1
|
Kaylan KB, Nargis T, Figatner K, Wang JE, Pratuangtham S, Chakraborty A, Casimiro I, Nadler JL, Boxer MB, Maloney DJ, Anderson RM, Mirmira RG, Tersey SA. 12-Lipoxygenase Inhibition Improves Glycemia and Obesity-associated Inflammation in Male Human Gene Replacement Mice. Endocrinology 2025; 166:bqaf069. [PMID: 40186458 PMCID: PMC12022223 DOI: 10.1210/endocr/bqaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/07/2025]
Abstract
Obesity-associated inflammation is characterized by macrophage infiltration into peripheral tissues, contributing to the progression of prediabetes and type 2 diabetes. 12-lipoxygenase (12-LOX) catalyzes the formation of pro-inflammatory eicosanoids and promotes the migration of macrophages, yet its role in obesity-associated inflammation remains incompletely understood. Furthermore, differences between mouse and human orthologs of 12-LOX have limited efforts to study existing pharmacologic inhibitors of 12-LOX. In this study, we used a human gene replacement mouse model in which the gene encoding mouse 12-LOX (Alox15) is replaced by the human ALOX12 gene. As a model of obesity and dysglycemia, we administered male mice a high-fat diet. We subsequently investigated the effects of VLX-1005, a potent and selective small molecule inhibitor of human 12-LOX. Oral administration of VLX-1005 resulted in improved glucose homeostasis, decreased β-cell dedifferentiation, and reduced macrophage infiltration in islets and adipose tissue. Analysis of the stromal vascular fraction from adipose tissue showed a reduction in myeloid cells and cytokine expression with VLX-1005 treatment, indicating decreased adipose tissue inflammation. In a distinct mouse model in which Alox15 was selectively deleted in myeloid cells, we observed decreased β-cell dedifferentiation and reduced macrophage infiltration in both islets and adipose tissue, suggesting that the effects of VLX-1005 may relate to the inhibition of 12-LOX in macrophages. These findings highlight 12-LOX as a key factor in obesity-associated inflammation and suggest that 12-LOX inhibition could serve as a therapeutic strategy to improve glucose homeostasis and peripheral inflammation in the setting of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Titli Nargis
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Kayla Figatner
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayi E Wang
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Sarida Pratuangtham
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Advaita Chakraborty
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Isabel Casimiro
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | - Ryan M Anderson
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Raghavendra G Mirmira
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah A Tersey
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Roy A, Hoff A, Her TK, Ariyaratne G, Gutiérrez RL, Tahawi MHDN, Rajagopalan KS, Brown MR, Omori K, Lewis-Brinkman S, Nguyen T, Soto-González A, Peterson QP, Matveyenko AV, Javeed N. Lipotoxicity Induces β-cell Small Extracellular Vesicle-Mediated β-cell Dysfunction in Male Mice. Endocrinology 2025; 166:bqaf067. [PMID: 40179251 PMCID: PMC12006739 DOI: 10.1210/endocr/bqaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/19/2024] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Chronically elevated circulating excess free fatty acids (ie, lipotoxicity) is a pathological process implicated in several metabolic disorders, including obesity-driven type 2 diabetes (T2D). Lipotoxicity exerts detrimental effects on pancreatic islet β-cells by reducing glucose-stimulated insulin secretion (GSIS), altering β-cell transcriptional identity, and promoting apoptosis. While β-cell-derived small extracellular vesicles (sEV) have been shown to contribute to β-cell failure in T2D, their specific role in lipotoxicity-mediated β-cell failure remains to be elucidated. In this work, we demonstrate that lipotoxicity enhances the release of sEVs from β-cells, which exhibit altered proteomic and lipidomic profiles. These palmitate (PAL)-exposed extracellular vesicles (EVs) induce β-cell dysfunction in healthy mouse and human islets and trigger significant islet transcriptional changes, including the upregulation of genes associated with the TGFβ/Smad3 pathway, as noted by RNA sequencing. Importantly, pharmacological inhibition of the TGFβI/II receptor improved PAL EV-induced β-cell dysfunction, underscoring their involvement in activating the TGFβ/Smad3 pathway during this process. We have comprehensively characterized lipotoxic β-cell sEVs and implicated their role in inducing β-cell functional failure in T2D. These findings highlight potential avenues for therapeutic interventions targeting sEV-mediated pathways to preserve β-cell health in metabolic disorders.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexandra Hoff
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tracy K Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gallage Ariyaratne
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Roberto-León Gutiérrez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - M H D Noor Tahawi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Matthew R Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kazuno Omori
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Sean Lewis-Brinkman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thanh Nguyen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of Endocrinology, Diabetes, and Metabolism, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Kaylan KB, Nargis T, Figatner K, Wang JE, Pratuangtham S, Chakraborty A, Casimiro I, Nadler JL, Boxer MB, Maloney DJ, Anderson RM, Mirmira RG, Tersey SA. 12-Lipoxygenase inhibition improves glucose homeostasis and obesity-associated inflammation in human gene replacement mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632274. [PMID: 39868153 PMCID: PMC11761697 DOI: 10.1101/2025.01.10.632274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Obesity-associated inflammation is characterized by macrophage infiltration into peripheral tissues, contributing to the progression of prediabetes and type 2 diabetes (T2D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of pro-inflammatory eicosanoids and is known to promote the migration of macrophages, yet its role in obesity-associated inflammation remains incompletely understood. Furthermore, differences between mouse and human orthologs of 12-LOX have limited efforts to study existing pharmacologic inhibitors of 12-LOX. In this study, we utilized a human gene replacement mouse model in which the gene encoding mouse 12-LOX (Alox15) is replaced by the human ALOX12 gene. As a model of obesity and dysglycemia, we administered these mice a high-fat diet. We subsequently investigated the effects of VLX-1005, a potent and selective small molecule inhibitor of human 12-LOX. Oral administration of VLX-1005 resulted in improved glucose homeostasis, decreased β cell dedifferentiation, and reduced macrophage infiltration in islets and adipose tissue. Analysis of the stromal vascular fraction from adipose tissue showed a reduction in myeloid cells and cytokine expression with VLX-1005 treatment, indicating decreased adipose tissue inflammation. In a distinct mouse model in which Alox15 was selectively deleted in myeloid cells, we observed decreased β cell dedifferentiation and reduced macrophage infiltration in both islets and adipose tissue, suggesting that the effects of VLX-1005 may relate to the inhibition of 12-LOX in macrophages. These findings highlight 12-LOX as a key factor in obesity-associated inflammation and suggest that 12-LOX inhibition could serve as a therapeutic strategy to improve glucose homeostasis and peripheral inflammation in the setting of obesity and T2D.
Collapse
Affiliation(s)
- Kerim B. Kaylan
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Titli Nargis
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Kayla Figatner
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayi E. Wang
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Sarida Pratuangtham
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Advaita Chakraborty
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Isabel Casimiro
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Jerry L. Nadler
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | - Ryan M. Anderson
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah A. Tersey
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Fang H, Rodrigues e-Lacerda R, Barra NG, Kukje Zada D, Robin N, Mehra A, Schertzer JD. Postbiotic Impact on Host Metabolism and Immunity Provides Therapeutic Potential in Metabolic Disease. Endocr Rev 2025; 46:60-79. [PMID: 39235984 PMCID: PMC11720174 DOI: 10.1210/endrev/bnae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/18/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
The gut microbiota influences aspects of metabolic disease, including tissue inflammation, adiposity, blood glucose, insulin, and endocrine control of metabolism. Prebiotics or probiotics are often sought to combat metabolic disease. However, prebiotics lack specificity and can have deleterious bacterial community effects. Probiotics require live bacteria to find a colonization niche sufficient to influence host immunity or metabolism. Postbiotics encompass bacterial-derived components and molecules, which are well-positioned to alter host immunometabolism without relying on colonization efficiency or causing widespread effects on the existing microbiota. Here, we summarize the potential for beneficial and detrimental effects of specific postbiotics related to metabolic disease and the underlying mechanisms of action. Bacterial cell wall components, such as lipopolysaccharides, muropeptides, lipoteichoic acids and flagellin, have context-dependent effects on host metabolism by engaging specific immune responses. Specific types of postbiotics within broad classes of compounds, such as lipopolysaccharides and muropeptides, can have opposing effects on endocrine control of host metabolism, where certain postbiotics are insulin sensitizers and others promote insulin resistance. Bacterial metabolites, such as short-chain fatty acids, bile acids, lactate, glycerol, succinate, ethanolamine, and ethanol, can be substrates for host metabolism. Postbiotics can fuel host metabolic pathways directly or influence endocrine control of metabolism through immunomodulation or mimicking host-derived hormones. The interaction of postbiotics in the host-microbe relationship should be considered during metabolic inflammation and metabolic disease.
Collapse
Affiliation(s)
- Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Rodrigo Rodrigues e-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Dana Kukje Zada
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Nazli Robin
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Alina Mehra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, and Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
5
|
Guidi L, Martinez-Tellez B, Ortega Santos CP. Obesity, gut bacteria, and the epigenetic control of metabolic disease. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:333-368. [DOI: 10.1016/b978-0-443-18979-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Berkowitz L, Razquin C, Salazar C, Biancardi F, Estruch R, Ros E, Fitó M, Corella D, Coe CL, Ryff CD, Ruiz-Canela M, Salas-Salvado J, Wang D, Hu FB, Deik A, Martínez-Gonzalez MA, Rigotti A. Sphingolipid profiling as a biomarker of type 2 diabetes risk: evidence from the MIDUS and PREDIMED studies. Cardiovasc Diabetol 2024; 23:446. [PMID: 39695759 PMCID: PMC11657495 DOI: 10.1186/s12933-024-02505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) has become a worldwide pandemic. While ceramides may serve as intermediary between obesity-related lipotoxicity and T2D, the relationship with simple glycosphingolipids remains uncertain. The aim of this study was to characterize the associations between blood glycosphingolipid and ceramide species with T2D and to identify a circulating sphingolipid profile that could serve as novel biomarker for T2D risk. METHODS Cross-sectional relationship between sphingolipid levels, insulin resistance, and T2D prevalence were evaluated in 2,072 American adults from MIDUS cohort. Prospectively, the association between sphingolipid species and the incidence of T2D was analyzed using a case-cohort design nested within the PREDIMED trial (250 cases and a random sample of 692 participants, with 3.8 years of median follow-up). Circulating levels of sphingolipid species in both populations were measured using LC/MS. Hazard ratios were estimated with weighted Cox regression models using Barlow weights. RESULTS In American adults, only CER18:0 and CER22:0 were linked to insulin resistance and a higher prevalence of T2D. Conversely, three lactosylceramides (LCER 14:0, 16:0, and 24:1) showed a strong inverse relationship with both insulin resistance and T2D. These findings led to development of two sphingolipid scores. In the prospective analysis, these scores consistently predicted a reduced risk of T2D incidence in PREDIMED (HR: 0.64, 95% CI 0.44 to 0.94 and 0.58, 0.40 to 0.85 respectively) between extreme quartiles, with 5-year absolute risk differences of 9.6% (95% CI: 0.3-20.5%) and 11.4% (1.0-21.6%). They were validated in the same trial with samples obtained after 1 year of follow-up. CONCLUSIONS Our findings support the potential usefulness of circulating sphingolipid profiles as novel biomarkers for T2D risk. Moreover, this study opens the door for future research on the predictive value and possible protective roles of lactosylceramides in T2D.
