1
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
2
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Shen J, Shentu J, Zhong C, Huang Q, Duan S. RNA splicing factor RBFOX2 is a key factor in the progression of cancer and cardiomyopathy. Clin Transl Med 2024; 14:e1788. [PMID: 39243148 PMCID: PMC11380049 DOI: 10.1002/ctm2.1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Alternative splicing of pre-mRNA is a fundamental regulatory process in multicellular eukaryotes, significantly contributing to the diversification of the human proteome. RNA-binding fox-1 homologue 2 (RBFOX2), a member of the evolutionarily conserved RBFOX family, has emerged as a critical splicing regulator, playing a pivotal role in the alternative splicing of pre-mRNA. This review provides a comprehensive analysis of RBFOX2, elucidating its splicing activity through direct and indirect binding mechanisms. RBFOX2 exerts substantial influence over the alternative splicing of numerous transcripts, thereby shaping essential cellular processes such as differentiation and development. MAIN BODY OF THE ABSTRACT Dysregulation of RBFOX2-mediated alternative splicing has been closely linked to a spectrum of cardiovascular diseases and malignant tumours, underscoring its potential as a therapeutic target. Despite significant progress, current research faces notable challenges. The complete structural characterisation of RBFOX2 remains elusive, limiting in-depth exploration beyond its RNA-recognition motif. Furthermore, the scarcity of studies focusing on RBFOX2-targeting drugs poses a hindrance to translating research findings into clinical applications. CONCLUSION This review critically assesses the existing body of knowledge on RBFOX2, highlighting research gaps and limitations. By delineating these areas, this analysis not only serves as a foundational reference for future studies but also provides strategic insights for bridging these gaps. Addressing these challenges will be instrumental in unlocking the full therapeutic potential of RBFOX2, paving the way for innovative and effective treatments in various diseases.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Jianqiao Shentu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Chenming Zhong
- Medical Genetics Center, School of MedicineNingbo UniversityNingboChina
| | - Qiankai Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
4
|
Clyne CD, Kusnadi KP, Cowcher A, Morgan J, Yang J, Fuller PJ, Young MJ. Regulation of mineralocorticoid receptor activation by circadian protein TIMELESS. J Mol Endocrinol 2023; 70:JME-21-0279. [PMID: 36099062 DOI: 10.1530/jme-21-0279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023]
Abstract
The mineralocorticoid receptor (MR) is a ligand-activated transcription factor that regulates cardiorenal physiology and disease. Ligand-dependent MR transactivation involves a conformational change in the MR and recruitment of coregulatory proteins to form a unique DNA-binding complex at the hormone response element in target gene promoters. Differences in the recruitment of coregulatory proteins can promote tissue-, ligand- or gene-specific transcriptional outputs. The goal of this study was to evaluate the circadian protein TIMELESS as a selective regulator of MR transactivation. TIMELESS has an established role in cell cycle regulation and DNA repair. TIMELESS may not be central to mammalian clock function and does not bind DNA; however, RNA and protein levels oscillate over 24 h. Co-expression of TIMELESS down-regulated MR transactivation of an MR-responsive reporter in HEK293 cells, yet enhanced transactivation mediated by other steroid receptors. TIMELESS markedly inhibited MR transactivation of synthetic and native gene promoters and expression of MR target genes in H9c2 cardiac myoblasts. Immunofluorescence showed aldosterone induces colocalisation of TIMELESS and MR, although a direct interaction was not confirmed by coimmunoprecipitation. Potential regulation of circadian clock targets cryptochrome 1 and 2 by TIMELESS was not detected. However, our data suggest that these effects may involve TIMELESS coactivation of oestrogen receptor alpha (ERα). Taken together, these data suggest that TIMELESS may contribute to MR transcriptional outputs via enhancing ERα inhibitory actions on MR transactivation. Given the variable expression of TIMELESS in different cell types, these data offer new opportunities for the development of MR modulators with selective actions.
Collapse
Affiliation(s)
- Colin D Clyne
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Kevin P Kusnadi
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Alexander Cowcher
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - James Morgan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- University of Melbourne and Baker HDI Department of Cardiometabolic Health and Disease, Melbourne, Australia
| |
Collapse
|
5
|
CircRNAs as Potential Blood Biomarkers and Key Elements in Regulatory Networks in Gastric Cancer. Int J Mol Sci 2022; 23:ijms23020650. [PMID: 35054834 PMCID: PMC8776217 DOI: 10.3390/ijms23020650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of cancer death in the world. It is a disease that encompasses a variety of molecular alterations, including in non-coding RNAs such as circular RNAs (circRNAs). In the present study, we investigated hsa_circ_0000211, hsa_circ_0000284, hsa_circ_0000524, hsa_circ_0001136 and hsa_circ_0004771 expression profiles using RT-qPCR in 71 gastric tissue samples from GC patients (tumor and tumor-adjacent samples) and volunteers without cancer. In order to investigate the suitability of circRNAs as minimally invasive biomarkers, we also evaluated their expression profile through RT-qPCR in peripheral blood samples from patients with and without GC (n = 41). We also investigated the predicted interactions between circRNA-miRNA-mRNA and circRNA-RBP using the KEGG and Reactome databases. Overall, our results showed that hsa_circ_0000211, hsa_circ_0000284 and hsa_circ_0004771 presented equivalent expression profiles when analyzed by different methods (RNA-Seq and RT-qPCR) and different types of samples (tissue and blood). Further, functional enrichment results identified important signaling pathways related to GC. Thus, our data support the consideration of circRNAs as new, minimally invasive biomarkers capable of aiding in the diagnosis of GC and with great potential to be applied in clinical practice.
Collapse
|
6
|
Yang M, Lee JH, Zhang Z, De La Rosa R, Bi M, Tan Y, Liao Y, Hong J, Du B, Wu Y, Scheirer J, Hong T, Li W, Fei T, Hsieh CL, Liu Z, Li W, Rosenfeld MG, Xu K. Enhancer RNAs Mediate Estrogen-Induced Decommissioning of Selective Enhancers by Recruiting ERα and Its Cofactor. Cell Rep 2021; 31:107803. [PMID: 32579929 PMCID: PMC8564762 DOI: 10.1016/j.celrep.2020.107803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
The function of enhancer RNAs (eRNAs) in transcriptional regulation remains obscure. By analyzing the genome-wide nascent transcript profiles in breast cancer cells, we identify a special group of eRNAs that are essential for estrogen-induced transcriptional repression. Using eRNAs of TM4SF1 and EFEMP1 as the paradigms, we find that these RNA molecules not only stabilize promoter-enhancer interactions but also recruit liganded estrogen receptor α (ERα) to particular enhancer regions, facilitate the formation of a functional transcriptional complex, and cause gene silencing. Interestingly, ERα is shown to directly bind with eRNAs by its DNA-binding domain. These eRNAs help with the formation of a specific ERα-centered transcriptional complex and promote the association of the histone demethylase KDM2A, which dismisses RNA polymerase II from designated enhancers and suppresses the transcription of target genes. Our work demonstrates a complete mechanism underlying the action of eRNAs in modulating and refining the locus-specific transcriptional program. Yang et al. identified a group of eRNAs that are essential for estrogen-induced transcriptional repression by assisting with the chromatin recruitment of ERα through binding to its DNA-binding domain and facilitating the interaction of ERα with its cofactors, which leads to the dismissal of RNA polymerase II.
Collapse
Affiliation(s)
- Mei Yang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ji Hoon Lee
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Richard De La Rosa
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mingjun Bi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Yiji Liao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Juyeong Hong
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Baowen Du
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yanming Wu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jessica Scheirer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tao Hong
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Wei Li
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Division of Biostatistics, Dan L. Duncan Comprehensive Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Chen-Lin Hsieh
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
7
|
An emerging role of chromatin-interacting RNA-binding proteins in transcription regulation. Essays Biochem 2020; 64:907-918. [PMID: 33034346 DOI: 10.1042/ebc20200004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs) are well-established key factors orchestrating gene transcription, and RNA-binding proteins (RBPs) are mainly thought to participate in post-transcriptional control of gene. In fact, these two steps are functionally coupled, offering a possibility for reciprocal communications between transcription and regulatory RNAs and RBPs. Recently, a series of exploratory studies, utilizing functional genomic strategies, have revealed that RBPs are prevalently involved in transcription control genome-wide through their interactions with chromatin. Here, we present a refined census of RBPs to grope for such an emerging role and discuss the global view of RBP-chromatin interactions and their functional diversities in transcription regulation.
