1
|
Harvey J. Novel Leptin-Based Therapeutic Strategies to Limit Synaptic Dysfunction in Alzheimer's Disease. Int J Mol Sci 2024; 25:7352. [PMID: 39000459 PMCID: PMC11242278 DOI: 10.3390/ijms25137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Accumulation of hyper-phosphorylated tau and amyloid beta (Aβ) are key pathological hallmarks of Alzheimer's disease (AD). Increasing evidence indicates that in the early pre-clinical stages of AD, phosphorylation and build-up of tau drives impairments in hippocampal excitatory synaptic function, which ultimately leads to cognitive deficits. Consequently, limiting tau-related synaptic abnormalities may have beneficial effects in AD. There is now significant evidence that the hippocampus is an important brain target for the endocrine hormone leptin and that leptin has pro-cognitive properties, as activation of synaptic leptin receptors markedly influences higher cognitive processes including learning and memory. Clinical studies have identified a link between the circulating leptin levels and the risk of AD, such that AD risk is elevated when leptin levels fall outwith the physiological range. This has fuelled interest in targeting the leptin system therapeutically. Accumulating evidence supports this possibility, as numerous studies have shown that leptin has protective effects in a variety of models of AD. Recent findings have demonstrated that leptin has beneficial effects in the preclinical stages of AD, as leptin prevents the early synaptic impairments driven by tau protein and amyloid β. Here we review recent findings that implicate the leptin system as a potential novel therapeutic target in AD.
Collapse
Affiliation(s)
- Jenni Harvey
- Department of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
2
|
Enemark F, Novakovic ZM, Grasso P. Assessing the Safety of MA-[D-Leu-4]-OB3, a Synthetic Peptide Leptin Mimetic: Two Pre-Clinical Toxicity Studies in Male and Female C57BL/6 Mice. Int J Toxicol 2023; 42:504-514. [PMID: 37556196 DOI: 10.1177/10915818231193634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Although the regulatory influence of leptin on energy balance, glycemic control, immunity, reproduction, and cognition is well established, its clinical application to common obesity and its co-morbidities has been limited by impaired transport across the blood-brain barrier, and tendencies to induce adverse side effects. To circumvent these drawbacks, MA-[D-Leu-4]-OB3, a leptin-related synthetic peptide that mimics the metabolic and neurotrophic effects of leptin in mouse models of genetic and non-genetic obesity, diabetes, and cognitive dysfunction, has been developed. This report presents the results of our initial efforts to assess the safety of orally delivered MA-[D-Leu-4]-OB3. Two pre-clinical studies were done in male and female C57BL/6 mice: a short-term study with a high dose of MA-[D-Leu-4]-OB3 (50 mg/kg/100 μL/day) and a dose-response study with 3 increasing concentrations of MA-[D-Leu-4]-OB3 (16.6, 50, and 150 mg/kg/100 μL/day). Body weight, food and water intake, glucose tolerance, and episodic memory were evaluated. Once-daily cage-side clinical observations were conducted to detect any physical or behavioral indicators of toxicity. Our results indicate that all metabolic and neurologic endpoints tested were either unaffected or improved by MA-[D-Leu-4]-OB3, and no clinical indicators of toxicity were evident. Together with our previously reported efficacy data, these results provide additional evidence supporting further development of this novel synthetic peptide leptin mimetic as a first-in-class peptide drug candidate for the treatment of a number of metabolic and/or cognitive dysfunctions in humans.
Collapse
Affiliation(s)
- Forrest Enemark
- Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Zachary M Novakovic
- Saratoga Hospital Medical Group, Saratoga Hospital, Saratoga Springs, NY, USA
| | - Patricia Grasso
- Department of Medicine, Albany Medical College, Albany, NY, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
3
|
Grasso P. Harnessing the Power of Leptin: The Biochemical Link Connecting Obesity, Diabetes, and Cognitive Decline. Front Aging Neurosci 2022; 14:861350. [PMID: 35527735 PMCID: PMC9072663 DOI: 10.3389/fnagi.2022.861350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
In this review, the current understanding of leptin’s role in energy balance, glycemic regulation, and cognitive function is examined, and its involvement in maintaining the homeostatic “harmony” of these physiologies is explored. The effects of exercise on circulating leptin levels are summarized, and the results of clinical application of leptin to metabolic disease and neurologic dysfunction are reviewed. Finally, pre-clinical evidence is presented which suggests that synthetic peptide leptin mimetics may be useful in resolving not only the leptin resistance associated with common obesity and other elements of metabolic syndrome, but also the peripheral insulin resistance characterizing type 2 diabetes mellitus, and the central insulin resistance associated with certain neurologic deficits in humans.
Collapse
Affiliation(s)
- Patricia Grasso
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- *Correspondence: Patricia Grasso,
| |
Collapse
|
4
|
Jeremy M, Kharwar RK, Roy VK. Synthetic leptin c-fragment peptide minimises heat-induced impairment of spermatogenesis in mice via Stat3 signalling. Theriogenology 2022; 178:40-49. [PMID: 34763177 DOI: 10.1016/j.theriogenology.2021.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 09/04/2021] [Accepted: 10/31/2021] [Indexed: 12/22/2022]
Abstract
Mammalian spermatogenesis is a temperature-sensitive process, and an increase in testicular temperature impairs spermatogenesis. Leptin modulates testicular activity, but the effect of leptin or its synthetic analogue on heat-induced testicular impairment is unclear. We investigated the effects of synthetic leptin peptide (116-130 amides) on testicular activity in heat-stressed mice model. 15 adult mice (25.54 ± 1.43 g) were selected for the study. Ten mice were subjected to a single heat stress treatment (HS) at 43 °C for 15 min by submerging the lower half of the body in a thermostatic water bath. After heat treatment, mice were divided into two groups, the heat-stressed HS group (n = 5) and the second group as HSL, treated with leptin peptide (116-130 amide) for 14 days. The HS group showed a significant (p < 0.05) decline in the GSI (0.25 ± 0.018), Johnsenscore (4.5 ±.19), seminiferous tubule diameter (160.75 ± 10.18 μm), germinal epithelium height, (GEH) (37.5 ± 1.59 μm) compared to the CN (GSI-0.37 ± 0.015; Johnsen score-7.9 ± 0.20; GEH- 73.25 ± 1.29 μm; tubule diameter-230.25 ± 1.39 μm) and the HSL groups (GSI-0.38 ± 0.014; Johnsen' score-8.0 ± 0.32; GEH- 37.5 ± 1.59 μm; tubule diameter-160.75 ± 10.18 μm) groups. Heat treatment significantly (p < 0.05) increased the intra-testicular levels of leptin (HS-20.11 ± 2.1 pg/mg protein; CN-10.50 ± 0.17 pg/mg protein; HSL-12.99 ± 0.52 pg/mg protein) with a reduced level of pStat3, suggesting leptin resistance during testicular hyperthermia. Furthermore, heat treatment was associated with significantly (p < 0.05) decreased germ cell proliferation and reduced circulating testosterone levels (HS-2.69 ± 2.01 ng/mL; CN-7.69 ± 0.32 ng/mL; HSL-5.36 ± 0.73 ng/mL). However, the circulating androstenedione levels showed a significant (p < 0.05) increase in the HS group (0.75 ± 0.03 ng/mL) compared to the CN (0.51 ± 0.02 ng/mL) and HSL (0.57 ± 0.07 ng/mL) groups. Immunolocalisation of 3β-HSD showed moderate to faint staining in the Leydig cells in the HS group compared to the CN and HSL groups. Treatment with leptin peptide resulted in decrease in the intra-testicular leptin levels with increased phosphorylation of Stat3, suggesting improved leptin resistance, which was positively associated with increased germ cell proliferation, elevated testosterone levels, and improved testicular histoarchitecture. Testicular hyperthermia may cause leptin resistance and impaired leptin signalling, decreased testosterone biosynthesis and suppressed spermatogenesis, which could be a manifestation of leptin resistance. Treatment with leptin peptide improves leptin signalling and testicular activity in heat-stressed mice, but the underlying mechanism is still unclear.
Collapse
Affiliation(s)
- Malsawmhriatzuala Jeremy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India; Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur, 222 146, India
| | - Rajesh Kumar Kharwar
- Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur, 222 146, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, 796004, Mizoram, India.
| |
Collapse
|
5
|
Wang Y, Wang H, Hu L, Chen L. Leptin Gene Protects Against Cold Stress in Antarctic Toothfish. Front Physiol 2021; 12:740806. [PMID: 34975517 PMCID: PMC8715755 DOI: 10.3389/fphys.2021.740806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Leptin is a cytokine-like peptide, predominantly biosynthesized in adipose tissue, which plays an important role in regulating food intake, energy balance and reproduction in mammals. However, how it may have been modified to enable life in the chronic cold is unclear. Here, we identified a leptin-a gene (lepa) in the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni that encodes a polypeptide carrying four α-helices and two cysteine residues forming in-chain disulfide bonds, structures shared by most vertebrate leptins. Quantitative RT-PCR confirmed that mRNA levels of the leptin-a gene of D. mawsoni (DM-lepa) were highest in muscle, followed by kidney and liver; detection levels were low in the gill, brain, intestine, and ovary tissues. Compared with leptin-a genes of fishes living in warmer waters, DM-lepa underwent rapid evolution and was subjected to positive selection. Over-expression of DM-lepa in the zebrafish cell line ZFL resulted in signal accumulation in the cytoplasm and significantly increased cell proliferation both at the normal culture temperature and under cold treatment. DM-lepa over-expression also reduced apoptosis under low-temperature stress and activated the STAT3 signaling pathway, in turn upregulating the anti-apoptotic proteins bcl2l1, bcl2a, myca and mdm2 while downregulating the pro-apoptotic baxa, p53 and caspase-3. These results demonstrate that DM-lepa, through STAT3 signaling, plays a protective role in cold stress by preventing apoptotic damage. Our study reveals a new role of lepa in polar fish.
