether an antibody that had previously been shown to block αVβ3 activation and to inhibit VSMC proliferation and migration in vitro, inhibited the development of atherosclerosis in diabetic pigs. METHODS Twenty diabetic pigs were maintained on a high fat diet for 22 weeks. Ten received injections of anti-β3 F(ab)2 and ten received control F(ab)2 for 18 weeks. RESULTS The active antibody group showed reduction of atherosclerosis of 91 ± 9% in the left main, 71 ± 11%, in left anterior descending, 80 ± 10.2% in circumflex, and 76 ± 25% in right coronary artery, (p < 0.01 compared to lesions areas from corresponding control treated arteries). There were significant reductions in both cell number and extracellular matrix. Histologic analysis showed neointimal hyperplasia with macrophage infiltration, calcifications and cholesterol clefts. Antibody treatment significantly reduced number of macrophages contained within lesions, suggesting that this change contributed to the decrease in lesion cellularity. Analysis of the biochemical changes within the femoral arteries that received the active antibody showed a 46 ± 12% (p < 0.05) reduction in the tyrosine phosphorylation of the β3 subunit of αVβ3 and a 40 ± 14% (p < 0.05) reduction in MAP kinase activation. CONCLUSIONS Blocking ligand binding to the αVβ3 integrin inhibits its activation and attenuates increased VSMC proliferation that is induced by chronic hyperglycemia. These changes result in significant decreases in atherosclerotic lesion size in the coronary arteries. The results suggest that this approach may have efficacy in treating the proliferative phase of atherosclerosis in patients with diabetes.
Collapse
Affiliation(s)
- L A Maile
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - W H Busby
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - G Xi
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - K P Gollahan
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - W Flowers
- Department of Animal Science, NC State University, Raleigh, NC, USA
| | - N Gafbacik
- Department of Animal Science, NC State University, Raleigh, NC, USA
| | - S Gafbacik
- Department of Animal Science, NC State University, Raleigh, NC, USA
| | - K Stewart
- Department of Animal Science, NC State University, Raleigh, NC, USA
| | - E P Merricks
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - T C Nichols
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - D A Bellinger
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - D R Clemmons
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Dande RR, Peev V, Altintas MM, Reiser J. Soluble Urokinase Receptor and the Kidney Response in Diabetes Mellitus. J Diabetes Res 2017; 2017:3232848. [PMID: 28596971 PMCID: PMC5449757 DOI: 10.1155/2017/3232848] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/19/2017] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) worldwide. DN typically manifests by glomerular hyperfiltration and microalbuminuria; then, the disease progresses to impaired glomerular filtration rate, which leads to ESRD. Treatment options for DN include the strict control of blood glucose levels and pressure (e.g., intraglomerular hypertension). However, the search for novel therapeutic strategies is ongoing. These include seeking specific molecules that contribute to the development and progression of DN to potentially interfere with these "molecular targets" as well as with the cellular targets within the kidney such as podocytes, which play a major role in the pathogenesis of DN. Recently, podocyte membrane protein urokinase receptor (uPAR) and its circulating form (suPAR) are found to be significantly induced in glomeruli and sera of DN patients, respectively, and elevated suPAR levels predicted diabetic kidney disease years before the occurrence of microalbuminuria. The intent of this review is to summarize the emerging evidence of uPAR and suPAR in the clinical manifestations of DN. The identification of specific pathways that govern DN will help us build a more comprehensive molecular model for the pathogenesis of the disease that can inform new opportunities for treatment.