Collapse
Affiliation(s)
- Loni Berkowitz
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica of Chile, Diagonal Paraguay #362, Santiago, Chile.
| | - Cristina Razquin
- Department of Preventive Medicine and Public Health, IdiSNA, University of Navarra, Pamplona, Spain
| | - Cristian Salazar
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica of Chile, Diagonal Paraguay #362, Santiago, Chile
| | - Fiorella Biancardi
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica of Chile, Diagonal Paraguay #362, Santiago, Chile
| | - Ramón Estruch
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
- Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain
| | - Emilio Ros
- Lipid Clinic, Department of Endocrinology and Nutrition, August Pi Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, University of Valencia, Valencia, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Carol D Ryff
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, IdiSNA, University of Navarra, Pamplona, Spain
| | - Jordi Salas-Salvado
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
- Unitat de Nutrició Humana, Departament de Bioquímica i Biotecnologia, Grup d'Alimentació, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Daniel Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amy Deik
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | | | - Attilio Rigotti
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica of Chile, Diagonal Paraguay #362, Santiago, Chile
| |
Collapse
|
7
|
Nguyen MLT, Bui KC, Ngo TH, Nguyen TS, Nham PLT, Pham C, Hoang TM, Huynh QT, Tang TT, Dang TC, Dang TL, Nguyen LT, Can VM. Early impaired insulin tolerance among Vietnamese diabetes with or without dyslipidemia. Medicine (Baltimore) 2024; 103:e40212. [PMID: 39495996 PMCID: PMC11537581 DOI: 10.1097/md.0000000000040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
This study aims to evaluate impaired insulin tolerance among Vietnamese diabetes with or without dyslipidemia. Diabetes mellitus (DM) remains the serious global health and social burden that has increased over the past few decades. It progresses silently to vascular injury and disability of injured vascular-perfused tissues/organs. Insulin intolerance and dyslipidemia exacerbate and accelerate the implications of DM. Thus, early detection and more evidence of early insulin intolerance and dyslipidemia is needed for proactive management. This cross-sectional descriptive study recruited 100 healthy control (HC) and 297 DM patients in Military Hospital 103 from 2021 to 2023. Patients with DM were subgrouped into lipid metabolism disorder (LMD, n = 98) and non-LMD (NLMD, n = 99). The biochemists' serum levels were measured automatically and the accuracy of the test result was strictly controlled. Insulin tolerance indices (HOMA2-IR, HOMA2-%S and HOMA2-%B) were compared between HC, DM with or without dyslipidemia as well as correlated with lipid ingredients (total Cholesterol, triglyceride, LDL-C and HDL-C). Among DM patients, HOMA2-IR was significantly high and HOMA2-%S and HOMA2-%B were significantly low. HOMA2-IR was higher and HOMA2-%S and HOMA2-%B were lower in DM with LMD than in DM without LMD. In addition, HOMA2-IR was positively correlated with serum cholesterol, triglyceride and LDL-C concentration, and negatively correlated to HDL-C concentration. In contrast, HOMA2-%S and HOMA2-%B was negatively correlated with serum cholesterol, triglyceride and LDL-C, and positively correlated with HDL-C. Impaired insulin intolerance occurred in early stage of DM, and more serious among DM with LMD, compared to DM with NLMD.
Collapse
Affiliation(s)
- Mai Ly Thi Nguyen
- Department of Biochemistry, Military Hospital 103, Vietnam Military Medical University Hanoi, Vietnam
| | - Khac Cuong Bui
- Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam
| | - Thu Hang Ngo
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Tai Suc Nguyen
- Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Phuong Linh Thi Nham
- Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Chi Pham
- Laboratory Animal Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thi Minh Hoang
- Department of Biochemistry, Military Hospital 103, Vietnam Military Medical University Hanoi, Vietnam
| | - Quang Thuan Huynh
- Department of Biochemistry, Military Hospital 103, Vietnam Military Medical University Hanoi, Vietnam
| | - Thanh Thuy Tang
- Department of Biochemistry, Military Hospital 103, Vietnam Military Medical University Hanoi, Vietnam
| | - Thanh Chung Dang
- Department of Pathology, Military Hospital 103, Vietnam Military Medical University Hanoi, Vietnam
| | - Thuy Linh Dang
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Linh Toan Nguyen
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), 108 Military Central Hospital, Hanoi, Vietnam
| | - Van Mao Can
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
8
|
Lu S, Kuang M, Qiu J, Li W, Zhang M, Sheng G, Zou Y, Peng X. Lipids as the link between central obesity and diabetes: perspectives from mediation analysis. BMC Endocr Disord 2024; 24:229. [PMID: 39468602 PMCID: PMC11514969 DOI: 10.1186/s12902-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Central obesity is a well-recognized risk factor for diabetes, yet the potential role of lipids in the diabetes risk associated with central obesity remains unclear. This study aimed to explore the possible mediating role of 11 lipid parameters [high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), non-high-density lipoprotein cholesterol (Non-HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), remnant cholesterol (RC), and ratios of Non-HDL-C/HDL-C, RC/HDL-C, LDL/HDL-C, TG/HDL-C, TC/HDL-C] in the association of central obesity with diabetes risk. METHODS We utilized data from 15,453 participants in the NAGALA longitudinal cohort to assess the association of baseline central obesity indicators [waist-height ratio (WHtR), waist circumference (WC)] and the 11 lipid parameters with diabetes risk. Mediation analysis models were constructed to explore the mediating role of lipid parameters in the association of WC/WHtR with diabetes. RESULTS Confirmatory associative analysis using multivariable Cox regression showed that, except for Non-HDL-C, TC and LD-C, the remaining eight lipid parameters were significantly associated with WC/WHtR and diabetes risk. Mediation analysis indicated that TG, RC, HDL-C, and lipid ratios such as Non-HDL-C/HDL-C ratio, RC/HDL-C ratio, TG/HDL-C ratio, TC/HDL-C ratio and LDL/HDL-C ratio are potential lipids affecting the diabetes risk related to central obesity. Among these, the RC/HDL-C ratio seemed to contribute the most in the WC/WHtR-related diabetes risk association, with a mediation percentage of about 37%. Additionally, lipid ratio parameters appeared to play a more mediating role in the association of central obesity-related diabetes risk than individual lipids. CONCLUSIONS In central obesity-related diabetes risk, most lipids, especially lipid ratio parameters, play a significant mediating role. Given these findings, we advocate for increased efforts in multifactorial risk monitoring and joint management of diabetes. The evaluation of lipids, particularly lipid ratio parameters, may be holds substantial value in the prevention and management of diabetes risk under close monitoring of central obesity.
Collapse
Affiliation(s)
- Song Lu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Maobin Kuang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Jiajun Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Wenjuan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Min Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Guotai Sheng
- Jiangxi Provincial Geriatric Hospital, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
9
|
Minato-Inokawa S, Honda M, Tsuboi-Kaji A, Takeuchi M, Kitaoka K, Kurata M, Wu B, Kazumi T, Fukuo K. Associations of adipose insulin resistance index with pancreatic β cell function (inverse) and glucose excursion (positive) in young Japanese women. Sci Rep 2024; 14:18590. [PMID: 39127728 PMCID: PMC11316777 DOI: 10.1038/s41598-024-69181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The relationship of adipose tissue insulin resistance (AT-IR, a product of fasting insulin and free fatty acids) and homeostasis-model assessment-insulin resistance (HOMA-IR) to β-cell function was studied cross-sectionally in the setting of subtle glucose dysregulation. Associations of AT-IR and HOMA-IR with fasting and post-glucose glycemia and β-cell function inferred from serum insulin kinetics during a 75 g oral glucose tolerance test were studied in 168 young female Japanese students. β-cell function was evaluated by disposition index calculated as a product of the insulinogenic index (IGI) and Matsuda index. AT-IR, not HOMA-IR, showed positive associations with post-glucose glycemia and area under the glucose response curve although both indices were associated with fasting glycemia. HOMA-IR, not AT-IR, was associated positively with log IGI whereas both indices were inversely associated with Matsuda index. AT-IR, not HOMA-IR, showed inverse associations with log disposition index. Associations of adipose tissue insulin resistance with β-cell function (inverse) and glucose excursion in young Japanese women may suggest that lipotoxicity to pancreatic β-cells for decades may be associated with β cell dysfunction found in Japanese patients with type 2 diabetes. Positive association of HOMA-IR with insulinogenic index may be associated with compensatory increased insulin secretion.
Collapse
Affiliation(s)
- Satomi Minato-Inokawa
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Laboratory of Community Health and Nutrition, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Mari Honda
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, Hyogo, Japan
| | - Ayaka Tsuboi-Kaji
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Nutrition, Osaka City Juso Hospital, Osaka, Japan
| | - Mika Takeuchi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
| | - Kaori Kitaoka
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Advanced Epidemiology, Noncommunicable Disease (NCD) Epidemiology Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Miki Kurata
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Bin Wu
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tsutomu Kazumi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.
- Department of Medicine, Kohan Kakogawa Hospital, Kakogawa, Hyogo, Japan.
| | - Keisuke Fukuo
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
10
|
Yagan M, Najam S, Hu R, Wang Y, Dadi P, Xu Y, Simmons AJ, Stein R, Adams CM, Jacobson DA, Lau K, Liu Q, Gu G. Atf4 protects islet β-cell identity and function under acute glucose-induced stress but promotes β-cell failure in the presence of free fatty acid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601249. [PMID: 39005465 PMCID: PMC11244863 DOI: 10.1101/2024.06.28.601249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Glucolipotoxicity, caused by combined hyperglycemia and hyperlipidemia, results in β-cell failure and type 2 diabetes (T2D) via cellular stress-related mechanisms. Activating transcription factor 4 (Atf4) is an essential effector of stress response. We show here that Atf4 expression in β-cells is dispensable for glucose homeostasis in young mice, but it is required for β-cell function during aging and under obesity-related metabolic stress. Henceforth, aged Atf4- deficient β-cells display compromised secretory function under acute hyperglycemia. In contrast, they are resistant to acute free fatty acid-induced loss-of identity and dysfunction. At molecular level, Atf4 -deficient β-cells down-regulate genes involved in protein translation, reducing β-cell identity gene products under high glucose. They also upregulate several genes involved in lipid metabolism or signaling, likely contributing to their resistance to free fatty acid-induced dysfunction. These results suggest that Atf4 activation is required for β-cell identity and function under high glucose, but this paradoxically induces β-cell failure in the presence of high levels of free fatty acids. Different branches of Atf4 activity could be manipulated for protecting β-cells from metabolic stress-induced failure. Highlights Atf4 is dispensable in β-cells in young miceAtf4 protects β-cells under high glucoseAtf4 exacerbate fatty acid-induced β-cell defectsAtf4 activates translation but depresses lipid-metabolism.
Collapse
|
11
|
Xu S, Chen Y, Gong Y. Improvement of Theaflavins on Glucose and Lipid Metabolism in Diabetes Mellitus. Foods 2024; 13:1763. [PMID: 38890991 PMCID: PMC11171799 DOI: 10.3390/foods13111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In diabetes mellitus, disordered glucose and lipid metabolisms precipitate diverse complications, including nonalcoholic fatty liver disease, contributing to a rising global mortality rate. Theaflavins (TFs) can improve disorders of glycolipid metabolism in diabetic patients and reduce various types of damage, including glucotoxicity, lipotoxicity, and other associated secondary adverse effects. TFs exert effects to lower blood glucose and lipids levels, partly by regulating digestive enzyme activities, activation of OATP-MCT pathway and increasing secretion of incretins such as GIP. By the Ca2+-CaMKK ꞵ-AMPK and PI3K-AKT pathway, TFs promote glucose utilization and inhibit endogenous glucose production. Along with the regulation of energy metabolism by AMPK-SIRT1 pathway, TFs enhance fatty acids oxidation and reduce de novo lipogenesis. As such, the administration of TFs holds significant promise for both the prevention and amelioration of diabetes mellitus.