Collapse
Affiliation(s)
- Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Huamin Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Linghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- *Correspondence: Liangbiao Chen,
| |
Collapse
|
6
|
Hamilton K, Harvey J. Leptin regulation of hippocampal synaptic function in health and disease. VITAMINS AND HORMONES 2021; 115:105-127. [PMID: 33706945 DOI: 10.1016/bs.vh.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is widely accepted that the metabolic hormone leptin regulates food intake and body weight via activation of hypothalamic leptin receptors. However, as leptin receptors are also highly expressed in other brain regions, such as the hippocampus, alterations in leptin responsiveness also impacts on key functions of the hippocampus, like learning and memory. Within the hippocampus, high levels of leptin receptors are expressed at excitatory synapses, and in accordance with a synaptic localization, leptin potently regulates synaptic transmission at both Schaffer collateral (SC) and temporoammonic (TA) inputs to CA1 pyramidal neurons. Increasing evidence from cellular and behavioral studies examining leptin action at CA1 synapses support the notion that leptin is a potential cognitive enhancer. However, the capacity of leptin to regulate synaptic efficacy at SC-CA1 and TA-CA1 synapses declines in an age-dependent manner. Moreover, clinical evidence that supports a link between circulating leptin levels and the risk of the age-related neurodegenerative disorder, Alzheimer's disease (AD) is accumulating. Consequently, it has been proposed that the leptin system is a potential therapeutic target in AD, and that boosting the hippocampal actions of leptin may be beneficial in the treatment of AD. Here we review recent progress in our understanding of the neuronal and hippocampal synaptic functions that are regulated by leptin and how alterations in the leptin system influence age-related CNS-related disorders like AD.
Collapse
Affiliation(s)
- Kirsty Hamilton
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Division of Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
7
|
Hamilton K, Harvey J. The Neuronal Actions of Leptin and the Implications for Treating Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14010052. [PMID: 33440796 PMCID: PMC7827292 DOI: 10.3390/ph14010052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
It is widely accepted that the endocrine hormone leptin controls food intake and energy homeostasis via activation of leptin receptors expressed on hypothalamic arcuate neurons. The hippocampal formation also displays raised levels of leptin receptor expression and accumulating evidence indicates that leptin has a significant impact on hippocampal synaptic function. Thus, cellular and behavioural studies support a cognitive enhancing role for leptin as excitatory synaptic transmission, synaptic plasticity and glutamate receptor trafficking at hippocampal Schaffer collateral (SC)-CA1 synapses are regulated by leptin, and treatment with leptin enhances performance in hippocampus-dependent memory tasks. Recent studies indicate that hippocampal temporoammonic (TA)-CA1 synapses are also a key target for leptin. The ability of leptin to regulate TA-CA1 synapses has important functional consequences as TA-CA1 synapses are implicated in spatial and episodic memory processes. Moreover, degeneration is initiated in the TA pathway at very early stages of Alzheimer's disease, and recent clinical evidence has revealed links between plasma leptin levels and the incidence of Alzheimer's disease (AD). Additionally, accumulating evidence indicates that leptin has neuroprotective actions in various AD models, whereas dysfunctions in the leptin system accelerate AD pathogenesis. Here, we review the data implicating the leptin system as a potential novel target for AD, and the evidence that boosting the hippocampal actions of leptin may be beneficial.
Collapse
|
8
|
Abstract
Drug targets for the treatment of obesity and comorbidities represent an ever-renewable source of research opportunities worldwide. One of the earliest is the leptin–leptin receptor system that was discovered in the mid-1990s. Leptin, a satiety hormone, is overproduced in overweight patients but the protein is unable to cross the blood–brain barrier and remains inactive. Circulating high levels of leptin induces a series of conditions that would not be manifested without leptin overproduction, including various forms of cancer and inflammatory and cardiovascular diseases. Current pharmaceutical research focuses on improving the blood–brain barrier penetration of leptin receptor agonists and the development of monofunctional antagonists with broad spectrum therapeutic efficacies but without unwanted side effects. Designer peptides with their expanded chemical space as well as well controllable receptor binding and elimination properties slowly replace full-sized leptin products in the drug development pipeline.
Collapse
|
9
|
Bouafi H, Bencheikh S, Mehdi Krami AL, Morjane I, Charoute H, Rouba H, Saile R, Benhnini F, Barakat A. Prediction and Structural Comparison of Deleterious Coding Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) in Human LEP Gene Associated with Obesity. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1832084. [PMID: 31871931 PMCID: PMC6913293 DOI: 10.1155/2019/1832084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
Leptin is a peptide hormone that regulates fat stores in the body and appetite by controlling the feeling of satiety. This hormone is secreted by the white adipose tissue and plays a role in the storage and mobilization of fatty acids. Mutations of the LEP gene have been associated with obesity in different populations; it is a multifactorial disease that constitutes a major public health problem. In this study, we evaluated the impact of missense SNPs in the LEP gene extracted from dbSNP using 8 computational prediction tools. Out of the total of 4337 SNPs, 93 were nsSNPs (nonsynonymous single nucleotide polymorphisms). Among 93 nsSNPs, 12 (S46L, G59S, D61N, D100N, N103K, C117S, D76V, S88C, P90R, I95N, L161R, and R105W) variants were predicted to be the most deleterious by prediction software. On these 12 deleterious SNPs, 8 variants (S46L, G59S, D61N, D100N, N103K, C117S, L161R, and R105W) were located in the conserved positions and showed a decrease in structure stability which was evaluated by I-Mutant and Mupro. Then, by analyzing the different interactions between different amino acids in wild and mutated proteins, we assessed the structural impact of the deleterious modifications using the YASARA software. Among 8 deleterious nsSNPs, we revealed structure changes in the 6 variants S46L, G59S, D100N, L103K, R105W, L161R, two of which R105W, N103K were previously reported as associated with obesity. Our study suggests 6 deleterious mutations could play an important role in contributing to human obesity and worth to be included in association and functional studies, then may be a drug target.
Collapse
Affiliation(s)
- Hind Bouafi
- Laboratoire de Génomique et Génétique Humaine, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire Biologie et Santé, Centre de Recherche Santé et Biotechnologie, Faculté des Sciences Ben M'Sik, Hassan II University of Casablanca, Morocco
| | - Sara Bencheikh
- Laboratoire de Génomique et Génétique Humaine, Institut Pasteur du Maroc, Casablanca, Morocco
| | - AL Mehdi Krami
- Laboratoire de Génomique et Génétique Humaine, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Imane Morjane
- Laboratoire de Génomique et Génétique Humaine, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Laboratoire de Génomique et Génétique Humaine, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Laboratoire de Génomique et Génétique Humaine, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Rachid Saile
- Laboratoire Biologie et Santé, Centre de Recherche Santé et Biotechnologie, Faculté des Sciences Ben M'Sik, Hassan II University of Casablanca, Morocco
| | - Fouad Benhnini
- Laboratoire de Signalisation cellulaire, Faculté des Sciences Meknès, Université Moulay Ismail, Morocco
| | - Abdelhamid Barakat
- Laboratoire de Génomique et Génétique Humaine, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
10
|
Anderson BM, Hirschstein Z, Novakovic ZM, Grasso P. MA-[d-Leu-4]-OB3, a Small Molecule Synthetic Peptide Leptin Mimetic, Mirrors the Cognitive Enhancing Action of Leptin in a Mouse Model of Type 1 Diabetes Mellitus and Alzheimer’s Disease-Like Cognitive Impairment. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09929-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Ghasemi A, Saeidi J, Azimi-Nejad M, Hashemy SI. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol (Dordr) 2019; 42:243-260. [PMID: 30877623 DOI: 10.1007/s13402-019-00428-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Increasing evidence indicates that obesity is associated with tumor development and progression. Leptin is an adipocyte-related hormone with a key role in energy metabolism and whose circulating levels are elevated in obesity. The effect of leptin on cancer progression and metastasis and its underlying mechanisms are still unclear. Leptin can impact various steps in tumor metastasis, including epithelial-mesenchymal transition, cell adhesion to the extracellular matrix (ECM), and proteolysis of ECM components. To do so, leptin binds to its receptor (OB-Rb) to activate signaling pathways and downstream effectors that participate in tumor cell invasion as well as distant metastasis. CONCLUSIONS In this review, we describe metastasis steps in detail and characterize metastasis-related molecules activated by leptin, which may help to develop a roadmap that guides future work. In addition, we conclude that a profound understanding of the fundamental molecular processes that contribute to leptin-induced metastasis may pave the way for the development of new prognostic molecules and appropriate approaches to the treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohsen Azimi-Nejad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Genetic, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
McGregor G, Harvey J. Regulation of Hippocampal Synaptic Function by the Metabolic Hormone, Leptin: Implications for Health and Neurodegenerative Disease. Front Cell Neurosci 2018; 12:340. [PMID: 30386207 PMCID: PMC6198461 DOI: 10.3389/fncel.2018.00340] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022] Open
Abstract
The role of the endocrine hormone leptin in controlling energy homeostasis in the hypothalamus are well documented. However the CNS targets for leptin are not restricted to the hypothalamus as a high density of leptin receptors are also expressed in several parts of the brain involved in higher cognitive functions including the hippocampus. Numerous studies have identified that in the hippocampus, leptin has cognitive enhancing actions as exogenous application of this hormone facilitates hippocampal-dependent learning and memory, whereas lack or insensitivity to leptin results in significant memory deficits. Leptin also markedly influences some of the main cellular changes that are involved in learning and memory including NMDA-receptor dependent synaptic plasticity and glutamate receptor trafficking. Like other metabolic hormones, there is a significant decline in neuronal sensitivity to leptin during the ageing process. Indeed, the capacity of leptin to modulate the functioning of hippocampal synapses is substantially reduced in aged compared to adult tissue. Clinical studies have also identified an association between circulating leptin levels and the risk of certain neurodegenerative disorders such as Alzheimer’s disease (AD). In view of this, targeting leptin and/or its receptor/signaling mechanisms may be an innovative approach for developing therapies to treat AD. In support of this, accumulating evidence indicates that leptin has cognitive enhancing and neuroprotective actions in various models of AD. Here we assess recent evidence that supports an important regulatory role for leptin at hippocampal CA1 synapses, and we discuss how age-related alterations in this hormonal system influences neurodegenerative disease.
