1
|
Renaux E, Baudouin C, Schakman O, Gay O, Martin M, Marchese D, Achouri Y, Rezsohazy R, Gofflot F, Clotman F. Arid3c identifies an uncharacterized subpopulation of V2 interneurons during embryonic spinal cord development. Front Cell Neurosci 2024; 18:1466056. [PMID: 39479525 PMCID: PMC11521906 DOI: 10.3389/fncel.2024.1466056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Motor activity is organized by neuronal networks composed of motor neurons and a wide variety of pre-motor interneuron populations located in the brainstem and spinal cord. Differential expression and single-cell RNA sequencing studies recently unveiled that these populations subdivide into multiple subsets. However, some interneuron subsets have not been described yet, and the mechanisms contributing to this neuronal diversification have only been partly deciphered. In this study, we aimed to identify additional markers to further describe the diversity of spinal V2 interneuron populations. Here, we compared the transcriptome of V2 interneurons with that of the other cells of the embryonic spinal cord and extracted a list of genes enriched in V2 interneurons, including Arid3c. Arid3c identifies an uncharacterized subset of V2 that partially overlaps with V2c interneurons. These two populations are characterized by the production of Onecut factors and Sox2, suggesting that they could represent a single functional V2 unit. Furthermore, we show that the overexpression or inactivation of Arid3c does not alter V2 production, but its absence results in minor defects in locomotor execution, suggesting a possible function in subtle aspects of spinal locomotor circuit formation.
Collapse
Affiliation(s)
- Estelle Renaux
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Charlotte Baudouin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Behavioral Analysis Platform (BEAP), Brussels, Belgium
| | - Ondine Gay
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon Cedex, France
| | - Manon Martin
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Younès Achouri
- Université catholique de Louvain, de Duve Institute, Transgenic Core Facility, Brussels, Belgium
| | - René Rezsohazy
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology group, Louvain-la-Neuve, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| |
Collapse
|
2
|
Renaux E, Baudouin C, Marchese D, Clovis Y, Lee SK, Gofflot F, Rezsohazy R, Clotman F. Lhx4 surpasses its paralog Lhx3 in promoting the differentiation of spinal V2a interneurons. Cell Mol Life Sci 2024; 81:286. [PMID: 38970652 PMCID: PMC11335214 DOI: 10.1007/s00018-024-05316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics. The LIM-homeodomain transcription factors Lhx3, Lhx4, Isl1 and Isl2 promote the segregation and differentiation of spinal motor neurons and V2 interneurons. Based on their high sequence identity and their similar distribution, the Lhx3 and Lhx4 paralogs are considered to contribute similarly to these processes. However, the specific contribution of Lhx4 has never been studied. Here, we provide evidence that Lhx3 and Lhx4 are present in the same cell populations during spinal cord development. Similarly to Lhx3, Lhx4 can form multiproteic complexes with Isl1 or Isl2 and the nuclear LIM interactor NLI. Lhx4 can stimulate a V2-specific enhancer more efficiently than Lhx3 and surpasses Lhx3 in promoting the differentiation of V2a interneurons in chicken embryo electroporation experiments. Finally, Lhx4 inactivation in mice results in alterations of differentiation of the V2a subpopulation, but not of motor neuron production, suggesting that Lhx4 plays unique roles in V2a differentiation that are not compensated by the presence of Lhx3. Thus, Lhx4 could be the major LIM-HD factor involved in V2a interneuron differentiation during spinal cord development and should be considered for in vitro differentiation of spinal neuronal populations.
Collapse
Affiliation(s)
- Estelle Renaux
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, 1200, Belgium
| | - Charlotte Baudouin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, 1200, Belgium
| | - Damien Marchese
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
| | - Yoanne Clovis
- Pediatric Neuroscience Research Program, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Soo-Kyung Lee
- Pediatric Neuroscience Research Program, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Françoise Gofflot
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
| | - René Rezsohazy
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium.
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, 1200, Belgium.
| |
Collapse
|
3
|
Ke X, Xia S, Yu W, Mabry S, Fu Q, Menden HL, Sampath V, Lane RH. Delta like 4 regulates cerebrovascular development and endothelial integrity via DLL4-NOTCH-CLDN5 pathway and is vulnerable to neonatal hyperoxia. J Physiol 2024; 602:2265-2285. [PMID: 38632887 DOI: 10.1113/jp285716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
The mechanisms governing brain vascularization during development remain poorly understood. A key regulator of developmental vascularization is delta like 4 (DLL4), a Notch ligand prominently expressed in endothelial cells (EC). Exposure to hyperoxia in premature infants can disrupt the development and functions of cerebral blood vessels and lead to long-term cognitive impairment. However, its role in cerebral vascular development and the impact of postnatal hyperoxia on DLL4 expression in mouse brain EC have not been explored. We determined the DLL4 expression pattern and its downstream signalling gene expression in brain EC using Dll4+/+ and Dll4+/LacZ mice. We also performed in vitro studies using human brain microvascular endothelial cells. Finally, we determined Dll4 and Cldn5 expression in mouse brain EC exposed to postnatal hyperoxia. DLL4 is expressed in various cell types, with EC being the predominant one in immature brains. Moreover, DLL4 deficiency leads to persistent abnormalities in brain microvasculature and increased vascular permeability both in vivo and in vitro. We have identified that DLL4 insufficiency compromises endothelial integrity through the NOTCH-NICD-RBPJ-CLDN5 pathway, resulting in the downregulation of the tight junction protein claudin 5 (CLDN5). Finally, exposure to neonatal hyperoxia reduces DLL4 and CLDN5 expression in developing mouse brain EC. We reveal that DLL4 is indispensable for brain vascular development and maintaining the blood-brain barrier's function and is repressed by neonatal hyperoxia. We speculate that reduced DLL4 signalling in brain EC may contribute to the impaired brain development observed in neonates exposed to hyperoxia. KEY POINTS: The role of delta like 4 (DLL4), a Notch ligand in vascular endothelial cells, in brain vascular development and functions remains unknown. We demonstrate that DLL4 is expressed at a high level during postnatal brain development in immature brains and DLL4 insufficiency leads to abnormal cerebral vasculature and increases vascular permeability both in vivo and in vitro. We identify that DLL4 regulates endothelial integrity through NOTCH-NICD-RBPJ-CLDN5 signalling. Dll4 and Cldn5 expression are decreased in mouse brain endothelial cells exposed to postnatal hyperoxia.