Collapse
Affiliation(s)
- Shiyu Xu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Ying Chen
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
| | - Yushun Gong
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
12
|
Bays HE. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. OBESITY PILLARS 2024; 10:100108. [PMID: 38706496 PMCID: PMC11066689 DOI: 10.1016/j.obpill.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Background This joint expert review by the Obesity Medicine Association (OMA) and National Lipid Association (NLA) provides clinicians an overview of the pathophysiologic and clinical considerations regarding obesity, dyslipidemia, and cardiovascular disease (CVD) risk. Methods This joint expert review is based upon scientific evidence, clinical perspectives of the authors, and peer review by the OMA and NLA leadership. Results Among individuals with obesity, adipose tissue may store over 50% of the total body free cholesterol. Triglycerides may represent up to 99% of lipid species in adipose tissue. The potential for adipose tissue expansion accounts for the greatest weight variance among most individuals, with percent body fat ranging from less than 5% to over 60%. While population studies suggest a modest increase in blood low-density lipoprotein cholesterol (LDL-C) levels with excess adiposity, the adiposopathic dyslipidemia pattern most often described with an increase in adiposity includes elevated triglycerides, reduced high density lipoprotein cholesterol (HDL-C), increased non-HDL-C, elevated apolipoprotein B, increased LDL particle concentration, and increased small, dense LDL particles. Conclusions Obesity increases CVD risk, at least partially due to promotion of an adiposopathic, atherogenic lipid profile. Obesity also worsens other cardiometabolic risk factors. Among patients with obesity, interventions that reduce body weight and improve CVD outcomes are generally associated with improved lipid levels. Given the modest improvement in blood LDL-C with weight reduction in patients with overweight or obesity, early interventions to treat both excess adiposity and elevated atherogenic cholesterol (LDL-C and/or non-HDL-C) levels represent priorities in reducing the risk of CVD.
Collapse
Affiliation(s)
- Harold Edward Bays
- Corresponding author. Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, 40213, USA.
| |
Collapse
|
13
|
Bays HE, Kirkpatrick CF, Maki KC, Toth PP, Morgan RT, Tondt J, Christensen SM, Dixon DL, Jacobson TA. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. J Clin Lipidol 2024; 18:e320-e350. [PMID: 38664184 DOI: 10.1016/j.jacl.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
BACKGROUND This joint expert review by the Obesity Medicine Association (OMA) and National Lipid Association (NLA) provides clinicians an overview of the pathophysiologic and clinical considerations regarding obesity, dyslipidemia, and cardiovascular disease (CVD) risk. METHODS This joint expert review is based upon scientific evidence, clinical perspectives of the authors, and peer review by the OMA and NLA leadership. RESULTS Among individuals with obesity, adipose tissue may store over 50% of the total body free cholesterol. Triglycerides may represent up to 99% of lipid species in adipose tissue. The potential for adipose tissue expansion accounts for the greatest weight variance among most individuals, with percent body fat ranging from less than 5% to over 60%. While population studies suggest a modest increase in blood low-density lipoprotein cholesterol (LDL-C) levels with excess adiposity, the adiposopathic dyslipidemia pattern most often described with an increase in adiposity includes elevated triglycerides, reduced high-density lipoprotein cholesterol (HDL-C), increased non-HDL-C, elevated apolipoprotein B, increased LDL particle concentration, and increased small, dense LDL particles. CONCLUSIONS Obesity increases CVD risk, at least partially due to promotion of an adiposopathic, atherogenic lipid profile. Obesity also worsens other cardiometabolic risk factors. Among patients with obesity, interventions that reduce body weight and improve CVD outcomes are generally associated with improved lipid levels. Given the modest improvement in blood LDL-C with weight reduction in patients with overweight or obesity, early interventions to treat both excess adiposity and elevated atherogenic cholesterol (LDL-C and/or non-HDL-C) levels represent priorities in reducing the risk of CVD.
Collapse
Affiliation(s)
- Harold Edward Bays
- Louisville Metabolic and Atherosclerosis Research Center, Clinical Associate Professor, University of Louisville School of Medicine, 3288 Illinois Avenue, Louisville KY 40213 (Dr Bays).
| | - Carol F Kirkpatrick
- Kasiska Division of Health Sciences, Idaho State University, Pocatello, ID (Dr Kirkpatrick).
| | - Kevin C Maki
- Indiana University School of Public Health, Bloomington, IN (Dr Maki).
| | - Peter P Toth
- CGH Medical Center, Department of Clinical Family and Community Medicine, University of Illinois School of Medicine, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine (Dr Toth).
| | - Ryan T Morgan
- Oklahoma State University Center for Health Sciences, Principal Investigator at Lynn Health Science Institute, 3555 NW 58th St., STE 910-W, Oklahoma City, OK 73112 (Dr Morgan).
| | - Justin Tondt
- Department of Family and Community Medicine, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center (Dr Tondt)
| | | | - Dave L Dixon
- Deptartment of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy 410 N 12th Street, Box 980533, Richmond, VA 23298-0533 (Dr Dixon).
| | - Terry A Jacobson
- Lipid Clinic and Cardiovascular Risk Reduction Program, Emory University Department of Medicine, Atlanta, GA (Dr Jacobson).
| |
Collapse
|
14
|
Tompach MC, Gridley CK, Li S, Clark JM, Park Y, Timme-Laragy AR. Comparing the effects of developmental exposure to alpha lipoic acid (ALA) and perfluorooctanesulfonic acid (PFOS) in zebrafish (Danio rerio). Food Chem Toxicol 2024; 186:114560. [PMID: 38432440 PMCID: PMC11034762 DOI: 10.1016/j.fct.2024.114560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Alpha lipoic acid (ALA) is a dietary supplement that has been used to treat a wide range of diseases, including obesity and diabetes, and have lipid-lowering effects, making it a potential candidate for mitigating dyslipidemia resulting from exposures to the per- and polyfluoroalkyl substance (PFAS) family member perfluorooctanesulfonic acid (PFOS). ALA can be considered a non-fluorinated structural analog to PFOS due to their similar 8-carbon chain and amphipathic structure, but, unlike PFOS, is rapidly metabolized. PFOS has been shown to reduce pancreatic islet area and induce β-cell lipotoxicity, indicating that changes in β-cell lipid microenvironment is a mechanism contributing to hypomorphic islets. Due to structural similarities, we hypothesized that ALA may compete with PFOS for binding to proteins and distribution throughout the body to mitigate the effects of PFOS exposure. However, ALA alone reduced islet area and fish length, with several morphological endpoints indicating additive toxicity in the co-exposures. Individually, ALA and PFOS increased fatty acid uptake from the yolk. ALA alone increased liver lipid accumulation, altered fatty acid profiling and modulated PPARɣ pathway signaling. Together, this work demonstrates that ALA and PFOS have similar effects on lipid uptake and metabolism during embryonic development in zebrafish.
Collapse
Affiliation(s)
- Madeline C Tompach
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Charlotte K Gridley
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
15
|
Das S, Devi Rajeswari V, Venkatraman G, Elumalai R, Dhanasekaran S, Ramanathan G. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: A systematic review. Transl Res 2024; 265:71-87. [PMID: 37952771 DOI: 10.1016/j.trsl.2023.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) that poses a serious risk as it can lead to end-stage renal disease (ESRD). DKD is linked to changes in the diversity, composition, and functionality of the microbiota present in the gastrointestinal tract. The interplay between the gut microbiota and the host organism is primarily facilitated by metabolites generated by microbial metabolic processes from both dietary substrates and endogenous host compounds. The production of numerous metabolites by the gut microbiota is a crucial factor in the pathogenesis of DKD. However, a comprehensive understanding of the precise mechanisms by which gut microbiota and its metabolites contribute to the onset and progression of DKD remains incomplete. This review will provide a summary of the current scenario of metabolites in DKD and the impact of these metabolites on DKD progression. We will discuss in detail the primary and gut-derived metabolites in DKD, and the mechanisms of the metabolites involved in DKD progression. Further, we will address the importance of metabolomics in helping identify potential DKD markers. Furthermore, the possible therapeutic interventions and research gaps will be highlighted.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - V Devi Rajeswari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ganesh Venkatraman
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramprasad Elumalai
- Department of Nephrology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat 382426, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
16
|
Branković M, Dukić M, Gmizić T, Popadić V, Nikolić N, Sekulić A, Brajković M, Đokić J, Mahmutović E, Lasica R, Vojnović M, Milovanović T. New Therapeutic Approaches for the Treatment of Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Increased Cardiovascular Risk. Diagnostics (Basel) 2024; 14:229. [PMID: 38275476 PMCID: PMC10814440 DOI: 10.3390/diagnostics14020229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) was previously known as nonalcoholic fatty liver disease (NAFLD). The main characteristic of the disease is the process of long-term liver inflammation, which leads to hepatocyte damage followed by liver fibrosis and eventually cirrhosis. Additionally, these patients are at a greater risk for developing cardiovascular diseases (CVD). They have several pathophysiological mechanisms in common, primarily lipid metabolism disorders and lipotoxicity. Lipotoxicity is a factor that leads to the occurrence of heart disease and the occurrence and progression of atherosclerosis. Atherosclerosis, as a multifactorial disease, is one of the predominant risk factors for the development of ischemic heart disease. Therefore, CVD are one of the most significant carriers of mortality in patients with metabolic syndrome. So far, no pharmacotherapy has been established for the treatment of MASLD, but patients are advised to reduce their body weight and change their lifestyle. In recent years, several trials of different drugs, whose basic therapeutic indications include other diseases, have been conducted. Because it has been concluded that they can have beneficial effects in the treatment of these conditions as well, in this paper, the most significant results of these studies will be presented.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Tijana Gmizić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Višeslav Popadić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Ana Sekulić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Milica Brajković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Jelena Đokić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Edvin Mahmutović
- Department of Internal Medicine, General Hospital Novi Pazar, 36300 Novi Pazar, Serbia;
| | - Ratko Lasica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Marko Vojnović
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Tamara Milovanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| |
Collapse
|
17
|
Mohsin S, Elabadlah H, Alotaiba MK, AlAmry S, Almehairbi SJ, Harara MMK, Almuhsin AMH, Tariq S, Howarth FC, Adeghate EA. High-Density Lipoprotein Is Located Alongside Insulin in the Islets of Langerhans of Normal and Rodent Models of Diabetes. Nutrients 2024; 16:313. [PMID: 38276551 PMCID: PMC10818677 DOI: 10.3390/nu16020313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Recent studies have implicated pre-beta and beta lipoproteins (VLDL and LDL) in the etiopathogenesis of complications of diabetes mellitus (DM). In contrast, alpha lipoprotein (HDL) is protective of the beta cells of the pancreas. This study examined the distribution of HDL in the islets of Langerhans of murine models of type 1 diabetic rats (streptozotocin (STZ)-induced DM in Wistar rats) and type 2 models of DM rats (Goto-Kakizaki (GK), non-diabetic Zucker lean (ZL), and Zucker diabetic and fatty (ZDF)). The extent by which HDL co-localizes with insulin or glucagon in the islets of the pancreas was also investigated. Pancreatic tissues of Wistar non-diabetic, diabetic Wistar, GK, ZL, and ZDF rats were processed for immunohistochemistry. Pancreatic samples of GK rats fed with either a low-fat or a high-fat diet were prepared for transmission immune-electron microscopy (TIEM) to establish the cytoplasmic localization of HDL in islet cells. HDL was detected in the core and periphery of pancreatic islets of Wistar non-diabetic and diabetic, GK, ZL, and ZDF rats. The average total of islet cells immune positive for HDL was markedly (<0.05) reduced in GK and ZDF rats in comparison to Wistar controls. The number of islet cells containing HDL was also remarkably (p < 0.05) reduced in Wistar diabetic rats and GK models fed on high-fat food. The co-localization study using immunofluorescence and TIEM techniques showed that HDL is detected alongside insulin within the secretory granules of β-cells. HDL did not co-localize with glucagon. This observation implies that HDL may contribute to the metabolism of insulin.