Collapse
Affiliation(s)
- Gemma McGregor
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jenni Harvey
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
13
|
Malekizadeh Y, Holiday A, Redfearn D, Ainge JA, Doherty G, Harvey J. A Leptin Fragment Mirrors the Cognitive Enhancing and Neuroprotective Actions of Leptin. Cereb Cortex 2018; 27:4769-4782. [PMID: 27600840 DOI: 10.1093/cercor/bhw272] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023] Open
Abstract
A key pathology of Alzheimer's disease (AD) is amyloid β (Aβ) accumulation that triggers synaptic impairments and neuronal death. Metabolic disruption is common in AD and recent evidence implicates impaired leptin function in AD. Thus the leptin system may be a novel therapeutic target in AD. Indeed, leptin has cognitive enhancing properties and it prevents the aberrant effects of Aβ on hippocampal synaptic function and neuronal viability. However, as leptin is a large peptide, development of smaller leptin-mimetics may be the best therapeutic approach. Thus, we have examined the cognitive enhancing and neuroprotective properties of known bioactive leptin fragments. Here we show that the leptin (116-130) fragment, but not leptin (22-56), mirrored the ability of leptin to promote AMPA receptor trafficking to synapses and facilitate activity-dependent hippocampal synaptic plasticity. Administration of leptin (116-130) also mirrored the cognitive enhancing effects of leptin as it enhanced performance in episodic-like memory tests. Moreover, leptin (116-130) prevented hippocampal synaptic disruption and neuronal cell death in models of amyloid toxicity. These findings establish further the importance of the leptin system as a therapeutic target in AD.
Collapse
Affiliation(s)
- Yasaman Malekizadeh
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, DundeeDD1 9SY, UK
| | - Alison Holiday
- School of Psychology and Neuroscience, St Mary's Quad, University of St Andrews, St Andrews, FifeKY16 9TS, UK
| | - Devon Redfearn
- School of Psychology and Neuroscience, St Mary's Quad, University of St Andrews, St Andrews, FifeKY16 9TS, UK
| | - James A Ainge
- School of Psychology and Neuroscience, St Mary's Quad, University of St Andrews, St Andrews, FifeKY16 9TS, UK
| | - Gayle Doherty
- School of Psychology and Neuroscience, St Mary's Quad, University of St Andrews, St Andrews, FifeKY16 9TS, UK
| | - Jenni Harvey
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, DundeeDD1 9SY, UK
| |
Collapse
|
14
|
Wang A, Anderson BM, Novakovic ZM, Grasso P. [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, small molecule synthetic peptide leptin mimetics, improve glycemic control in diet-induced obese (DIO) mice. Peptides 2018; 101:51-59. [PMID: 29269073 DOI: 10.1016/j.peptides.2017.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
We have previously shown that following oral delivery in dodecyl maltoside (DDM), [D-Leu-4]-OB3 and its myristic acid conjugate, MA-[D-Leu-4]-OB3, improved energy balance and glucose homeostasis in genetically obese/diabetic mouse models. More recently, we have provided immunohistochemical evidence indicating that these synthetic peptide leptin mimetics cross the blood-brain barrier and concentrate in the area of the arcuate nucleus of the hypothalamus in normal C57BL/6J and Swiss Webster mice, in genetically obese ob/ob mice, and in diet-induced obese (DIO) mice. In the present study, we describe the effects of oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control in diet-induced (DIO) mice, a non-genetic rodent model of obesity and its associated insulin resistance, which more closely recapitulates common obesity and diabetes in humans. Male C57BL/6J and DIO mice, 17, 20, and 28 weeks of age, were maintained on a low-fat or high-fat diet and given vehicle (DDM) alone or [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in DDM by oral gavage for 12 or 14 days. Body weight gain, food and water intake, fasting blood glucose, oral glucose tolerance, and serum insulin levels were measured. Our data indicate that (1) [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 restore glucose tolerance in male DIO mice maintained on a high-fat diet to levels comparable to those of non-obese C57BL/6J wild-type mice of the same age and sex maintained on a low-fat diet; and (2) the influence of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control appears to be independent of their effects on energy balance. These results suggest that [D-Leu-4]-OB3 and/or MA-[D-Leu-4]-OB3 may have application to the management of the majority of cases of common obesity in humans, a state characterized at least in part, by leptin resistance resulting from a defect in leptin transport across the blood-brain barrier. They further suggest that these small molecule synthetic peptide leptin mimetics, through their influence on glycemic control, may prevent the pre-diabetic state associated with most cases of common obesity from escalating into overt type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Anke Wang
- Department of Medicine, Division of Endocrinology and Metabolism, Albany Medical College, Albany, NY, 12208, USA
| | - Brian M Anderson
- Department of Medicine, Division of Endocrinology and Metabolism, Albany Medical College, Albany, NY, 12208, USA; Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Zachary M Novakovic
- Department of Medicine, Division of Endocrinology and Metabolism, Albany Medical College, Albany, NY, 12208, USA
| | - Patricia Grasso
- Department of Medicine, Division of Endocrinology and Metabolism, Albany Medical College, Albany, NY, 12208, USA; Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
15
|
Dias CC, Nogueira-Pedro A, Tokuyama PY, Martins MNC, Segreto HRC, Buri MV, Miranda A, Paredes-Gamero EJ. A synthetic fragment of leptin increase hematopoietic stem cell population and improve its engraftment ability. J Cell Biochem 2016; 116:1334-40. [PMID: 25735790 DOI: 10.1002/jcb.25090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
Several studies have shown the important actions of cytokine leptin that regulates food intake and energy expenditure. Additionally, the ability to modulate hematopoiesis has also been demonstrated. Previous reports have shown that some synthetic sequences of leptin molecules can activate leptin receptor. Herein, decapeptides encompassing amino acids from positions 98 to 122 of the leptin molecule were constructed to evaluate their effects on hematopoiesis. Among them, the synthetic peptide Lep(110-119)-NH2 (LEP F) was the only peptide that possessed the ability to increase the percentage of hematopoietic stem cells (HSC). Moreover, LEP F also produced an increase of granulocyte/macrophage colony-forming units and activated leptin receptor. Furthermore, LEP F also improves the grafting of HSC in bone marrow, but did not accelerate the recovery of bone marrow after ablation with 5-fluorouracil. These results show that LEP F is a positive modulator of the in vivo expansion of HSC and could be useful in bone marrow transplantation.
Collapse
Affiliation(s)
- Carolina C Dias
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Amanda Nogueira-Pedro
- Departmento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Paula Yumi Tokuyama
- Departmento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Marta N C Martins
- Departmento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Helena Regina Comodo Segreto
- Departamento de Oncologia Clínica e Experimental, Universidade Federal de São Paulo, R. Napoleão de Barros, 715, São Paulo, Brazil
| | - Marcus V Buri
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Antonio Miranda
- Departmento de Biofísica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, 04044-020, Brazil.,Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| |
Collapse
|
16
|
Leptin: From structural insights to the design of antagonists. Life Sci 2015; 140:49-56. [PMID: 25998027 DOI: 10.1016/j.lfs.2015.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
After its discovery in 1994, it soon became clear that leptin acts as an adipocyte-derived hormone with a central role in the control of body weight and energy homeostasis. However, a growing body of evidence has revealed that leptin is a pleiotropic cytokine with activities on many peripheral cell types. Inappropriate leptin signaling can promote autoimmunity, certain cardiovascular diseases, elevated blood pressure and cancer, which makes leptin and the leptin receptor interesting targets for antagonism. Profound insights in the leptin receptor (LR) activation mechanisms are a prerequisite for the rational design of these antagonists. In this review, we focus on the molecular mechanisms underlying leptin receptor activation and signaling. We also discuss the current strategies to interfere with leptin signaling and their therapeutic potential.