Collapse
|
8
|
Du Z, Xiao X, Uversky VN. DeepA-RBPBS: A hybrid convolution and recurrent neural network combined with attention mechanism for predicting RBP binding site. J Biomol Struct Dyn 2020; 40:4250-4258. [PMID: 33272122 DOI: 10.1080/07391102.2020.1854861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It's important to infer the binding site of RNA-binding proteins (RBP) for understanding the interaction between RBP and its RNA targets and decipher the mechanisms of transcriptional regulation. However, experimental detection of RBP binding sites is still time-intensive and expensive. Algorithms based on machine learning can speed up detection of RBP binding sites. In this article, we propose a new deep learning method, DeepA-RBPBS, which can use RNA sequences and structural features to predict RBP binding site. DeepA-RBPBS uses CNN and BiGRU to extract sequences and structural features without long-term dependence issues. It also utilizes an attention mechanism to enhance the contribution of key features. The comparison shows that the performance of DeepA-RBPBS is better than that of the state-of-the-art predictors. In the testing on 31 datasets of CLIP-seq experiments over 19 proteins, MCC (AUC) is 8% (5%) higher than those of the latest method based on deep learning, iDeepS. We also apply DeepA-RBPBS to the target RNA data of RBPs related to diabetes (LIN28, RBFOX2, FTO, IGF2BP2, CELF1 and HuR). The results show that DeepA-RBPBS correctly predicted 41,693 samples, where iDeepS predicted 31,381 samples.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhihua Du
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, P.R. China
| | - Xiangdong Xiao
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, P.R. China
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Goldman-Wohl D, Greenfield C, Eisenberg-Loebl I, Denichenko P, Jbara A, Karni R, Ariel I, Yagel S. Trophoblast lineage specific expression of the alternative splicing factor RBFOX2 suggests a role in placental development. Placenta 2020; 100:142-149. [PMID: 32762877 DOI: 10.1016/j.placenta.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION RBFOX2, an RNA-binding protein, controls tissue-specific alternative splicing of exons in diverse processes of development. The progenitor cytotrophoblast of the human placenta differentiates into either the syncytiotrophoblast, formed via cell fusion, or the invasive extravillous trophoblast lineage. The placenta affords a singular system where a role for RBFOX2 in both cell invasion and cell fusion may be studied. We investigated a role for RBFOX2 in trophoblast cell differentiation, as a foundation for investigations of RBFOX2 in embryo implantation and placental development. METHODS Immunohistochemistry of RBFOX2 was performed on placental tissue sections from three trimesters of pregnancy and from pathological pregnancies. Primary trophoblast cell culture and immunofluorescence were employed to determine RBFOX2 expression upon cell fusion. Knockdown of RBFOX2 expression was performed with βhCG and syncytin-1 as molecular indicators of fusion. RESULTS In both normal and pathological placentas, RBFOX2 expression was confined to the cytotrophoblast and the extravillous trophoblast, but absent from the syncytiotrophoblast. Additionally, we showed that primary trophoblasts that spontaneously fused in cell culture downregulated RBFOX2 expression. In functional experiments, knockdown expression of RBFOX2 significantly upregulated βhCG, while the upregulation of syncytin-1 did not reach statistical significance. DISCUSSION RBFOX2, by conferring mRNA diversity, may act as a regulator switch in trophoblast differentiation to either the fusion or invasive pathways. By studying alternative splicing we further our understanding of placental development, yielding possible insights into preeclampsia, where expression of antiangiogenic isoforms produced through alternative splicing play a critical role in disease development and severity.
Collapse
Affiliation(s)
- Debra Goldman-Wohl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Caryn Greenfield
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Iris Eisenberg-Loebl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Denichenko
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Amina Jbara
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Rotem Karni
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Ilana Ariel
- Department of Pathology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Simcha Yagel
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
10
|
Lee DH, Asare BK, Rajnarayanan RV. Discovery at the interface: Toward novel anti-proliferative agents targeting human estrogen receptor/S100 interactions. Cell Cycle 2016; 15:2806-18. [PMID: 27580430 DOI: 10.1080/15384101.2016.1220460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Estrogen Receptor Alpha (ER) is expressed in about 70% of breast cancer and mediates various cellular signaling events including cell cycle. The antiestrogen tamoxifen is currently administered to patients in order to induce regression of the tumor growth of estrogen receptor positive (ER+) breast cancer. However, upon continued administration, patients develop resistance to tamoxifen. In addition, calcium binding proteins (EF-hand proteins) such as, Calmodulin and S100, are significantly overexpressed in breast cancer cells, can activate transcription of target genes by directly binding to ER in lieu of estrogen. Calmodulin antagonists (w7 and melatonin) have been shown to significantly inhibit ER mediated activities including cell proliferation and transcriptional activity. Furthermore, S100P is shown to mediate tamoxifen resistance and cell migration capacity in MCF-7 breast cancer cells. Molecules targeting specific ER-EF hand protein interfaces could potentially provide an alternative therapeutic strategy to combat these scenarios. Using theoretical 3D models of ER-S100 protein we identified ER conformation-sensing regions of the interacting EF hand proteins and evaluated their ability to bind to ER in silico and to inhibit breast cancer cell proliferation and viability in vitro. The recognition motif of the binding interface was sensitive to small changes in partner orientation as evidenced by significant anti cell proliferative activity of the short peptide derived from S100P residues 74-78, when compared with a longer peptide with altered orientation of the recognition motif derived from S100P 74-81. Structural clues and pharmacophores from peptide-ER interactions can be used to design novel anti-cancer agents.
Collapse
Affiliation(s)
- David H Lee
- a Department of Pharmacology and Toxicology , Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY , Buffalo , NY , USA
| | - Bethany K Asare
- a Department of Pharmacology and Toxicology , Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY , Buffalo , NY , USA
| | - Rajendram V Rajnarayanan
- a Department of Pharmacology and Toxicology , Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY , Buffalo , NY , USA
| |
Collapse
|
11
|
Wei C, Xiao R, Chen L, Cui H, Zhou Y, Xue Y, Hu J, Zhou B, Tsutsui T, Qiu J, Li H, Tang L, Fu XD. RBFox2 Binds Nascent RNA to Globally Regulate Polycomb Complex 2 Targeting in Mammalian Genomes. Mol Cell 2016; 62:982. [PMID: 27315558 DOI: 10.1016/j.molcel.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Rambout X, Detiffe C, Bruyr J, Mariavelle E, Cherkaoui M, Brohée S, Demoitié P, Lebrun M, Soin R, Lesage B, Guedri K, Beullens M, Bollen M, Farazi TA, Kettmann R, Struman I, Hill DE, Vidal M, Kruys V, Simonis N, Twizere JC, Dequiedt F. The transcription factor ERG recruits CCR4-NOT to control mRNA decay and mitotic progression. Nat Struct Mol Biol 2016; 23:663-72. [PMID: 27273514 DOI: 10.1038/nsmb.3243] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/13/2016] [Indexed: 01/08/2023]
Abstract
Control of mRNA levels, a fundamental aspect in the regulation of gene expression, is achieved through a balance between mRNA synthesis and decay. E26-related gene (Erg) proteins are canonical transcription factors whose previously described functions are confined to the control of mRNA synthesis. Here, we report that ERG also regulates gene expression by affecting mRNA stability and identify the molecular mechanisms underlying this function in human cells. ERG is recruited to mRNAs via interaction with the RNA-binding protein RBPMS, and it promotes mRNA decay by binding CNOT2, a component of the CCR4-NOT deadenylation complex. Transcriptome-wide mRNA stability analysis revealed that ERG controls the degradation of a subset of mRNAs highly connected to Aurora signaling, whose decay during S phase is necessary for mitotic progression. Our data indicate that control of gene expression by mammalian transcription factors may follow a more complex scheme than previously anticipated, integrating mRNA synthesis and degradation.
Collapse
Affiliation(s)
- Xavier Rambout
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| | - Cécile Detiffe
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| | - Jonathan Bruyr
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| | - Emeline Mariavelle
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| | - Majid Cherkaoui
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| | - Sylvain Brohée
- BiGRe, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,Computer Science Department, ULB, Bruxelles, Belgium
| | - Pauline Demoitié
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| | - Marielle Lebrun
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Inflammation, Infection &Immunity, ULg, Liège, Belgium
| | | | - Bart Lesage
- Department of Cellular and Molecular Medicine, University of Leuven (KUL), Leuven, Belgium
| | - Katia Guedri
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| | - Monique Beullens
- Department of Cellular and Molecular Medicine, University of Leuven (KUL), Leuven, Belgium
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, University of Leuven (KUL), Leuven, Belgium
| | - Thalia A Farazi
- Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Richard Kettmann
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| | - Ingrid Struman
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Cancer, ULg, Liège, Belgium
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Nicolas Simonis
- BiGRe, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Jean-Claude Twizere
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| | - Franck Dequiedt
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULg), Liège, Belgium.,GIGA-Molecular Biology in Diseases, ULg, Liège, Belgium
| |
Collapse
|
13
|
Wei C, Xiao R, Chen L, Cui H, Zhou Y, Xue Y, Hu J, Zhou B, Tsutsui T, Qiu J, Li H, Tang L, Fu XD. RBFox2 Binds Nascent RNA to Globally Regulate Polycomb Complex 2 Targeting in Mammalian Genomes. Mol Cell 2016; 62:875-889. [PMID: 27211866 DOI: 10.1016/j.molcel.2016.04.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/23/2016] [Accepted: 04/11/2016] [Indexed: 12/19/2022]
Abstract
Increasing evidence suggests that diverse RNA binding proteins (RBPs) interact with regulatory RNAs to regulate transcription. RBFox2 is a well-characterized pre-mRNA splicing regulator, but we now encounter an unexpected paradigm where depletion of this RBP induces widespread increase in nascent RNA production in diverse cell types. Chromatin immunoprecipitation sequencing (ChIP-seq) reveals extensive interaction of RBFox2 with chromatin in a nascent RNA-dependent manner. Bayesian network analysis connects RBFox2 to Polycomb complex 2 (PRC2) and H3K27me3, and biochemical experiments demonstrate the ability of RBFox2 to directly interact with PRC2. Strikingly, RBFox2 inactivation eradicates PRC2 targeting on the majority of bivalent gene promoters and leads to transcriptional de-repression. Together, these findings uncover a mechanism underlying the enigmatic association of PRC2 with numerous active genes, highlight the importance of gene body sequences to gauge transcriptional output, and suggest nascent RNAs as critical signals for transcriptional feedback control to maintain homeostatic gene expression in mammalian genomes.