Collapse
Affiliation(s)
- Sahar Mohsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Haba Elabadlah
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Cambridge Medical and Rehabilitation Center, Al Ain P.O. Box 222297, United Arab Emirates
| | - Mariam K. Alotaiba
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Suhail AlAmry
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Shamma J. Almehairbi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Maha M. K. Harara
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Aisha M. H. Almuhsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Ernest A. Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
18
|
Zhang W, Miura A, Abu Saleh MM, Shimizu K, Mita Y, Tanida R, Hirako S, Shioda S, Gmyr V, Kerr-Conte J, Pattou F, Jin C, Kanai Y, Sasaki K, Minamino N, Sakoda H, Nakazato M. The NERP-4-SNAT2 axis regulates pancreatic β-cell maintenance and function. Nat Commun 2023; 14:8158. [PMID: 38071217 PMCID: PMC10710447 DOI: 10.1038/s41467-023-43976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Insulin secretion from pancreatic β cells is regulated by multiple stimuli, including nutrients, hormones, neuronal inputs, and local signalling. Amino acids modulate insulin secretion via amino acid transporters expressed on β cells. The granin protein VGF has dual roles in β cells: regulating secretory granule formation and functioning as a multiple peptide precursor. A VGF-derived peptide, neuroendocrine regulatory peptide-4 (NERP-4), increases Ca2+ influx in the pancreata of transgenic mice expressing apoaequorin, a Ca2+-induced bioluminescent protein complex. NERP-4 enhances glucose-stimulated insulin secretion from isolated human and mouse islets and β-cell-derived MIN6-K8 cells. NERP-4 administration reverses the impairment of β-cell maintenance and function in db/db mice by enhancing mitochondrial function and reducing metabolic stress. NERP-4 acts on sodium-coupled neutral amino acid transporter 2 (SNAT2), thereby increasing glutamine, alanine, and proline uptake into β cells and stimulating insulin secretion. SNAT2 deletion and inhibition abolish the protective effects of NERP-4 on β-cell maintenance. These findings demonstrate a novel autocrine mechanism of β-cell maintenance and function that is mediated by the peptide-amino acid transporter axis.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Miura
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Md Moin Abu Saleh
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland - Bahrain, Busaiteen, Bahrain
| | - Koichiro Shimizu
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Mita
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Ryota Tanida
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Seiji Shioda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| | - Valery Gmyr
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Julie Kerr-Conte
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Francois Pattou
- Université de Lille, Inserm, Campus Hospitalo-Universitaire de Lille, Institut Pasteur de Lille, U1190-EGID, F-59000, Lille, France
| | - Chunhuan Jin
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Peptidomics, Sasaki Foundation, Tokyo, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research, Suita, Japan
| | - Hideyuki Sakoda
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Institute for Protein Research, Osaka University, Osaka, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
19
|
El-Deeb OS, Hafez YM, Eltokhy AK, Awad MM, El-shaer RAA, Abdel Ghafar MT, Atef MM. Stimulator of interferon genes/Interferon regulatory factor 3 (STING-IRF3) and inflammasome-activation mediated pyroptosis biomarkers: a network of integrated pathways in diabetic nephropathy. J Diabetes Metab Disord 2023; 22:1471-1480. [PMID: 37975106 PMCID: PMC10638254 DOI: 10.1007/s40200-023-01270-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 11/19/2023]
Abstract
Background Diabetic Nephropathy (DN) is serious diabetic complication affecting the structure and function of the kidney. This study assessed the stimulator of interferon genes/ Interferon regulatory factor 3 (STING/IRF3) signaling pathway roles and inflammasome-activation mediated pyroptosis, being imperative pathways of inordinate importance in disease progression, in DN throughout its different stages. Methods 45 Diabetic cases were categorized into three groups based on their albuminuric status as follow: Normoalbuminuric, Microalbuminuric and Macroalbuminuric diabetic groups and 15 healthy subjects as controls were included. We evaluated STING and absent in melanoma 2 (AIM2) messenger RNA (mRNA) expressions from whole blood using quantitative RT-PCR. Additionally, Serum levels of STING, AIM2, IRF3, Nod like receptor pyrins-3 (NLRP3), interleukin-1β (IL-1β) and caspase-1 were assessed by ELISA technique. Results The study documented that STING and AIM2 mRNA expressions had significantly increased in DN cases with highest value in macroalbuminuric diabetic groups (p < 0.001*). Parallel results were observed concerning serum STING, AIM2, IRF3, NLRP3, Caspase-1 in addition to IL-1β levels (p < 0.001*). Conclusion The study documented the forthcoming role of STING in DN progression and its positive correlation with inflammasome-activation mediated pyroptosis biomarkers throughout its three different stages; launching new horizons in DN pathogenesis by highlighting its role as a reliable prognostic biomarker.
Collapse
Affiliation(s)
- Omnia Safwat El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511 Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira Kamel Eltokhy
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511 Egypt
| | - Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511 Egypt
| |
Collapse
|
20
|
Khin PP, Lee JH, Jun HS. Pancreatic Beta-cell Dysfunction in Type 2 Diabetes. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231154152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pancreatic β-cells produce and secrete insulin to maintain blood glucose levels within a narrow range. Defects in the function and mass of β-cells play a significant role in the development and progression of diabetes. Increased β-cell deficiency and β-cell apoptosis are observed in the pancreatic islets of patients with type 2 diabetes. At an early stage, β-cells adapt to insulin resistance, and their insulin secretion increases, but they eventually become exhausted, and the β-cell mass decreases. Various causal factors, such as high glucose, free fatty acids, inflammatory cytokines, and islet amyloid polypeptides, contribute to the impairment of β-cell function. Therefore, the maintenance of β-cell function is a logical approach for the treatment and prevention of diabetes. In this review, we provide an overview of the role of these risk factors in pancreatic β-cell loss and the associated mechanisms. A better understanding of the molecular mechanisms underlying pancreatic β-cell loss will provide an opportunity to identify novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Phyu Phyu Khin
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jong Han Lee
- Department of Marine Bio-industry, Hanseo University, Seosan, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, 21, Namdong-daero 774, beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| |
Collapse
|
21
|
Xu W, Sang YQ, Liu XK, Geng HF, Wang B, Shi L, Qiu QQ, Yu TP, Zhang Y, Zhang X, Li L, Li Q, Liang J. Effect of glucagon-like peptide-1 receptor agonist on insulin secretion index and serum Wnt5a protein in patients with new-onset type 2 diabetes mellitus. J Diabetes Metab Disord 2023; 22:539-545. [PMID: 37255814 PMCID: PMC10225441 DOI: 10.1007/s40200-022-01175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/18/2022] [Indexed: 06/01/2023]
Abstract
Objective Previous studies have found that wnt5a promotes β-cell insulin secretion and reduced concentrations in patients with type 2 diabetes. GLP-1RA (Glucagon-like peptide-1 receptor agonists) can regulate insulin secretion. However, the evidence that GLP-1RA affect insulin secretion through the Wnt5a is inconclusive. Therefore, this study aimed to evaluate the effect of GLP-1 RA on wnt5a levels in patients with type 2 diabetes. Methods A total of 56 onset diabetics were selected our study, 29 of them were treated by GLP-1RAs (1.2mg subcutaneous injection once a day, liraglutide, Novo Nordisk), the rest (27 case) treated by Metformin (0.5 g twice a day, Glucophage, Merck). Individuals who were using medications to manage platelet (Aspirin) and cholesterol (Statins) were enrolled and continued treatment throughout the study. Results Our study found that the waist circumference and insulin secretion index in the GLP-1RA intervention group were significantly increased, and the insulin resistance index was lower than that of the control group. More interestingly, the serum Wnt5a protein level increased dramatically after the GLP-1RA intervention, and the level of Secreted frizzled-related protein 5 (Sfrp5) decreased compared with the control group. Multivariate linear regression analysis showed that the change of HOMA-β (Homeostasis model assessment- β) was significantly correlated with the changes of Wnt5a and Sfrp5, and the change of Wnt5a protein was positively correlated with HOMA-β. Conclusion Our results confirmed that GLP-1RA may improve HOMA-β in patients with type 2 diabetes by affecting the level of Wnt5a protein.
Collapse
Affiliation(s)
- Wei Xu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiefang Road 199#, Xuzhou, Jiangsu China
| | - Y. Q. Sang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiefang Road 199#, Xuzhou, Jiangsu China
| | - X. K. Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiefang Road 199#, Xuzhou, Jiangsu China
| | - H. F. Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiefang Road 199#, Xuzhou, Jiangsu China
| | - Ben Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiefang Road 199#, Xuzhou, Jiangsu China
| | - Li Shi
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiefang Road 199#, Xuzhou, Jiangsu China
| | - Q. Q. Qiu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiefang Road 199#, Xuzhou, Jiangsu China
| | - T. P. Yu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiefang Road 199#, Xuzhou, Jiangsu China
| | - Yan Zhang
- Xuzhou Medical University, Xuzhou, China
| | - Xia Zhang
- Xuzhou Medical University, Xuzhou, China
| | - Lin Li
- Bengbu Medical College, Bengbu, China
| | - Qing Li
- Xuzhou Medical University, Xuzhou, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiefang Road 199#, Xuzhou, Jiangsu China
| |
Collapse
|
22
|
Hurley LD, Lee H, Wade G, Simcox J, Engin F. Ormdl3 regulation of specific ceramides is dispensable for mouse β-cell function and glucose homeostasis under obesogenic conditions. Front Endocrinol (Lausanne) 2023; 14:1170461. [PMID: 37124760 PMCID: PMC10140491 DOI: 10.3389/fendo.2023.1170461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic elevation of sphingolipids contributes to β-cell failure. ORMDL3 has been identified as a key regulator of sphingolipid homeostasis, however, its function in pancreatic β-cell pathophysiology remains unclear. Here, we generated a mouse model lacking Ormdl3 within pancreatic β-cells (Ormdl3 β-/-). We show that loss of β-cell Ormdl3 does not alter glucose tolerance, insulin sensitivity, insulin secretion, islet morphology, or cellular ceramide levels on standard chow diet. When challenged with a high fat diet, while Ormdl3 β-/- mice did not exhibit any alteration in metabolic parameters or islet architecture, lipidomics analysis revealed significantly higher levels of very long chain ceramides in their islets. Taken together, our results reveal that loss of Ormdl3 alone is not sufficient to impinge upon β-cell function or whole-body glucose and insulin homeostasis, however, β-cell-specific loss of Ormdl3 does significantly alter levels of specific sphingolipid species in islets upon high fat feeding.