Collapse
Affiliation(s)
| | - Vasil Peev
- Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M. Altintas
- Rush University Medical Center, Chicago, IL, USA
- *Mehmet M. Altintas: and
| | - Jochen Reiser
- Rush University Medical Center, Chicago, IL, USA
- *Jochen Reiser:
| |
Collapse
|
37
|
Abstract
Treatment and management of kidney disease currently presents an enormous global burden, and the application of nanotechnology principles to renal disease therapy, although still at an early stage, has profound transformative potential. The increasing translation of nanomedicines to the clinic, alongside research efforts in tissue regeneration and organ-on-a-chip investigations, are likely to provide novel solutions to treat kidney diseases. Our understanding of renal anatomy and of how the biological and physico-chemical properties of nanomedicines (the combination of a nanocarrier and a drug) influence their interactions with renal tissues has improved dramatically. Tailoring of nanomedicines in terms of kidney retention and binding to key membranes and cell populations associated with renal diseases is now possible and greatly enhances their localization, tolerability, and efficacy. This Review outlines nanomedicine characteristics central to improved targeting of renal cells and highlights the prospects, challenges, and opportunities of nanotechnology-mediated therapies for renal diseases.
Collapse
|
38
|
Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, Zheng B, Martín-Cleary C, Ruiz-Ortega M, Ortiz A, Fernandez-Fernandez B. Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opin Investig Drugs 2016; 25:1045-58. [PMID: 27268955 DOI: 10.1080/13543784.2016.1196184] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The age-standardized death rate from diabetic kidney disease increased by 106% from 1990 to 2013, indicating that novel therapeutic approaches are needed, in addition to the renin-angiotensin system (RAS) blockers currently in use. Clinical trial results of anti-fibrotic therapy have been disappointing. However, promising anti-inflammatory drugs are currently on phase 1 and 2 randomized controlled trials. AREAS COVERED The authors review the preclinical, phase 1 and 2 clinical trial information of drugs tested for diabetic kidney disease that directly target inflammation as a main or key mode of action. Agents mainly targeting other pathways, such as endothelin receptor or mineralocorticoid receptor blockers and vitamin D receptor activators are not discussed. EXPERT OPINION Agents targeting inflammation have shown promising results in the treatment of diabetic kidney disease when added on top of RAS blockade. The success of pentoxifylline in open label trials supports the concept of targeting inflammation. In early clinical trials, the pentoxifylline derivative CTP-499, the CCR2 inhibitor CCX140-B, the CCL2 inhibitor emapticap pegol and the JAK1/JAK2 inhibitor baricitinib were the most promising drugs for diabetic kidney disease. The termination of trials testing the anti-IL-1β antibody gevokizumab in 2015 will postpone the evaluation of therapies targeting inflammatory cytokines.
Collapse
Affiliation(s)
- Maria Vanessa Perez-Gomez
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Maria Dolores Sanchez-Niño
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Ana Belen Sanz
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Binbin Zheng
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain
| | - Catalina Martín-Cleary
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Marta Ruiz-Ortega
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Alberto Ortiz
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Beatriz Fernandez-Fernandez
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| |
Collapse
|
39
|
Abstract
In the current review, we discuss limitations and recent advances in animal models of diabetic nephropathy (DN). As in human disease, genetic factors may determine disease severity with the murine FVB and DBA/2J strains being more susceptible to DN than C57BL/6J mice. On the black and tan, brachyuric (BTBR) background, leptin deficient (ob/ob) mice develop many of the pathological features of human DN. Hypertension synergises with hyperglycemia to promote nephropathy in rodents. Moderately hypertensive endothelial nitric oxide synthase (eNOS(-/-)) deficient diabetic mice develop hyaline arteriosclerosis and nodular glomerulosclerosis and induction of renin-dependent hypertension in diabetic Cyp1a1mRen2 rats mimics moderately severe human DN. In addition, diabetic eNOS(-/-) mice and Cyp1a1mRen2 rats recapitulate many of the molecular pathways activated in the human diabetic kidney. However, no model exhibits all the features of human DN; therefore, researchers should consider biochemical, pathological, and transcriptomic data in selecting the most appropriate model to study their molecules and pathways of interest.