Collapse
Affiliation(s)
- Chaoliang Wei
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Rui Xiao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Liang Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Hanwei Cui
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Yuanchao Xue
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jing Hu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Bing Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Taiki Tsutsui
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Hairi Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA.
| |
Collapse
|
14
|
Abstract
RBFOX2 (RNA-binding protein, Fox-1 homologue 2)/RBM9 (RNA-binding-motif protein 9)/RTA (repressor of tamoxifen action)/HNRBP2 (hexaribonucleotide-binding protein 2) encodes an RNA-binding protein involved in tissue specific alternative splicing regulation and steroid receptors transcriptional activity. Its ability to regulate specific splicing profiles depending on context has been related to different expression levels of the RBFOX2 protein itself and that of other splicing regulatory proteins involved in the shared modulation of specific genes splicing. However, this cannot be the sole explanation as to why RBFOX2 plays a widespread role in numerous cellular mechanisms from development to cell survival dependent on cell/tissue type. RBFOX2 isoforms with altered protein domains exist. In the present article, we describe the main RBFOX2 protein domains, their importance in the context of splicing and transcriptional regulation and we propose that RBFOX2 isoform distribution may play a fundamental role in RBFOX2-specific cellular effects.
Collapse
|
15
|
Evers NM, van den Berg JHJ, Wang S, Melchers D, Houtman R, de Haan LHJ, Ederveen AGH, Groten JP, Rietjens IMCM. Cell proliferation and modulation of interaction of estrogen receptors with coregulators induced by ERα and ERβ agonists. J Steroid Biochem Mol Biol 2014; 143:376-85. [PMID: 24923734 DOI: 10.1016/j.jsbmb.2014.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/27/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to investigate modulation of the interaction of the ERα and ERβ with coregulators in the ligand responses induced by estrogenic compounds. To this end, selective ERα and ERβ agonists were characterized for intrinsic relative potency reflected by EC50 and maximal efficacy towards ERα and ERβ mediated response in ER selective reporter gene assays, and subsequently tested for induction of cell proliferation in T47D-ERβ cells with variable ERα/ERβ ratio, and finally for ligand dependent modulation of the interaction of ERα and ERβ with coregulators using the MARCoNI assay, with 154 unique nuclear receptor coregulator peptides derived from 66 different coregulators. Results obtained reveal an important influence of the ERα/ERβ ratio and receptor selectivity of the compounds tested on induction of cell proliferation. ERα agonists activate cell proliferation whereas ERβ suppresses ERα mediated cell proliferation. The responses in the MARCoNI assay reveal that upon ERα or ERβ activation by a specific agonist, the modulation of the interaction of the ERs with coregulators is very similar indicating only a limited number of differences upon ERα or ERβ activation by a specific ligand. Differences in the modulation of the interaction of the ERs with coregulators between the different agonists were more pronounced. Based on ligand dependent differences in the modulation of the interaction of the ERs with coregulators, the MARCoNI assay was shown to be able to classify the ER agonists discriminating between different agonists for the same receptor, a characteristic not defined by the ER selective reporter gene or proliferation assays. It is concluded that the ultimate effect of the model compounds on proliferation of estrogen responsive cells depends on the intrinsic relative potency of the agonist towards ERα and ERβ and the cellular ERα/ERβ ratio whereas differences in the modulation of the interaction of the ERα and ERβ with coregulators contribute to the ligand dependent responses induced by estrogenic compounds.
Collapse
Affiliation(s)
- Nynke M Evers
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands.
| | | | - Si Wang
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands
| | - Diana Melchers
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, the Netherlands
| | - René Houtman
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, the Netherlands
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands
| | - Antwan G H Ederveen
- Pharmacokinetics Pharmacodynamics & Drug Metabolism, MSD, P.O. Box 20, 5340 BH Oss, the Netherlands
| | - John P Groten
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands; PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, the Netherlands
| |
Collapse
|
16
|
Evers NM, Wang S, van den Berg JHJ, Houtman R, Melchers D, de Haan LHJ, Ederveen AGH, Groten JP, Rietjens IMCM. Identification of coregulators influenced by estrogen receptor subtype specific binding of the ER antagonists 4-hydroxytamoxifen and fulvestrant. Chem Biol Interact 2014; 220:222-30. [PMID: 25014417 DOI: 10.1016/j.cbi.2014.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/07/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate modulation of the interaction of ERα and ERβ with coregulators in the ligand dependent responses induced by the ER antagonistic compounds 4OHT and fulvestrant. Comparison with the modulation index (MI) profiles for the ER agonist estradiol (E2) will elucidate whether differences in the (ant)agonist dependent interaction of ERα and ERβ with coregulators expressed in MI profiles contribute to the differences in (ant)agonist responses. To this end, the selected ER antagonistic compounds were first characterized for intrinsic relative potency and efficacy towards ERα and ERβ using ER selective U2OS reporter gene assays, and subsequently tested for ligand dependent modulation of the interaction of ERα and ERβ with coregulators using the MARCoNI assay. Results obtained indicate a preference of 4OHT to antagonize ERβ and find fulvestrant to be less ER specific. MARCoNI assay responses reveal that ERα and ERβ mediated interaction with coregulators expressed in MI profiles are similar for 4OHT and fulvestrant and generally opposite to the MI profile of the ER agonist E2. Hierarchical clustering based on the MI profiles appeared able to clearly discriminate the two compounds with ER antagonistic properties from the ER agonist E2. Taken together the data reveal that modulation of the interaction of ERs with coregulators discriminates ER agonists from antagonists but does not discriminate between the less specific ER antagonist fulvestrant and the preferential ERβ antagonistic compound 4OHT. It is concluded that differences in modulation of the interaction of ERα and ERβ with coregulators contribute to the differences in ligand dependent responses induced by ER agonists and ER antagonists but the importance of the subtle differences in modulation of the interaction of ERs with coregulators between the ER antagonistic compounds 4OHT and fulvestrant for the ultimate biological effect remains to be established.
Collapse
Affiliation(s)
- Nynke M Evers
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | - Si Wang
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | | | - René Houtman
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, The Netherlands
| | - Diana Melchers
- PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, The Netherlands
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Antwan G H Ederveen
- Pharmacokinetics Pharmacodynamics & Drug Metabolism, MSD, P.O. Box 20, 5340 BH Oss, The Netherlands
| | - John P Groten
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands; PamGene International B.V., Wolvenhoek 10, 5211 HH 's Hertogenbosch, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
17
|
Long Noncoding RNA in Prostate, Bladder, and Kidney Cancer. Eur Urol 2014; 65:1140-51. [DOI: 10.1016/j.eururo.2013.12.003] [Citation(s) in RCA: 493] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
|
18
|
Abstract
Specific language impairment (SLI) is a multifactorial neurodevelopmental disorder which occurs unexpectedly and without an obvious cause. Over a decade of research suggests that SLI is highly heritable. Several genes and loci have already been implicated in SLI through linkage and targeted association methods. Recently, genome-wide association studies (GWAS) of SLI and language traits in the general population have been reported and, consequently, new candidate genes have been identified. This review aims to summarise the literature concerning genome-wide studies of SLI. In addition, this review highlights the methodologies that have been used to research the genetics of SLI to date, and also considers the current, and future, contributions that GWAS can offer.
Collapse
Affiliation(s)
- Rose H. Reader
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Laura E. Covill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Ron Nudel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Dianne F. Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
- St John’s College, University of Oxford, Oxford, OX1 3JP UK
| |
Collapse
|
19
|
Abstract
The selective estrogen receptor downregulator (SERD) fulvestrant can be used as second-line treatment for patients relapsing after treatment with tamoxifen, a selective estrogen receptor modulator (SERM). Unlike tamoxifen, SERDs are devoid of partial agonist activity. While the full antiestrogenicity of SERDs may result in part from their capacity to downregulate levels of estrogen receptor alpha (ERα) through proteasome-mediated degradation, SERDs are also fully antiestrogenic in the absence of increased receptor turnover in HepG2 cells. Here we report that SERDs induce the rapid and strong SUMOylation of ERα in ERα-positive and -negative cell lines, including HepG2 cells. Four sites of SUMOylation were identified by mass spectrometry analysis. In derivatives of the SERD ICI164,384, SUMOylation was dependent on the length of the side chain and correlated with full antiestrogenicity. Preventing SUMOylation by the overexpression of a SUMO-specific protease (SENP) deSUMOylase partially derepressed transcription in the presence of full antiestrogens in HepG2 cells without a corresponding increase in activity in the presence of agonists or of the SERM tamoxifen. Mutations increasing transcriptional activity in the presence of full antiestrogens reduced SUMOylation levels and suppressed stimulation by SENP1. Our results indicate that ERα SUMOylation contributes to full antiestrogenicity in the absence of accelerated receptor turnover.