Collapse
Affiliation(s)
- Xingrao Ke
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Sheng Xia
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Wei Yu
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Sherry Mabry
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Qi Fu
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Heather L Menden
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Venkatesh Sampath
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Robert H Lane
- Department of Administration, Children Mercy Research Institute, Children's Mercy, Kansas City, MO, USA
| |
Collapse
|
4
|
Cucun G, Köhler M, Pfitsch S, Rastegar S. Insights into the mechanisms of neuron generation and specification in the zebrafish ventral spinal cord. FEBS J 2024; 291:646-662. [PMID: 37498183 DOI: 10.1111/febs.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
The vertebrate nervous system is composed of a wide range of neurons and complex synaptic connections, raising the intriguing question of how neuronal diversity is generated. The spinal cord provides an excellent model for exploring the mechanisms governing neuronal diversity due to its simple neural network and the conserved molecular processes involved in neuron formation and specification during evolution. This review specifically examines two distinct progenitor domains present in the zebrafish ventral spinal cord: the lateral floor plate (LFP) and the p2 progenitor domain. The LFP is responsible for the production of GABAergic Kolmer-Agduhr neurons (KA″), glutamatergic V3 neurons, and intraspinal serotonergic neurons, while the p2 domain generates V2 precursors that subsequently differentiate into three unique subpopulations of V2 neurons, namely glutamatergic V2a, GABAergic V2b, and glycinergic V2s. Based on recent findings, we will examine the fundamental signaling pathways and transcription factors that play a key role in the specification of these diverse neurons and neuronal subtypes derived from the LFP and p2 progenitor domains.
Collapse
Affiliation(s)
- Gokhan Cucun
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Melina Köhler
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sabrina Pfitsch
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sepand Rastegar
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Schorpp M, Swann JB, Hess I, Ho HC, Pietsch TW, Boehm T. Foxn1 is not essential for T-cell development in teleosts. Eur J Immunol 2023; 53:e2350725. [PMID: 37724048 DOI: 10.1002/eji.202350725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
In mammals, T-cell development depends on the activity of the Foxn1 transcription factor in the thymic epithelium; mutations in the vertebrate-specific Foxn1 gene are associated with profound T-cell lymphopenia and fatal immunodeficiency. Here, we examined the extent of T-cell development in teleosts lacking a functional foxn1 gene. In zebrafish carrying a deleterious internal deletion of foxn1, reduced but robust lymphopoietic activity is maintained in the mutant thymus. Moreover, pseudogenization or loss of foxn1 in the genomes of deep-sea anglerfishes is independent of the presence or absence of the canonical signatures of the T-cell lineage. Thus, in contrast to the situation in mammals, the teleost thymus can support foxn1-independent lymphopoiesis, most likely through the activity of the Foxn4, an ancient metazoan paralog of Foxn1. Our results imply that during the early stages of vertebrate evolution, genetic control of thymopoiesis was functionally redundant and thus robust; in mammals, the genetic network was reorganized to become uniquely dependent on the FOXN1 transcription factor.
Collapse
Affiliation(s)
| | - Jeremy B Swann
- Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Isabell Hess
- Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Hsuan-Ching Ho
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
- Department and Graduate Institution of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Theodore W Pietsch
- School of Aquatic and Fishery Sciences and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Thomas Boehm
- Max Planck Institute of Immunobiology, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Deng Q, Wang S, Huang Z, Lan Q, Lai G, Xu J, Yuan Y, Liu C, Lin X, Feng W, Ma W, Cheng M, Hao S, Duan S, Zheng H, Chen X, Hou Y, Luo Y, Liu L, Liu C. Single-cell chromatin accessibility profiling of cell-state-specific gene regulatory programs during mouse organogenesis. Front Neurosci 2023; 17:1170355. [PMID: 37440917 PMCID: PMC10333525 DOI: 10.3389/fnins.2023.1170355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
In mammals, early organogenesis begins soon after gastrulation, accompanied by specification of various type of progenitor/precusor cells. In order to reveal dynamic chromatin landscape of precursor cells and decipher the underlying molecular mechanism driving early mouse organogenesis, we performed single-cell ATAC-seq of E8.5-E10.5 mouse embryos. We profiled a total of 101,599 single cells and identified 41 specific cell types at these stages. Besides, by performing integrated analysis of scATAC-seq and public scRNA-seq data, we identified the critical cis-regulatory elements and key transcription factors which drving development of spinal cord and somitogenesis. Furthermore, we intersected accessible peaks with human diseases/traits-related loci and found potential clinical associated single nucleotide variants (SNPs). Overall, our work provides a fundamental source for understanding cell fate determination and revealing the underlying mechanism during postimplantation embryonic development, and expand our knowledge of pathology for human developmental malformations.
Collapse
Affiliation(s)
- Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Shengpeng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Zijie Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | | | | | - Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Weimin Feng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Wen Ma
- BGI-Shenzhen, Shenzhen, China
| | | | - Shijie Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | - Shanshan Duan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
| | | | | | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Hangzhou, Hangzhou, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
7
|
Gupta S, Sharma P, Chaudhary M, Premraj S, Kaur S, Vijayan V, Arun MG, Prasad NG, Ramachandran R. Pten associates with important gene regulatory network to fine-tune Müller glia-mediated zebrafish retina regeneration. Glia 2023; 71:259-283. [PMID: 36128720 DOI: 10.1002/glia.24270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
Abstract
Unlike mammals, zebrafish possess a remarkable ability to regenerate damaged retina after an acute injury. Retina regeneration in zebrafish involves the induction of Müller glia-derived progenitor cells (MGPCs) exhibiting stem cell-like characteristics, which are capable of restoring all retinal cell-types. The induction of MGPC through Müller glia-reprograming involves several cellular, genetic and biochemical events soon after a retinal injury. Despite the knowledge on the importance of Phosphatase and tensin homolog (Pten), which is a dual-specificity phosphatase and tumor suppressor in the maintaining of cellular homeostasis, its importance during retina regeneration remains unknown. Here, we explored the importance of Pten during zebrafish retina regeneration. The Pten gets downregulated upon retinal injury and is absent from the MGPCs, which is essential to trigger Akt-mediated cellular proliferation essential for retina regeneration. We found that the downregulation of Pten in the post-injury retina accelerates MGPCs formation, while its overexpression restricts the regenerative response. We observed that Pten regulates the proliferation of MGPCs not only through Akt pathway but also by Mmp9/Notch signaling. Mmp9-activity is essential to induce the proliferation of MGPCs in the absence of Pten. Lastly, we show that expression of Pten is fine-tuned through Mycb/histone deacetylase1 and Tgf-β signaling. The present study emphasizes on the stringent regulation of Pten and its crucial involvement during the zebrafish retina regeneration.
