1
|
Di Girolamo D, Di Iorio E, Missero C. Molecular and Cellular Function of p63 in Skin Development and Genetic Diseases. J Invest Dermatol 2025; 145:766-779. [PMID: 39340489 DOI: 10.1016/j.jid.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
The transcription factor p63 is a master regulator of multiple ectodermal derivatives. During epidermal commitment, p63 interacts with several chromatin remodeling complexes to transactivate epidermal-specific genes and repress transcription of simple epithelial and nonepithelial genes. In the postnatal epidermis, p63 is required to control the proliferative potential of progenitor cells, maintain epidermal integrity, and contribute to epidermal differentiation. Autosomal dominant sequence variant in p63 cause a spectrum of syndromic disorders that affect several tissues, including or derived from stratified epithelia. In this review, we describe the recent studies that have provided novel insights into disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy
| | - Enzo Di Iorio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy; Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Shiraishi M, Sowa Y, Sunaga A, Yamamoto K, Okazaki M. Bioengineering strategies for regeneration of skin integrity: A literature review. Regen Ther 2025; 28:153-160. [PMID: 39790492 PMCID: PMC11713503 DOI: 10.1016/j.reth.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Objective The skin is a complex organ that includes various stem cell populations. Current approaches for non-healing skin defects are sometimes inadequate and many attempts have been made to regenerate skin integrity. The aim of this review is to bridge the gap between basic research and clinical application of skin integrity regeneration. Methods A literature search was carried out in PubMed using combinations of the keywords "skin integrity", "tissue-engineered skin", "bioengineered skin", and "skin regeneration". Articles published from 1968 to 2023 reporting evidence from in vivo and in vitro skin regeneration experiments were included. Results These articles showed that stem cells can be differentiated into normal skin cells, including keratinocytes, and are a significant source of skin organoids, which are useful for investigating skin biology; and that emerging direct reprogramming methods have great potential to regenerate skin from the wounded skin surface. Conclusion Recent advances in skin regeneration will facilitate further advancement of both basic and clinical research in skin biology.
Collapse
Affiliation(s)
- Makoto Shiraishi
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Formstone C, Aldeiri B, Davenport M, Francis‐West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2025; 254:102-141. [PMID: 39319771 PMCID: PMC11809137 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological SciencesUniversity of HertfordshireHatfieldUK
| | - Bashar Aldeiri
- Department of Paediatric SurgeryChelsea and Westminster HospitalLondonUK
| | - Mark Davenport
- Department of Paediatric SurgeryKing's College HospitalLondonUK
| | | |
Collapse
|
4
|
Neumayer G, Torkelson JL, Li S, McCarthy K, Zhen HH, Vangipuram M, Mader MM, Gebeyehu G, Jaouni TM, Jacków-Malinowska J, Rami A, Hansen C, Guo Z, Gaddam S, Tate KM, Pappalardo A, Li L, Chow GM, Roy KR, Nguyen TM, Tanabe K, McGrath PS, Cramer A, Bruckner A, Bilousova G, Roop D, Tang JY, Christiano A, Steinmetz LM, Wernig M, Oro AE. A scalable and cGMP-compatible autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. Nat Commun 2024; 15:5834. [PMID: 38992003 PMCID: PMC11239819 DOI: 10.1038/s41467-024-49400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
We present Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a scalable platform producing autologous organotypic iPS cell-derived induced skin composite (iSC) grafts for definitive treatment. Clinical-grade manufacturing integrates CRISPR-mediated genetic correction with reprogramming into one step, accelerating derivation of COL7A1-edited iPS cells from patients. Differentiation into epidermal, dermal and melanocyte progenitors is followed by CD49f-enrichment, minimizing maturation heterogeneity. Mouse xenografting of iSCs from four patients with different mutations demonstrates disease modifying activity at 1 month. Next-generation sequencing, biodistribution and tumorigenicity assays establish a favorable safety profile at 1-9 months. Single cell transcriptomics reveals that iSCs are composed of the major skin cell lineages and include prominent holoclone stem cell-like signatures of keratinocytes, and the recently described Gibbin-dependent signature of fibroblasts. The latter correlates with enhanced graftability of iSCs. In conclusion, DEBCT overcomes manufacturing and safety roadblocks and establishes a reproducible, safe, and cGMP-compatible therapeutic approach to heal lesions of DEB patients.
Collapse
Affiliation(s)
- Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jessica L Torkelson
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Shengdi Li
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Kelly McCarthy
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Hanson H Zhen
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Madhuri Vangipuram
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius M Mader
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Gulilat Gebeyehu
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Taysir M Jaouni
- Thermo Fisher Scientific, Life Sciences Solutions Group, Cell Biology, Research and Development, Frederick, MD, USA
| | - Joanna Jacków-Malinowska
- Department of Dermatology, Columbia University, New York, NY, USA
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Avina Rami
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Corey Hansen
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Sadhana Gaddam
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Keri M Tate
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lingjie Li
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Grace M Chow
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kevin R Roy
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Thuylinh Michelle Nguyen
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Patrick S McGrath
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Amber Cramer
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Anna Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Jean Y Tang
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA.