Collapse
|
20
|
Stone A, Valdés-Mora F, Gee JMW, Farrow L, McClelland RA, Fiegl H, Dutkowski C, McCloy RA, Sutherland RL, Musgrove EA, Nicholson RI. Tamoxifen-induced epigenetic silencing of oestrogen-regulated genes in anti-hormone resistant breast cancer. PLoS One 2012; 7:e40466. [PMID: 22808167 PMCID: PMC3393679 DOI: 10.1371/journal.pone.0040466] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/07/2012] [Indexed: 02/07/2023] Open
Abstract
In the present study, we have taken the novel approach of using an in vitro model representative of tamoxifen-withdrawal subsequent to clinical relapse to achieve a greater understanding of the mechanisms that serve to maintain the resistant-cell phenotype, independent of any agonistic impact of tamoxifen, to identify potential novel therapeutic approaches for this disease state. Following tamoxifen withdrawal, tamoxifen-resistant MCF-7 cells conserved both drug resistance and an increased basal rate of proliferation in an oestrogen deprived environment, despite reduced epidermal growth-factor receptor expression and reduced sensitivity to gefitinib challenge. Although tamoxifen-withdrawn cells retained ER expression, a sub-set of ER-responsive genes, including pS2 and progesterone receptor (PgR), were down-regulated by promoter DNA methylation, as confirmed by clonal bisulphite sequencing experiments. Following promoter demethylation with 5-Azacytidine (5-Aza), the co-addition of oestradiol (E2) restored gene expression in these cells. In addition, 5-Aza/E2 co-treatment induced a significant anti-proliferative effect in the tamoxifen-withdrawn cells, in-contrast to either agent used alone. Microarray analysis was undertaken to identify genes specifically up regulated by this co-treatment. Several anti-proliferative gene candidates were identified and their promoters were confirmed as more heavily methylated in the tamoxifen resistant vs sensitive cells. One such gene candidate, growth differentiation factor 15 (GDF15), was carried forward for functional analysis. The addition of 5-Aza/E2 was sufficient to de-methylate and activate GDF15 expression in the tamoxifen resistant cell-lines, whilst in parallel, treatment with recombinant GDF15 protein decreased cell survival. These data provide evidence to support a novel concept that long-term tamoxifen exposure induces epigenetic silencing of a cohort of oestrogen-responsive genes whose function is associated with negative proliferation control. Furthermore, reactivation of such genes using epigenetic drugs could provide a potential therapeutic avenue for the management of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Andrew Stone
- Welsh School of Pharmacy, Redwood Building, Cardiff University, Cardiff, Wales, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Canon ME, Crimmins EM. Sex differences in the association between muscle quality, inflammatory markers, and cognitive decline. J Nutr Health Aging 2011; 15:695-8. [PMID: 21968867 PMCID: PMC4315164 DOI: 10.1007/s12603-011-0340-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Aspects of frailty such as sarcopenia and dementia are associated with a proinflammatory state; however, little research has examined the concurrence of these pathologies. This study examined sex-specific differences in the relationship between low muscle quality and impaired cognitive functioning, while considering the role of inflammatory markers. DESIGN The nationally representative sample was drawn from a cross-sectional study. PARTICIPANTS Four hundred forty-five females and four hundred twenty-two males over age 60 from the National Health and Nutrition Examination Survey for 2001-2002 were included. MEASUREMENTS Muscle quality was calculated as isokinetic strength per unit muscle mass. Skeletal muscle mass of the legs was measured using dual energy x-ray absorptiometry and isokinetic strength of the knee extensors was estimated using a Kin-Com dynamometer. Participants were assessed for cognitive functioning using the Wechsler Adult Intelligence Scale, Third Edition (WAIS-III) Digit Symbol - Coding module. High sensitivity C-reactive protein (CRP) assays were performed on blood samples using a Behring Nephelometer to estimate levels of inflammation. Sex stratified ordinary least squares regression models were utilized to estimate the relationship between muscle quality and cognitive functioning, while examining CRP as a possible mechanism and controlling for potential confounds. RESULTS In the first model a statistically significant positive relationship was found between cognitive functioning and muscle quality for both sex groups. In the second model, CRP was found to have a statistically significant negative association with cognitive functioning for females but not males. Furthermore, the inclusion of CRP in the second model significantly reduced the predictive power of muscle quality for females, as compared to model 1. CONCLUSION Measures of sarcopenia are associated with lower cognitive functioning in older adults, and for females, this association may be partly due to systemic inflammation. Further research is need to examine the relationship between these frailty-related pathologies, which have substantial health and economic implications.
Collapse
Affiliation(s)
- M E Canon
- University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
22
|
Ding L, Niu C, Zheng Y, Xiong Z, Liu Y, Lin J, Sun H, Huang K, Yang W, Li X, Ye Q. FHL1 interacts with oestrogen receptors and regulates breast cancer cell growth. J Cell Mol Med 2011; 15:72-85. [PMID: 19840196 PMCID: PMC3822495 DOI: 10.1111/j.1582-4934.2009.00938.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Four and a half LIM protein 1 (FHL1) belongs to the Lin-1, Isl-1 and Mec-3 (LIM)-only protein family and plays important roles in muscle growth and carcinogenesis. However, the biological function of FHL1 remains largely unknown. Here, we show that FHL1 physically and functionally interacted with oestrogen receptors (ERs), which are involved in breast cancer development and progression. FHL1 bound specifically to the activation function-1 domain of ER. Physical interaction of FHL1 and ER is required for FHL1 repression of oestrogen-responsive gene transcription. FHL1 affected recruitment of ER to an oestrogen-responsive promoter and ER binding to an oestrogen-responsive element. Overexpression of FHL1 in breast cancer cells decreased expression of oestrogen-responsive proteins, whereas knockdown of endogenous FHL1 with FHL1 small interfering RNA increased the expression of these proteins. Further analysis of 46 breast cancer samples showed that FHL1 expression negatively associated with oestrogen-responsive gene expression in breast cancer cells. FHL1 inhibited anchorage-dependent and -independent breast cancer cell growth. These results suggest that FHL1 may play an important role in ER signalling as well as breast cancer cell growth regulation.
Collapse
Affiliation(s)
- Lihua Ding
- Department of Molecular Oncology, Beijing Institute of Biotechnology, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McDonnell DP, Wardell SE. The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Curr Opin Pharmacol 2011; 10:620-8. [PMID: 20926342 DOI: 10.1016/j.coph.2010.09.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/07/2010] [Accepted: 09/10/2010] [Indexed: 01/20/2023]
Abstract
Our understanding of the molecular mechanisms underlying the pharmacological actions of estrogen receptor (ER) ligands has evolved considerably in recent years. Much of this knowledge has come from a detailed dissection of the mechanism(s) of action of the Selective Estrogen Receptor Modulators (SERMs) tamoxifen and raloxifene, so called for their ability to function as ER agonists or antagonists depending on the tissue in which they operate. These mechanistic insights have had a significant impact on the discovery of second generation SERMs, some of which are in late stage clinical development for the treatment/prevention of breast cancer as well as other estrogenopathies. In addition to the SERMs, however, have emerged the Selective Estrogen Degraders (SERDs), which as their name suggests, interact with and facilitate ER turnover in cells. One drug of this class, fulvestrant, has been approved as a third line treatment for ER-positive metastatic breast cancer. Whereas the first generation SERMs/SERDs were discovered in a serendipitous manner, this review will highlight how our understanding of the molecular pharmacology of ER ligands has been utilized in the development of the next generation of SERMs/SERDs, some of which are likely to have a major impact on the pharmacotherapy of breast cancer.
Collapse
Affiliation(s)
- Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
24
|
Kim KK, Kim YC, Adelstein RS, Kawamoto S. Fox-3 and PSF interact to activate neural cell-specific alternative splicing. Nucleic Acids Res 2010; 39:3064-78. [PMID: 21177649 PMCID: PMC3082911 DOI: 10.1093/nar/gkq1221] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fox-1 family (Fox) proteins, which consist of Fox-1 (A2BP1), Fox-2 (Rbm9) and Fox-3 (NeuN) in mammals, bind to the RNA element UGCAUG and regulate alternative pre-mRNA splicing. However the mechanisms for Fox-regulated splicing are largely unknown. We analyzed the expression pattern of the three Fox proteins as well as neural cell-specific alternative splicing of a cassette exon N30 of nonmuscle myosin heavy chain (NMHC) II-B in the mouse central nervous system. Histological and biochemical analyses following fluorescence-activated cell sorting demonstrate a positive correlation of N30 inclusion and Fox-3 expression. Further, we identified polypyrimidine tract binding protein-associated splicing factor (PSF) as an interacting protein with Fox-3 by affinity-chromatography. In cultured cells, enhancement of N30 inclusion by Fox-3 depends on the presence of PSF. PSF enhances N30 inclusion in a UGCAUG-dependent manner, although it does not bind directly to this element. Fox-3 is recruited to the UGCAUG element downstream of N30 in the endogenous NMHC II-B transcript in a PSF-dependent manner. This study is the first to identify PSF as a coactivator of Fox proteins and provides evidence that the Fox-3 and PSF interaction is an integral part of the mechanism by which Fox proteins regulate activation of alternative exons via a downstream intronic enhancer.