Collapse
Affiliation(s)
- Liam D. Hurley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hugo Lee
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Gina Wade
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Judith Simcox
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Feyza Engin
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
23
|
Guf1 overexpression improves pancreatic β cell functions in type 2 diabetes mellitus rats with Roux-en-Y gastric bypass (RYGB) surgery. J Physiol Biochem 2023:10.1007/s13105-023-00952-6. [PMID: 36905457 DOI: 10.1007/s13105-023-00952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
The Roux-en-Y gastric bypass (RYGB) is a one-of-a-kind treatment among contemporary bariatric surgical procedures, and its therapeutic effects for type 2 diabetes mellitus (T2DM) are satisfactory. The present study performed isobaric tags for relative and absolute quantification (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identifying different proteomics between T2DM rats with or without Roux-en-Y gastric bypass (RYGB) surgery, and GTP binding elongation factor GUF1 (Guf1) was first found to be significantly upregulated in rats from the T2DM plus RYGB group. In the cellular lipotoxicity model induced by palmitic acid stimulation of rat pancreatic beta cell line, INS-1, palmitic acid treatment inhibited cell viability, suppressed GSIS, promoted lipid droplet formation, promoted cell apoptosis, and induced mitochondrial membrane potential loss. The effects of palmitic acid on INS-1 cells mentioned above could be partially eliminated by Guf1 overexpression but aggravated by Guf1 knockdown. Last, under palmitic acid treatment, Guf1 overexpression promotes the PI3K/Akt and NF-κB signaling but inhibits the AMPK activation. Guf1 is upregulated in T2DM rats who received RYGB, and Guf1 overexpression improves cell mitochondrial functions, increases cell proliferation, inhibits cell apoptosis, and promotes cell functions in palmitic acid-treated β cells.
Collapse
|
24
|
Jala A, Dutta R, Josyula JVN, Mutheneni SR, Borkar RM. Environmental phenol exposure associates with urine metabolome alteration in young Northeast Indian females. CHEMOSPHERE 2023; 317:137830. [PMID: 36640981 DOI: 10.1016/j.chemosphere.2023.137830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Urinary biomonitoring delivers the most accurate environmental phenols exposure assessment. However, environmental phenol exposure-related biomarkers are required to improve risk assessment to understand the internal processes perturbed, which may link exposure to specific health outcomes. This study aimed to investigate the association between environmental phenols exposure and the metabolome of young adult females from India. Urinary metabolomics was performed using liquid chromatography-mass spectrometry. Environmental phenols-related metabolic biomarkers were investigated by comparing the low and high exposure of environmental phenols. Seven potential biomarkers, namely histidine, cysteine-s-sulfate, 12-KETE, malonic acid, p-hydroxybenzoic acid, PE (36:2), and PS (36:0), were identified, revealing that environmental phenol exposure altered the metabolic pathways such as histidine metabolism, beta-Alanine metabolism, glycerophospholipid metabolism, and other pathways. This study also conceived an innovative strategy for the early prediction of diseases by combining urinary metabolomics with machine learning (ML) algorithms. The differential metabolites predictive accuracy by ML models was >80%. This is the first mass spectrometry-based metabolomics study on young adult females from India with environmental phenols exposure. The study is valuable in demonstrating multiple urine metabolic changes linked to environmental phenol exposure and a better understanding of the mechanisms behind environmental phenol-induced effects in young female adults.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Ratul Dutta
- Down Town Hospital, Guwahati, Assam, 781106, India
| | | | - Srinivasa Rao Mutheneni
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India.
| |
Collapse
|
25
|
Hurley LD, Lee H, Wade G, Simcox J, Engin F. Ormdl3 regulation of specific ceramides is dispensable for β-cell function and glucose homeostasis under obesogenic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528130. [PMID: 36798417 PMCID: PMC9934654 DOI: 10.1101/2023.02.11.528130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Chronic elevation of sphingolipids contributes to β-cell failure. ORMDL3 has been identified as a key regulator of sphingolipid homeostasis, however, its function in pancreatic β-cell pathophysiology remains unclear. Here, we generated a mouse model lacking Ormdl3 within pancreatic β-cells ( Ormdl3 β-/- ). We show that loss of β-cell Ormdl3 does not alter glucose tolerance, insulin sensitivity, insulin secretion, islet morphology, or cellular ceramide levels on standard chow diet. When challenged with a high fat diet, while Ormdl3 β-/- mice did not exhibit any alteration in metabolic parameters or islet architecture, lipidomics analysis revealed significantly higher levels of very long chain ceramides in their islets. Taken together, our results reveal that loss of Ormdl3 alone is not sufficient to impinge upon β-cell function or whole-body glucose and insulin homeostasis, but loss of Ormdl3 does alter specific sphingolipid levels.
Collapse
Affiliation(s)
- Liam D Hurley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
26
|
Prospective characterization of incident hepatic steatosis in pediatric and adolescent patients after total pancreatectomy with islet autotransplantation. Pancreatology 2022; 22:1175-1180. [PMID: 36198489 DOI: 10.1016/j.pan.2022.09.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hepatic steatosis has been described as a common finding in adults following total pancreatectomy with islet autotransplantation (TPIAT) but it is unknown if this occurs in children and adolescents. OBJECTIVES To define the frequency of post-TPIAT hepatic steatosis in a sample of children and adolescents and to identify clinical predictors of incident steatosis post-TPIAT. METHODS In this prospective study, consecutive participants at least 1-month post-TPIAT underwent a liver MRI with proton density fat fraction (PDFF) and blood draw at our pediatric academic medical center between April 2021 and January 2022. Comparison clinical pre-TPIAT liver MRI or ultrasound and insulin use and graft function data were extracted from the medical record. T-tests were used for the comparison of means across continuous variables between participants with and without post-TPIAT steatosis. RESULTS A total of 20 participants (mean: 13 ± 4 years; 12 female) were evaluated. Mean liver PDFF at research MRI was 7.4 ± 6.2% (range: 2-25%). Seven participants (35%) had categorical hepatic steatosis (PDFF>5%) post-TPIAT, five of whom had pre-TPIAT steatosis, reflecting a 13% (2/15; 95% CI: 2-40%) incidence of post-TPIAT steatosis. Participant characteristics were not significantly different between subgroups with and without post-TPIAT steatosis. Mean PDFF at research MRI was not different between graft function subgroups (7.5% optimal/good vs. 7.3% marginal/failure; p = .96). CONCLUSION Our study shows a moderate prevalence but low incidence of hepatic steatosis in a small sample of children and adolescents post-TPIAT. This study raises questions about a causal relationship between TPIAT and hepatic steatosis.
Collapse
|
27
|
He W, Tran A, Chen CT, Loganathan N, Bazinet RP, Belsham DD. Oleate restores altered autophagic flux to rescue palmitate lipotoxicity in hypothalamic neurons. Mol Cell Endocrinol 2022; 557:111753. [PMID: 35981630 DOI: 10.1016/j.mce.2022.111753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023]
Abstract
Accumulation of excess lipids in non-adipose tissues, such as the hypothalamus, is termed lipotoxicity and causative of free fatty acid-mediated pathology in metabolic disease. This study aimed to elucidate the molecular mechanisms behind oleate (OA)- and palmitate (PA)-mediated changes in hypothalamic neurons. Using the well-characterized hypothalamic neuronal cell model, mHypoE-46, we assessed gene changes through qRT-PCR, cell death with quantitative imaging, PA metabolism using stable isotope labeling, and cellular mechanisms using pharmacological modulation of lipid metabolism and autophagic flux. Palmitate (PA) disrupts gene expression, including Npy, Grp78, and Il-6 mRNA in mHypoE-46 hypothalamic neurons. Blocking PA metabolism using triacsin-C prevented the increase of these genes, implying that these changes depend on PA intracellular metabolism. Co-incubation with oleate (OA) is also potently protective and prevents cell death induced by increasing concentrations of PA. However, OA does not decrease U-13C-PA incorporation into diacylglycerol and phospholipids. Remarkably, OA can reverse PA toxicity even after significant PA metabolism and cellular impairment. OA can restore PA-mediated impairment of autophagy to prevent or reverse the accumulation of PA metabolites through lysosomal degradation, and not through other reported mechanisms. The autophagic flux inhibitor chloroquine (CQ) mimics PA toxicity by upregulating autophagy-related genes, Npy, Grp78, and Il-6, an effect partially reversed by OA. CQ also prevented the OA defense against PA toxicity, whereas the autophagy inducer rapamycin provided some protection. Thus, PA impairment of autophagic flux significantly contributes to its lipotoxicity, and OA-mediated protection requires functional autophagy. Overall, our results suggest that impairment of autophagy contributes to hypothalamic lipotoxicity.
Collapse
Affiliation(s)
- Wenyuan He
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Andy Tran
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Ontario, Canada
| | | | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Association between snoring and insulin levels in the US population: a cross-sectional study. Sleep Breath 2022; 27:1185-1193. [DOI: 10.1007/s11325-022-02709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
|
29
|
Lipotoxicity in a Vicious Cycle of Pancreatic Beta Cell Exhaustion. Biomedicines 2022; 10:biomedicines10071627. [PMID: 35884932 PMCID: PMC9313354 DOI: 10.3390/biomedicines10071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Hyperlipidemia is a common metabolic disorder in modern society and may precede hyperglycemia and diabetes by several years. Exactly how disorders of lipid and glucose metabolism are related is still a mystery in many respects. We analyze the effects of hyperlipidemia, particularly free fatty acids, on pancreatic beta cells and insulin secretion. We have developed a computational model to quantitatively estimate the effects of specific metabolic pathways on insulin secretion and to assess the effects of short- and long-term exposure of beta cells to elevated concentrations of free fatty acids. We show that the major trigger for insulin secretion is the anaplerotic pathway via the phosphoenolpyruvate cycle, which is affected by free fatty acids via uncoupling protein 2 and proton leak and is particularly destructive in long-term chronic exposure to free fatty acids, leading to increased insulin secretion at low blood glucose and inadequate insulin secretion at high blood glucose. This results in beta cells remaining highly active in the “resting” state at low glucose and being unable to respond to anaplerotic signals at high pyruvate levels, as is the case with high blood glucose. The observed fatty-acid-induced disruption of anaplerotic pathways makes sense in the context of the physiological role of insulin as one of the major anabolic hormones.
Collapse
|
30
|
A High Throughput Lipidomics Method Using Scheduled Multiple Reaction Monitoring. Biomolecules 2022; 12:biom12050709. [PMID: 35625636 PMCID: PMC9138805 DOI: 10.3390/biom12050709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Lipid compositions of cells, tissues, and bio-fluids are complex, with varying concentrations and structural diversity making their identification challenging. Newer methods for comprehensive analysis of lipids are thus necessary. Herein, we propose a targeted-mass spectrometry based lipidomics screening method using a combination of variable retention time window and relative dwell time weightage. Using this method, we identified more than 1000 lipid species within 24-min. The limit of detection varied from the femtomolar to the nanomolar range. About 883 lipid species were detected with a coefficient of variance <30%. We used this method to identify plasma lipids altered due to vitamin B12 deficiency and found a total of 18 lipid species to be altered. Some of the lipid species with ω-6 fatty acid chains were found to be significantly increased while ω-3 decreased in vitamin B12 deficient samples. This method enables rapid screening of a large number of lipid species in a single experiment and would substantially advance our understanding of the role of lipids in biological processes.
Collapse
|
31
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
32
|
Freitas EDS, Katsanos CS. (Dys)regulation of Protein Metabolism in Skeletal Muscle of Humans With Obesity. Front Physiol 2022; 13:843087. [PMID: 35350688 PMCID: PMC8957804 DOI: 10.3389/fphys.2022.843087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/07/2022] [Indexed: 01/22/2023] Open
Abstract
Studies investigating the proteome of skeletal muscle present clear evidence that protein metabolism is altered in muscle of humans with obesity. Moreover, muscle quality (i.e., strength per unit of muscle mass) appears lower in humans with obesity. However, relevant evidence to date describing the protein turnover, a process that determines content and quality of protein, in muscle of humans with obesity is quite inconsistent. This is due, at least in part, to heterogeneity in protein turnover in skeletal muscle of humans with obesity. Although not always evident at the mixed-muscle protein level, the rate of synthesis is generally lower in myofibrillar and mitochondrial proteins in muscle of humans with obesity. Moreover, alterations in the synthesis of protein in muscle of humans with obesity are manifested more readily under conditions that stimulate protein synthesis in muscle, including the fed state, increased plasma amino acid availability to muscle, and exercise. Current evidence supports various biological mechanisms explaining impairments in protein synthesis in muscle of humans with obesity, but this evidence is rather limited and needs to be reproduced under more defined experimental conditions. Expanding our current knowledge with direct measurements of protein breakdown in muscle, and more importantly of protein turnover on a protein by protein basis, will enhance our understanding of how obesity modifies the proteome (content and quality) in muscle of humans with obesity.