| | - Anthony E Oro
- Department of Dermatology-Program in Epithelial Biology, Stanford University, School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Sireci S, Kocagöz Y, Alkiraz AS, Güler K, Dokuzluoglu Z, Balcioglu E, Meydanli S, Demirler MC, Erdogan NS, Fuss SH. HB-EGF promotes progenitor cell proliferation and sensory neuron regeneration in the zebrafish olfactory epithelium. FEBS J 2024; 291:2098-2133. [PMID: 38088047 DOI: 10.1111/febs.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Maintenance and regeneration of the zebrafish olfactory epithelium (OE) are supported by two distinct progenitor cell populations that occupy spatially discrete stem cell niches and respond to different tissue conditions. Globose basal cells (GBCs) reside at the inner and peripheral margins of the sensory OE and are constitutively active to replace sporadically dying olfactory sensory neurons (OSNs). In contrast, horizontal basal cells (HBCs) are uniformly distributed across the sensory tissue and are selectively activated by acute injury conditions. Here we show that expression of the heparin-binding epidermal growth factor-like growth factor (HB-EGF) is strongly and transiently upregulated in response to OE injury and signals through the EGF receptor (EGFR), which is expressed by HBCs. Exogenous stimulation of the OE with recombinant HB-EGF promotes HBC expansion and OSN neurogenesis in a pattern that resembles the tissue response to injury. In contrast, pharmacological inhibition of HB-EGF membrane shedding, HB-EGF availability, and EGFR signaling strongly attenuate or delay injury-induced HBC activity and OSN restoration without affecting maintenance neurogenesis by GBCs. Thus, HB-EGF/EGFR signaling appears to be a critical component of the signaling network that controls HBC activity and, consequently, repair neurogenesis in the zebrafish OE.
Collapse
Affiliation(s)
- Siran Sireci
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Yigit Kocagöz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Aysu Sevval Alkiraz
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Kardelen Güler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Zeynep Dokuzluoglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Ecem Balcioglu
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Sinem Meydanli
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | - Mehmet Can Demirler
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| | | | - Stefan Herbert Fuss
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogaziçi University, Istanbul, Türkiye
| |
Collapse
|
6
|
Ding W, Li X, Zhang J, Ji M, Zhang M, Zhong X, Cao Y, Liu X, Li C, Xiao C, Wang J, Li T, Yu Q, Mo F, Zhang B, Qi J, Yang JC, Qi J, Tian L, Xu X, Peng Q, Zhou WZ, Liu Z, Fu A, Zhang X, Zhang JJ, Sun Y, Hu B, An NA, Zhang L, Li CY. Adaptive functions of structural variants in human brain development. SCIENCE ADVANCES 2024; 10:eadl4600. [PMID: 38579006 DOI: 10.1126/sciadv.adl4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Quantifying the structural variants (SVs) in nonhuman primates could provide a niche to clarify the genetic backgrounds underlying human-specific traits, but such resource is largely lacking. Here, we report an accurate SV map in a population of 562 rhesus macaques, verified by in-house benchmarks of eight macaque genomes with long-read sequencing and another one with genome assembly. This map indicates stronger selective constrains on inversions at regulatory regions, suggesting a strategy for prioritizing them with the most important functions. Accordingly, we identified 75 human-specific inversions and prioritized them. The top-ranked inversions have substantially shaped the human transcriptome, through their dual effects of reconfiguring the ancestral genomic architecture and introducing regional mutation hotspots at the inverted regions. As a proof of concept, we linked APCDD1, located on one of these inversions and down-regulated specifically in humans, to neuronal maturation and cognitive ability. We thus highlight inversions in shaping the human uniqueness in brain development.
Collapse
Affiliation(s)
- Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xiangshang Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mingjun Ji
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiaoming Zhong
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chunqiong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qing Yu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie-Chun Yang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Juntian Qi
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Lu Tian
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qi Peng
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Aisi Fu
- Wuhan Dgensee Clinical Laboratory, Wuhan, China
| | - Xiuqin Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jian-Jun Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
7
|
Li Y, Giovannini S, Wang T, Fang J, Li P, Shao C, Wang Y, Shi Y, Candi E, Melino G, Bernassola F. p63: a crucial player in epithelial stemness regulation. Oncogene 2023; 42:3371-3384. [PMID: 37848625 PMCID: PMC10638092 DOI: 10.1038/s41388-023-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Epithelial tissue homeostasis is closely associated with the self-renewal and differentiation behaviors of epithelial stem cells (ESCs). p63, a well-known marker of ESCs, is an indispensable factor for their biological activities during epithelial development. The diversity of p63 isoforms expressed in distinct tissues allows this transcription factor to have a wide array of effects. p63 coordinates the transcription of genes involved in cell survival, stem cell self-renewal, migration, differentiation, and epithelial-to-mesenchymal transition. Through the regulation of these biological processes, p63 contributes to, not only normal epithelial development, but also epithelium-derived cancer pathogenesis. In this review, we provide an overview of the role of p63 in epithelial stemness regulation, including self-renewal, differentiation, proliferation, and senescence. We describe the differential expression of TAp63 and ΔNp63 isoforms and their distinct functional activities in normal epithelial tissues and in epithelium-derived tumors. Furthermore, we summarize the signaling cascades modulating the TAp63 and ΔNp63 isoforms as well as their downstream pathways in stemness regulation.