Collapse
Affiliation(s)
- Shivangi Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Mansi Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Sharanya Premraj
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Simran Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Vijithkumar Vijayan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Manas Geeta Arun
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| |
Collapse
|
8
|
Komorowski A, Murgaš M, Vidal R, Singh A, Gryglewski G, Kasper S, Wiltfang J, Lanzenberger R, Goya‐Maldonado R. Regional gene expression patterns are associated with task-specific brain activation during reward and emotion processing measured with functional MRI. Hum Brain Mapp 2022; 43:5266-5280. [PMID: 35796185 PMCID: PMC9812247 DOI: 10.1002/hbm.26001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/15/2023] Open
Abstract
The exploration of the spatial relationship between gene expression profiles and task-evoked response patterns known to be altered in neuropsychiatric disorders, for example depression, can guide the development of more targeted therapies. Here, we estimated the correlation between human transcriptome data and two different brain activation maps measured with functional magnetic resonance imaging (fMRI) in healthy subjects. Whole-brain activation patterns evoked during an emotional face recognition task were associated with topological mRNA expression of genes involved in cellular transport. In contrast, fMRI activation patterns related to the acceptance of monetary rewards were associated with genes implicated in cellular localization processes, metabolism, translation, and synapse regulation. An overlap of these genes with risk genes from major depressive disorder genome-wide association studies revealed the involvement of the master regulators TCF4 and PAX6 in emotion and reward processing. Overall, the identification of stable relationships between spatial gene expression profiles and fMRI data may reshape the prospects for imaging transcriptomics studies.
Collapse
Affiliation(s)
- Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaVienna
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaVienna
| | - Ramon Vidal
- Max Delbrück Center for Molecular MedicineBerlinGermany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP‐Lab), Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG)Georg‐August UniversityGoettingenGermany
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaVienna
- Child Study CenterYale UniversityNew HavenConnecticutUSA
| | - Siegfried Kasper
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Jens Wiltfang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMG), Georg‐August UniversityGoettingenGermany
- German Center for Neurodegenerative Diseases (DZNE)GoettingenGermany
- Neurosciences and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaVienna
| | - Roberto Goya‐Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP‐Lab), Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG)Georg‐August UniversityGoettingenGermany
| |
Collapse
|
9
|
Zheng X, Guo Y, Zhang R, Chen H, Liu S, Qiu S, Xiang M. The mitochondrial micropeptide Stmp1 promotes retinal cell differentiation. Biochem Biophys Res Commun 2022; 636:79-86. [DOI: 10.1016/j.bbrc.2022.10.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
10
|
Partanen J, Achim K. Neurons gating behavior—developmental, molecular and functional features of neurons in the Substantia Nigra pars reticulata. Front Neurosci 2022; 16:976209. [PMID: 36148148 PMCID: PMC9485944 DOI: 10.3389/fnins.2022.976209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Substantia Nigra pars reticulata (SNpr) is the major information output site of the basal ganglia network and instrumental for the activation and adjustment of movement, regulation of the behavioral state and response to reward. Due to both overlapping and unique input and output connections, the SNpr might also have signal integration capacity and contribute to action selection. How the SNpr regulates these multiple functions remains incompletely understood. The SNpr is located in the ventral midbrain and is composed primarily of inhibitory GABAergic projection neurons that are heterogeneous in their properties. In addition, the SNpr contains smaller populations of other neurons, including glutamatergic neurons. Here, we discuss regionalization of the SNpr, in particular the division of the SNpr neurons to anterior (aSNpr) and posterior (pSNpr) subtypes, which display differences in many of their features. We hypothesize that unique developmental and molecular characteristics of the SNpr neuron subtypes correlate with both region-specific connections and notable functional specializations of the SNpr. Variation in both the genetic control of the SNpr neuron development as well as signals regulating cell migration and axon guidance may contribute to the functional diversity of the SNpr neurons. Therefore, insights into the various aspects of differentiation of the SNpr neurons can increase our understanding of fundamental brain functions and their defects in neurological and psychiatric disorders, including movement and mood disorders, as well as epilepsy.
Collapse
|
11
|
Katreddi RR, Taroc EZM, Hicks SM, Lin JM, Liu S, Xiang M, Forni PE. Notch signaling determines cell-fate specification of the two main types of vomeronasal neurons of rodents. Development 2022; 149:dev200448. [PMID: 35781337 PMCID: PMC9340558 DOI: 10.1242/dev.200448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/15/2022] [Indexed: 01/09/2023]
Abstract
The ability of terrestrial vertebrates to find food and mating partners, and to avoid predators, relies on the detection of chemosensory information. Semiochemicals responsible for social and sexual behaviors are detected by chemosensory neurons of the vomeronasal organ (VNO), which transmits information to the accessory olfactory bulb. The vomeronasal sensory epithelium of most mammalian species contains a uniform vomeronasal system; however, rodents and marsupials have developed a more complex binary vomeronasal system, containing vomeronasal sensory neurons (VSNs) expressing receptors of either the V1R or V2R family. In rodents, V1R/apical and V2R/basal VSNs originate from a common pool of progenitors. Using single cell RNA-sequencing, we identified differential expression of Notch1 receptor and Dll4 ligand between the neuronal precursors at the VSN differentiation dichotomy. Our experiments show that Notch signaling is required for effective differentiation of V2R/basal VSNs. In fact, Notch1 loss of function in neuronal progenitors diverts them to the V1R/apical fate, whereas Notch1 gain of function redirects precursors to V2R/basal. Our results indicate that Notch signaling plays a pivotal role in triggering the binary differentiation dichotomy in the VNO of rodents.
Collapse
Affiliation(s)
- Raghu Ram Katreddi
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ed Zandro M. Taroc
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Sawyer M. Hicks
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jennifer M. Lin
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Paolo E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
12
|
Liu C, Li R, Li Y, Lin X, Zhao K, Liu Q, Wang S, Yang X, Shi X, Ma Y, Pei C, Wang H, Bao W, Hui J, Yang T, Xu Z, Lai T, Berberoglu MA, Sahu SK, Esteban MA, Ma K, Fan G, Li Y, Liu S, Chen A, Xu X, Dong Z, Liu L. Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis. Dev Cell 2022; 57:1284-1298.e5. [PMID: 35512701 DOI: 10.1016/j.devcel.2022.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/06/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023]
Abstract
A major challenge in understanding vertebrate embryogenesis is the lack of topographical transcriptomic information that can help correlate microenvironmental cues within the hierarchy of cell-fate decisions. Here, we employed Stereo-seq to profile 91 zebrafish embryo sections covering six critical time points during the first 24 h of development, obtaining a total of 152,977 spots at a resolution of 10 × 10 × 15 μm3 (close to cellular size) with spatial coordinates. Meanwhile, we identified spatial modules and co-varying genes for specific tissue organizations. By performing the integrated analysis of the Stereo-seq and scRNA-seq data from each time point, we reconstructed the spatially resolved developmental trajectories of cell-fate transitions and molecular changes during zebrafish embryogenesis. We further investigated the spatial distribution of ligand-receptor pairs and identified potentially important interactions during zebrafish embryo development. Our study constitutes a fundamental reference for further studies aiming to understand vertebrate development.
Collapse
Affiliation(s)
- Chang Liu
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Rui Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Young Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Xiumei Lin
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Kaichen Zhao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qun Liu
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Shuowen Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Brain Research Institute, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xueqian Yang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xuyang Shi
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Yuting Ma
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyu Pei
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wendai Bao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | - Tao Yang
- China National GeneBank, Shenzhen, Guangdong 518120, China
| | - Zhicheng Xu
- China National GeneBank, Shenzhen, Guangdong 518120, China
| | - Tingting Lai
- China National GeneBank, Shenzhen, Guangdong 518120, China
| | - Michael Arman Berberoglu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | - Miguel A Esteban
- BGI-Shenzhen, Shenzhen 518083, China; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guangyi Fan
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | | | - Shiping Liu
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China
| | - Ao Chen
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China.