Collapse
Affiliation(s)
- Kee K Kim
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
25
|
Langer W, Sohler F, Leder G, Beckmann G, Seidel H, Gröne J, Hummel M, Sommer A. Exon array analysis using re-defined probe sets results in reliable identification of alternatively spliced genes in non-small cell lung cancer. BMC Genomics 2010; 11:676. [PMID: 21118496 PMCID: PMC3053589 DOI: 10.1186/1471-2164-11-676] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 11/30/2010] [Indexed: 12/22/2022] Open
Abstract
Background Treatment of non-small cell lung cancer with novel targeted therapies is a major unmet clinical need. Alternative splicing is a mechanism which generates diverse protein products and is of functional relevance in cancer. Results In this study, a genome-wide analysis of the alteration of splicing patterns between lung cancer and normal lung tissue was performed. We generated an exon array data set derived from matched pairs of lung cancer and normal lung tissue including both the adenocarcinoma and the squamous cell carcinoma subtypes. An enhanced workflow was developed to reliably detect differential splicing in an exon array data set. In total, 330 genes were found to be differentially spliced in non-small cell lung cancer compared to normal lung tissue. Microarray findings were validated with independent laboratory methods for CLSTN1, FN1, KIAA1217, MYO18A, NCOR2, NUMB, SLK, SYNE2, TPM1, (in total, 10 events) and ADD3, which was analysed in depth. We achieved a high validation rate of 69%. Evidence was found that the activity of FOX2, the splicing factor shown to cause cancer-specific splicing patterns in breast and ovarian cancer, is not altered at the transcript level in several cancer types including lung cancer. Conclusions This study demonstrates how alternatively spliced genes can reliably be identified in a cancer data set. Our findings underline that key processes of cancer progression in NSCLC are affected by alternative splicing, which can be exploited in the search for novel targeted therapies.
Collapse
Affiliation(s)
- Wolfram Langer
- Bayer Schering Pharma AG, Global Drug Discovery (GDD)-Target Discovery, Müllerstrasse 178, 13342 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Auger AP, Jessen HM. Corepressors, nuclear receptors, and epigenetic factors on DNA: a tail of repression. Psychoneuroendocrinology 2009; 34 Suppl 1:S39-47. [PMID: 19545950 PMCID: PMC3133443 DOI: 10.1016/j.psyneuen.2009.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/05/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
The differential exposure to circulating steroid hormones during brain development can have lasting consequences on brain function and behavior; therefore, the tight control of steroid hormone action within the developing brain is necessary for the expression of appropriate sex-typical behavior patterns later in life. The restricted control of steroid hormone action at the level of the DNA can be accomplished through the recruitment of coregulatory complexes. Nuclear receptor action can either be enhanced by the recruitment of coactivator complexes or suppressed by the formation of corepressor complexes. Alternatively, the regulation of nuclear receptor-mediated gene transcription in the developing brain may involve a dynamic process of coactivator and corepressor function on DNA. It is likely that understanding how different combinations of coregulatory matrixes assembly on DNA will lead to further understanding of heterogeneous responses to nuclear receptor activation. We will discuss how coregulators influence gene transcription and repression, the role of chromatin-binding factors in the regulation of gene transcription, and their potential impact on brain development.
Collapse
Affiliation(s)
- Anthony P Auger
- Psychology Department, 1202 West Johnson Street, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
27
|
Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance. Breast Cancer Res Treat 2009; 122:395-407. [DOI: 10.1007/s10549-009-0581-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 09/09/2009] [Indexed: 12/20/2022]
|
28
|
Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L, Durand M, Couture S, Froehlich U, Lapointe E, Lucier JF, Thibault P, Rancourt C, Tremblay K, Prinos P, Chabot B, Elela SA. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 2009; 16:670-6. [PMID: 19448617 DOI: 10.1038/nsmb.1608] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/21/2009] [Indexed: 02/06/2023]
Abstract
Alternative splicing of pre-mRNA increases the diversity of protein functions. Here we show that about half of all active alternative splicing events in ovarian and breast tissues are changed in tumors, and many seem to be regulated by a single factor; sequence analysis revealed binding sites for the RNA binding protein FOX2 downstream of one-third of the exons skipped in cancer. High-resolution analysis of FOX2 binding sites defined the precise positions relative to alternative exons at which the protein may function as either a silencer or an enhancer. Most of the identified targets were shifted in the same direction by FOX2 depletion in cell lines as they were in breast and ovarian cancer tissues. Notably, we found expression of FOX2 itself is downregulated in ovarian cancer and its splicing is altered in breast cancer samples. These results suggest that the decreased expression of FOX2 in cancer tissues modulates splicing and controls proliferation.
Collapse
Affiliation(s)
- Julian P Venables
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang C, Zhang Z, Castle J, Sun S, Johnson J, Krainer AR, Zhang MQ. Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev 2008; 22:2550-63. [PMID: 18794351 DOI: 10.1101/gad.1703108] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise regulation of many alternative splicing (AS) events by specific splicing factors is essential to determine tissue types and developmental stages. However, the molecular basis of tissue-specific AS regulation and the properties of splicing regulatory networks (SRNs) are poorly understood. Here we comprehensively predict the targets of the brain- and muscle-specific splicing factor Fox-1 (A2BP1) and its paralog Fox-2 (RBM9) and systematically define the corresponding SRNs genome-wide. Fox-1/2 are conserved from worm to human, and specifically recognize the RNA element UGCAUG. We integrate Fox-1/2-binding specificity with phylogenetic conservation, splicing microarray data, and additional computational and experimental characterization. We predict thousands of Fox-1/2 targets with conserved binding sites, at a false discovery rate (FDR) of approximately 24%, including many validated experimentally, suggesting a surprisingly extensive SRN. The preferred position of the binding sites differs according to AS pattern, and determines either activation or repression of exon recognition by Fox-1/2. Many predicted targets are important for neuromuscular functions, and have been implicated in several genetic diseases. We also identified instances of binding site creation or loss in different vertebrate lineages and human populations, which likely reflect fine-tuning of gene expression regulation during evolution.
Collapse
Affiliation(s)
- Chaolin Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Jiang W, Li X, Rao S, Wang L, Du L, Li C, Wu C, Wang H, Wang Y, Yang B. Constructing disease-specific gene networks using pair-wise relevance metric: application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements. BMC SYSTEMS BIOLOGY 2008; 2:72. [PMID: 18691435 PMCID: PMC2535780 DOI: 10.1186/1752-0509-2-72] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 08/10/2008] [Indexed: 12/11/2022]
Abstract
Background With the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases. Results The approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8) (p ≈ 0), desmin (DES) (p = 2.71 × 10-6) and enolase 1 (ENO1) (p = 4.19 × 10-5)], while two novel hub genes [RNA binding motif protein 9 (RBM9) (p = 1.50 × 10-4) and ribosomal protein L30 (RPL30) (p = 1.50 × 10-4)] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO) based analysis of the colon cancer-specific gene network and the sub-network that consisted of three-way gene interactions suggested that tumourigenesis in colon cancer resulted from dysfunction in protein biosynthesis and categories associated with ribonucleoprotein complex which are well supported by multiple lines of experimental evidence. Conclusion This study demonstrated that IL8, DES and ENO1 act as the central elements in colon cancer susceptibility, and protein biosynthesis and the ribosome-associated function categories largely account for the colon cancer tumuorigenesis. Thus, the newly developed relevancy-based networking approach offers a powerful means to reverse-engineer the disease-specific network, a promising tool for systematic dissection of complex diseases.
Collapse
Affiliation(s)
- Wei Jiang
- College of Bioinformatics Science and Technology and Bio-pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Karamouzis MV, Konstantinopoulos PA, Badra FA, Papavassiliou AG. SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 2008; 107:195-210. [PMID: 17377839 DOI: 10.1007/s10549-007-9552-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a family of proteins structurally similar to ubiquitin that have been found to be covalently attached to certain lysine residues of specific target proteins. By contrast to ubiquitination, however, SUMO proteins do not promote protein degradation but, instead, modulate important functional properties, depending on the protein substrate. These properties include--albeit not limited to--subcellular localization, protein dimerization, DNA binding and/or transactivation of transcription factors, among them estrogen receptors. Moreover, it has been suggested that SUMO proteins might affect transcriptional co-factor complexes of the estrogen receptor signalling cascade. Tissue and/or state specificity seems to be one of their intriguing features. In this regard, elucidation of their contribution to estrogen receptor-mediated transcriptional activity during breast carcinogenesis will offer new insights into the molecular mechanisms governing sensitivity/resistance in currently applied endocrine treatment and/or chemoprevention, and provide novel routes to breast carcinoma therapeutics.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|
32
|
Chan C, Lee YB, Uney J, Flynn A, Tobias J, Norman M. A novel member of the SAF (scaffold attachment factor)-box protein family inhibits gene expression and induces apoptosis. Biochem J 2007; 407:355-62. [PMID: 17630952 PMCID: PMC2275068 DOI: 10.1042/bj20070170] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active beta-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [(3)H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels.
Collapse
Affiliation(s)
- Ching Wan Chan
- *Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, U.K
| | - Youn-Bok Lee
- *Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, U.K
| | - James Uney
- *Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, U.K
| | - Andrea Flynn
- *Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, U.K
| | - Jonathan H. Tobias
- †Rheumatology Unit, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, U.K
| | - Michael Norman
- *Henry Wellcome Laboratories for Integrative Neurosciences and Endocrinology, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Kleino I, Ortiz RM, Huovila APJ. ADAM15 gene structure and differential alternative exon use in human tissues. BMC Mol Biol 2007; 8:90. [PMID: 17937806 PMCID: PMC2148059 DOI: 10.1186/1471-2199-8-90] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 10/15/2007] [Indexed: 01/21/2023] Open
Abstract
Background ADAM15 is a metalloprotease-disintegrin implicated in ectodomain shedding and cell adhesion. Aberrant ADAM15 expression has been associated with human cancer and other disorders. We have previously shown that the alternative splicing of ADAM15 transcripts is mis-regulated in cancer cells. To gain a better understanding of ADAM15 regulation, its genomic organization and regulatory elements as well as the alternative exon use in human tissues were characterized. Results Human ADAM15, flanked by the FLJ32785/DCST1 and ephrin-A4 genes, spans 11.4 kb from the translation initiation codon to the polyadenylation signal, being the shortest multiple-exon ADAM gene. The gene contains 23 exons varying from 63 to 316 bp and 22 introns from 79 to 1283 bp. The gene appeared to have several transcription start sites and their location suggested the promoter location within a CpG island proximal to the translation start. Reporter expression experiments confirmed the location of functional GC-rich, TATAless and CAATless promoter, with the most critical transcription-supporting elements located -266 to -23 bp relative to the translation start. Normal human tissues showed different complex patterns of at least 13 different ADAM15 splice variants arising from the alternative use of the cytosolic-encoding exons 19, 20a/b, and 21a/b. The deduced ADAM15 protein isoforms have different combinations of cytosolic regulatory protein interaction motifs. Conclusion Characterization of human ADAM15 gene and identification of elements involved in the regulation of transcription and alternative splicing provide important clues for elucidation of physiological and pathological roles of ADAM15. The present results also show that the alternative exon use is a physiological post-transcriptional mechanism regulating ADAM15 expression in human tissues.