Collapse
Affiliation(s)
- Yanan Li
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai, 200031, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
8
|
Ono-Minagi H, Nohno T, Serizawa T, Usami Y, Sakai T, Okano H, Ohuchi H. The Germinal Origin of Salivary and Lacrimal Glands and the Contributions of Neural Crest Cell-Derived Epithelium to Tissue Regeneration. Int J Mol Sci 2023; 24:13692. [PMID: 37761995 PMCID: PMC10531458 DOI: 10.3390/ijms241813692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The vertebrate body comprises four distinct cell populations: cells derived from (1) ectoderm, (2) mesoderm, (3) endoderm, and (4) neural crest cells, often referred to as the fourth germ layer. Neural crest cells arise when the neural plate edges fuse to form a neural tube, which eventually develops into the brain and spinal cord. To date, the embryonic origin of exocrine glands located in the head and neck remains under debate. In this study, transgenic TRiCK mice were used to investigate the germinal origin of the salivary and lacrimal glands. TRiCK mice express fluorescent proteins under the regulatory control of Sox1, T/Brachyury, and Sox17 gene expressions. These genes are representative marker genes for neuroectoderm (Sox1), mesoderm (T), and endoderm (Sox17). Using this approach, the cellular lineages of the salivary and lacrimal glands were examined. We demonstrate that the salivary and lacrimal glands contain cells derived from all three germ layers. Notably, a subset of Sox1-driven fluorescent cells differentiated into epithelial cells, implying their neural crest origin. Also, these Sox1-driven fluorescent cells expressed high levels of stem cell markers. These cells were particularly pronounced in duct ligation and wound damage models, suggesting the involvement of neural crest-derived epithelial cells in regenerative processes following tissue injury. This study provides compelling evidence clarifying the germinal origin of exocrine glands and the contribution of neural crest-derived cells within the glandular epithelium to the regenerative response following tissue damage.
Collapse
Affiliation(s)
- Hitomi Ono-Minagi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Tsutomu Nohno
- Department of Cytology and Histology, Okayama University Medical School, Okayama 700-8558, Japan
| | - Takashi Serizawa
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Yu Usami
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Takayoshi Sakai
- Department of Rehabilitation for Orofacial Disorders, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Ordonez L, Tornillo G, Kendrick H, Hay T, Smalley MJ. NOTCH and AKT Signalling Interact to Drive Mammary Tumour Heterogeneity. Cancers (Basel) 2023; 15:4324. [PMID: 37686600 PMCID: PMC10486941 DOI: 10.3390/cancers15174324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
A better understanding of the mechanisms generating tumour heterogeneity will allow better targeting of current therapies, identify potential resistance mechanisms and highlight new approaches for therapy. We have previously shown that in genetically modified mouse models carrying conditional oncogenic alleles, mammary tumour histotype varies depending on the combination of alleles, the cell type to which they are targeted and, in some cases, reproductive history. This suggests that tumour heterogeneity is not a purely stochastic process; rather, differential activation of signalling pathways leads to reproducible differences in tumour histotype. We propose the NOTCH signalling pathway as one such pathway. Here, we have crossed conditional knockout Notch1 or Notch2 alleles into an established mouse mammary tumour model. Notch1/2 deletion had no effect on tumour-specific survival; however, loss of Notch alleles resulted in a dose-dependent increase in metaplastic adenosquamous carcinomas (ASQCs). ASQCs and adenomyoepitheliomas (AMEs) also demonstrated a significant increase in AKT signalling independent of Notch status. Therefore, the NOTCH pathway is a suppressor of the ASQC phenotype, while increased PI3K/AKT signalling is associated with ASQC and AME tumours. We propose a model in which PI3K/AKT and NOTCH signalling act interact to determine mouse mammary tumour histotype.
Collapse
Affiliation(s)
| | | | | | | | - Matthew John Smalley
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.O.); (G.T.)
| |
Collapse
|
10
|
Vatanashevanopakorn C, Sartyoungkul T. iPSC-based approach for human hair follicle regeneration. Front Cell Dev Biol 2023; 11:1149050. [PMID: 37325563 PMCID: PMC10266356 DOI: 10.3389/fcell.2023.1149050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Hair follicles (HFs) are a multifunctional structure involved in physical protection, thermoregulation, sensational detection, and wound healing. Formation and cycling of HFs require dynamic interaction between different cell types of the follicles. Although the processes have been well studied, the generation of human functional HFs with a normal cycling pattern for clinical utilization has yet to be achieved. Recently, human pluripotent stem cells (hPSCs) serve as an unlimited cell source for generating various types of cells including cells of the HFs. In this review, HF morphogenesis and cycling, different cell sources used for HF regeneration, and potential strategies for HF bioengineering using induced pluripotent stem cells (iPSCs) are depicted. Challenges and perspectives toward the therapeutic use of bioengineered HFs for hair loss disorder are also discussed.
Collapse
Affiliation(s)
- Chinnavuth Vatanashevanopakorn
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanutchaporn Sartyoungkul
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Neumayer G, Torkelson JL, Li S, McCarthy K, Zhen HH, Vangipuram M, Jackow J, Rami A, Hansen C, Guo Z, Gaddam S, Pappalardo A, Li L, Cramer A, Roy KR, Nguyen TM, Tanabe K, McGrath PS, Bruckner A, Bilousova G, Roop D, Bailey I, Tang JY, Christiano A, Steinmetz LM, Wernig M, Oro AE. A scalable, GMP-compatible, autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.529447. [PMID: 36909618 PMCID: PMC10002612 DOI: 10.1101/2023.02.28.529447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Background Gene editing in induced pluripotent stem (iPS) cells has been hailed to enable new cell therapies for various monogenetic diseases including dystrophic epidermolysis bullosa (DEB). However, manufacturing, efficacy and safety roadblocks have limited the development of genetically corrected, autologous iPS cell-based therapies. Methods We developed Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a new generation GMP-compatible (cGMP), reproducible, and scalable platform to produce autologous clinical-grade iPS cell-derived organotypic induced skin composite (iSC) grafts to treat incurable wounds of patients lacking type VII collagen (C7). DEBCT uses a combined high-efficiency reprogramming and CRISPR-based genetic correction single step to generate genome scar-free, COL7A1 corrected clonal iPS cells from primary patient fibroblasts. Validated iPS cells are converted into epidermal, dermal and melanocyte progenitors with a novel 2D organoid differentiation protocol, followed by CD49f enrichment and expansion to minimize maturation heterogeneity. iSC product characterization by single cell transcriptomics was followed by mouse xenografting for disease correcting activity at 1 month and toxicology analysis at 1-6 months. Culture-acquired mutations, potential CRISPR-off targets, and cancer-driver variants were evaluated by targeted and whole genome sequencing. Findings iPS cell-derived iSC grafts were reproducibly generated from four recessive DEB patients with different pathogenic mutations. Organotypic iSC grafts onto immune-compromised mice developed into stable stratified skin with functional C7 restoration. Single cell transcriptomic characterization of iSCs revealed prominent holoclone stem cell signatures in keratinocytes and the recently described Gibbin-dependent signature in dermal fibroblasts. The latter correlated with enhanced graftability. Multiple orthogonal sequencing and subsequent computational approaches identified random and non-oncogenic mutations introduced by the manufacturing process. Toxicology revealed no detectable tumors after 3-6 months in DEBCT-treated mice. Interpretation DEBCT successfully overcomes previous roadblocks and represents a robust, scalable, and safe cGMP manufacturing platform for production of a CRISPR-corrected autologous organotypic skin graft to heal DEB patient wounds.