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Brain Research Institute, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Single-Cell Omics, Shenzhen 518083, China.
| |
Collapse
|
13
|
Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches. Neuron 2021; 110:366-393. [PMID: 34921778 DOI: 10.1016/j.neuron.2021.11.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Differentiated cells have long been considered fixed in their identity. However, about 20 years ago, the first direct conversion of glial cells into neurons in vitro opened the field of "direct neuronal reprogramming." Since then, neuronal reprogramming has achieved the generation of fully functional, mature neurons with remarkable efficiency, even in diseased brain environments. Beyond their clinical implications, these discoveries provided basic insights into crucial mechanisms underlying conversion of specific cell types into neurons and maintenance of neuronal identity. Here we discuss such principles, including the importance of the starter cell for shaping the outcome of neuronal reprogramming. We further highlight technical concerns for in vivo reprogramming and propose a code of conduct to avoid artifacts and pitfalls. We end by pointing out next challenges for development of less invasive cell replacement therapies for humans.
Collapse
|
14
|
Kempf J, Knelles K, Hersbach BA, Petrik D, Riedemann T, Bednarova V, Janjic A, Simon-Ebert T, Enard W, Smialowski P, Götz M, Masserdotti G. Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2. Cell Rep 2021; 36:109409. [PMID: 34289357 PMCID: PMC8316252 DOI: 10.1016/j.celrep.2021.109409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Astrocytes are a viable source for generating new neurons via direct conversion. However, little is known about the neurogenic cascades triggered in astrocytes from different regions of the CNS. Here, we examine the transcriptome induced by the proneural factors Ascl1 and Neurog2 in spinal cord-derived astrocytes in vitro. Each factor initially elicits different neurogenic programs that later converge to a V2 interneuron-like state. Intriguingly, patch sequencing (patch-seq) shows no overall correlation between functional properties and the transcriptome of the heterogenous induced neurons, except for K-channels. For example, some neurons with fully mature electrophysiological properties still express astrocyte genes, thus calling for careful molecular and functional analysis. Comparing the transcriptomes of spinal cord- and cerebral-cortex-derived astrocytes reveals profound differences, including developmental patterning cues maintained in vitro. These relate to the distinct neuronal identity elicited by Ascl1 and Neurog2 reflecting their developmental functions in subtype specification of the respective CNS region.
Collapse
Affiliation(s)
- J Kempf
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - K Knelles
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - B A Hersbach
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - D Petrik
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; School of Biosciences, The Sir Martin Evans Building, Cardiff University, CF10 3AX Cardiff, UK
| | - T Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - V Bednarova
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - A Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - T Simon-Ebert
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - W Enard
- Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - P Smialowski
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; School of Biosciences, The Sir Martin Evans Building, Cardiff University, CF10 3AX Cardiff, UK
| | - M Götz
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - G Masserdotti
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany.
| |
Collapse
|
15
|
Quintanal-Villalonga A, Taniguchi H, Zhan YA, Hasan MM, Chavan SS, Meng F, Uddin F, Manoj P, Donoghue MTA, Won HH, Chan JM, Ciampricotti M, Chow A, Offin M, Chang JC, Ray-Kirton J, Tischfield SE, Egger J, Bhanot UK, Linkov I, Asher M, Sinha S, Silber J, Iacobuzio-Donahue CA, Roehrl MH, Hollmann TJ, Yu HA, Qiu J, de Stanchina E, Baine MK, Rekhtman N, Poirier JT, Loomis B, Koche RP, Rudin CM, Sen T. Multi-omic analysis of lung tumors defines pathways activated in neuroendocrine transformation. Cancer Discov 2021; 11:3028-3047. [PMID: 34155000 DOI: 10.1158/2159-8290.cd-20-1863] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUADs) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre-/post-transformation clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of combined LUAD/SCLC tumors, as well as pre-/post-transformation samples, support that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm. We observed enhanced expression of genes involved in PRC2 complex and PI3K/AKT and NOTCH pathways. Pharmacological inhibition of the PI3K/AKT pathway delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of neuroendocrine transformation in lung cancer.
Collapse
Affiliation(s)
| | | | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center
| | - Maysun M Hasan
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | - Fanli Meng
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | | | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | - Helen H Won
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | | | - Andrew Chow
- Medicine, Memorial Sloan Kettering Cancer Center
| | | | - Jason C Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | - Sam E Tischfield
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | - Umesh K Bhanot
- Pathology Core Facility, Memorial Sloan Kettering Cancer Center
| | | | - Marina Asher
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | - Helena A Yu
- Medicine, Memorial Sloan Kettering Cancer Center
| | - Juan Qiu
- Memorial Sloan Kettering Cancer Center
| | | | | | | | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health
| | - Brian Loomis
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center
| | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
16
|
Debrulle S, Baudouin C, Hidalgo-Figueroa M, Pelosi B, Francius C, Rucchin V, Ronellenfitch K, Chow RL, Tissir F, Lee SK, Clotman F. Vsx1 and Chx10 paralogs sequentially secure V2 interneuron identity during spinal cord development. Cell Mol Life Sci 2020; 77:4117-4131. [PMID: 31822965 PMCID: PMC11104857 DOI: 10.1007/s00018-019-03408-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/01/2022]
Abstract
Paralog factors are usually described as consolidating biological systems by displaying redundant functionality in the same cells. Here, we report that paralogs can also cooperate in distinct cell populations at successive stages of differentiation. In mouse embryonic spinal cord, motor neurons and V2 interneurons differentiate from adjacent progenitor domains that share identical developmental determinants. Therefore, additional strategies secure respective cell fate. In particular, Hb9 promotes motor neuron identity while inhibiting V2 differentiation, whereas Chx10 stimulates V2a differentiation while repressing motor neuron fate. However, Chx10 is not present at the onset of V2 differentiation and in other V2 populations. In the present study, we show that Vsx1, the single paralog of Chx10, which is produced earlier than Chx10 in V2 precursors, can inhibit motor neuron differentiation and promote V2 interneuron production. However, the single absence of Vsx1 does not impact on V2 fate consolidation, suggesting that lack of Vsx1 may be compensated by other factors. Nevertheless, Vsx1 cooperates with Chx10 to prevent motor neuron differentiation in early V2 precursors although these two paralog factors are not produced in the same cells. Hence, this study uncovers an original situation, namely labor division, wherein paralog genes cooperate at successive steps of neuronal development.