Collapse
Affiliation(s)
- Boris Betz
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, Scotland
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Bryan R Conway
- Centre for Cardiovascular Science, Queen's Medical Research Centre, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland.
| |
Collapse
|
40
|
Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, Wadhwani S, Altintas MM, Wei C, Hotton AL, French AL, Sperling LS, Lerakis S, Quyyumi AA, Reiser J. Soluble Urokinase Receptor and Chronic Kidney Disease. N Engl J Med 2015; 373:1916-25. [PMID: 26539835 PMCID: PMC4701036 DOI: 10.1056/nejmoa1506362] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Relatively high plasma levels of soluble urokinase-type plasminogen activator receptor (suPAR) have been associated with focal segmental glomerulosclerosis and poor clinical outcomes in patients with various conditions. It is unknown whether elevated suPAR levels in patients with normal kidney function are associated with future decline in the estimated glomerular filtration rate (eGFR) and with incident chronic kidney disease. METHODS We measured plasma suPAR levels in 3683 persons enrolled in the Emory Cardiovascular Biobank (mean age, 63 years; 65% men; median suPAR level, 3040 pg per milliliter) and determined renal function at enrollment and at subsequent visits in 2292 persons. The relationship between suPAR levels and the eGFR at baseline, the change in the eGFR over time, and the development of chronic kidney disease (eGFR <60 ml per minute per 1.73 m(2) of body-surface area) were analyzed with the use of linear mixed models and Cox regression after adjustment for demographic and clinical variables. RESULTS A higher suPAR level at baseline was associated with a greater decline in the eGFR during follow-up; the annual change in the eGFR was -0.9 ml per minute per 1.73 m(2) among participants in the lowest quartile of suPAR levels as compared with -4.2 ml per minute per 1.73 m(2) among participants in the highest quartile (P<0.001). The 921 participants with a normal eGFR (≥ 90 ml per minute per 1.73 m(2)) at baseline had the largest suPAR-related decline in the eGFR. In 1335 participants with a baseline eGFR of at least 60 ml per minute per 1.73 m(2), the risk of progression to chronic kidney disease in the highest quartile of suPAR levels was 3.13 times as high (95% confidence interval, 2.11 to 4.65) as that in the lowest quartile. CONCLUSIONS An elevated level of suPAR was independently associated with incident chronic kidney disease and an accelerated decline in the eGFR in the groups studied. (Funded by the Abraham J. and Phyllis Katz Foundation and others.).
Collapse
Affiliation(s)
- Salim S Hayek
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine (S.S.H., Y.-A.K., M.A., L.S.S., S.L., A.A.Q.), and the Department of Biostatistics and Bioinformatics, Emory University (Y.-A.K.) - both in Atlanta; the Department of Medicine, Harvard Medical School, Boston, and Division of Nephrology, Massachusetts General Hospital, Charlestown - both in Massachusetts (S.S.); the Department of Pediatrics, NYU Langone Medical Center, New York (H.T.); and the Department of Medicine, Rush University Medical Center (S.W., M.M.A., C.W., A.L.F., J.R.), and the Women's Interagency HIV Study/CORE Center of Cook County (A.L.H., A.L.F.) - both in Chicago
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, Wadhwani S, Altintas MM, Wei C, Hotton AL, French AL, Sperling LS, Lerakis S, Quyyumi AA, Reiser J. Soluble Urokinase Receptor and Chronic Kidney Disease. N Engl J Med 2015. [PMID: 26539835 DOI: 10.1056/nejmoa15066362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Relatively high plasma levels of soluble urokinase-type plasminogen activator receptor (suPAR) have been associated with focal segmental glomerulosclerosis and poor clinical outcomes in patients with various conditions. It is unknown whether elevated suPAR levels in patients with normal kidney function are associated with future decline in the estimated glomerular filtration rate (eGFR) and with incident chronic kidney disease. METHODS We measured plasma suPAR levels in 3683 persons enrolled in the Emory Cardiovascular Biobank (mean age, 63 years; 65% men; median suPAR level, 3040 pg per milliliter) and determined