Collapse
|
17
|
Novakovic ZM, Anderson BM, Grasso P. Myristic acid conjugation of [D-Leu-4]-OB3, a biologically active leptin-related synthetic peptide amide, significantly improves its pharmacokinetic profile and efficacy. Peptides 2014; 62:176-82. [PMID: 25453979 DOI: 10.1016/j.peptides.2014.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
Abstract
We have previously described the pharmacokinetics of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, following delivery by subcutaneous (SC), intraperitoneal (IP), and intramuscular (IM) injection, and by oral gavage and intranasal instillation. These profiles suggested that the observed efficacy of [D-Leu-4]-OB3 on energy balance, glycemic control, and bone turnover in ob/ob and db/db mice might be improved by efforts directed toward improving its bioavailability, i.e., increasing maximum uptake (Cmax), extending serum half-life (t½), and reducing plasma clearance (CL). To address these issues, myristic (tetradecanoic) acid was conjugated to the N-terminal of [D-Leu-4]-OB3 (designated MA-[D-Leu-4]-OB3), and the pharmacokinetics of MA-[D-Leu-4]-OB3 in male Swiss Webster mice following SC, IP, and IM injection in PBS, and by oral and intranasal delivery in dodecyl maltoside (DDM, trade name Intravail®), a transmucosal absorption enhancing agent, were compared to those of [D-Leu-4]-OB. At a dose of MA-[D-Leu-4]-OB3 10-fold lower than that used previously for [D-Leu-4]-OB3 (0.1 mg vs.1.0 mg, respectively), Cmax of MA-[D-Leu-4]-OB3 was 11.1-, 7.5-, 1.9-, and 1.7-fold higher, t1/2 was 3.5-, 5.0-, 9.1-, and 86.7-fold longer, and CL was 17.0-, 11.6-, 5.7-, and 5.0-fold slower than [D-Leu-4]-OB3 following SC, IP, IM, and oral delivery, respectively. Furthermore, in leptin-resistant obese male db/db mice, oral delivery of MA-[D-Leu-4]-OB3 in DDM at concentrations up to 10-fold lower than those used with [D-Leu-4]-OB3 reduced fasting blood glucose levels in a dose-related manner.
Collapse
|
18
|
Abstract
Type 2 diabetes (T2D) represents a significant global epidemic with more than 285 million people affected worldwide. Regulating glycemia in T2D patients can be partially achieved with currently available treatment, but intensive research during the last decades have led to the discovery of modified compounds or new targets that could represent great hope for safe and effective treatment in the future. Among them, targets in the CNS that are known to control feeding and body weight have been also shown to exert glucoregulatory actions, and could be a key in the development of a new generation of drugs in the field of T2D. Such drugs would be of great interest since they can be used both in the treatment of diabetes and obesity. This patent review aims to establish an overview of recent patents disclosing new therapeutic opportunities targeting peripheral, as well as central targets for the treatment of T2D.
Collapse
|
19
|
Lin HY, Yang SH, Tang HY, Cheng GY, Davis PJ, Grasso P. Biologically active leptin-related synthetic peptides activate STAT3 via phosphorylation of ERK1/2 and PI-3K. Peptides 2014; 57:95-100. [PMID: 24819473 DOI: 10.1016/j.peptides.2014.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022]
Abstract
The effects of leptin-related synthetic peptides [d-Leu-4]-OB3 and OB3 on energy balance and glucose homeostasis in ob/ob and db/db mice have been confirmed. The molecular basis of these effects, however, remains unclear. In the present study, we examined the ability of these peptides to activate signal transduction pathways known to be involved in transduction of the leptin signal. In a specific and concentration-dependent manner, [d-Leu-4]-OB3 induced phosphorylation of ERK1/2, PI-3K, Ser-727 STAT3, and Tyr-705 of STAT3. OB3 also induced activation of STAT3 via phosphorylation of ERK1/2, STAT3 Ser-727, STAT3 Tyr-705 and PI-3K p85, but to a lesser degree. Using PD98059 and LY294002, specific inhibitors of MEK and PI-3K, respectively, we were able to identify the signal transduction pathways involved in peptide-induced STAT3 activation. [d-Leu-4]-OB3 induced serine phosphorylation of STAT3 primarily through activation of ERK1/2. Tyrosine phosphorylation of STAT3, however, was induced primarily through activation of PI-3K. Our data suggest that in db/db mice, [d-Leu-4]-OB3 binding to short isoforms of the leptin receptor induces intracellular signaling cascades which do not require OB-Rb activation. These signals may ultimately result in peptide effects on transcriptional and translational events associated with energy balance and glycemic regulation. In summary, we have shown for the first time that, similar to leptin, bioactive leptin-related synthetic peptide analogs activate STAT3 via phosphorylation of serine and tyrosine residues by multiple signal transduction pathways.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Taipei Cancer Center, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Huei Yang
- Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Guei-Yun Cheng
- Taipei Cancer Center, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Paul J Davis
- Department of Medicine, Division of Endocrinology and Metabolism, Albany Medical College, Albany, NY 12208, USA
| | - Patricia Grasso
- Department of Medicine, Division of Endocrinology and Metabolism, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
20
|
Leggio A, Catalano S, De Marco R, Barone I, Andò S, Liguori A. Therapeutic potential of leptin receptor modulators. Eur J Med Chem 2014; 78:97-105. [DOI: 10.1016/j.ejmech.2014.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/19/2013] [Accepted: 03/15/2014] [Indexed: 01/13/2023]
|
21
|
Leinung MC, Grasso P. [d-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, augments the effects of orally delivered exenatide and pramlintide acetate on energy balance and glycemic control in insulin-resistant male C57BLK/6-m db/db mice. ACTA ACUST UNITED AC 2012; 179:33-8. [DOI: 10.1016/j.regpep.2012.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/09/2012] [Accepted: 08/27/2012] [Indexed: 11/12/2022]
|
22
|
Abstract
Fat affects meat quality, value and production efficiency as well as providing energy reserves for pregnancy and lactation in farm livestock. Leptin, the adipocyte product of the obese (ob) gene, was quickly seen as a predictor of body fat content in animals approaching slaughter and an aid to assessing reproductive readiness in females. Its participation in inflammation and immune responses that help animals survive infection and trauma has clear additional relevance to meat and milk production. Furthermore, almost a decade of discoveries of nucleotide polymorphisms in the leptin and leptin receptor genes has suggested useful applications relating to feed intake regulation, the efficiency of feed use, the composition of growth, the timing of puberty, mammogenesis and mammary gland function and fertility in cattle, pigs and poultry. The current review attempts to summarise where research has taken us in each of these aspects and speculates on where future research might lead.
Collapse
|
23
|
Yuan L, Zhao X, Lin B, Rossiter SJ, He L, Zuo X, He G, Jones G, Geiser F, Zhang S. Adaptive evolution of Leptin in heterothermic bats. PLoS One 2011; 6:e27189. [PMID: 22110614 PMCID: PMC3217946 DOI: 10.1371/journal.pone.0027189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022] Open
Abstract
Heterothermy (hibernation and daily torpor) is a key strategy that animals use to survive in harsh conditions and is widely employed by bats, which are found in diverse habitats and climates. Bats comprise more than 20% of all mammals and although heterothermy occurs in divergent lineages of bats, suggesting it might be an ancestral condition, its evolutionary history is complicated by complex phylogeographic patterns. Here, we use Leptin, which regulates lipid metabolism and is crucial for thermogenesis of hibernators, as molecular marker and combine physiological, molecular and biochemical analyses to explore the possible evolutionary history of heterothermy in bat. The two tropical fruit bats examined here were homeothermic; in contrast, the two tropical insectivorous bats were clearly heterothermic. Molecular evolutionary analyses of the Leptin gene revealed positive selection in the ancestors of all bats, which was maintained or further enhanced the lineages comprising mostly heterothermic species. In contrast, we found evidence of relaxed selection in homeothermic species. Biochemical assays of bat Leptin on the activity on adipocyte degradation revealed that Leptin in heterothermic bats was more lipolytic than in homeothermic bats. This shows that evolutionary sequence changes in this protein are indeed functional and support the interpretation of our physiological results and the molecular evolutionary analyses. Our combined data strongly support the hypothesis that heterothermy is the ancestral state of bats and that this involved adaptive changes in Leptin. Subsequent loss of heterothermy in some tropical lineages of bats likely was associated with range and dietary shifts.