Collapse
Affiliation(s)
- Stéphanie Debrulle
- Université Catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Charlotte Baudouin
- Université Catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Maria Hidalgo-Figueroa
- Université Catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
- Neuropsychopharmacology and Psychobiology Research Group, Area of Psychobiology, Department of Psychology, Instituto de Investigación E Innovación en Ciencias Biomédicas de Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
| | - Barbara Pelosi
- Université Catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Cédric Francius
- Université Catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
- PAREXEL International, Paris, France
| | - Vincent Rucchin
- Université Catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | | | - Robert L Chow
- Department of Biology, University of Victoria, Victoria, Canada
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Soo-Kyung Lee
- Oregon Health and Science University, Papé Family Pediatric Research Institute and Vollum Institute, Portland, USA
| | - Frédéric Clotman
- Université Catholique de Louvain, Institute of Neuroscience, Brussels, Belgium.
| |
Collapse
|
17
|
Foxn4 is a temporal identity factor conferring mid/late-early retinal competence and involved in retinal synaptogenesis. Proc Natl Acad Sci U S A 2020; 117:5016-5027. [PMID: 32071204 DOI: 10.1073/pnas.1918628117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During development, neural progenitors change their competence states over time to sequentially generate different types of neurons and glia. Several cascades of temporal transcription factors (tTFs) have been discovered in Drosophila to control the temporal identity of neuroblasts, but the temporal regulation mechanism is poorly understood in vertebrates. Mammalian retinal progenitor cells (RPCs) give rise to several types of neuronal and glial cells following a sequential yet overlapping temporal order. Here, by temporal cluster analysis, RNA-sequencing analysis, and loss-of-function and gain-of-function studies, we show that the Fox domain TF Foxn4 functions as a tTF during retinogenesis to confer RPCs with the competence to generate the mid/late-early cell types: amacrine, horizontal, cone, and rod cells, while suppressing the competence of generating the immediate-early cell type: retinal ganglion cells (RGCs). In early embryonic retinas, Foxn4 inactivation causes down-regulation of photoreceptor marker genes and decreased photoreceptor generation but increased RGC production, whereas its overexpression has the opposite effect. Just as in Drosophila, Foxn4 appears to positively regulate its downstream tTF Casz1 while negatively regulating its upstream tTF Ikzf1. Moreover, retina-specific ablation of Foxn4 reveals that it may be indirectly involved in the synaptogenesis, establishment of laminar structure, visual signal transmission, and long-term maintenance of the retina. Together, our data provide evidence that Foxn4 acts as a tTF to bias RPCs toward the mid/late-early cell fates and identify a missing member of the tTF cascade that controls RPC temporal identities to ensure the generation of proper neuronal diversity in the retina.
Collapse
|
18
|
Harris A, Masgutova G, Collin A, Toch M, Hidalgo-Figueroa M, Jacob B, Corcoran LM, Francius C, Clotman F. Onecut Factors and Pou2f2 Regulate the Distribution of V2 Interneurons in the Mouse Developing Spinal Cord. Front Cell Neurosci 2019; 13:184. [PMID: 31231191 PMCID: PMC6561314 DOI: 10.3389/fncel.2019.00184] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/12/2019] [Indexed: 11/21/2022] Open
Abstract
Acquisition of proper neuronal identity and position is critical for the formation of neural circuits. In the embryonic spinal cord, cardinal populations of interneurons diversify into specialized subsets and migrate to defined locations within the spinal parenchyma. However, the factors that control interneuron diversification and migration remain poorly characterized. Here, we show that the Onecut transcription factors are necessary for proper diversification and distribution of the V2 interneurons in the developing spinal cord. Furthermore, we uncover that these proteins restrict and moderate the expression of spinal isoforms of Pou2f2, a transcription factor known to regulate B-cell differentiation. By gain- or loss-of-function experiments, we show that Pou2f2 contribute to regulate the position of V2 populations in the developing spinal cord. Thus, we uncovered a genetic pathway that regulates the diversification and the distribution of V2 interneurons during embryonic development.
Collapse
Affiliation(s)
- Audrey Harris
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Gauhar Masgutova
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Collin
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Mathilde Toch
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Maria Hidalgo-Figueroa
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Benvenuto Jacob
- Institute of Neuroscience, System and Cognition Division, Université catholique de Louvain, Brussels, Belgium
| | - Lynn M. Corcoran
- Molecular Immunology Division and Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cédric Francius
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Clotman
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
A Notch-mediated, temporal asymmetry in BMP pathway activation promotes photoreceptor subtype diversification. PLoS Biol 2019; 17:e2006250. [PMID: 30703098 PMCID: PMC6372210 DOI: 10.1371/journal.pbio.2006250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 02/12/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Neural progenitors produce neurons whose identities can vary as a function of the time that specification occurs. Here, we describe the heterochronic specification of two photoreceptor (PhR) subtypes in the zebrafish pineal gland. We find that accelerating PhR specification by impairing Notch signaling favors the early fate at the expense of the later fate. Using in vivo lineage tracing, we show that most pineal PhRs are born from a fate-restricted progenitor. Furthermore, sister cells derived from the division of PhR-restricted progenitors activate the bone morphogenetic protein (BMP) signaling pathway at different times after division, and this heterochrony requires Notch activity. Finally, we demonstrate that PhR identity is established as a function of when the BMP pathway is activated. We propose a novel model in which division of a progenitor with restricted potential generates sister cells with distinct identities via a temporal asymmetry in the activation of a signaling pathway. A major goal in the field of developmental neurobiology is to identify the mechanisms that underly the diversification of the subtypes of neurons that are needed for the function of the nervous system. When investigating these mechanisms, time is an often-overlooked variable. Here, we show that in the zebrafish pineal gland—a neuroendocrine organ containing mostly photoreceptors (PhRs) and projection neurons—different classes of PhRs appear in a temporal sequence. In this simple system, the decision to adopt a PhR fate is driven by the activation of the bone morphogenetic protein (BMP) signaling pathway. Following the final cell division of a PhR progenitor, the sister cells normally activate the BMP pathway at different times. When Notch signaling activity is abrogated, activation of the BMP pathway occurs earlier and synchronously, which in turn favors the development of early PhR fates at the expense of later fates. We propose a model in which preventing sister cells from activating a signaling pathway in a synchronous fashion after their final division allows diversification of cell fates.