renal function at enrollment and at subsequent visits in 2292 persons. The relationship between suPAR levels and the eGFR at baseline, the change in the eGFR over time, and the development of chronic kidney disease (eGFR <60 ml per minute per 1.73 m(2) of body-surface area) were analyzed with the use of linear mixed models and Cox regression after adjustment for demographic and clinical variables. RESULTS A higher suPAR level at baseline was associated with a greater decline in the eGFR during follow-up; the annual change in the eGFR was -0.9 ml per minute per 1.73 m(2) among participants in the lowest quartile of suPAR levels as compared with -4.2 ml per minute per 1.73 m(2) among participants in the highest quartile (P<0.001). The 921 participants with a normal eGFR (≥ 90 ml per minute per 1.73 m(2)) at baseline had the largest suPAR-related decline in the eGFR. In 1335 participants with a baseline eGFR of at least 60 ml per minute per 1.73 m(2), the risk of progression to chronic kidney disease in the highest quartile of suPAR levels was 3.13 times as high (95% confidence interval, 2.11 to 4.65) as that in the lowest quartile. CONCLUSIONS An elevated level of suPAR was independently associated with incident chronic kidney disease and an accelerated decline in the eGFR in the groups studied. (Funded by the Abraham J. and Phyllis Katz Foundation and others.).
Collapse
Affiliation(s)
- Salim S Hayek
- From the Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine (S.S.H., Y.-A.K., M.A., L.S.S., S.L., A.A.Q.), and the Department of Biostatistics and Bioinformatics, Emory University (Y.-A.K.) - both in Atlanta; the Department of Medicine, Harvard Medical School, Boston, and Division of Nephrology, Massachusetts General Hospital, Charlestown - both in Massachusetts (S.S.); the Department of Pediatrics, NYU Langone Medical Center, New York (H.T.); and the Department of Medicine, Rush University Medical Center (S.W., M.M.A., C.W., A.L.F., J.R.), and the Women's Interagency HIV Study/CORE Center of Cook County (A.L.H., A.L.F.) - both in Chicago
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim EY, Roshanravan H, Dryer SE. Syndecan-4 ectodomain evokes mobilization of podocyte TRPC6 channels and their associated pathways: An essential role for integrin signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2610-20. [PMID: 26193076 DOI: 10.1016/j.bbamcr.2015.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/11/2015] [Accepted: 07/17/2015] [Indexed: 01/24/2023]
Abstract
PodocyteTRPC6 channels have been implicated in glomerular diseases. Syndecan-4 (Sdc4) is a membrane proteoglycan that can be cleaved to release a soluble ectodomain capable of paracrine and autocrine signaling. We have confirmed that overexpression of Sdc4 core protein increases surface abundance of TRPC6 channels in cultured podocytes, whereas Sdc4 knockdown has the opposite effect. Exposure to soluble Sdc4 ectodomain also increased the surface abundance of TRPC6, and increased cationic currents evoked by a diacylglycerol analog in podocytes. Sdc4 ectodomain increased generation of reactive oxygen species (ROS), reduced activation of RhoA, increased activation of Rac1, increased nuclear abundance of NFATc1, and increased total β3-integrin. The effects of Sdc4 ectodomain on cell-surface TRPC6 were blocked by the ROS quencher TEMPOL, and by the Rac1 inhibitor NSC-23766, but were not blocked by inhibition of calcineurin-NFATc1 signaling. The Sdc4 core protein co-immunoprecipitates with β3-integrin in cultured podocytes. Moreover, effects of Sdc4 ectodomain on TRPC6, ROS generation, Rac1 and RhoA modulation, and NFATc1 activation were blocked by cilengitide, a selective inhibitor of outside-in signaling through αv-containing integrins. Exposure to TNF, or serum from three patients with recurrent FSGS in relapse, increased shedding of podocyte Sdc4 ectodomains into the surrounding medium. This was also observed after treating podocytes with the metalloproteinase ADAM17 or after overexpression of the Sdc4 core protein. Increased concentrations of Sdc4 ectodomain were detected in urine of rats during acute puromycin aminonucleoside nephrosis. Locally generated Sdc4 may play a role in regulating TRPC6 channels, and may contribute to glomerular pathology.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Division of Nephrology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