Collapse
Affiliation(s)
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic in Arizona, Scottsdale, AZ, United States
| |
Collapse
|
33
|
Hong H, Xu J, He H, Wang X, Yang L, Deng P, Yang L, Tan M, Zhang J, Xu Y, Tong T, Lin X, Pi H, Lu Y, Zhou Z. Cadmium perturbed metabolomic signature in pancreatic beta cells correlates with disturbed metabolite profile in human urine. ENVIRONMENT INTERNATIONAL 2022; 161:107139. [PMID: 35172228 DOI: 10.1016/j.envint.2022.107139] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Cd exposure has been demonstrated to induce a variety of metabolic disorders accompanied with imbalance of glucose and lipid homeostasis. The metabolic toxicity of Cd exposure at metabolome-wide level remains elusive. In our study, we demonstrated that Cd exposure via drinking water increased blood glucose levels, decreased serum insulin levels, led to glucose intolerance and suppressed insulin expression in the pancreas of C57/6J mice. Cd exposure significantly inhibited cell viability and suppressed insulin secretion in MIN6 cells in vitro. Since pancreatic β-cells are the only source of insulin production in the body and play a pivotal role in modulating glucose and lipid metabolisms, we further delineated the metabolomic signatures of Cd exposure in insulin-secreting MIN6 cells by using non-target metabolomics. PCA and OPLS-DA analysis clearly suggested that Cd exposure led to a marked metabolic alteration in MIN6 cells. 76 perturbed metabolites were identified after Cd exposure. Classification of metabolites suggested that Cd perturbed metabolites belong to nucleosides, nucleotides and analogues, organic acids and derivatives, and lipids and lipid-like molecules. 28 perturbed metabolites existed in mitochondrion, suggesting mitochondrion as the major target organelle in metabolic toxicity of Cd exposure. KEGG pathway analysis revealed that 20 metabolic pathways were disturbed by Cd exposure. Mitochondrial TCA cycle and glycerophospholipid metabolism were remarkably disturbed. The mRNA expressions of genes in mitochondrial TCA cycle and fatty acid oxidation in pancreas and MIN6 cells were significantly dysregulated by Cd exposure. Disturbances in mitochondrial TCA cycle and glycerophospholipid metabolism result in producing perturbed metabolites in pancreatic β-cells. Moreover, 14 perturbed metabolites identified in MIN6 cells co-existed in the urine of Cd exposed workers. 11 biomarkers of diabetes mellitus were also found to be significantly altered in the urine of Cd exposed workers. In conclusion, findings of this study greatly extend our understanding of metabolic toxicity of Cd exposure in pancreatic β-cells at metabolome-wide level and offer some new clues for linking Cd exposure to development of diabetes mellitus. Results of this study also support the notion that Cd induced metabolic toxicity could be monitored by examining perturbed urinary metabolites in humans and highlight the significance of reducing Cd exposure via drinking water at population level.
Collapse
Affiliation(s)
- Huihui Hong
- Department of Emergency Medicine, The First Affiliated Hospital and Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Wang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lu Yang
- Hunan Province Prevention and Treatment Hospital for Occupational Diseases, Hunan, China
| | - Miduo Tan
- Department of Galactophore, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Jingjing Zhang
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiqin Lin
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China.
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Zhou
- Department of Emergency Medicine, The First Affiliated Hospital and Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Cho HE, Yang SB, Gi MY, Cha JA, Park SY, Yoon H. The Relationship between the Lipid Accumulation Product and Beta-cell Function in Korean Adults with or without Type 2 Diabetes Mellitus: The 2015 Korea National Health and Nutrition Examination Survey. Endocr Res 2022; 47:80-88. [PMID: 35302423 DOI: 10.1080/07435800.2022.2053540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS This study was conducted to assess the relationship between the lipid accumulation product index (LAP) and the homeostasis model assessment for insulin resistance (HOMA-IR) and beta-cell function (HOMA-B) in Korean adults with or without type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The study was carried out using data from the 2015 Korean National Health and Nutrition Examination Survey (KNHANES) and included 4,922 adults aged 20 or older. RESULTS There were several key findings. First, in overall population, after adjusting for related variables, HOMA-IR (p < .001) and HOMA-B (p < .001) level were positively associated with quartiles of LAP. Second, in non-T2DM group, HOMA-IR (p < .001) and HOMA-B level (p < .001) were positively associated with quartiles of LAP. Third, in T2DM group, HOMA-IR (p < .001) level was positively associated with the quartiles of LAP, but HOMA-B (p = .153) level was not significant. In addition, HOMA-B level was increased with an increasing metabolic syndrome component in non-T2DM (p < .001) but not in T2DM (p = .267). CONCLUSIONS LAP was positively associated with both HOMA-IR and HOMA-B in non-diabetic Korean adults. However, LAP was positively associated with HOMA-IR in Korean adults with T2DM, while the association with HOMA-B was not significant.
Collapse
Affiliation(s)
- Hye Eun Cho
- Department of Dental Hygiene, Kwangju Womens's University, Gwangsan-gu, South Korea
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University, Iksan-si, South Korea
| | - Mi Young Gi
- Department of Nursing, Christian College of Nursing, Gwangju, South Korea
| | - Ju Ae Cha
- Department of Nursing, Chunnam Technouniversity, Gokseong-gun, South Korea
| | - So Young Park
- Department of Dental Hygiene, Wonkwang Health Science University, Iksan-si, South Korea
| | - Hyun Yoon
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan-si, South Korea
| |
Collapse
|
35
|
Zhou HL, Premont RT, Stamler JS. The manifold roles of protein S-nitrosylation in the life of insulin. Nat Rev Endocrinol 2022; 18:111-128. [PMID: 34789923 PMCID: PMC8889587 DOI: 10.1038/s41574-021-00583-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
Insulin, which is released by pancreatic islet β-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes mellitus, type 2 diabetes mellitus and metabolic dysfunction. In this Review, we make the case that insulin signalling is intimately coupled to protein S-nitrosylation, in which nitric oxide groups are conjugated to cysteine thiols to form S-nitrosothiols, within effectors of insulin action. We discuss the role of S-nitrosylation in the life cycle of insulin, from its synthesis and secretion in pancreatic β-cells, to its signalling and degradation in target tissues. Finally, we consider how aberrant S-nitrosylation contributes to metabolic diseases, including the roles of human genetic mutations and cellular events that alter S-nitrosylation of insulin-regulating proteins. Given the growing influence of S-nitrosylation in cellular metabolism, the field of metabolic signalling could benefit from renewed focus on S-nitrosylation in type 2 diabetes mellitus and insulin-related disorders.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
36
|
de Melo FTC, Felício KM, de Queiroz NNM, de Rider Brito HA, Neto JFA, Janaú LC, de Souza Neto NJK, Silva ALA, de Lemos MN, de Oliveira MCNI, de Alcântara AL, de Moraes LV, de Souza ÍJA, Said NM, da Silva WM, de Lemos GN, Dos Santos MC, De Souza D Albuquerque Silva L, Motta ARB, de Figueiredo PBB, de Souza ACCB, Piani PPF, Felício JS. High-dose Vitamin D Supplementation on Type 1 Diabetes Mellitus Patients: Is there an Improvement in Glycemic Control? Curr Diabetes Rev 2022; 18:e010521189964. [PMID: 33413064 DOI: 10.2174/1573399817666210106102643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some authors evaluated the effect of VD on hyperglycemia in T1DM, but the results remain controversial. This study aims to analyze the effects of high-dose VD supplementation on T1DM patients' glycemic levels, maintaining stable doses of insulin. METHODS Prospective, 12-week clinical trial including 67 T1DM patients, supplemented with high doses of cholecalciferol according to participants' VD value. Patients with VD levels below 30 ng/mL received 10,000 IU/day; those with levels between 30-60 ng/mL received 4,000 IU/day. Patients who had not achieved 25(OH)D levels > 30 ng/ml or presented insulin dose variation during the study were not analyzed. RESULTS Only 46 out of 67 patients accomplished the criteria at the end of the study. There was no general improvement in the glycemic control evaluated by HbA1c (9.4 ± 2.4 vs 9.4 ± 2.6, p=NS) after VD supplementation. However, a post-hoc analysis, based on HbA1c variation, identified patients who had HbA1c reduced at least 0.6% (group 1, N = 13 (28%)). In addition, a correlation between 25(OH)D levels with HbA1c and total insulin dose at the end of the study was observed (r = -0.3, p<0.05; r=-0.4, p<0.05, respectively), and a regression model demonstrated that 25(OH)D was independent of BMI, duration of T1DM and final total insulin dose, being capable of determining 9.2% of HbA1c final levels (Unstandardized B coefficient = -0.033 (CI 95%: -0.064 to -0.002), r2 = 0.1, p <0.05). CONCLUSION Our data suggest that VD is not widely recommended for glycemic control. Nevertheless, specific patients might benefit from this approach.
Collapse
Affiliation(s)
- Franciane Trindade Cunha de Melo
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Karem Mileo Felício
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Natércia Neves Marques de Queiroz
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Hana Andrade de Rider Brito
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - João Felício Abrahão Neto
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Luísa Corrêa Janaú
- State University of Pará, Platter Perebebuí, 2623, Marco, Belém, Pará,Brazil
| | - Norberto Jorge Kzan de Souza Neto
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Ana Luíza Aires Silva
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Manuela Nascimento de Lemos
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Maria Clara Neres Iunes de Oliveira
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Angélica Leite de Alcântara
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Lorena Vilhena de Moraes
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Ícaro José Araújo de Souza
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Nivin Mazen Said
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Wanderson Maia da Silva
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Gabriela Nascimento de Lemos
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Márcia Costa Dos Santos
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Lilian De Souza D Albuquerque Silva
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Ana Regina Bastos Motta
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | | | - Ana Carolina Contente Braga de Souza
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - Pedro Paulo Freire Piani
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| | - João Soares Felício
- University Hospital João de Barros Barreto, Federal University of Pará, Endocrinology Division, Mundurucus Street, 4487, Guamá, Belém, Pará,Brazil
| |
Collapse
|
37
|
Aliusef MH, Gnyloskurenko GV, Churylina AV, Mityuryayeva IO. Clustering patterns of metabolic syndrome: A cross-sectional study in children and adolescents in Kyiv. Front Pediatr 2022; 10:972975. [PMID: 36419920 PMCID: PMC9677097 DOI: 10.3389/fped.2022.972975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The aim: to identify subgroups by cluster analysis according parameters: original homeostatic model of insulin resistance (HOMA-1 IR), updated computer model of insulin resistance (HOMA-2 IR), β-cell function (%B) and insulin sensitivity (%S) for the prognosis of different variants of metabolic syndrome in children for more individualized treatment selection. PATIENTS AND METHODS The observational cross-sectional study on 75 children aged from 10 to 17 with metabolic syndrome according to the International Diabetes Federation criteria was conducted at the Cardiology Department of Children's Clinical Hospital No.6 in Kyiv. HOMA-1 IR was calculated as follows: fasting insulin (µIU/ml) × fasting glucose (mmol/L)/22.5. HOMA-2 IR with %B and %S were calculated according to the computer model in [http://www.dtu.ox.ac.uk]. All biochemical analysis were carried out using Cobas 6000 analyzer and Roche Diagnostics (Switzerland). The statistical analysis was performed using STATISTICA 7.0 and Easy R. The hierarchical method Ward was used for cluster analysis according the parameters: HOMA-1 IR, HOMA-2 IR, %B and %S. RESULTS Four clusters were identified from the dendrogram, which could predict four variants in the course of metabolic syndrome such that children in cluster 1 would have the worst values of the studied parameters and those in cluster 4 - the best. It was found that HOMA-1 IR was much higher in cluster 1 (6.32 ± 0.66) than in cluster 4 (2.19 ± 0.13). HOMA-2 IR was also much higher in cluster 1 (3.80 ± 0.34) than in cluster 4 (1.31 ± 0.06). By the analysis of variance using Scheffe's multiple comparison method, a statistically significant difference was obtained between the laboratory parameters among the subgroups: HOMA-1 IR (p < 0,001), glucose (p < 0.001), insulin (p < 0,001), HOMA-2 IR (p < 0.001), %B (p < 0.001), %S (p < 0.001), TG ( p = 0.005) and VLDL-C (p = 0.002). CONCLUSIONS A cluster analysis revealed that the first two subgroups of children had the worst insulin resistance and lipid profile parameters. It was found positive correlation between HOMA-1 IR, HOMA-2 IR, %B and %S with lipid metabolism parameters TG and VLDL-C and negative correlation between %B and HDL-C in children with metabolic syndrome (MetS).The risk of getting a high TG result in the blood analysis in children with MetS was significantly dependent with the HOMA-2 IR >2.26.