Collapse
Affiliation(s)
- Gernot Neumayer
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Jessica L. Torkelson
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Shengdi Li
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Kelly McCarthy
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Hanson H. Zhen
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Madhuri Vangipuram
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Joanna Jackow
- Department of Dermatology, Columbia University, New York, NY 10032
- St John’s Institute of Dermatology, King’s College London, London, UK
| | - Avina Rami
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Corey Hansen
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Zongyou Guo
- Department of Dermatology, Columbia University, New York, NY 10032
| | - Sadhana Gaddam
- Program in Epithelial Biology and Department of Dermatology
| | | | - Lingjie Li
- Program in Epithelial Biology and Department of Dermatology
| | - Amber Cramer
- Program in Epithelial Biology and Department of Dermatology
| | - Kevin R. Roy
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thuylinh Michelle Nguyen
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Patrick S. McGrath
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Bruckner
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dennis Roop
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Irene Bailey
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | - Jean Y. Tang
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| | | | - Lars M. Steinmetz
- Department of Genetics and Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, and Department of Chemical and Systems Biology
| | - Anthony E. Oro
- Program in Epithelial Biology and Department of Dermatology
- Center for Definitive and Curative Medicine
| |
Collapse
|
12
|
Oceguera-Yanez F, Avila-Robinson A, Woltjen K. Differentiation of pluripotent stem cells for modeling human skin development and potential applications. Front Cell Dev Biol 2022; 10:1030339. [PMID: 36506084 PMCID: PMC9728031 DOI: 10.3389/fcell.2022.1030339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The skin of mammals is a multilayered and multicellular tissue that forms an environmental barrier with key functions in protection, regulation, and sensation. While animal models have long served to study the basic functions of the skin in vivo, new insights are expected from in vitro models of human skin development. Human pluripotent stem cells (PSCs) have proven to be invaluable tools for studying human development in vitro. To understand the mechanisms regulating human skin homeostasis and injury repair at the molecular level, recent efforts aim to differentiate PSCs towards skin epidermal keratinocytes, dermal fibroblasts, and skin appendages such as hair follicles and sebaceous glands. Here, we present an overview of the literature describing strategies for human PSC differentiation towards the components of skin, with a particular focus on keratinocytes. We highlight fundamental advances in the field employing patient-derived human induced PSCs (iPSCs) and skin organoid generation. Importantly, PSCs allow researchers to model inherited skin diseases in the search for potential treatments. Skin differentiation from human PSCs holds the potential to clarify human skin biology.
Collapse
Affiliation(s)
- Fabian Oceguera-Yanez
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| | | | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| |
Collapse
|
13
|
Amadei G, Handford CE, Qiu C, De Jonghe J, Greenfeld H, Tran M, Martin BK, Chen DY, Aguilera-Castrejon A, Hanna JH, Elowitz MB, Hollfelder F, Shendure J, Glover DM, Zernicka-Goetz M. Embryo model completes gastrulation to neurulation and organogenesis. Nature 2022; 610:143-153. [PMID: 36007540 PMCID: PMC9534772 DOI: 10.1038/s41586-022-05246-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro1-5, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells6-11. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization. Our embryo model displays headfolds with defined forebrain and midbrain regions and develops a beating heart-like structure, a trunk comprising a neural tube and somites, a tail bud containing neuromesodermal progenitors, a gut tube, and primordial germ cells. This complete embryo model develops within an extraembryonic yolk sac that initiates blood island development. Notably, we demonstrate that the neurulating embryo model assembled from Pax6-knockout ES cells aggregated with wild-type TS cells and iXEN cells recapitulates the ventral domain expansion of the neural tube that occurs in natural, ubiquitous Pax6-knockout embryos. Thus, these complete embryoids are a powerful in vitro model for dissecting the roles of diverse cell lineages and genes in development. Our results demonstrate the self-organization ability of ES cells and two types of extraembryonic stem cells to reconstitute mammalian development through and beyond gastrulation to neurulation and early organogenesis.