43
|
Horizon 2020 in Diabetic Kidney Disease: The Clinical Trial Pipeline for Add-On Therapies on Top of Renin Angiotensin System Blockade. J Clin Med 2015; 4:1325-47. [PMID: 26239562 PMCID: PMC4485003 DOI: 10.3390/jcm4061325] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease is the most frequent cause of end-stage renal disease. This implies failure of current therapeutic approaches based on renin-angiotensin system (RAS) blockade. Recent phase 3 clinical trials of paricalcitol in early diabetic kidney disease and bardoxolone methyl in advanced diabetic kidney disease failed to meet the primary endpoint or terminated on safety concerns, respectively. However, various novel strategies are undergoing phase 2 and 3 randomized controlled trials targeting inflammation, fibrosis and signaling pathways. Among agents currently undergoing trials that may modify the clinical practice on top of RAS blockade in a 5-year horizon, anti-inflammatory agents currently hold the most promise while anti-fibrotic agents have so far disappointed. Pentoxifylline, an anti-inflammatory agent already in clinical use, was recently reported to delay estimated glomerular filtration rate (eGFR) loss in chronic kidney disease (CKD) stage 3–4 diabetic kidney disease when associated with RAS blockade and promising phase 2 data are available for the pentoxifylline derivative CTP-499. Among agents targeting chemokines or chemokine receptors, the oral small molecule C-C chemokine receptor type 2 (CCR2) inhibitor CCX140 decreased albuminuria and eGFR loss in phase 2 trials. A dose-finding trial of the anti-IL-1β antibody gevokizumab in diabetic kidney disease will start in 2015. However, clinical development is most advanced for the endothelin receptor A blocker atrasentan, which is undergoing a phase 3 trial with a primary outcome of preserving eGFR. The potential for success of these approaches and other pipeline agents is discussed in detail.
Collapse
|
44
|
Maile LA, Gollahon K, Wai C, Dunbar P, Busby W, Clemmons D. Blocking αVβ3 integrin ligand occupancy inhibits the progression of albuminuria in diabetic rats. J Diabetes Res 2014; 2014:421827. [PMID: 25389530 PMCID: PMC4217341 DOI: 10.1155/2014/421827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022] Open
Abstract
This study determined if blocking ligand occupancy of the αVβ3 integrin could inhibit the pathophysiologic changes that occur in the early stages of diabetic nephropathy (DN). Diabetic rats were treated with either vehicle or a monoclonal antibody that binds the β3 subunit of the αVβ3 integrin. After 4 weeks of diabetes the urinary albumin to creatinine ratio (UACR) increased in both diabetic animals that subsequently received vehicle and in the animals that subsequently received the anti-β3 antibody compared with control nondiabetic rats. After 8 weeks of treatment the UACR continued to rise in the vehicle-treated rats; however it returned to levels comparable to control nondiabetic rats in rats treated with the anti-β3 antibody. Treatment with the antibody prevented the increase of several profibrotic proteins that have been implicated in the development of DN. Diabetes was associated with an increase in phosphorylation of the β3 subunit in kidney homogenates from diabetic animals, but this was prevented by the antibody treatment. This study demonstrates that, when administered after establishment of early pathophysiologic changes in renal function, the anti-β3 antibody reversed the effects of diabetes normalizing albuminuria and profibrotic proteins in the kidney to the levels observed in nondiabetic control animals.
Collapse
Affiliation(s)
- Laura A. Maile
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Vascular Pharmaceuticals, Inc., 510 Meadowmont Village Circle, Suite 283, Chapel Hill, NC 27517, USA
- *Laura A. Maile:
| | - Katherine Gollahon
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Christine Wai
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Paul Dunbar
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Walker Busby
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - David Clemmons
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|