Collapse
Affiliation(s)
- Lihong Yuan
- South China Institute of Endangered Animals, Guangzhou, China
- Key Laboratory of Marine Bio-resources Sustainable Utilization, Key Laboratory of Applied Marine Biology of Guangdong Province, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xudong Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Benfu Lin
- South China Institute of Endangered Animals, Guangzhou, China
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lingjiang He
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Xueguo Zuo
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Guimei He
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Fritz Geiser
- Center for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
24
|
Abstract
Leptin, a pluripotent adipokine, has been discovered as a hormone controlling energy balance in hypothalamic neuroendocrine centers. In addition, recent studies provided ample evidence that leptin can be produced by cells other than adipocytes, and that the hormone can regulate many physiological processes other than energy balance and appetite. In this context, it is not surprising that both leptin excess as well as leptin insufficiency have been implicated in various pathologies. Consequently, despite initially disappointing results with recombinant leptin as the drug for obesity management, new leptin receptor modifiers have been developed and emerged as potential treatment modalities for numerous metabolic, immunological and neoplastic diseases. The major focus of this paper is a systematic review of current experimental leptin-based therapies, including pharmacological advantages and limitations of each prodrug category.
Collapse
Affiliation(s)
| | | | | | - Laszlo Otvos
- a Temple University, Philadelphia, PA 19122, USA
| | - Eva Surmacz
- a Temple University, Philadelphia, PA 19122, USA
- c
| |
Collapse
|
25
|
Waldrop MA, Leinung MC, Lee DW, Grasso P. Intranasal delivery of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, improves energy balance, glycaemic control, insulin sensitivity and bone formation in leptin-resistant C57BLK/6-m db/db mice. Diabetes Obes Metab 2010; 12:871-5. [PMID: 20920039 DOI: 10.1111/j.1463-1326.2010.01243.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We have recently shown that intranasal administration of mouse [D-Leu-4]-OB3 reconstituted in Intravail(®) to male Swiss Webster mice resulted in significantly higher uptake and bioavailability when compared with commonly used injection methods of delivery. AIM AND METHODS In this study, we examined the effects of intranasal delivery of mouse [D-Leu-4]-OB3 in Intravail(®) on energy balance, glucose regulation, insulin secretion and serum levels of osteocalcin, a specific and sensitive marker of bone formation. Genetically obese C57BLK/6-m db/db mice were allowed food and water ad libitum and given either Intravail(®) alone or mouse [D-Leu-4]-OB3 in Intravail(®) for 14 days by intranasal instillation. RESULTS Mouse [D-Leu-4]-OB3 reduced body weight gain, daily food intake, daily water intake and serum glucose by 11.5, 2.2, 4.0 and 61.9%, respectively. Serum insulin levels in db/db mice given mouse [D-Leu-4]-OB3 were approximately threefold lower than those in mice receiving Intravail(®) alone. Mouse [D-Leu-4]-OB3 elevated serum osteocalcin in db/db mice by 28.7% over Intravail(®) treated control mice. CONCLUSIONS The results of our study indicate that intranasal delivery of biologically active mouse [D-Leu-4]-OB3 in Intravail(®) is feasible and has significant effects on regulating body weight gain, food and water intake, serum glucose, insulin sensitivity and bone formation in leptin-resistant C57BLK/6-m db/db mice.
Collapse
Affiliation(s)
- M A Waldrop
- Department of Medicine, Division of Endocrinology and Metabolism, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
26
|
Novakovic ZM, Leinung MC, Lee DW, Grasso P. Oral delivery of mouse [d-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, in male C57BL/6J wild-type and ob/ob mice: effects on energy balance, glycaemic control and serum osteocalcin levels. Diabetes Obes Metab 2010; 12:532-9. [PMID: 20518808 DOI: 10.1111/j.1463-1326.2009.01189.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We have recently shown that intranasal administration of mouse [d-Leu-4]-OB3 reconstituted in Intravail to male Swiss Webster mice resulted in significantly higher bioavailability than commonly used injections methods of delivery. The absorption profile associated with intranasal delivery of mouse [d-Leu-4]-OB3 showed an early peak representing absorption across the nasal mucosa, and a later peak suggesting a gastrointestinal site of uptake. AIM AND METHODS In the present study, we examined the effects of orally administered (by gavage) mouse [d-Leu-4]-OB3 on energy balance, glycaemic control and serum osteocalcin levels in male C57BL/6J wild-type and ob/ob mice allowed food and water ad libitum or calorie restricted by 40% of normal intake. RESULTS In wild-type mice fed ad libitum, oral delivery of mouse [d-Leu-4]-OB3 reduced body weight gain, food intake and serum glucose, by 4.4, 6.8 and 28.2% respectively. Serum osteocalcin levels and water intake were essentially the same in control and treated wild-type mice. In ob/ob mice fed ad libitum, mouse [d-Leu-4]-OB3 reduced body weight gain, food intake, water intake and serum glucose by 11.6, 16.5, 22.4 and 24.4% respectively. Serum osteocalcin in ob/ob mice treated with mouse [d-Leu-4]-OB3 was elevated by 62% over controls. Calorie restriction alone caused significant weight loss in both wild-type (9.0%) and ob/ob (4.8%) mice, and mouse [d-Leu-4]-OB3 did not further enhance this weight loss. As expected, serum glucose levels in wild-type and ob/ob mice were significantly reduced by calorie restriction alone. Mouse [d-Leu-4]-OB3 further reduced serum glucose in wild-type mice and normalized levels in ob/ob mice. Calorie restriction alone reduced serum osteocalcin levels by 44.2% in wild-type mice and by 19.1% in ob/ob mice. Mouse [d-Leu-4]-OB3 prevented this decrease in groups of mice. CONCLUSIONS The results of this study suggest that oral delivery of mouse [d-Leu-4]-OB3 in Intravail is possible and may have potential not only as an alternative therapy in the treatment of human obesity and some of its associated metabolic dysfunctions, but also may help to prevent and/or reverse at least some of the bone loss which accompanies osteoporosis, anorexia nervosa and other wasting diseases.
Collapse
Affiliation(s)
- Z M Novakovic
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | | | | | | |
Collapse
|
27
|
Kovalszky I, Surmacz E, Scolaro L, Cassone M, Ferla R, Sztodola A, Olah J, Hatfield MPD, Lovas S, Otvos L. Leptin-based glycopeptide induces weight loss and simultaneously restores fertility in animal models. Diabetes Obes Metab 2010; 12:393-402. [PMID: 20415687 DOI: 10.1111/j.1463-1326.2009.01170.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM To design, manufacture and test a second generation leptin receptor (ObR) agonist glycopeptide derivative. The major drawback to current experimental therapies involving leptin protein is the appearance of treatment resistance. Our novel peptidomimetic was tested for efficacy and lack of resistance induction in rodent models of obesity and appetite reduction. METHODS The glycopeptide containing two additional non-proteinogenic amino acids was synthesized by standard solid-phase methods. Normal mice were fed with peanuts until their blood laboratory data and liver histology showed typical signs of obesity but not diabetes. The mice were treated with the peptidomimetic at 0.02, 0.1 or 0.5 mg/kg/day intraperitoneally side-by-side with 0.1 mg/kg/day leptin for 11 days. After termination of the assay, the blood cholesterol and glucose amounts were measured, the liver fat content was visualized and quantified and the remaining mice returned to normal diet and were allowed to mate. In parallel experiments normal rats were treated intranasally with the glycopeptide at 0.1 mg/kg/day for 10 days. RESULTS The 12-residue glycosylated leptin-based peptidomimetic E1/6-amino-hexanoic acid (Aca) was designed to target a principal leptin/ObR-binding interface. E1/Aca induced leptin effects in ObR-positive cell lines at picomolar concentrations and readily crossed the blood-brain barrier (BBB) following intraperitoneal administration. The peptide initiated typical leptin-dependent signal transduction pathways both in the presence and absence of leptin protein. The peptide also reduced weight gain in mice fed with high-fat peanut diet in a dose-dependent manner. Obese mice receiving peptide E1/Aca at a 0.5 mg/kg/day dose lost weight, corresponding to a net 6.5% total body weight loss, while similar mice treated with leptin protein did not. Upon cessation of the weight loss treatment, several obesity-related pathologies (i.e. abnormal metabolic profile and liver histology as well as infertility) normalized in peptide-, but not leptin-treated, mice. Peptide E1/Aca added intranasally to growing normal rats decelerated normal weight gain corresponding to a net 6.8% net total body weight loss with statistical significance. CONCLUSIONS No resistance induction to peptide E1/Aca or toxicity in either obese or healthy rodents was observed, indicating the potential for widespread utility of the peptidomimetic in the treatment of leptin-deficiency disorders. We provide additional proof for the hypothesis that difficulties in current leptin therapies reside at the BBB penetration stage, and we document that by either glycosylation or intranasal peptide administration we can overcome this limitation.
Collapse
Affiliation(s)
- I Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Identification of allelic polymorphism in the ovine leptin gene. Mol Biotechnol 2008; 41:22-5. [PMID: 18636347 DOI: 10.1007/s12033-008-9090-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/04/2008] [Indexed: 11/27/2022]
Abstract
Leptin is an adipocyte-derived hormone/cytokine that influences the physiological control of numerous biological functions and links nutritional status with both neuroendocrine and immune functions. In livestock, variation in the leptin (LEP) gene has been characterized in cattle and pig, but it has not been reported in sheep. In this study, variation in the exon 3 coding sequence of the ovine LEP gene was investigated by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) analysis and DNA sequencing. Five novel SSCP patterns, representing five different sequences, were identified under a combination of two different electrophoresis conditions. Either one or two different sequences were detected in individual sheep and all the sequences identified shared high homology with the LEP sequences from a variety of species, suggesting that these sequences represent alleles of the ovine LEP gene. Four single nucleotide polymorphisms (SNPs) were detected, and three of these resulted in amino acid changes. Variation detected here might have an impact on leptin activity and function.