Collapse
Affiliation(s)
- Iivari Kleino
- Institute of Medical Technology, University of Tampere, Tampere, Finland.
| | | | | |
Collapse
|
34
|
Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M, Gustafsson JA. Estrogen receptors: how do they signal and what are their targets. Physiol Rev 2007; 87:905-31. [PMID: 17615392 DOI: 10.1152/physrev.00026.2006] [Citation(s) in RCA: 1284] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During the past decade there has been a substantial advance in our understanding of estrogen signaling both from a clinical as well as a preclinical perspective. Estrogen signaling is a balance between two opposing forces in the form of two distinct receptors (ER alpha and ER beta) and their splice variants. The prospect that these two pathways can be selectively stimulated or inhibited with subtype-selective drugs constitutes new and promising therapeutic opportunities in clinical areas as diverse as hormone replacement, autoimmune diseases, prostate and breast cancer, and depression. Molecular biological, biochemical, and structural studies have generated information which is invaluable for the development of more selective and effective ER ligands. We have also become aware that ERs do not function by themselves but require a number of coregulatory proteins whose cell-specific expression explains some of the distinct cellular actions of estrogen. Estrogen is an important morphogen, and many of its proliferative effects on the epithelial compartment of glands are mediated by growth factors secreted from the stromal compartment. Thus understanding the cross-talk between growth factor and estrogen signaling is essential for understanding both normal and malignant growth. In this review we focus on several of the interesting recent discoveries concerning estrogen receptors, on estrogen as a morphogen, and on the molecular mechanisms of anti-estrogen signaling.
Collapse
Affiliation(s)
- Nina Heldring
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang G, Huang SC, Wu JY, Benz EJ. Regulated Fox-2 isoform expression mediates protein 4.1R splicing during erythroid differentiation. Blood 2007; 111:392-401. [PMID: 17715393 PMCID: PMC2200819 DOI: 10.1182/blood-2007-01-068940] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A regulated splicing event in protein 4.1R pre-mRNA-the inclusion of exon 16-encoding peptides for spectrin-actin binding-occurs in late erythroid differentiation. We defined the functional significance of an intronic splicing enhancer, UGCAUG, and its cognate splicing factor, mFox2A, on exon 16 splicing during differentiation. UGCAUG displays cell-type-specific splicing regulation in a test neutral reporter and has a dose-dependent enhancing effect. Erythroid cells express 2 UGCAUG-binding mFox-2 isoforms, an erythroid differentiation-inducible mFox-2A and a commonly expressed mFox-2F. When overexpressed, both enhanced internal exon splicing in an UGCAUG-dependent manner, with mFox-2A exerting a much stronger effect than mFox-2F. A significant reciprocal increase in mFox-2A and decrease in mFox-2F occurred during erythroid differentiation and correlated with exon 16 inclusion. Furthermore, isoform-specific expression reduction reversed mFox-2A-enhancing activity, but not that of mFox-2F on exon 16 inclusion. Our results suggest that an erythroid differentiation-inducible mFox-2A isoform is a critical regulator of the differentiation-specific exon 16 splicing switch, and that its up-regulation in late erythroid differentiation is vital for exon 16 splicing.
Collapse
Affiliation(s)
- Guang Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
36
|
Fukumura K, Kato A, Jin Y, Ideue T, Hirose T, Kataoka N, Fujiwara T, Sakamoto H, Inoue K. Tissue-specific splicing regulator Fox-1 induces exon skipping by interfering E complex formation on the downstream intron of human F1gamma gene. Nucleic Acids Res 2007; 35:5303-11. [PMID: 17686786 PMCID: PMC2018636 DOI: 10.1093/nar/gkm569] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fox-1 is a regulator of tissue-specific splicing, via binding to the element (U)GCAUG in mRNA precursors, in muscles and neuronal cells. Fox-1 can regulate splicing positively or negatively, most likely depending on where it binds relative to the regulated exon. In cases where the (U)GCAUG element lies in an intron upstream of the alternative exon, Fox-1 protein functions as a splicing repressor to induce exon skipping. Here we report the mechanism of exon skipping regulated by Fox-1, using the hF1γ gene as a model system. We found that Fox-1 induces exon 9 skipping by repressing splicing of the downstream intron 9 via binding to the GCAUG repressor elements located in the upstream intron 8. In vitro splicing analyses showed that Fox-1 prevents formation of the pre-spliceosomal early (E) complex on intron 9. In addition, we located a region of the Fox-1 protein that is required for inducing exon skipping. Taken together, our data show a novel mechanism of how RNA-binding proteins regulate alternative splicing.
Collapse
Affiliation(s)
- Kazuhiro Fukumura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064 and Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Ayako Kato
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064 and Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yui Jin
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064 and Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Ideue
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064 and Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Tetsuro Hirose
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064 and Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Naoyuki Kataoka
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064 and Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Toshinobu Fujiwara
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064 and Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Sakamoto
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064 and Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064 and Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
- *To whom correspondence should be addressed. +81 78 803 5725+81 78 803 5725
| |
Collapse
|
37
|
Yan J, Kim YS, Yang XP, Albers M, Koegl M, Jetten AM. Ubiquitin-interaction motifs of RAP80 are critical in its regulation of estrogen receptor alpha. Nucleic Acids Res 2007; 35:1673-86. [PMID: 17311814 PMCID: PMC1865050 DOI: 10.1093/nar/gkl1112] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, we demonstrate that receptor-associated protein 80 (RAP80) interacts with estrogen receptor alpha (ERα) in an agonist-dependent manner. The interaction is specific for ERα as ERβ and several other nuclear receptors tested did not interact with RAP80. Interaction between RAP80 and ERα was supported by mammalian two-hybrid, GST pull-down, and co-immunoprecipitation analyses. The hinge/ligand-binding domain of ERα is sufficient for interaction with RAP80. RAP80 overexpression reduces ERα polyubiquitination, increases the level of ERα protein, and enhances ERα-mediated transactivation. Knockdown of endogenous RAP80 expression by small-interfering RNA (siRNA) reduced ERα protein level and the E2-dependent induction of pS2. In this study, we also demonstrate that RAP80 contains two functional ubiquitin-interaction motifs (UIMs) that are able to bind ubiquitin and to direct monoubiquitination of RAP80. Deletion of these UIMs does not affect the ability of RAP80 to interact with ERα, but eliminates the effects of RAP80 on ERα polyubiquitination, the level of ERα protein, and ERα-mediated transcription. These data indicate that the UIMs in RAP80 are critical for the function of RAP80. Our study identifies ERα as a new RAP80-interacting protein and suggests that RAP80 may be an important modulator of ERα activity.
Collapse
Affiliation(s)
- Jun Yan
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Yong-Sik Kim
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Xiao-Ping Yang
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Michael Albers
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Manfred Koegl
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
| | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Enironmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA, Phenex Pharmaceuticals AG, D-67056 Ludwigshafen, Germany and RZPD German Resource Center for Genome Research, D-69120 Heidelberg, Germany
- *To whom correspondence should be addressed. 919-541-2768919-541-4133
| |
Collapse
|
38
|
Camp NJ, Farnham JM, Cannon-Albright LA. Localization of a Prostate Cancer Predisposition Gene to an 880-kb Region on Chromosome 22q12.3 in Utah High-Risk Pedigrees. Cancer Res 2006; 66:10205-12. [PMID: 17047086 DOI: 10.1158/0008-5472.can-06-1233] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromosome 22q has become recently a region of interest for prostate cancer. We identified previously a logarithm of odds (LOD) of 2.42 at chromosome 22q12.3. Additionally, this region has been noted by eight other studies, with linkage evidence ranging from LOD of 1.50 to 3.57. Here, we do fine mapping and localization of the region using a pedigree-specific recombinant mapping approach in 14 informative, high-risk Utah pedigrees. These 14 pedigrees were chosen because they were either "linked" or "haplotype-sharing" pedigrees or both. "Linked" pedigrees were those with significant pedigree-specific linkage evidence (LOD, >0.588; P < 0.05) to the 22q12.3 region, regardless of the number of prostate cancer cases sharing the segregating haplotype. "Haplotype-sharing" pedigrees were those with at least five prostate cancer cases sharing a segregating haplotype in the 22q12.3 region, regardless of the linkage evidence. In each pedigree, the most likely haplotype configuration (in addition to the multipoint LOD graph for linked pedigrees) was used to infer the position of recombinant events and delimit the segregating chromosomal segment in each pedigree. These pedigree-specific chromosomal segments were then overlaid to form a consensus recombinant map across all 14 pedigrees. Using this method, we identified a 881,538-bp interval at 22q12.3, between D22S1265 and D22S277, which is the most likely region that contains the 22q prostate cancer predisposition gene. The unique Utah extended high-risk pedigree resource allows this powerful localization approach in pedigrees with evidence for segregating predisposition to prostate cancer. We are mutation screening candidate genes in this region to identify specific genetic variants segregating in these pedigrees.