Collapse
Affiliation(s)
- Gianluca Amadei
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biology, University of Padua, Padua, Italy
| | - Charlotte E Handford
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Francis Crick Institute, London, UK
| | - Hannah Greenfeld
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dong-Yuan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
14
|
Lan Y, Jiang R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr Top Dev Biol 2022; 148:13-50. [PMID: 35461563 PMCID: PMC9060390 DOI: 10.1016/bs.ctdb.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
15
|
Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. Int J Mol Sci 2021; 22:ijms222212473. [PMID: 34830355 PMCID: PMC8618738 DOI: 10.3390/ijms222212473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) culture systems opened up new horizons in studying the biology of tissues and organs, modelling various diseases, and screening drugs. Producing accurate in vitro models increases the possibilities for studying molecular control of cell–cell and cell–microenvironment interactions in detail. The Notch signalling is linked to cell fate determination, tissue definition, and maintenance in both physiological and pathological conditions. Hence, 3D cultures provide new accessible platforms for studying activation and modulation of the Notch pathway. In this review, we provide an overview of the recent advances in different 3D culture systems, including spheroids, organoids, and “organ-on-a-chip” models, and their use in analysing the crucial role of Notch signalling in the maintenance of tissue homeostasis, pathology, and regeneration.
Collapse
|
16
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
17
|
Niu M, He Y, Xu J, Ding L, He T, Yi Y, Fu M, Guo R, Li F, Chen H, Chen YG, Xiao ZXJ. Noncanonical TGF-β signaling leads to FBXO3-mediated degradation of ΔNp63α promoting breast cancer metastasis and poor clinical prognosis. PLoS Biol 2021; 19:e3001113. [PMID: 33626035 PMCID: PMC7939357 DOI: 10.1371/journal.pbio.3001113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/08/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a critical role in promoting epithelial-to-mesenchymal transition (EMT), cell migration, invasion, and tumor metastasis. ΔNp63α, the major isoform of p63 protein expressed in epithelial cells, is a key transcriptional regulator of cell adhesion program and functions as a critical metastasis suppressor. It has been documented that the expression of ΔNp63α is tightly controlled by oncogenic signaling and is frequently reduced in advanced cancers. However, whether TGF-β signaling regulates ΔNp63α expression in promoting metastasis is largely unclear. In this study, we demonstrate that activation of TGF-β signaling leads to stabilization of E3 ubiquitin ligase FBXO3, which, in turn, targets ΔNp63α for proteasomal degradation in a Smad-independent but Erk-dependent manner. Knockdown of FBXO3 or restoration of ΔNp63α expression effectively rescues TGF-β-induced EMT, cell motility, and tumor metastasis in vitro and in vivo. Furthermore, clinical analyses reveal a significant correlation among TGF-β receptor I (TβRI), FBXO3, and p63 protein expression and that high expression of TβRI/FBXO3 and low expression of p63 are associated with poor recurrence-free survival (RFS). Together, these results demonstrate that FBXO3 facilitates ΔNp63α degradation to empower TGF-β signaling in promoting tumor metastasis and that the TβRI-FBXO3-ΔNp63α axis is critically important in breast cancer development and clinical prognosis. This study suggests that FBXO3 may be a potential therapeutic target for advanced breast cancer treatment.
Collapse
Affiliation(s)
- Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Xu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liangping Ding
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengyuan Fu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rongtian Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Shi M, Ren S, Chen H, Li J, Huang C, Li Y, Han Y, Li Y, Sun Z, Chen X, Xiong Z. Alcohol drinking inhibits NOTCH-PAX9 signaling in esophageal squamous epithelial cells. J Pathol 2021; 253:384-395. [PMID: 33314197 DOI: 10.1002/path.5602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/22/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Alcohol drinking has been established as a major risk factor for esophageal diseases. Our previous study showed that ethanol exposure inhibited PAX9 expression in human esophageal squamous epithelial cells in vitro and in vivo. In this study, we aimed to investigate the molecular pathways through which alcohol drinking suppresses PAX9 in esophageal squamous epithelial cells. We first demonstrated the inhibition of NOTCH by ethanol exposure in vitro. NOTCH regulated PAX9 expression in KYSE510 and KYSE410 cells in vitro and in vivo. RBPJ and NOTCH intracellular domain (NIC) D1 ChIP-PCR confirmed Pax9 as a direct downstream target of NOTCH signaling in mouse esophagus. NOTCH inhibition by alcohol drinking was further validated in mouse esophagus and human tissue samples. In conclusion, ethanol exposure inhibited NOTCH signaling and thus suppressed PAX9 expression in esophageal squamous epithelial cells in vitro and in vivo. Our data support a novel mechanism of alcohol-induced esophageal injury through the inhibition of NOTCH-PAX9 signaling. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Menghan Shi
- Beijing Stomatological Hospital, Capital Medical University, Beijing, PR China.,Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Shuang Ren
- Beijing Stomatological Hospital, Capital Medical University, Beijing, PR China.,Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Hao Chen
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Jing Li
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Department of Thoracic Surgery, Ningxia Medical University General Hospital, Yinchuan, PR China
| | - Caizhi Huang
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Yahui Li
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Yuning Han
- Department of Thoracic Surgery, Ningxia Medical University General Hospital, Yinchuan, PR China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, Beijing, PR China
| | - Zheng Sun
- Beijing Stomatological Hospital, Capital Medical University, Beijing, PR China
| | - Xiaoxin Chen
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.,Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhaohui Xiong
- Cancer Research Program, Julius L Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
19
|
Orzechowska M, Anusewicz D, Bednarek AK. Functional Gene Expression Differentiation of the Notch Signaling Pathway in Female Reproductive Tract Tissues-A Comprehensive Review With Analysis. Front Cell Dev Biol 2021; 8:592616. [PMID: 33384996 PMCID: PMC7770115 DOI: 10.3389/fcell.2020.592616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The Notch pathway involves evolutionarily conserved signaling regulating the development of the female tract organs such as breast, ovary, cervix, and uterine endometrium. A great number of studies revealed Notch aberrancies in association with their carcinogenesis and disease progression, the management of which is still challenging. The present study is a comprehensive review of the available literature on Notch signaling during the normal development and carcinogenesis of the female tract organs. The review has been enriched with our analyses of the TCGA data including breast, cervical, ovarian, and endometrial carcinomas concerning the effects of Notch signaling at two levels: the core components and downstream effectors, hence filling the lack of global overview of Notch-driven carcinogenesis and disease progression. Phenotype heterogeneity regarding Notch signaling was projected in two uniform manifold approximation and projection algorithm dimensions, preceded by the principal component analysis step reducing the data burden. Additionally, overall and disease-free survival analyses were performed with the optimal cutpoint determination by Evaluate Cutpoints software to establish the character of particular Notch components in tumorigenesis. In addition to the review, we demonstrated separate models of the examined cancers of the Notch pathway and its targets, although expression profiles of all normal tissues were much more similar to each other than to its cancerous compartments. Such Notch-driven cancerous differentiation resulted in a case of opposite association with DFS and OS. As a consequence, target genes also show very distinct profiles including genes associated with cell proliferation and differentiation, energy metabolism, or the EMT. In conclusion, the observed Notch associations with the female tract malignancies resulted from differential expression of target genes. This may influence a future analysis to search for new therapeutic targets based on specific Notch pathway profiles.