Collapse
|
29
|
Otvos L, Terrasi M, Cascio S, Cassone M, Abbadessa G, De Pascali F, Scolaro L, Knappe D, Stawikowski M, Cudic P, Wade JD, Hoffmann R, Surmacz E. Development of a pharmacologically improved peptide agonist of the leptin receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1745-54. [PMID: 18555805 DOI: 10.1016/j.bbamcr.2008.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 01/20/2023]
Abstract
Leptin, a hormone produced by adipose tissue, regulates energy balance in the hypothalamus and is involved in fertility, immune response and carcinogenesis. The existence of disorders related to leptin deficit and leptin overabundance calls for the development of drugs activating or inhibiting the leptin receptor (ObR). We synthesized four proposed receptor-binding leptin fragments (sites I, IIa and IIb, III), their reportedly antagonist analogs, and a peptide chimera composed of the two discontinuous site II arms. To assess the pharmacological utility of leptin fragments, we studied the peptides' ability to stimulate the growth of ObR-positive and ObR-negative cells. The combined site II construct and site III derivatives selectively reversed leptin-induced growth of ObR-positive cells at mid-nanomolar concentrations. However, these peptides appeared to be partial agonists/antagonists as they activated cell growth in the absence of exogenous leptin. A designer site III analog, featuring non-natural amino acids at terminal positions to decrease proteolysis and a blood-brain barrier (BBB) penetration-enhancing carbohydrate moiety, proved to be full agonist to ObR, i.e., stimulated proliferation of different ObR-positive but not ObR-negative cells in the presence or absence of leptin. This glycopeptide bound to isolated ObR on solid-phase assays and activated ERK-1/2 signaling in ObR-positive MCF-7 cells at 100-500 nM concentrations. The glycopeptide was stable in mouse serum, readily crossed endothelial/astrocyte cell layers in a cellular BBB model, and was distributed into the brain of Balb/c mice after intraperitoneal administration. These characteristics suggest a potential pharmaceutical utility of the designer site III glycopeptide in leptin-deficient diseases.
Collapse
Affiliation(s)
- Laszlo Otvos
- Temple University, Sbarro Institute of Cancer Research and Molecular Medicine, 1900 North 12th Street, Philadelphia, PA 19122, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Natural selection and adaptive evolution of leptin in the ochotona family driven by the cold environmental stress. PLoS One 2008; 3:e1472. [PMID: 18213380 PMCID: PMC2194619 DOI: 10.1371/journal.pone.0001472] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 12/02/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. METHODOLOGY/PRINCIPAL FINDINGS To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China) and the leptin sequences of plateau pikas (O. curzonia) from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS) acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase alpha and beta subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka) and amino acid substitution (Aa), whereas altitude does not significantly affect synonymous substitution (Ks), Ka and Aa. CONCLUSIONS/SIGNIFICANCE Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to extreme environmental stress. We speculate that cold, and probably not hypoxia, may be the primary environmental factor for driving adaptive evolution of pika leptin.
Collapse
|
31
|
de Oliveira VX, Fázio MA, Santos EL, Pesquero JB, Miranda A. In vitro evaluation of leptin fragments activity on the ob receptor. J Pept Sci 2008; 14:617-25. [DOI: 10.1002/psc.957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Hauguel-de Mouzon S, Lepercq J, Catalano P. The known and unknown of leptin in pregnancy. Am J Obstet Gynecol 2006; 194:1537-45. [PMID: 16731069 DOI: 10.1016/j.ajog.2005.06.064] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 05/16/2005] [Accepted: 06/14/2005] [Indexed: 01/12/2023]
Abstract
Leptin, which was identified originally as an adipocyte-derived protein, was regarded for years as an exclusive regulator of satiety and energy homeostasis. A role for leptin in pregnancy was later suggested by the findings that plasma levels during gestation are greater than in nongravid individuals and that leptin is synthesized within the fetoplacental unit. Observational studies have established that leptin production is dysregulated in several pathologic stages of pregnancy in association with alterations of fetal growth. For example, an overproduction of leptin by the placenta in pregnancy with diabetes mellitus or hypertension is associated with maternal hyperleptinemia. Evidence is also accumulating that umbilical leptin levels can be viewed as a biomarker of fetal adiposity. Ten years after its discovery as a hormone, we review the known and unknowns of leptin in pregnancy with particular emphasis on its functions in health and disease. We aim to demonstrate that studies of leptin in pregnancy largely have contributed to insight into the mechanisms of leptin action, both as a hormone and as a cytokine.
Collapse
|
33
|
Shibata K, Maruyama-Takahashi K, Yamasaki M, Hirayama N. G-CSF receptor-binding cyclic peptides designed with artificial amino-acid linkers. Biochem Biophys Res Commun 2006; 341:483-8. [PMID: 16427611 DOI: 10.1016/j.bbrc.2005.12.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
Designing small molecules that mimic the receptor-binding local surface structure of large proteins such as cytokines or growth factors is fascinating and challenging. In this study, we designed cyclic peptides that reproduce the receptor-binding loop structures of G-CSF. We found it is important to select a suitable linker to join two or more discontinuous sequences and both termini of the peptide corresponding to the receptor-binding loop. Structural simulations based on the crystallographic structure of KW-2228, a stable and potent analog of human G-CSF, led us to choose 4-aminobenzoic acid (Abz) as a part of the linker. A combination of 4-Abz with beta-alanine or glycine, and disulfide bridges between cysteins or homocysteins, gave a structure suitable for receptor binding. In this structure, the side-chains of several amino acids important for the interactions with the receptor are protruding from one side of the peptide ring. This artificial peptide showed G-CSF antagonistic activity in a cell proliferation assay.
Collapse
Affiliation(s)
- Kenji Shibata
- BioFrontier Laboratories, Kyowa Hakko Kogyo Co., Ltd., 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan.
| | | | | | | |
Collapse
|
34
|
Gonzalez RR, Leavis PC. A peptide derived from the human leptin molecule is a potent inhibitor of the leptin receptor function in rabbit endometrial cells. Endocrine 2004. [PMID: 12897384 DOI: 10.1385/endo: 21: 2: 185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this article we show that rabbit endometrial cells express leptin receptor and that human leptin triggers phosphorylation of signal transducer and activator of transcription 3 and up-regulates the expression of interleukin- 1 receptor type I as was previously found in human endometrial cells. Interestingly, leptin also upregulates the secretion of leukemia inhibitory factor and expression of its receptor by rabbit endometrial cells. Analysis of a structural model of the leptin-leptin receptor complex suggested that helices I and III of the human leptin structure were likely sites of interaction with the cytokine binding domain of leptin receptor. Accordingly, we synthesized a peptide (LPA-2) comprising helix III (residues 70-95) and investigated its ability to inhibit leptin receptor function. The effects of LPA-2 were assayed in rabbit endometrial cells, and an antileptin receptor antibody and a scrambled version of LPA-2 were used as positive and negative controls, respectively. LPA-2 binds specifically and with high affinity (Ki ~ 0.6 x 10-10 M) to leptin receptor and is a potent inhibitor of its functions in rabbit endometrial cells. Because leukemia inhibitory factor and interleukin- 1 have been implicated in embryo implantation, our results raise the possibility that the LPA-2-induced inhibition of leptin receptor may be exploited to study the actions of leptin in endometrium and in other tissues under conditions characterized by abnormal leptin production.
Collapse
|
35
|
Gonzalez RR, Leavis PC. A peptide derived from the human leptin molecule is a potent inhibitor of the leptin receptor function in rabbit endometrial cells. Endocrine 2003; 21:185-95. [PMID: 12897384 DOI: 10.1385/endo:21:2:185] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 03/31/2003] [Accepted: 04/01/2003] [Indexed: 02/07/2023]
Abstract
In this article we show that rabbit endometrial cells express leptin receptor and that human leptin triggers phosphorylation of signal transducer and activator of transcription 3 and up-regulates the expression of interleukin- 1 receptor type I as was previously found in human endometrial cells. Interestingly, leptin also upregulates the secretion of leukemia inhibitory factor and expression of its receptor by rabbit endometrial cells. Analysis of a structural model of the leptin-leptin receptor complex suggested that helices I and III of the human leptin structure were likely sites of interaction with the cytokine binding domain of leptin receptor. Accordingly, we synthesized a peptide (LPA-2) comprising helix III (residues 70-95) and investigated its ability to inhibit leptin receptor function. The effects of LPA-2 were assayed in rabbit endometrial cells, and an antileptin receptor antibody and a scrambled version of LPA-2 were used as positive and negative controls, respectively. LPA-2 binds specifically and with high affinity (Ki ~ 0.6 x 10-10 M) to leptin receptor and is a potent inhibitor of its functions in rabbit endometrial cells. Because leukemia inhibitory factor and interleukin- 1 have been implicated in embryo implantation, our results raise the possibility that the LPA-2-induced inhibition of leptin receptor may be exploited to study the actions of leptin in endometrium and in other tissues under conditions characterized by abnormal leptin production.