Collapse
Affiliation(s)
- Maiia H Aliusef
- Department of Pediatrics, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Alina V Churylina
- Department of Pediatrics, Bogomolets National Medical University, Kyiv, Ukraine
| | - Inga O Mityuryayeva
- Department of Pediatrics, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
38
|
Mohseni G, Li J, Ariston Gabriel AN, Du L, Wang YS, Wang C. The Function of cGAS-STING Pathway in Treatment of Pancreatic Cancer. Front Immunol 2021; 12:781032. [PMID: 34858438 PMCID: PMC8630697 DOI: 10.3389/fimmu.2021.781032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
The activation of stimulator of interferon genes (STING) signalling pathway has been suggested to promote the immune responses against malignancy. STING is activated in response to the detection of cytosolic DNA and can induce type I interferons and link innate immunity with the adaptive immune system. Due to accretive evidence demonstrating that the STING pathway regulates the immune cells of the tumor microenvironment (TME), STING as a cancer biotherapy has attracted considerable attention. Pancreatic cancer, with a highly immunosuppressive TME, remains fatal cancer. STING has been applied to the treatment of pancreatic cancer through distinct strategies. This review reveals the role of STING signalling on pancreatic tumors and other diseases related to the pancreas. We then discuss new advances of STING in either monotherapy or combination methods for pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Abakundana Nsenga Ariston Gabriel
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun-Shan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
39
|
Natural and chemical compounds as protective agents against cardiac lipotoxicity. Biomed Pharmacother 2021; 145:112413. [PMID: 34781144 DOI: 10.1016/j.biopha.2021.112413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiac lipotoxicity results from the deleterious effects of excess lipid deposition in cardiomyocytes. Lipotoxic cardiomyopathy involves cardiac lipid overload leading to changes in myocardial structure and function. Cardiac dysfunction has been associated with cardiac lipotoxicity through abnormal lipid metabolism. Lipid accumulation, especially saturated free fatty acids (SFFAs), in cardiac cells can cause cardiomyocyte distress and subsequent myocardial contractile dysfunction. Reducing the excess FAs supply or promoting FA storage is beneficial for cardiac function, especially under a lipotoxic condition. The protective effects of several compounds against lipotoxicity progression in the heart have been investigated. A variety of mechanisms has been suggested to prevent or treat cardiac lipotoxicity, including improvement of calcium homeostasis, lipid metabolism, and mitochondrial dysfunction. Known targets and signaling pathways involving a select group of chemicals that interfere with cardiac lipotoxicity pathogenesis are reviewed.
Collapse
|
40
|
The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 2021; 22:751-771. [PMID: 34285405 DOI: 10.1038/s41580-021-00390-6] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Insulin resistance, defined as a defect in insulin-mediated control of glucose metabolism in tissues - prominently in muscle, fat and liver - is one of the earliest manifestations of a constellation of human diseases that includes type 2 diabetes and cardiovascular disease. These diseases are typically associated with intertwined metabolic abnormalities, including obesity, hyperinsulinaemia, hyperglycaemia and hyperlipidaemia. Insulin resistance is caused by a combination of genetic and environmental factors. Recent genetic and biochemical studies suggest a key role for adipose tissue in the development of insulin resistance, potentially by releasing lipids and other circulating factors that promote insulin resistance in other organs. These extracellular factors perturb the intracellular concentration of a range of intermediates, including ceramide and other lipids, leading to defects in responsiveness of cells to insulin. Such intermediates may cause insulin resistance by inhibiting one or more of the proximal components in the signalling cascade downstream of insulin (insulin receptor, insulin receptor substrate (IRS) proteins or AKT). However, there is now evidence to support the view that insulin resistance is a heterogeneous disorder that may variably arise in a range of metabolic tissues and that the mechanism for this effect likely involves a unified insulin resistance pathway that affects a distal step in the insulin action pathway that is more closely linked to the terminal biological response. Identifying these targets is of major importance, as it will reveal potential new targets for treatments of diseases associated with insulin resistance.
Collapse
|
41
|
Lai KZH, Semnani-Azad Z, Retnakaran R, Harris SB, Hanley AJ. Changes in adiposity mediate the associations of diet quality with insulin sensitivity and beta-cell function. Nutr Metab Cardiovasc Dis 2021; 31:3054-3063. [PMID: 34518089 DOI: 10.1016/j.numecd.2021.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS To examine the mediating role of adiposity on the associations of diet quality with longitudinal changes in insulin sensitivity and beta-cell function. METHODS AND RESULTS Adults at-risk for type 2 diabetes (T2D) in the PROMISE cohort had 4 assessments over 9 years (n = 442). Alternate Healthy Eating Index (AHEI) scores were used to assess diet quality. Generalized Estimating Equations (GEE) evaluated the associations between the AHEI and longitudinal changes in insulin sensitivity (HOMA2-%S and ISI) and beta-cell function (IGI/HOMA-IR and ISSI-2). The proportion of the mediating effect of waist circumference changes was estimated using the difference method. In the primary longitudinal analysis, AHEI was positively associated with insulin sensitivity and beta-cell function over time (% difference per standard deviation increase of AHEI for HOMA2-%S (β = 11.0, 95%CI 5.43-17.0), ISI (β = 10.4, 95%CI 4.35-16.8), IGI/HOMA-IR (β = 7.12, 95%CI 0.98-13.6) and ISSI-2 (β = 4.38, 95%CI 1.05-7.80), all p < 0.05). There was no significant association between AHEI and dysglycemia incidence (OR = 0.95, 95%CI 0.77-1.17). Adjustments for longitudinal changes in waist circumference substantially attenuated all associations of AHEI with insulin sensitivity and beta-cell function. Mediation analysis indicated that waist circumference mediated 73%, 70%, 83% and 81% of the association between AHEI and HOMA2-%S, ISI, IGI/HOMA-IR, and ISSI-2, respectively (all p < 0.01). CONCLUSION In a Canadian population at-risk for T2D, AHEI score was positively associated with changes in insulin sensitivity and beta-cell function. These associations were substantially mediated by waist circumference, suggesting that changes in adiposity may represent an important pathway linking diet quality with risk phenotypes for T2D.
Collapse
Affiliation(s)
- Kira Zhi Hua Lai
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Zhila Semnani-Azad
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Ravi Retnakaran
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Canada; Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.
| | - Stewart B Harris
- Department of Family Medicine, Western University, London, Canada.
| | - Anthony J Hanley
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada; Division of Endocrinology and Metabolism, University of Toronto, Toronto, Canada; Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada.
| |
Collapse
|
42
|
Abstract
Over the last decades, research has focused on the role of pleckstrin homology (PH) domain leucine-rich repeat protein phosphatases (PHLPPs) in regulating cellular signaling via PI3K/Akt inhibition. The PKB/Akt signaling imbalances are associated with a variety of illnesses, including various types of cancer, inflammatory response, insulin resistance, and diabetes, demonstrating the relevance of PHLPPs in the prevention of diseases. Furthermore, identification of novel substrates of PHLPPs unveils their role as a critical mediator in various cellular processes. Recently, researchers have explored the increasing complexity of signaling networks involving PHLPPs whereby relevant information of PHLPPs in metabolic diseases was obtained. In this review, we discuss the current knowledge of PHLPPs on the well-known substrates and metabolic regulation, especially in liver, pancreatic beta cell, adipose tissue, and skeletal muscle in relation with the stated diseases. Understanding the context-dependent functions of PHLPPs can lead to a promising treatment strategy for several kinds of metabolic diseases.
Collapse
Affiliation(s)
- Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Korea
| | - Sang Bae Lee
- Division of Life Sciences, Jeonbuk National University; Sarcopenia Total Solution Center, Jeonju 54896, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Korea
| |
Collapse
|
43
|
Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect 2021; 10:R213-R228. [PMID: 34289444 PMCID: PMC8428079 DOI: 10.1530/ec-21-0260] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The most distinctive pathological characteristics of diabetes mellitus induced by various stressors or immune-mediated injuries are reductions of pancreatic islet β-cell populations and activity. Existing treatment strategies cannot slow disease progression; consequently, research to genetically engineer β-cell mimetics through bi-directional plasticity is ongoing. The current consensus implicates β-cell dedifferentiation as the primary etiology of reduced β-cell mass and activity. This review aims to summarize the etiology and proposed mechanisms of β-cell dedifferentiation and to explore the possibility that there might be a time interval from the onset of β-cell dysfunction caused by dedifferentiation to the development of diabetes, which may offer a therapeutic window to reduce β-cell injury and to stabilize functionality. In addition, to investigate β-cell plasticity, we review strategies for β-cell regeneration utilizing genetic programming, small molecules, cytokines, and bioengineering to transdifferentiate other cell types into β-cells; the development of biomimetic acellular constructs to generate fully functional β-cell-mimetics. However, the maturation of regenerated β-cells is currently limited. Further studies are needed to develop simple and efficient reprogramming methods for assembling perfectly functional β-cells. Future investigations are necessary to transform diabetes into a potentially curable disease.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuan Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence should be addressed to C Zhang:
| |
Collapse
|
44
|
High-Fat Diet Impairs Mouse Median Eminence: A Study by Transmission and Scanning Electron Microscopy Coupled with Raman Spectroscopy. Int J Mol Sci 2021; 22:ijms22158049. [PMID: 34360816 PMCID: PMC8347199 DOI: 10.3390/ijms22158049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Hypothalamic dysfunction is an initial event following diet-induced obesity, primarily involving areas regulating energy balance such as arcuate nucleus (Arc) and median eminence (ME). To gain insights into the early hypothalamic diet-induced alterations, adult CD1 mice fed a high-fat diet (HFD) for 6 weeks were studied and compared with normo-fed controls. Transmission and scanning electron microscopy and histological staining were employed for morphological studies of the ME, while Raman spectroscopy was applied for the biochemical analysis of the Arc-ME complex. In HFD mice, ME β2-tanycytes, glial cells dedicated to blood-liquor crosstalk, exhibited remarkable ultrastructural anomalies, including altered alignment, reduced junctions, degenerating organelles, and higher content of lipid droplets, lysosomes, and autophagosomes. Degenerating tanycytes also displayed an electron transparent cytoplasm filled with numerous vesicles, and they were surrounded by dilated extracellular spaces extending up to the subependymal layer. Consistently, Raman spectroscopy analysis of the Arc-ME complex revealed higher glycogen, collagen, and lipid bands in HFD mice compared with controls, and there was also a higher band corresponding to the cyanide group in the former compared to the last. Collectively, these data show that ME β2-tanycytes exhibit early structural and chemical alterations due to HFD and reveal for the first-time hypothalamic cyanide presence following high dietary lipids consumption, which is a novel aspect with potential implications in the field of obesity.