Collapse
|
20
|
Le Dréau G, Escalona R, Fueyo R, Herrera A, Martínez JD, Usieto S, Menendez A, Pons S, Martinez-Balbas MA, Marti E. E proteins sharpen neurogenesis by modulating proneural bHLH transcription factors' activity in an E-box-dependent manner. eLife 2018; 7:37267. [PMID: 30095408 PMCID: PMC6126921 DOI: 10.7554/elife.37267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Class II HLH proteins heterodimerize with class I HLH/E proteins to regulate transcription. Here, we show that E proteins sharpen neurogenesis by adjusting the neurogenic strength of the distinct proneural proteins. We find that inhibiting BMP signaling or its target ID2 in the chick embryo spinal cord, impairs the neuronal production from progenitors expressing ATOH1/ASCL1, but less severely that from progenitors expressing NEUROG1/2/PTF1a. We show this context-dependent response to result from the differential modulation of proneural proteins’ activity by E proteins. E proteins synergize with proneural proteins when acting on CAGSTG motifs, thereby facilitating the activity of ASCL1/ATOH1 which preferentially bind to such motifs. Conversely, E proteins restrict the neurogenic strength of NEUROG1/2 by directly inhibiting their preferential binding to CADATG motifs. Since we find this mechanism to be conserved in corticogenesis, we propose this differential co-operation of E proteins with proneural proteins as a novel though general feature of their mechanism of action. The brain and spinal cord are made up of a range of cell types that carry out different roles within the central nervous system. Each type of neuron is uniquely specialized to do its job. Neurons are produced early during development, when they differentiate from a group of cells called neural progenitor cells. Within these groups, molecules called proneural proteins control which types of neurons will develop from the neural progenitor cells, and how many of them. Proneural proteins work by binding to specific patterns in the DNA, called E-boxes, with the help of E proteins. E proteins are typically understood to be passive partners, working with each different proneural protein indiscriminately. However, Le Dréau, Escalona et al. discovered that E proteins in fact have a much more active role to play. Using chick embryos, it was found that E proteins influence the way different proneural proteins bind to DNA. The E proteins have preferences for certain E-boxes in the DNA, just like proneural proteins do. The E proteins enhanced the activity of the proneural proteins that share their E-box preference, and reined in the activity of proneural proteins that prefer other E-boxes. As a result, the E proteins controlled the ability of these proteins to instruct neural progenitor cells to produce specific, specialized neurons, and thus ensured that the distinct types of neurons were produced in appropriate amounts. These findings will help shed light on the roles E proteins play in the development of the central nervous system, and the processes that control growth and lead to cell diversity. The results may also have applications in the field of regenerative medicine, as proneural proteins play an important role in cell reprogramming.
Collapse
Affiliation(s)
- Gwenvael Le Dréau
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - René Escalona
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Raquel Fueyo
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Antonio Herrera
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Juan D Martínez
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Susana Usieto
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Anghara Menendez
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Sebastian Pons
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Marian A Martinez-Balbas
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Elisa Marti
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Wei W, Liu B, Jiang H, Jin K, Xiang M. Requirement of the Mowat-Wilson Syndrome Gene Zeb2 in the Differentiation and Maintenance of Non-photoreceptor Cell Types During Retinal Development. Mol Neurobiol 2018; 56:1719-1736. [PMID: 29922981 DOI: 10.1007/s12035-018-1186-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022]
Abstract
Mutations in the human transcription factor gene ZEB2 cause Mowat-Wilson syndrome, a congenital disorder characterized by multiple and variable anomalies including microcephaly, Hirschsprung disease, intellectual disability, epilepsy, microphthalmia, retinal coloboma, and/or optic nerve hypoplasia. Zeb2 in mice is involved in patterning neural and lens epithelia, neural tube closure, as well as in the specification, differentiation and migration of neural crest cells and cortical neurons. At present, it is still unclear how Zeb2 mutations cause retinal coloboma, whether Zeb2 inactivation results in retinal degeneration, and whether Zeb2 is sufficient to promote the differentiation of different retinal cell types. Here, we show that during mouse retinal development, Zeb2 is expressed transiently in early retinal progenitors and in all non-photoreceptor cell types including bipolar, amacrine, horizontal, ganglion, and Müller glial cells. Its retina-specific ablation causes severe loss of all non-photoreceptor cell types, cell fate switch to photoreceptors by retinal progenitors, and elevated apoptosis, which lead to age-dependent retinal degeneration, optic nerve hypoplasia, synaptic connection defects, and impaired ERG (electroretinogram) responses. Moreover, overexpression of Zeb2 is sufficient to promote the fate of all non-photoreceptor cell types at the expense of photoreceptors. Together, our data not only suggest that Zeb2 is both necessary and sufficient for the differentiation of non-photoreceptor cell types while simultaneously inhibiting the photoreceptor cell fate by repressing transcription factor genes involved in photoreceptor specification and differentiation, but also reveal a necessity of Zeb2 in the long-term maintenance of retinal cell types. This work helps to decipher the etiology of retinal atrophy associated with Mowat-Wilson syndrome and hence will impact on clinical diagnosis and management of the patients suffering from this syndrome.
Collapse
Affiliation(s)
- Wen Wei
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bin Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Haisong Jiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China. .,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Walsh P, Truong V, Hill C, Stoflet ND, Baden J, Low WC, Keirstead SA, Dutton JR, Parr AM. Defined Culture Conditions Accelerate Small-molecule-assisted Neural Induction for the Production of Neural Progenitors from Human-induced Pluripotent Stem Cells. Cell Transplant 2017; 26:1890-1902. [PMID: 29390875 PMCID: PMC5802631 DOI: 10.1177/0963689717737074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
The use of defined conditions for derivation, maintenance, and differentiation of human-induced pluripotent stem cells (hiPSCs) provides a superior experimental platform to discover culture responses to differentiation cues and elucidate the basic requirements for cell differentiation and fate restriction. Adoption of defined systems for reprogramming, undifferentiated growth, and differentiation of hiPSCs was found to significantly influence early stage differentiation signaling requirements and temporal kinetics for the production of primitive neuroectoderm. The bone morphogenic protein receptor agonist LDN-193189 was found to be necessary and sufficient for neural induction in a monolayer system with landmark antigens paired box 6 and sex-determining region Y-box 1 appearing within 72 h. Preliminary evidence suggests this neuroepithelium was further differentiated to generate ventral spinal neural progenitors that produced electrophysiologically active neurons in vitro, maintaining viability posttransplantation in an immunocompromised host. Our findings support current developments in the field, demonstrating that adoption of defined reagents for the culture and manipulation of pluripotent stem cells is advantages in terms of simplification and acceleration of differentiation protocols, which will be critical for future clinical translation.
Collapse
Affiliation(s)
- Patrick Walsh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Vincent Truong
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Caitlin Hill
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Nicolas D. Stoflet
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Jessica Baden
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Susan A. Keirstead
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - James R. Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Ann M. Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Francius C, Hidalgo-Figueroa M, Debrulle S, Pelosi B, Rucchin V, Ronellenfitch K, Panayiotou E, Makrides N, Misra K, Harris A, Hassani H, Schakman O, Parras C, Xiang M, Malas S, Chow RL, Clotman F. Vsx1 Transiently Defines an Early Intermediate V2 Interneuron Precursor Compartment in the Mouse Developing Spinal Cord. Front Mol Neurosci 2016; 9:145. [PMID: 28082864 PMCID: PMC5183629 DOI: 10.3389/fnmol.2016.00145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/30/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets. Whether the diversification of V2 precursors into multiple subsets occurs within the p2 progenitor domain or involves a later compartment of early-born V2 interneurons remains unsolved. Here, we provide evidence that the p2 domain produces an intermediate V2 precursor compartment characterized by the transient expression of the transcriptional repressor Vsx1. These cells display an original repertoire of cellular markers distinct from that of any V2 interneuron population. They have exited the cell cycle but have not initiated neuronal differentiation. They coexpress Vsx1 and Foxn4, suggesting that they can generate the known V2 interneuron populations as well as possible additional V2 subsets. Unlike V2 interneurons, the generation of Vsx1-positive precursors does not depend on the Notch signaling pathway but expression of Vsx1 in these cells requires Pax6. Hence, the p2 progenitor domain generates an intermediate V2 precursor compartment, characterized by the presence of the transcriptional repressor Vsx1, that contributes to V2 interneuron development.