Collapse
Affiliation(s)
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Li Y, Li Y, Chen X. NOTCH and Esophageal Squamous Cell Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:59-68. [PMID: 33034026 PMCID: PMC7895477 DOI: 10.1007/978-3-030-55031-8_5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease that requires extensive research on its mechanisms, prevention, and therapy. Recent studies have shown that NOTCH mutations are commonly seen in human ESCC. This chapter summarizes our current understanding of the NOTCH pathway in normal esophagus and in ESCC. In normal esophagus, NOTCH pathway regulates the development of esophageal squamous epithelium, in particular, squamous differentiation. Exposure to extrinsic and intrinsic factors, such as gastroesophageal reflux, alcohol drinking, and inflammation, downregulates the NOTCH pathway and thus inhibits squamous differentiation of esophageal squamous epithelial cells. In ESCC, NOTCH plays a dual role as both a tumor suppressor pathway and an oncogenic pathway. In summary, further studies are warranted to develop NOTCH activators for the prevention of ESCC and NOTCH inhibitors for targeted therapy of a subset of ESCC with activated NOTCH pathway.
Collapse
Affiliation(s)
- Yong Li
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, Beijing, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Abstract
Head and neck cancer is a group of neoplastic diseases affecting the facial, oral, and neck region. It is one of the most common cancers worldwide with an aggressive, invasive evolution. Due to the heterogeneity of the tissues affected, it is particularly challenging to study the molecular mechanisms at the basis of these tumors, and to date we are still lacking accurate targets for prevention and therapy. The Notch signaling is involved in a variety of tumorigenic mechanisms, such as regulation of the tumor microenvironment, aberrant intercellular communication, and altered metabolism. Here, we provide an up-to-date review of the role of Notch in head and neck cancer and draw parallels with other types of solid tumors where the Notch pathway plays a crucial role in emergence, maintenance, and progression of the disease. We therefore give a perspective view on the importance of the pathway in neoplastic development in order to define future lines of research and novel therapeutic approaches.
Collapse
|
22
|
Zhou J, Dong Y, Liu J, Ren J, Wu J, Zhu N. AQP5 regulates the proliferation and differentiation of epidermal stem cells in skin aging. ACTA ACUST UNITED AC 2020; 53:e10009. [PMID: 32965322 PMCID: PMC7510230 DOI: 10.1590/1414-431x202010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
The epidermis, the outermost layer of the skin, is the first barrier that comes into contact with the external environment. It plays an important role in resisting the invasion of harmful substances and microbial infections. The skin changes with age and external environmental factors. This study aimed to investigate epidermal stem cells during the process of aging. This study enrolled 9 volunteers with benign pigmented nevus for clinical dermatologic surgery. The phenotypes associated with skin aging changes such as skin wrinkles and elasticity of the unexposed/healthy parts near benign pigmented skin were measured, and epidermal stem cells from this region were isolated for transcriptome sequencing. The results showed that epidermal stem cells could be obtained by magnetic activated cell sorting (MACS) with high purity. Results of the transcriptome sequencing revealed that aquaporin (AQP)5 significantly decreased in the epidermal stem cells with age, and further functional experiments revealed that AQP5 could promote the proliferation and dedifferentiation of HaCaT, but did not influence cell apoptosis. In summary, AQP5 regulated the proliferation and differentiation of epidermal stem cells in skin aging, and it may play an important role in the balance of proliferation and differentiation. However, further studies are needed to determine the mechanism by which AQP5 regulates the proliferation and differentiation of epidermal skin cells in aging.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Jiao Tong University School of Medicine, Ninth People's Hospital, Shanghai, China
| | - Jianlan Liu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Jinyan Wu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
23
|
Abstract
p63 (also known as TP63) is a transcription factor of the p53 family, along with p73. Multiple isoforms of p63 have been discovered and these have diverse functions encompassing a wide array of cell biology. p63 isoforms are implicated in lineage specification, proliferative potential, differentiation, cell death and survival, DNA damage response and metabolism. Furthermore, p63 is linked to human disease states including cancer. p63 is critical to many aspects of cell signaling, and in this Cell science at a glance article and the accompanying poster, we focus on the signaling cascades regulating TAp63 and ΔNp63 isoforms and those that are regulated by TAp63 and ΔNp63, as well the role of p63 in disease.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Stony Brook University, Department of Molecular and Cell Biology, Stony Brook, NY, 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
24
|
González S, Halabi M, Ju D, Tsai M, Deng SX. Role of Jagged1-mediated Notch Signaling Activation in the Differentiation and Stratification of the Human Limbal Epithelium. Cells 2020; 9:cells9091945. [PMID: 32842657 PMCID: PMC7564045 DOI: 10.3390/cells9091945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
The Notch signaling pathway plays a key role in proliferation and differentiation. We investigated the effect of Jagged 1 (Jag1)-mediated Notch signaling activation in the human limbal stem/progenitor cell (LSC) population and the stratification of the limbal epithelium in vitro. After Notch signaling activation, there was a reduction in the amount of the stem/progenitor cell population, epithelial stratification, and expression of proliferation markers. There was also an increase of the corneal epithelial differentiation. In the presence of Jag1, asymmetric divisions were decreased, and the expression pattern of the polarity protein Par3, normally present at the apical-lateral membrane of basal cells, was dispersed in the cells. We propose a mechanism in which Notch activation by Jag1 decreases p63 expression at the basal layer, which in turn reduces stratification by decreasing the number of asymmetric divisions and increases differentiation.