Collapse
|
36
|
De Fanti BA, Milagro FI, Lamas O, Martínez-Ansó E, Martínez JA. Immunomanipulation of appetite and body temperature through the functional mimicry of leptin. OBESITY RESEARCH 2002; 10:833-7. [PMID: 12181393 DOI: 10.1038/oby.2002.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Although current obesity therapies produce some benefits, there is a need for new strategies to treat obesity. A novel proposal is the use of anti-idiotypic antibodies as surrogate ligands or hormones. These anti-idiotypic antibodies carry an internal motif that imitates or mimics an epitope in the antigen (i.e., hormone or ligand). Thus, anti-idiotypic antibodies to several ligands may mimic them in transducing signals when binding to their receptors. RESEARCH METHODS AND PROCEDURES We developed an anti-idiotypic polyclonal antibody against the region of a leptin monoclonal antibody that competitively binds leptin, mimicking the active site structure of leptin. To test whether our anti-idiotype could also reproduce leptin functions, we examined food intake, body weight, and colonic temperature in male Wistar rats (n = 9) in response to intracerebroventricular administration of the leptin anti-idiotype. RESULTS Our leptin anti-idiotype induced a significant reduction in food intake coupled with an increase in body temperature comparable to that of leptin. That is, the intracerebroventricular administration of 8.0 microg of leptin anti-idiotype or 5.0 microg leptin significantly increased colonic temperature (Delta 1.9 +/- 0.11 degrees C and Delta 1.7 +/- 0.12 degrees C, respectively). In addition, both decreased 24-hour food intake (-26.4 +/- 2.4% and -21.9 +/- 2.2%) compared with the control. The gain in body weight was also decreased by acute administration of the anti-idiotype (-1.4 +/- 0.28%) and leptin (-1.1 +/- 0.17%) vs. the phosphate-buffered saline control (1.3 +/- 0.15%). DISCUSSION These studies revealed that the leptin anti-idiotype inhibited food intake and enhanced heat production, mimicking leptin's central actions.
Collapse
Affiliation(s)
- Brant A De Fanti
- Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
37
|
Salvador J, Gomez-Ambrosi J, Frühbeck G. Perspectives in the therapeutic use of leptin. Expert Opin Pharmacother 2001; 2:1615-22. [PMID: 11825304 DOI: 10.1517/14656566.2.10.1615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The cloning and characterisation of the protein encoded by the ob gene, called leptin, has represented an enormous advance in the knowledge we have at the present time on the control of appetite and the regulation of body weight. Animal experiments have shown that this adipocyte-derived hormone informs the hypothalamus about the magnitude of fat stores and induces changes in eating behaviour and thermogenesis directed to maintain nutritional homeostasis. Besides the CNS and adipose tissue, other tissues like the gonads, adrenals, pancreas, blood vessels, immune cells and bone are also targets for leptin action, setting the basis for the pleiotropic character of leptin. In contrast to ob(-)/ob(-) mice, which have leptin deficiency, obese patients usually exhibit hyperleptinaemia due to leptin resistance of uncertain aetiology. Patients with congenital leptin deficiency show a dramatic response to recombinant leptin therapy in terms of body weight and fat reduction. However, in contrast to animals, no thermogenic effect has been demonstrated in humans treated with leptin. Leptin-resistant obese subjects display a heterogeneous response to leptin treatment, though some patients achieve a significant weight loss when receiving high doses. New formulations are being tried with different success rates. Before leptin can play a role in the treatment of obesity, more studies are needed to discover which is the adequate dose, which the best route and form of administration and how we can select the patients who will benefit from this particular therapy. The development of new leptin analogues with high penetrating capacity to cross the blood-brain barrier and the investigation of other approaches to overcome the leptin resistance are awaited. Future applications of leptin may be directed to the treatment of infertility, wound healing and bone remodelling among others.
Collapse
Affiliation(s)
- J Salvador
- Department of Endocrinology, University Clinic of Navarra and Metabolic Research, University of Navarra, Pamplona, Spain.
| | | | | |
Collapse
|
38
|
Abstract
Leptin is significantly broadening our understanding of the mechanisms underlying neuroendocrine function. Initially, based on a rather static view of the hormone, most investigations focused on the effects of leptin on food intake control and body-weight homeostasis, with attention primarily focused on the implications of leptin as a lipostatic factor and central satiety agent. However, the almost ubiquitous distribution of leptin receptors in peripheral tissues provided a fertile area for investigation and a more dynamic view of leptin started to unfold. This adipocyte-derived circulating peptidic hormone, with a tertiary structure resembling that of members of the long-chain helical cytokine family, has generated an enormous interest in the interaction as well as integration between brain targets and peripheral signals. Considerable evidence for systemic effects of leptin on specific tissues and metabolic pathways indicates that leptin operates both directly and indirectly to orchestrate complex pathophysiological processes. Disentangling the biochemical and molecular mechanisms in which leptin is involved represents one of the major challenges ahead.
Collapse
Affiliation(s)
- G Frühbeck
- Department of Endocrinology, Clínica Universitaria de Navarra and Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.
| |
Collapse
|
39
|
Watanobe H, Schiöth HB, Suda T. Stimulation of prolactin secretion by chronic, but not acute, administration of leptin in the rat. Brain Res 2000; 887:426-31. [PMID: 11134635 DOI: 10.1016/s0006-8993(00)03019-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leptin, the product of obese (ob) gene, has been reported to affect the secretion of all six anterior pituitary hormones, but data are especially scarce regarding the interplay between leptin and prolactin (PRL). Thus, in this study we examined and compared in vivo the effects of acute and chronic administrations of recombinant mouse leptin on PRL secretion in male rats. Normally-fed and 3-day-fasted rats received an intraperitoneal bolus injection of leptin [1.0 mg/kg body weight (BW)] or vehicle only. The leptin treatment was without effect on plasma PRL levels up to 5 h postadministration. Food deprivation for 3 days significantly decreased both PRL and leptin levels. This decrease in plasma PRL was prevented by a 3-day constant infusion of 75 microg/kg BW/day of leptin, which maintained plasma leptin levels similar to those of normally-fed rats. The administration of three times the higher dose of leptin (225 microg/kg BW/day) to fasted rats led to further increases in both PRL and leptin in the plasma. Thus, a dose-dependent stimulatory effect of chronic leptin treatment on PRL secretion was indicated. This study demonstrates that chronic, but not acute, administration of leptin stimulates PRL secretion in the rat.
Collapse
Affiliation(s)
- H Watanobe
- Third Department of Internal Medicine, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | | | | |
Collapse
|
40
|
|
41
|
Abstract
The discovery of the adipose-derived hormone leptin has generated enormous interest in the interaction between peripheral signals and brain targets involved in the regulation of feeding and energy balance. Plasma leptin levels correlate with fat stores and respond to changes in energy balance. It was initially proposed that leptin serves a primary role as an anti-obesity hormone, but this role is commonly thwarted by leptin resistance. Leptin also serves as a mediator of the adaptation to fasting, and this role may be the primary function for which the molecule evolved. There is increasing evidence that leptin has systemic effects apart from those related to energy homeostasis, including regulation of neuroendocrine and immune function and a role in development.
Collapse
Affiliation(s)
- R S Ahima
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
42
|
Rozhavskaya-Arena M, Lee DW, Leinung MC, Grasso P. Design of a synthetic leptin agonist: effects on energy balance, glucose homeostasis, and thermoregulation. Endocrinology 2000; 141:2501-7. [PMID: 10875251 DOI: 10.1210/endo.141.7.7556] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have previously reported that a synthetic peptide amide corresponding to amino acid residues 116-130 of mouse leptin, LEP-(116-130), reduces body weight gain, food intake, and blood glucose levels in ob/ob and db/db mice. In the present study we show that the activity of LEP-(116-130) resides in a restricted sequence between amino acid residues 116-122. A synthetic peptide corresponding to this sequence (Ser-Cys-Ser-Leu-Pro-Gln-Thr) has been named OB3. Single point D-amino acid substitution was used to study the structure-function relationship of each residue in OB3. D-Amino acid analogs of OB3 were synthesized by the solid phase method, purified to 98+%, and administered (1 mg/day, ip) for 7 days to female C57BL/6J ob/ob mice. The effects of the peptides on body weight gain, food and water intake, glucose homeostasis, and thermoregulation were assessed. In most cases, the efficacy of OB3 on all parameters tested was reduced by substitution of an L-amino acid with its corresponding D-isoform. A statistically significant increase (2.6-fold) in the weight-reducing effect of OB3, however, was observed by inversion of the configuration of the leucine residue at position 4 (Leu-4) of OB3 by substitution with its D-amino acid isoform [D-Leu-4]. Compared with OB3, mice treated with [D-Leu-4]-OB3 consumed 7.9% less food and 16.5% less water. Blood glucose was normalized to levels comparable to those in wild-type control mice within 2 days after initiation of [D-Leu-4]-OB3 treatment. Unlike native leptin, however, neither OB3 nor any of its D-amino acid-substituted analogs had any apparent effect on thermogenesis. Our results indicate that synthetic peptide strategies may be useful in the development of potent and stabile pharmacophores with potential therapeutic significance in the treatment of human obesity and its related metabolic dysfunctions.