Collapse
Affiliation(s)
- Cédric Francius
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - María Hidalgo-Figueroa
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Stéphanie Debrulle
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Barbara Pelosi
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Vincent Rucchin
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | | | | | | | - Kamana Misra
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| | - Audrey Harris
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Hessameh Hassani
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM)Paris, France
| | - Olivier Schakman
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Carlos Parras
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM)Paris, France
| | - Mengqing Xiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Stavros Malas
- The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus
| | - Robert L. Chow
- Department of Biology, University of VictoriaVictoria, BC, Canada
| | - Frédéric Clotman
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| |
Collapse
|
24
|
Li Y, Tzatzalos E, Kwan KY, Grumet M, Cai L. Transcriptional Regulation of Notch1 Expression by Nkx6.1 in Neural Stem/Progenitor Cells during Ventral Spinal Cord Development. Sci Rep 2016; 6:38665. [PMID: 27924849 PMCID: PMC5141430 DOI: 10.1038/srep38665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Notch1 signaling plays a critical role in maintaining and determining neural stem/progenitor cell (NSPC) fate, yet the transcriptional mechanism controlling Notch1 specific expression in NSPCs remains incomplete. Here, we show transcription factor Nkx6.1 interacts with a cis-element (CR2, an evolutionarily conserved non-coding fragment in the second intron of Notch1 locus) and regulates the expression of Notch1 in ventral NSPCs of the developing spinal cord. We show that the Notch1 expression is modulated by the interaction of Nkx6.1 with a 139 bp enhancer sequence within CR2. Knockdown or overexpression of Nkx6.1 leads to down- or up-regulated Notch1 expression, respectively. In CR2-GFP transgenic mouse, GFP expression was found prominent in the ventricular zone and neural progenitor cells from embryonic day 9.5 to postnatal day 7. GFP+ cells were mainly neural progenitors for interneurons and not for motoneurons or glial cells. Moreover, GFP expression persisted in a subset of ependymal cells in the adult spinal cord, suggesting that CR2 is active in both embryonic and adult NSPCs. Together our data reveal a novel mechanism of Notch1 transcriptional regulation in the ventral spinal cord by Nkx6.1 via its binding with Notch1 enhancer CR2 during embryonic development.
Collapse
Affiliation(s)
- Ying Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Evangeline Tzatzalos
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Kelvin Y Kwan
- W.M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Martin Grumet
- W.M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
25
|
Misra K, Sabaawy HE. Minimally manipulated autologous adherent bone marrow cells (ABMCs): a promising cell therapy of spinal cord injury. Neural Regen Res 2015; 10:1058-60. [PMID: 26330823 PMCID: PMC4541231 DOI: 10.4103/1673-5374.160079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kamana Misra
- Celvive Inc., New Brunswick, NJ, USA ; Department of Neuroscience and Cell Biology, RBHS-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Hatem E Sabaawy
- Celvive Inc., New Brunswick, NJ, USA ; Department of Cellular and Molecular Pharmacology, and Medicine, RBHS-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA ; Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
26
|
Zhang S, Chung WC, Xu K. Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer. Oncogene 2015; 35:2485-95. [DOI: 10.1038/onc.2015.306] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 02/08/2023]
|
27
|
Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M. Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain 2015; 8:28. [PMID: 25966682 PMCID: PMC4429372 DOI: 10.1186/s13041-015-0118-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
Retinogenesis is a precisely controlled developmental process during which different types of neurons and glial cells are generated under the influence of intrinsic and extrinsic factors. Three transcription factors, Foxn4, RORβ1 and their downstream effector Ptf1a, have been shown to be indispensable intrinsic regulators for the differentiation of amacrine and horizontal cells. At present, however, it is unclear how Ptf1a specifies these two cell fates from competent retinal precursors. Here, through combined bioinformatic, molecular and genetic approaches in mouse retinas, we identify the Tfap2a and Tfap2b transcription factors as two major downstream effectors of Ptf1a. RNA-seq and immunolabeling analyses show that the expression of Tfap2a and 2b transcripts and proteins is dramatically downregulated in the Ptf1a null mutant retina. Their overexpression is capable of promoting the differentiation of glycinergic and GABAergic amacrine cells at the expense of photoreceptors much as misexpressed Ptf1a is, whereas their simultaneous knockdown has the opposite effect. Given the demonstrated requirement for Tfap2a and 2b in horizontal cell differentiation, our study thus defines a Foxn4/RORβ1-Ptf1a-Tfap2a/2b transcriptional regulatory cascade that underlies the competence, specification and differentiation of amacrine and horizontal cells during retinal development.
Collapse
Affiliation(s)
- Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China.
| | - Haisong Jiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA. .,Present address: Institute for Cell Engineering, Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21206, USA.
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China.
| | - Min Zou
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China. .,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
28
|
Liu Z, Brunskill E, Boyle S, Chen S, Turkoz M, Guo Y, Grant R, Kopan R. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity. Development 2015; 142:1193-202. [PMID: 25725069 DOI: 10.1242/dev.119529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously described the creation and analysis of a Notch1 activity-trap mouse line, Notch1 intramembrane proteolysis-Cre6MT or N1IP::Cre(LO), that marked cells experiencing relatively high levels of Notch1 activation. Here, we report and characterize a second line with improved sensitivity (N1IP::Cre(HI)) to mark cells experiencing lower levels of Notch1 activation. This improvement was achieved by increasing transcript stability and by restoring the native carboxy terminus of Cre, resulting in a five- to tenfold increase in Cre activity. The magnitude of this effect probably impacts Cre activity in strains with carboxy-terminal Ert2 fusion. These two trap lines and the related line N1IP::Cre(ERT2) form a complementary mapping tool kit to identify changes in Notch1 activation patterns in vivo as the consequence of genetic or pharmaceutical intervention, and illustrate the variation in Notch1 signal strength from one tissue to the next and across developmental time.