Collapse
|
25
|
Ji Y, Garland MA, Sun B, Zhang S, Reynolds K, McMahon M, Rajakumar R, Islam MS, Liu Y, Chen Y, Zhou CJ. Cellular and developmental basis of orofacial clefts. Birth Defects Res 2020; 112:1558-1587. [PMID: 32725806 DOI: 10.1002/bdr2.1768] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022]
Abstract
During craniofacial development, defective growth and fusion of the upper lip and/or palate can cause orofacial clefts (OFCs), which are among the most common structural birth defects in humans. The developmental basis of OFCs includes morphogenesis of the upper lip, primary palate, secondary palate, and other orofacial structures, each consisting of diverse cell types originating from all three germ layers: the ectoderm, mesoderm, and endoderm. Cranial neural crest cells and orofacial epithelial cells are two major cell types that interact with various cell lineages and play key roles in orofacial development. The cellular basis of OFCs involves defective execution in any one or several of the following processes: neural crest induction, epithelial-mesenchymal transition, migration, proliferation, differentiation, apoptosis, primary cilia formation and its signaling transduction, epithelial seam formation and disappearance, periderm formation and peeling, convergence and extrusion of palatal epithelial seam cells, cell adhesion, cytoskeleton dynamics, and extracellular matrix function. The latest cellular and developmental findings may provide a basis for better understanding of the underlying genetic, epigenetic, environmental, and molecular mechanisms of OFCs.
Collapse
Affiliation(s)
- Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Ratheya Rajakumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Mohammad S Islam
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - Yue Liu
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, School of Medicine, University of California at Davis, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|
26
|
Zhong H, Ren Z, Wang X, Miao K, Ni W, Meng Y, Lu L, Wang C, Liu W, Deng CX, Xu RH, Chen G. Stagewise keratinocyte differentiation from human embryonic stem cells by defined signal transduction modulators. Int J Biol Sci 2020; 16:1450-1462. [PMID: 32210732 PMCID: PMC7085224 DOI: 10.7150/ijbs.44414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/02/2023] Open
Abstract
Keratinocyte is the predominant cell type in the epidermis of skin, and it provides the protective barrier function for the body. Various signaling pathways have been implicated in keratinocyte differentiation in animal models; However, their temporal regulation and interactions are still to be explored in pluripotent stem cell models. In this report, we use human embryonic stem cells to demonstrate that epidermal ectoderm and subsequent keratinocyte cell fate can be determined step by step under the regulation of defined factors. The inhibition of TGFβ initiates ectodermal lineage differentiation, and the activation of BMP pathway drives epidermal TP63 expression. Meanwhile, the timely activation of WNT pathway suppresses extraembryonic lineage, and promotes epidermal cell fate. With further specification by NOTCH inhibition, more than 90% of cells become TP63-positive stage Ⅱ keratinocytes. Finally, stage Ⅲ keratinocytes are produced under defined hypo-calcium keratinocyte culture conditions, and are further matured in mouse xenograft model. This study not only establishes an in vitro platform to study keratinocyte cell fate determination, but also provides an efficient protocol to produce keratinocytes for disease models and clinical applications.