Collapse
|
45
|
Mishra A, Liu S, Promes J, Harata M, Sivitz W, Fink B, Bhardwaj G, O'Neill BT, Kang C, Sah R, Strack S, Stephens S, King T, Jackson L, Greenberg AS, Anokye-Danso F, Ahima RS, Ankrum J, Imai Y. Perilipin 2 downregulation in β cells impairs insulin secretion under nutritional stress and damages mitochondria. JCI Insight 2021; 6:144341. [PMID: 33784258 PMCID: PMC8262280 DOI: 10.1172/jci.insight.144341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Perilipin 2 (PLIN2) is a lipid droplet (LD) protein in β cells that increases under nutritional stress. Downregulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects β cell function under nutritional stress, PLIN2 was downregulated in mouse β cells, INS1 cells, and human islet cells. β Cell–specific deletion of PLIN2 in mice on a high-fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Downregulation of PLIN2 in INS1 cells blunted GSIS after 24-hour incubation with 0.2 mM palmitic acid. Downregulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Downregulation of PLIN2 decreased specific OXPHOS proteins in all 3 models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2-deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress, as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in β cells has an important role in preserving insulin secretion, β cell metabolism, and mitochondrial function under nutritional stress.
Collapse
Affiliation(s)
- Akansha Mishra
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Siming Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Promes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Mikako Harata
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - William Sivitz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian Fink
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Gourav Bhardwaj
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Brian T O'Neill
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Chen Kang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Samuel Stephens
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Timothy King
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Laura Jackson
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Andrew S Greenberg
- Obesity and Metabolism Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | | | - Rexford S Ahima
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - James Ankrum
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Yumi Imai
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
46
|
Haxhi J, Thompson PD. Rationale for the use of metformin and exercise to counteract statin-associated side effects. Int J Clin Pract 2021; 75:e13900. [PMID: 33277775 DOI: 10.1111/ijcp.13900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Statins are the most widely prescribed drugs for lowering low-density lipoprotein cholesterol (LDL-C) and reducing cardiovascular morbidity and mortality. They are usually well-tolerated, but have two main safety concerns: statin-associated muscle symptoms (SAMS) and new-onset type 2 diabetes (NOD). METHODS A PubMed search was carried out using the following key words were used: statins, statin-associated muscle symptoms, statin myalgia, statin-associated diabetes, metformin and statins, exercise and statins. RESULTS Mitochondrial damage and muscle atrophy are likely the central mechanisms producing SAMS, whereas decreased glucose transport, fatty acid oxidation and insulin secretion are likely involved in the development of NOD. Metformin and exercise training share many pathways that could potentially contrast SAMS and NOD. Clinical evidence also supports the combination of statins with metformin and exercise. CONCLUSION This combination appears attractive both from a clinical and an economical viewpoint, since all three therapies are highly cost-effective and their combination could result in diabetes and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Jonida Haxhi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Division of Cardiology, Hartford Hospital, Hartford, CT, USA
| | - Paul D Thompson
- Division of Cardiology, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
47
|
Atypical Hepatic Steatosis Patterns on MRI After Total Pancreatectomy With Islet Autotransplant. AJR Am J Roentgenol 2021; 217:100-106. [PMID: 33909467 DOI: 10.2214/ajr.20.23303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE. The purpose of this retrospective study was to investigate the prevalence and patterns of hepatic steatosis after total pancreatectomy with islet autotransplant (TPIAT) and to determine if the unique patterns of steatosis seen in this study correlated with islet graft function. MATERIALS AND METHODS. Fifty-two subjects who had undergone MRI after TPIAT were reviewed for the presence of hepatic steatosis. Patterns of steatosis were categorized into three groups: normal (no steatosis), homogeneous, and atypical. Demographics and outcomes were compared between the groups. Islet graft function 1 year after surgery was classified as full graft function, partial graft function, and graft failure. Statistical analysis was performed using ANOVA, Kruskal-Wallis, and Fisher exact tests. RESULTS. Sixty-three percent of patients had steatosis present on MRI after TPIAT (33 subjects of 52 total), and 48% (25/52) exhibited an atypical pattern. Twenty-four percent of the 37 patients who had MRI examinations before TPIAT showed steatosis preoperatively, yet none of these showed an atypical steatosis pattern. Islet graft function was not statistically different between the groups. The only statistically significant variable difference between the groups was body mass index (p = .02). CONCLUSION. Steatosis is a common finding after TPIAT, and atypical steatosis patterns frequently develop after the procedure, implying that the procedure itself is the causal factor. There was no correlation between islet graft function and the presence or pattern of steatosis. An atypical pattern of hepatic steatosis can therefore be considered an incidental finding after TPIAT and does not require additional workup or treatment.
Collapse
|
48
|
Ding C, Egli L, Bosco N, Sun L, Goh HJ, Yeo KK, Yap JJL, Actis-Goretta L, Leow MKS, Magkos F. Plasma Branched-Chain Amino Acids Are Associated With Greater Fasting and Postprandial Insulin Secretion in Non-diabetic Chinese Adults. Front Nutr 2021; 8:664939. [PMID: 33996878 PMCID: PMC8113402 DOI: 10.3389/fnut.2021.664939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Plasma branched-chain amino acids (BCAA) are consistently elevated in subjects with obesity and type 2 diabetes (T2DM) and correlate with insulin resistance. The association of BCAA with insulin secretion and clearance rates has not been adequately described. Objective: To evaluate the relationships between fasting and postprandial plasma BCAA, insulin secretion and insulin clearance. Design: Ninety-five non-diabetic Chinese subjects (43 females) underwent a mixed-meal tolerance test; blood biomarkers including BCAAs (leucine, isoleucine, valine) were measured for 6 h. Fasting and postprandial insulin secretion rates (ISR) and insulin clearance were determined by oral minimal modeling of glucose and C-peptide. Results: Fasting and postprandial plasma BCAA correlated strongly with each other (ρ = 0.796, P < 0.001), and both were positively associated with basal ISR (ρ = 0.45/0.36, P < 0.001), total postprandial ISR AUC (ρ = 0.37/0.45, P < 0.001), and negatively with insulin clearance (ρ = -0.29/-0.29, P < 0.01), after adjusting for sex and body mass index. These relationships largely persisted after adjusting further for insulin resistance and postprandial glucose. Compared with subjects in the middle and lowest tertiles for fasting or postprandial plasma BCAA, subjects in the highest tertile had significantly greater postprandial glucose (by 7-10%) and insulin (by 74-98%) concentrations, basal ISRs (by 34-53%), postprandial ISR AUCs (by 41-49%), and lower insulin clearance rates (by 17-22%) (all P < 0.05). Conclusions: Fasting and postprandial plasma BCAA levels are associated with greater fasting and postprandial insulin secretion and reduced insulin clearance in healthy Chinese subjects. These observations potentially highlight an additional layer of involvement of BCAA in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
| | - Leonie Egli
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Research, Singapore, Singapore
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Lijuan Sun
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Hui Jen Goh
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Khung Keong Yeo
- Duke-NUS Medical School, Singapore, Singapore
- National Heart Centre Singapore, Singapore, Singapore
| | - Jonathan Jiunn Liang Yap
- National Heart Centre Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Melvin Khee-Shing Leow
- Singapore Institute for Clinical Sciences, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Faidon Magkos
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
49
|
Wang Z, Zhao L, He S. Triglyceride-glucose index as predictor for future type 2 diabetes mellitus in a Chinese population in southwest China: a 15-year prospective study. Endocrine 2021; 72:124-131. [PMID: 33433893 DOI: 10.1007/s12020-020-02589-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Triglyceride-glucose (TyG) index is an emerging surrogate predictor of incident type 2 diabetes mellitus (T2DM). The study aimed to examine the association between TyG index and incident T2DM in a prospective Chinese cohort. METHODS The data were collected in 1992 and recollected in 2007 from the same group of 687 participants. The association between TyG index and T2DM was analysed. RESULTS During follow-up, 74 participants developed T2DM and the risk of T2DM increased with TyG index. The adjusted hazard ratio (HR) was 3.36 (95% CI: 1.52-7.39, P < 0.001) comparing the top TyG quartile to the bottom quartile. Smooth curve fitting revealed a nonlinear association and threshold effect between TyG index and incident T2DM with a nadir of risk when TyG index was around 8.51. For TyG ≤ 8.51, the risk of incident T2DM tended to decrease with per SD increase in TyG but no statistical significance was achieved (adjusted HR: 0.69, 95% CI: 0.43-1.12, P = 0.133). For TyG > 8.51, the risk of incident T2DM significantly increased by 38% with per SD increase in TyG (adjusted HR: 1.38, 95% CI: 1.14-1.67, P = 0.001). Time-dependent receiver operating curve suggested helpful discriminative power of TyG index for T2DM. It also significantly promoted the reclassification ability beyond the baseline risk model with net reclassification index of 0.159 (P = 0.020). Sensitivity analysis excluding participants with prediabetes demonstrated similar results. CONCLUSIONS The TyG index was a significant and independent predictor for future T2DM development. The shape of relationship will require further studies.
Collapse
Affiliation(s)
- Ziqiong Wang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Liming Zhao
- Department of Cardiovascular Medicine, Hospital of Chengdu Office of People's Government of Tibet Autonomous Region, Chengdu, China
| | - Sen He
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
50
|
Al-Mrabeh A. β-Cell Dysfunction, Hepatic Lipid Metabolism, and Cardiovascular Health in Type 2 Diabetes: New Directions of Research and Novel Therapeutic Strategies. Biomedicines 2021; 9:226. [PMID: 33672162 PMCID: PMC7927138 DOI: 10.3390/biomedicines9020226] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains a major problem for people with type 2 diabetes mellitus (T2DM), and dyslipidemia is one of the main drivers for both metabolic diseases. In this review, the major pathophysiological and molecular mechanisms of β-cell dysfunction and recovery in T2DM are discussed in the context of abnormal hepatic lipid metabolism and cardiovascular health. (i) In normal health, continuous exposure of the pancreas to nutrient stimulus increases the demand on β-cells. In the long term, this will not only stress β-cells and decrease their insulin secretory capacity, but also will blunt the cellular response to insulin. (ii) At the pre-diabetes stage, β-cells compensate for insulin resistance through hypersecretion of insulin. This increases the metabolic burden on the stressed β-cells and changes hepatic lipoprotein metabolism and adipose tissue function. (iii) If this lipotoxic hyperinsulinemic environment is not removed, β-cells start to lose function, and CVD risk rises due to lower lipoprotein clearance. (iv) Once developed, T2DM can be reversed by weight loss, a process described recently as remission. However, the precise mechanism(s) by which calorie restriction causes normalization of lipoprotein metabolism and restores β-cell function are not fully established. Understanding the pathophysiological and molecular basis of β-cell failure and recovery during remission is critical to reduce β-cell burden and loss of function. The aim of this review is to highlight the link between lipoprotein export and lipid-driven β-cell dysfunction in T2DM and how this is related to cardiovascular health. A second aim is to understand the mechanisms of β-cell recovery after weight loss, and to explore new areas of research for developing more targeted future therapies to prevent T2DM and the associated CVD events.
Collapse
Affiliation(s)
- Ahmad Al-Mrabeh
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|