Collapse
|
43
|
Malendowicz LK, Tortorella C, Nowak KW, Nussdorfer GG, Hochól A, Majchrzak M. Leptin prolonged administration inhibits the growth and glucocorticoid secretion of rat adrenal cortex. Endocr Res 2000; 26:141-52. [PMID: 10921444 DOI: 10.3109/07435800009066158] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leptin is an adipose-tissue secreted hormone, that acts to decrease caloric intake and to increase energy expenditure. Some of the leptin effects on the energy balance are known to be mediated by the hypothalamo-pituitary-adrenal (HPA) axis, but the role of this cytokine in the regulation of the growth and steroidogenic capacity of adrenal cortex is still controversial. Therefore, the present study was designed to explore the long-term effects of native leptin[1-147] and its biologically active fragment leptin[116-130] (6 daily subcutaneous injection of 20 nmol/kg) on the rat HPA axis. Leptin[1-147] and leptin[116-130] caused a significant adrenal atrophy, which was mainly due to the decrease in the volume of zona fasciculata (ZF) and in the number of its parenchymal cells. Both leptins provoked a marked drop in the plasma concentrations of ACTH and corticosterone, the main hormone produced by ZF cells. The effects of leptin[116-130] were more intense than those of leptin[1-147]. Leptin[1-147], but not its fragment, evoked a clear-cut rise in the plasma concentration of aldosterone. Collectively, these findings indicate that prolonged leptin administration, by inhibiting pituitary ACTH release, exerts a potent suppressive action on the growth and glucocorticoid secretory capacity of the adrenal cortex in the rat. The mechanism(s) underlying the aldosterone secretagogue action of native leptin remain(s) to be investigated.
Collapse
Affiliation(s)
- L K Malendowicz
- Department of Histology and Embryology, School of Medicine, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- J M Bryson
- Department of Biochemistry, University of Sydney, NSW, Australia.
| |
Collapse
|
45
|
Malendowicz LK, Neri G, Jêdrzejczak N, Hochól A, Nussdorfer GG. Effects of recombinant murine leptin[1-147] and leptin fragment 116-130 on steroid secretion and proliferative activity of the regenerating rat adrenal cortex. Endocr Res 2000; 26:109-18. [PMID: 10711727 DOI: 10.1080/07435800009040150] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Leptin, the product of the ob gene, is a hormone mainly secreted by the adipose tissue, which acts through specific receptors (Ob-R) widely distributed in the body tissues. Ob-Rs are present in the mammalian hypothalamo-pituitary-adrenal axis, and evidence indicates that leptin regulates adrenocortical secretion. Moreover, leptin is known to act as a growth promoting factor in some tissues, including the endocrine ovary. We have investigated the effects of three subcutaneous injections of 2 nmol/100 g of native murine leptin[1-147] and of its biologically active fragment 116-130 on the secretory and proliferative activity of the regenerating rat adrenal cortex. Leptin[1-147] increased plasma aldosterone concentration at day 8 and plasma corticosterone concentration (PBC) at day 5 of regeneration, without affecting mitotic index. In contrast, leptin[116-130] lowered PBC and mitotic index at both times of adrenal regeneration. In light of the fact that adrenal regeneration is at least in part dependent on the pituitary ACTH, we conclude that: (i) native leptin moderately stimulates steroid secretion, acting directly on the adrenal cortex, through signaling mechanisms other than those involved in the ACTH action; (ii) native leptin is unable to enhance the proliferative activity of regenerating adrenals, which conceivably is maximally stimulated by ACTH; (iii)leptin[1-147] and leptin[116-130] differently interact with Ob-Rs or interact with different receptors; and (iv) leptin[116-130] inhibits the signaling pathways mediating both the secretagogue effect of native leptin and the proliferogenic effect of ACTH.
Collapse
Affiliation(s)
- L K Malendowicz
- Department of Histology and Embryology, School of Medicine, Poznan, Poland
| | | | | | | | | |
Collapse
|
46
|
Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocr Rev 1999; 20:535-82. [PMID: 10453357 DOI: 10.1210/edrv.20.4.0374] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- L Poretsky
- Department of Medicine, New York Presbyterian Hospital and Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
47
|
Rau H, Reaves BJ, O'Rahilly S, Whitehead JP. Truncated human leptin (delta133) associated with extreme obesity undergoes proteasomal degradation after defective intracellular transport. Endocrinology 1999; 140:1718-23. [PMID: 10098508 DOI: 10.1210/endo.140.4.6670] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently described a homozygous frameshift mutation in the human leptin (ob) gene associated with undetectable serum leptin and extreme obesity in two individuals. This represented the first identified genetic cause of morbid obesity in humans. Preliminary data suggested a defect in the secretion of this truncated (delta133) mutant leptin. In the present investigation, we have examined the mechanisms underlying the defective secretion of the delta133 leptin in transient transfection studies in Chinese hamster ovary and monkey kidney epithelium cells. Consistent with our previous observations, only immunoreactive wild-type (wt) leptin was secreted. In pulse chase experiments, intracellular wt leptin levels decreased, concomitant with secretion into the medium. In contrast, though immunoreactive delta133 leptin disappeared from cell lysates with kinetics similar to those of wt leptin (half-life, 45 min), it was not detected in the medium. Inhibition of the proteasome, using the inhibitor clastolactacystin beta-lactone, led to a significant increase in the intracellular levels of delta133 leptin, indicating a role for the proteasome in the degradation pathway. Although intracellular immunoprecipitated wt and delta133 leptin levels were comparable, analysis of total cell lysates revealed a 7-fold increase in total intracellular delta133 leptin, compared with wt leptin. Size-exclusion membrane filtration demonstrated that intracellular delta133 leptin accumulated in an aggregated form, presumably as a result of misfolding in the endoplasmic reticulum. Consistent with this, an endoplasmic reticulum-like localization for delta133 leptin was detected by immunofluorescence microscopy. In conclusion, the delta133 mutant leptin is not secreted but accumulates intracellularly, as a consequence of misfolding/aggregation, and is subsequently degraded by the proteasome. These studies further define the genotype/phenotype correlation in this paradigmatic case of human leptin deficiency.
Collapse
Affiliation(s)
- H Rau
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, United Kingdom
| | | | | | | |
Collapse
|
48
|
Imagawa K, Numata Y, Katsuura G, Sakaguchi I, Morita A, Kikuoka S, Matumoto Y, Tsuji T, Tamaki M, Sasakura K, Teraoka H, Hosoda K, Ogawa Y, Nakao K. Structure-function studies of human leptin. J Biol Chem 1998; 273:35245-9. [PMID: 9857064 DOI: 10.1074/jbc.273.52.35245] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To elucidate the structural requirement of human leptin for its functions, the wild-type, mutant-type, C-terminal deletion, and N-terminal deletion were expressed in Escherichia coli and purified in soluble forms. These leptin analogs were intracerebroventrically injected into C57BL/6J ob/ob mice, and their in vivo biological activities were evaluated. The mutant-type leptin lacking a C-terminal disulfide bond reduced food intake at doses of more than 15 pmol/mouse, which was as effective as the wild-type leptin. C-terminal deletion without the loop structure, also significantly, but to a lesser extent, reduced food intake at doses of more than 90 pmol/mouse. However, N-terminal deletions showed no effect on food intake. We also evaluated the effects of the leptin analogs on radiolabeled leptin binding to its receptor in the choroid plexus using autoradiography. An excess of unlabeled mutant-type leptin as well as wild-type leptin led to complete inhibition of binding. C-terminal deletions led to weak inhibitory activity, whereas N-terminal deletions caused no inhibitory activity. These results clearly demonstrate that the N-terminal region of leptin is essential for both its biological and receptor binding activities. The amino acid sequence of the C-terminal loop structure is also important for enhancing these actions, whereas the C-terminal disulfide bond is not needed.
Collapse
Affiliation(s)
- K Imagawa
- Research and Development Diagnostic Science Division, Osaka 566-0022, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- C S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
50
|
Frühbeck G, Jebb SA, Prentice AM. Leptin: physiology and pathophysiology. CLINICAL PHYSIOLOGY (OXFORD, ENGLAND) 1998; 18:399-419. [PMID: 9784936 DOI: 10.1046/j.1365-2281.1998.00129.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The identification and sequencing of the ob gene and its product, leptin, in late 1994 opened new insights in the study of the mechanisms controlling body weight and led to a surge of research activity. During this time, a considerable body of knowledge regarding leptin's actions has been accumulated and the field continues to expand rapidly. Currently there is particular interest in the interaction of leptin with other peripheral and neural mechanisms to regulate body weight, reproduction and immunological response. In this review, we attempt to place the current state of knowledge about leptin in the broader perspective of physiology, including its structural characteristics, receptors, binding proteins, signalling pathways, regulation of adipose tissue expression and production, secretion patterns, clearance mechanisms and functional effects. In addition, leptin's involvement in the pathophysiology of obesity, anorexia nervosa, diabetes mellitus, polycystic ovary syndrome, acquired immunodeficiency syndrome, cancer, nephropathy, thyroid disease, Cushing's syndrome and growth hormone deficiency will be reviewed.
Collapse
Affiliation(s)
- G Frühbeck
- MRC Dunn Clinical Nutrition Centre, Cambridge, UK
| | | | | |
Collapse
|