Collapse
Affiliation(s)
- Nicola J Camp
- Division of Genetic Epidemiology, Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA.
| | | | | |
Collapse
|
39
|
Li C, Kato M, Shiue L, Shively JE, Ares M, Lin RJ. Cell type and culture condition-dependent alternative splicing in human breast cancer cells revealed by splicing-sensitive microarrays. Cancer Res 2006; 66:1990-9. [PMID: 16488998 DOI: 10.1158/0008-5472.can-05-2593] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growing evidence indicates that alternative or aberrant pre-mRNA splicing takes place during the development, progression, and metastasis of breast cancer. However, which splicing changes that might contribute directly to tumorigenesis or cancer progression remain to be elucidated. We used splicing-sensitive microarrays to detect differences in alternative splicing between two breast cancer cell lines, MCF7 (estrogen receptor positive) and MDA-MB-231 (estrogen receptor negative), as well as cultured human mammary epithelial cells. Several splicing alterations in genes, including CD44, FAS, RBM9, hnRNPA/B, APLP2, and MYL6, were detected by the microarray and verified by reverse transcription-PCR. We also compared splicing in these breast cancer cells cultured in either two-dimensional flat dishes or in three-dimensional Matrigel conditions. Only a subset of the splicing differences that distinguish MCF7 cells from MDA-MB-231 cells under two-dimensional culture condition is retained under three-dimensional conditions, suggesting that alternative splicing events are influenced by the geometry of the culture conditions of these cells. Further characterization of splicing patterns of several genes in MCF7 cells grown in Matrigel and in xenograft in nude mice shows that splicing is similar under both conditions. Thus, our oligonucleotide microarray can effectively detect changes in alternative splicing in different cells or in the same cells grown in different environments. Our findings also illustrate the potential for understanding gene expression with resolution of alternative splicing in the study of breast cancer.
Collapse
Affiliation(s)
- Chunxia Li
- City of Hope Graduate School of Biological Sciences, Duarte, California, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ponthier JL, Schluepen C, Chen W, Lersch RA, Gee SL, Hou VC, Lo AJ, Short SA, Chasis JA, Winkelmann JC, Conboy JG. Fox-2 splicing factor binds to a conserved intron motif to promote inclusion of protein 4.1R alternative exon 16. J Biol Chem 2006; 281:12468-74. [PMID: 16537540 DOI: 10.1074/jbc.m511556200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins to silencer elements in the exon and that down-regulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This article demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.
Collapse
Affiliation(s)
- Julie L Ponthier
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baraniak AP, Chen JR, Garcia-Blanco MA. Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Mol Cell Biol 2006; 26:1209-22. [PMID: 16449636 PMCID: PMC1367178 DOI: 10.1128/mcb.26.4.1209-1222.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/01/2005] [Accepted: 12/01/2005] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing of fibroblast growth factor receptor 2 (FGFR2) transcripts occurs in a cell-type-specific manner leading to the mutually exclusive use of exon IIIb in epithelia or exon IIIc in mesenchyme. Epithelial cell-specific exon choice is dependent on (U)GCAUG elements, which have been shown to bind Fox protein family members. In this paper we show that FGFR2 exon choice is regulated by (U)GCAUG elements and Fox protein family members. Fox-2 isoforms are differentially expressed in IIIb+ cells in comparison to IIIc+ cells, and expression of Fox-1 or Fox-2 in the latter led to a striking alteration in FGFR2 splice choice from IIIc to IIIb. This switch was absolutely dependent on the (U)GCAUG elements present in the FGFR2 pre-mRNA and required critical residues in the C-terminal region of Fox-2. Interestingly, Fox-2 expression led to skipping of exon 6 among endogenous Fox-2 transcripts and formation of an inactive Fox-2 isoform, which suggests that Fox-2 can regulate its own activity. Moreover, the repression of exon IIIc in IIIb+ cells was abrogated by interfering RNA-mediated knockdown of Fox-2. We also show that Fox-2 is critical for the FGFR2(IIIb)-to-FGFR2(IIIc) switch observed in T Rex-293 cells grown to overconfluency. Overconfluent T Rex-293 cells show molecular and morphological changes consistent with a mesenchymal-to-epithelial transition. If overconfluent cells are depleted of Fox-2, the switch from IIIc to IIIb is abrogated. The data in this paper place Fox-2 among critical regulators of gene expression during mesenchymal-epithelial transitions and demonstrate that this action of Fox-2 is mediated by mechanisms distinct from those described for other cases of Fox activity.
Collapse
Affiliation(s)
- Andrew P Baraniak
- Department of Molecular Genetics and Microbiology, Box 3053, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
42
|
Underwood JG, Boutz PL, Dougherty JD, Stoilov P, Black DL. Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol Cell Biol 2005; 25:10005-16. [PMID: 16260614 PMCID: PMC1280273 DOI: 10.1128/mcb.25.22.10005-10016.2005] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A vertebrate homologue of the Fox-1 protein from C. elegans was recently shown to bind to the element GCAUG and to act as an inhibitor of alternative splicing patterns in muscle. The element UGCAUG is a splicing enhancer element found downstream of numerous neuron-specific exons. We show here that mouse Fox-1 (mFox-1) and another homologue, Fox-2, are both specifically expressed in neurons in addition to muscle and heart. The mammalian Fox genes are very complex transcription units that generate transcripts from multiple promoters and with multiple internal exons whose inclusion is regulated. These genes produce a large family of proteins with variable N and C termini and internal deletions. We show that the overexpression of both Fox-1 and Fox-2 isoforms specifically activates splicing of neuronally regulated exons. This splicing activation requires UGCAUG enhancer elements. Conversely, RNA interference-mediated knockdown of Fox protein expression inhibits splicing of UGCAUG-dependent exons. These experiments show that this large family of proteins regulates splicing in the nervous system. They do this through a splicing enhancer function, in addition to their apparent negative effects on splicing in vertebrate muscle and in worms.
Collapse
Affiliation(s)
- Jason G Underwood
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1662, USA
| | | | | | | | | |
Collapse
|
43
|
Leong H, Sloan JR, Nash PD, Greene GL. Recruitment of histone deacetylase 4 to the N-terminal region of estrogen receptor alpha. Mol Endocrinol 2005; 19:2930-42. [PMID: 16051668 DOI: 10.1210/me.2005-0178] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcriptional activation of estrogen receptor alpha (ERalpha) is regulated by the ligand-dependent activation function 2 and the constitutively active N-terminal activation function 1. To identify ERalpha N-terminal-specific coregulators, we screened a breast cDNA library by T7 phage display and isolated histone deacetylase 4 (HDAC4). HDAC4 interacts with the ERalpha N terminus both in vitro and in vivo. Presence of the ERalpha DNA binding domain and hinge region reduce HDAC4 recruitment whereas full-length ERalpha enhances recruitment. HDAC4 interaction is selective for the ERalpha and not ERbeta N terminus and occurs in the nucleus. We demonstrate in vivo that HDAC4 is recruited by the N terminus to the promoter of an endogenous estrogen responsive gene. HDAC4 suppresses transcriptional activation of ERalpha by estrogen and selective ER modulators (SERMs) such as tamoxifen in a cell type-dependent manner. Consistently, silencing of HDAC4 promotes the agonist effect of SERMs (tamoxifen and raloxifene) in a cell type-specific manner. These findings indicate a role for HDAC4 in regulating ERalpha activity as a novel N-terminal coregulator and uncover a mechanism by which certain cell types regulate SERM behavior.
Collapse
Affiliation(s)
- Hoyee Leong
- The Ben May Institute for Cancer Research, The University of Chicago, Center for Integrative Sciences, Room W330, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
44
|
Auboeuf D, Dowhan DH, Dutertre M, Martin N, Berget SM, O'Malley BW. A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts. Mol Cell Biol 2005; 25:5307-16. [PMID: 15964789 PMCID: PMC1156981 DOI: 10.1128/mcb.25.13.5307-5316.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Didier Auboeuf
- INSERM U685/AVENIR, Centre G. Hayem, Hôpital Saint Louis, Paris, France.
| | | | | | | | | | | |
Collapse
|
45
|
Nakahata S, Kawamoto S. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res 2005; 33:2078-89. [PMID: 15824060 PMCID: PMC1075922 DOI: 10.1093/nar/gki338] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 03/16/2005] [Indexed: 12/13/2022] Open
Abstract
An intronic hexanucleotide UGCAUG has been shown to play a critical role in the regulation of tissue-specific alternative splicing of pre-mRNAs in a wide range of tissues. Vertebrate Fox-1 has been shown to bind to this element, in a highly sequence-specific manner, through its RNA recognition motif (RRM). In mammals, there are at least two Fox-1-related genes, ataxin-2 binding protein 1 (A2BP1)/Fox-1 and Fxh/Rbm9, which encode an identical RRM. Here, we demonstrate that both mouse Fxh and A2BP1 transcripts undergo tissue-specific alternative splicing, generating protein isoforms specific to brain and muscle. These tissue-specific isoforms are characterized for their abilities to regulate neural cell-specific alternative splicing of a cassette exon, N30, in the non-muscle myosin heavy chain II-B pre-mRNA, previously shown to be regulated through an intronic distal downstream enhancer (IDDE). All Fxh and A2BP1 isoforms with the RRM are capable of binding to the IDDE in vitro through the UGCAUG elements. Each isoform, however, shows quantitative differences in splicing activity and nuclear distribution in transfected cells. All Fxh isoforms and a brain isoform of A2BP1 show a predominant nuclear localization. Brain isoforms of both Fxh and A2BP1 promote N30 splicing much more efficiently than do the muscle-specific isoforms. Skeletal muscles express additional isoforms that lack a part of the RRM. These isoforms are incapable of activating neural cell-specific splicing and, moreover, can inhibit UGCAUG-dependent N30 splicing. These findings suggest that tissue-specific isoforms of Fxh and A2BP1 play an important role in determining tissue specificity of UGCAUG-mediated alternative splicing.