Collapse
Affiliation(s)
- Zhenyi Liu
- SAGE Labs, St Louis, MO 63146, USA Department of Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Eric Brunskill
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott Boyle
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Shuang Chen
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mustafa Turkoz
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yuxuan Guo
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Rachel Grant
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA
| | - Raphael Kopan
- Department of Developmental Biology, Washington University, St Louis, MO 63110, USA Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
29
|
Francius C, Ravassard P, Hidalgo-Figueroa M, Mallet J, Clotman F, Nardelli J. Genetic dissection of Gata2 selective functions during specification of V2 interneurons in the developing spinal cord. Dev Neurobiol 2014; 75:721-37. [PMID: 25369423 DOI: 10.1002/dneu.22244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 11/09/2022]
Abstract
Motor activities are controlled by neural networks in the ventral spinal cord and consist in motor neurons and a set of distinct cardinal classes of spinal interneurons. These interneurons arise from distinct progenitor domains (p0-p3) delineated according to a transcriptional code. Neural progenitors of each domain express a unique combination of transcription factors (TFs) that largely contribute to determine the fate of four classes of interneurons (V0-V3) and motor neurons. In p2 domain, at least four subtypes of interneurons namely V2a, V2b, V2c, and Pax6(+) V2 are generated. Although genetic and molecular mechanisms that specify V2a and V2b are dependent on complex interplay between several TFs including Nkx6.1, Irx3, Gata2, Foxn4, and Ascl1, and signaling pathways such as Notch and TGF-β, the sequence order of the activation of these regulators and their respective contribution are not completely elucidated yet. Here, we provide evidence by loss- or gain-of-function experiments that Gata2 is necessary for the normal development of both V2a and V2b neurons. We demonstrate that Nkx6.1 and Dll4 positively regulate the activation of Gata2 and Foxn4 in p2 progenitors. Gata2 also participates in the maintenance of p2 domain by repressing motor neuron differentiation and exerting a feedback control on patterning genes. Finally, Gata2 promotes the selective activation of V2b program at the expense of V2a fate. Thus our results provide new insights on the hierarchy and complex interactions between regulators of V2 genetic program.
Collapse
Affiliation(s)
- Cédric Francius
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France.,Laboratory of Neural Differentiation (NEDI), Université Catholique de Louvain (UCL), Institute of Neuroscience (IoNS), box UCL-5511, 55 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Philippe Ravassard
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France
| | - María Hidalgo-Figueroa
- Laboratory of Neural Differentiation (NEDI), Université Catholique de Louvain (UCL), Institute of Neuroscience (IoNS), box UCL-5511, 55 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Jacques Mallet
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France
| | - Frédéric Clotman
- Laboratory of Neural Differentiation (NEDI), Université Catholique de Louvain (UCL), Institute of Neuroscience (IoNS), box UCL-5511, 55 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Jeannette Nardelli
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France.,Inserm U676, Hôpital Robert Debré, 48 bd Serurier, F-75019, Paris, France
| |
Collapse
|
30
|
Li S, Miller CH, Giannopoulou E, Hu X, Ivashkiv LB, Zhao B. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J Clin Invest 2014; 124:5057-73. [PMID: 25329696 PMCID: PMC4347236 DOI: 10.1172/jci71882] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Osteoclastogenesis requires activation of RANK signaling as well as costimulatory signals from immunoreceptor tyrosine-based activation motif-containing (ITAM-containing) receptors/adaptors, predominantly tyrosine kinase-binding proteins DAP12 and FcRγ, in osteoclast precursors. It is not well understood how costimulatory signals are regulated and integrated with RANK signaling. Here, we found that osteopetrotic bone phenotypes in mice lacking DAP12 or DAP12 and FcRγ are mediated by the transcription factor RBP-J, as deletion of Rbpj in these mice substantially rescued the defects of bone remodeling. Using a TNF-α-induced model of inflammatory bone resorption, we determined that RBP-J deficiency enables TNF-α to induce osteoclast formation and bone resorption in DAP12-deficient animals. Thus, RBP-J imposes a requirement for ITAM-mediated costimulation of RANKL or TNF-α-induced osteoclastogenesis. Mechanistically, RBP-J suppressed induction of key osteoclastogenic factors NFATc1, BLIMP1, and c-FOS by inhibiting ITAM-mediated expression and function of PLCγ2 and activation of downstream calcium-CaMKK/PYK2 signaling. Moreover, RBP-J suppressed Plcg2 expression and downstream calcium oscillations indirectly by a TGF-β/PLCγ2/calcium axis. Together, our findings indicate that RBP-J suppresses ITAM-mediated costimulation, thereby limiting crosstalk between ITAM and RANK/TNFR signaling and allowing fine tuning of osteoclastogenesis during bone homeostasis and under inflammatory conditions. Furthermore, these data suggest that environmental cues that regulate RBP-J expression/function potentially modulate the requirement for costimulatory signaling for osteoclast differentiation and bone remodeling.
Collapse
Affiliation(s)
- Susan Li
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Christine H. Miller
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Eugenia Giannopoulou
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Xiaoyu Hu
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lionel B. Ivashkiv
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
31
|
Zou M, Luo H, Xiang M. Selective neuronal lineages derived from Dll4-expressing progenitors/precursors in the retina and spinal cord. Dev Dyn 2014; 244:86-97. [PMID: 25179941 DOI: 10.1002/dvdy.24185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During retinal and spinal cord neurogenesis, Notch signaling plays crucial roles in regulating proliferation and differentiation of progenitor cells. One of the Notch ligands, Delta-like 4 (Dll4), has been shown to be expressed in subsets of retinal and spinal cord progenitors/precursors and involved in neuronal subtype specification. However, it remains to be determined whether Dll4 expression has any progenitor/precursor-specificity contributing to its functional specificity during neural development. RESULTS We generated a Dll4-Cre BAC transgenic mouse line that drives Cre recombinase expression mimicking that of the endogenous Dll4 in the developing retina and spinal cord. By fate-mapping analysis, we found that Dll4-expressing progenitors/precursors give rise to essentially all cone, amacrine and horizontal cells, a large portion of rod and ganglion cells, but only few bipolar and Müller cells. In the spinal cord, Dll4-expressing progenitors/precursors generate almost all V2a and V2c cells while producing only a fraction of the cells for other interneuron and motor neuron subtypes along the dorsoventral axis. CONCLUSIONS Our data suggest that selective expression of Dll4 in progenitors/precursors contributes to its functional specificity in neuronal specification and that the Dll4-Cre line is a valuable tool for gene manipulation to study Notch signaling.
Collapse
Affiliation(s)
- Min Zou
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey
| | | | | |
Collapse
|
32
|
Vied CM, Freudenberg F, Wang Y, Raposo AASF, Feng D, Nowakowski RS. A multi-resource data integration approach: identification of candidate genes regulating cell proliferation during neocortical development. Front Neurosci 2014; 8:257. [PMID: 25191221 PMCID: PMC4139594 DOI: 10.3389/fnins.2014.00257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022] Open
Abstract
Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ) lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science) to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2) with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5). We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas) and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ) at 8–9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2, and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100's, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.
Collapse
Affiliation(s)
- Cynthia M Vied
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt Frankfurt, Germany
| | - Yuting Wang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore Singapore, Singapore
| | | | - David Feng
- Allen Institute for Brain Science Seattle, WA, USA
| | - Richard S Nowakowski
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| |
Collapse
|