Collapse
Affiliation(s)
- Shingo Nakahata
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Sachiyo Kawamoto
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
46
|
Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, Kandarian SC. Identification of a molecular signature of sarcopenia. Physiol Genomics 2005; 21:253-63. [PMID: 15687482 DOI: 10.1152/physiolgenomics.00249.2004] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Investigating the molecular mechanisms underlying sarcopenia in humans with the use of microarrays has been complicated by low sample size and the variability inherent in human gene expression profiles. We have conducted a study using Affymetrix GeneChips to identify a molecular signature of aged skeletal muscle. The molecular signature was defined as the set of expressed genes that best distinguished the vastus lateralis muscle of young (n = 10) and older (n = 12) male subjects, when a k-nearest neighbor supervised classification method was used in conjunction with a signal-to-noise ratio gene selection method and a holdout cross-validation procedure. The age-specific expression signature was comprised of 45 genes; 27 were upregulated and 18 were downregulated. This signature also correctly classified 75% of the muscle samples from young and older subjects published by an independent laboratory, based on their expression profiles. The signature revealed increased expression of several genes involved in mediating cellular responses to inflammation and apoptosis, including complement component C1QA, Galectin-1, C/EBP-beta, and FOXO3A, among others. The increased expressions of genes that regulate pre-mRNA splicing, localization, and modification of RNA comprise markers of the aging signature. Downregulated genes in the signature were the glutamine transporter SLC38A1, a TRAF-6 inhibitory zinc finger protein, and membrane-bound transcription factor protease S2P, among others. The sarcopenia signature developed here will be useful as a molecular model to judge the effectiveness of exercise and other therapeutic treatments aimed at ameliorating the effects of muscle loss associated with aging.
Collapse
Affiliation(s)
- Paul G Giresi
- Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Dong X, Shylnova O, Challis JRG, Lye SJ. Identification and characterization of the protein-associated splicing factor as a negative co-regulator of the progesterone receptor. J Biol Chem 2005; 280:13329-40. [PMID: 15668243 DOI: 10.1074/jbc.m409187200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Progesterone is essential in all species for the maintenance of pregnancy, and its withdrawal is required to activate the myometrium and to initiate labor. However, unlike most other species, progesterone levels do not fall at term in humans, raising the paradox as to how labor can occur under the continued influence of progesterone. We hypothesized that an endogenous (myometrial) repressor of the progesterone receptor (PR) could induce a functional withdrawal of progesterone and hence lead to the initiation of labor. We used the human PR as bait in a protein pull-down assay and identified polypyrimidine tract-binding protein-associated splicing factor (PSF) as a PR-interacting protein. PSF functions as a potent inhibitor of PR (but not estrogen receptor) transcriptional activity in mammalian cells. It acts through two novel mechanisms, inducing degradation of the PR through the proteasomal pathway and also interfering with binding of PR to its DNA response element. Importantly, in vivo studies in rats demonstrated a dramatic increase in myometrial PSF expression at term that was temporally associated with reduced levels of the myometrial PR. Accordingly, we propose that PSF acts as a PR corepressor and contributes to the functional withdrawal of progesterone and the initiation of human labor.
Collapse
Affiliation(s)
- Xuesen Dong
- Program in Development and Fetal Health, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
48
|
Kalesnykas G, Puoliväli J, Sirviö J, Miettinen R. Cholinergic neurons in the basal forebrain of aged female mice. Brain Res 2004; 1022:148-56. [PMID: 15353224 DOI: 10.1016/j.brainres.2004.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2004] [Indexed: 11/26/2022]
Abstract
Aging is associated with at least down-regulation of several cellular functions and diminished responsiveness to internal and external signals, and possibly with direct cell death. Consequently, pharmacological manipulations may be less effective in aged than in young organisms. In the present study, we investigated whether the basal forebrain cholinergic neurons and the estrogen receptor alpha (ERalpha) which they contain respond to changes in estrogen availability in aged female mice. The mice were sham-operated, ovariectomized, or ovariectomized and treated with 17beta-estradiol at the age of 18 months. Three months later, the mice were perfused and brain sections were double immunostained for choline acetyltransferase (ChAT) and ERalpha. Cell counting with a stereological method revealed that changes in the estrogen level have no effect on the total number of ChAT-immunoreactive (ir) neurons in the basal forebrain. However, the percentage of ChAT-ir neurons containing ERalpha-ir was higher in the ovariectomized mice than in the sham-operated or estrogen-treated mice. This was specific for the medial septum and vertical diagonal band of Broca. The findings indicate that even at old age the ERalphas in cholinergic cells are able to respond to changes in estrogen levels, though in a region-specific manner. This is naturally important for studies aiming to develop therapies for the elderly.
Collapse
Affiliation(s)
- Giedrius Kalesnykas
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, Kuopio FIN-70211, Finland
| | | | | | | |
Collapse
|
49
|
Stambolian D, Ibay G, Reider L, Dana D, Moy C, Schlifka M, Holmes T, Ciner E, Bailey-Wilson JE. Genomewide linkage scan for myopia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 22q12. Am J Hum Genet 2004; 75:448-59. [PMID: 15273935 PMCID: PMC1182023 DOI: 10.1086/423789] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 06/25/2004] [Indexed: 11/03/2022] Open
Abstract
Mild/moderate (common) myopia is a very common disorder, with both genetic and environmental influences. The environmental factors are related to near work and can be measured. There are no known genetic loci for common myopia. Our goal is to find evidence for a myopia susceptibility gene causing common myopia. Cycloplegic and manifest refraction were performed on 44 large American families of Ashkenazi Jewish descent, each with at least two affected siblings. Individuals with at least -1.00 diopter or lower in each meridian of both eyes were classified as myopic. Microsatellite genotyping with 387 markers was performed by the Center for Inherited Disease Research. Linkage analyses were conducted with parametric and nonparametric methods by use of 12 different penetrance models. The family-based association test was used for an association scan. A maximum multipoint parametric heterogeneity LOD (HLOD) score of 3.54 was observed at marker D22S685, and nonparametric linkage analyses gave consistent results, with a P value of.0002 at this marker. The parametric multipoint HLOD scores exceeded 3.0 for a 4-cM interval, and significant evidence of genetic heterogeneity was observed. This genomewide scan is the first step toward identifying a gene on chromosome 22 with an influence on common myopia. At present, we are following up our linkage results on chromosome 22 with a dense map of >1,500 single-nucleotide-polymorphism markers for fine mapping and association analyses. Identification of a susceptibility locus in this region may eventually lead to a better understanding of gene-environment interactions in the causation of this complex trait.
Collapse
Affiliation(s)
- Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Heldring N, Nilsson M, Buehrer B, Treuter E, Gustafsson JA. Identification of tamoxifen-induced coregulator interaction surfaces within the ligand-binding domain of estrogen receptors. Mol Cell Biol 2004; 24:3445-59. [PMID: 15060164 PMCID: PMC381632 DOI: 10.1128/mcb.24.8.3445-3459.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tamoxifen is a selective estrogen receptor (ER) modulator that is clinically used as an antagonist to treat estrogen-dependent breast cancers but displays unwanted agonistic effects in other tissues. Previous studies on ERalpha have delineated a role of the N-terminal activation function AF-1 in mediating the agonistic effects of tamoxifen, while the mechanisms for how ERbeta mediates tamoxifen action remain to be elucidated. As peptides can be used to detect distinct receptor conformations and binding surfaces for coactivators and corepressors, we attempted in this study to identify previously unrecognized peptides that interact specifically with ERs in the presence of tamoxifen. We identified two distinct peptides among others that are highly selective for tamoxifen-bound ERalpha or ERbeta. Domain mapping and mutation analysis suggest that these peptides recognize a novel tamoxifen-induced binding surface within the C-terminal ligand-binding domain that is distinct from the agonist-induced AF-2 surface. Peptide expression specifically inhibited transcriptional ER activity in response to tamoxifen, presumably by preventing the binding of endogenous coactivators. Moreover, tamoxifen-responsive and ER subtype-selective coactivators were engineered by replacing the LXXLL motifs in the coactivator TIF2 with either of the two peptides. Finally, our results indicate that related coactivators may act via the novel tamoxifen-induced binding surface, referred to as AF-T, allowing us to propose a revised model of tamoxifen agonism.
Collapse
Affiliation(s)
- Nina Heldring
- Department of Biosciences at Novum, Karolinska Institutet, S-14157 Huddinge, Sweden
| | | | | | | | | |
Collapse
|