Collapse
Affiliation(s)
- Hui Zhong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Xiaoyan Wang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wenjun Ni
- Department of Urology Surgery, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Ya Meng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China.,Center of Interventional radiology, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ren-He Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
27
|
Liu H, Duncan K, Helverson A, Kumari P, Mumm C, Xiao Y, Carlson JC, Darbellay F, Visel A, Leslie E, Breheny P, Erives AJ, Cornell RA. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. eLife 2020; 9:e51325. [PMID: 32031521 PMCID: PMC7039683 DOI: 10.7554/elife.51325] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies for non-syndromic orofacial clefting (OFC) have identified single nucleotide polymorphisms (SNPs) at loci where the presumed risk-relevant gene is expressed in oral periderm. The functional subsets of such SNPs are difficult to predict because the sequence underpinnings of periderm enhancers are unknown. We applied ATAC-seq to models of human palate periderm, including zebrafish periderm, mouse embryonic palate epithelia, and a human oral epithelium cell line, and to complementary mesenchymal cell types. We identified sets of enhancers specific to the epithelial cells and trained gapped-kmer support-vector-machine classifiers on these sets. We used the classifiers to predict the effects of 14 OFC-associated SNPs at 12q13 near KRT18. All the classifiers picked the same SNP as having the strongest effect, but the significance was highest with the classifier trained on zebrafish periderm. Reporter and deletion analyses support this SNP as lying within a periderm enhancer regulating KRT18/KRT8 expression.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Department of Periodontology, School of Stomatology, Wuhan UniversityWuhanChina
| | - Kaylia Duncan
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Annika Helverson
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Priyanka Kumari
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Camille Mumm
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Yao Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
| | | | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- University of California, MercedMercedUnited States
| | - Elizabeth Leslie
- Department of Human Genetics, Emory University School of MedicineAtlantaGeorgia
| | - Patrick Breheny
- Department of Biostatistics, University of IowaIowa CityUnited States
| | - Albert J Erives
- Department of Biology, University of IowaIowa CityUnited States
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
28
|
Dhamodaran K, Subramani M, Krishna L, Matalia H, Jayadev C, Chinnappaiah N, Shetty R, Das D. Temporal Regulation of Notch Signaling and Its Influence on the Differentiation of Ex Vivo Cultured Limbal Epithelial Cells. Curr Eye Res 2019; 45:459-470. [PMID: 31558050 DOI: 10.1080/02713683.2019.1673436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Purpose: Notch signaling plays a vital role in the differentiation and proliferation of corneal epithelial cells from limbal stem cells. The temporal regulation of Notch signaling during this differentiation remains unknown. Hence, we investigated the importance of temporal activation/blockage of Notch signaling during corneal differentiation.Methods: Human limbal epithelial cultures were established with and without Notch activators (rec-Human Jagged1 Fc chimera) and pharmacological blockers (LY-411575). The modulation of Notch signaling was done at different time points during cell differentiation, which were collected on Day 14 for further analysis of differentiation, proliferation, maturation and apoptosis using RT-qPCR and immunofluorescence staining.Results: The activation of Notch signaling at Day 8 resulted in the highest number of mature corneal epithelial cells (p = .008) and pro-apoptosis marker BAX (p = .0001) with no increase in the number of corneal progenitors, and proliferation marker Ki67 compared to untreated controls. Cultures grown in the presence of Notch signaling blockers showed a significantly higher number of corneal progenitors (p = .0001) and proliferation marker Ki67 (p = .02) but lower corneal epithelial marker CK3/CK12 (p = .0007) and no difference in the pro-apoptotic marker BAX compared to untreated controls.Conclusion: During the differentiation of limbal epithelial cells to the corneal epithelial cell type, Day 8 seems to be a crucial window to modulate Notch signaling for a customized outcome.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Himanshu Matalia
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Vitreo-retinal services, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Nandini Chinnappaiah
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
29
|
Liu N, Yin Y, Wang H, Zhou Z, Sheng X, Fu H, Guo R, Wang H, Yang J, Gong P, Ning W, Ju Z, Liu Y, Liu L. Telomere dysfunction impairs epidermal stem cell specification and differentiation by disrupting BMP/pSmad/P63 signaling. PLoS Genet 2019; 15:e1008368. [PMID: 31518356 PMCID: PMC6760834 DOI: 10.1371/journal.pgen.1008368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/25/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Telomere shortening is associated with aging and age-associated diseases. Additionally, telomere dysfunction resulting from telomerase gene mutation can lead to premature aging, such as apparent skin atrophy and hair loss. However, the molecular signaling linking telomere dysfunction to skin atrophy remains elusive. Here we show that dysfunctional telomere disrupts BMP/pSmad/P63 signaling, impairing epidermal stem cell specification and differentiation of skin and hair follicles. We find that telomere shortening mediated by Terc loss up-regulates Follistatin (Fst), inhibiting pSmad signaling and down-regulating P63 and epidermal keratins in an ESC differentiation model as well as in adult development of telomere-shortened mice. Mechanistically, short telomeres disrupt PRC2/H3K27me3-mediated repression of Fst. Our findings reveal that skin atrophy due to telomere dysfunction is caused by a previously unappreciated link with Fst and BMP signaling that could be explored in the development of therapies.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yu Yin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yifei Liu
- Yale Fertility Center and Department of OB/GYN, Yale University School of Medicine, New Haven, CT, United States of America
- * E-mail: (YL); (LL)
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (YL); (LL)
| |
Collapse
|
30
|
Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis. Int J Mol Sci 2019; 20:ijms20143590. [PMID: 31340447 PMCID: PMC6678256 DOI: 10.3390/ijms20143590] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The p63 gene is a member of the p53/p63/p73 family of transcription factors and plays a critical role in development and homeostasis of squamous epithelium. p63 is transcribed as multiple isoforms; ΔNp63α, the predominant p63 isoform in stratified squamous epithelium, is localized to the basal cells and is overexpressed in squamous cell cancers of multiple organ sites, including skin, head and neck, and lung. Further, p63 is considered a stem cell marker, and within the epidermis, ΔNp63α directs lineage commitment. ΔNp63α has been implicated in numerous processes of skin biology that impact normal epidermal homeostasis and can contribute to squamous cancer pathogenesis by supporting proliferation and survival with roles in blocking terminal differentiation, apoptosis, and senescence, and influencing adhesion and migration. ΔNp63α overexpression may also influence the tissue microenvironment through remodeling of the extracellular matrix and vasculature, as well as by enhancing cytokine and chemokine secretion to recruit pro-inflammatory infiltrate. This review focuses on the role of ΔNp63α in normal epidermal biology and how dysregulation can contribute to cutaneous squamous cancer development, drawing from knowledge also gained by squamous cancers from other organ sites that share p63 overexpression as a defining feature.
Collapse
|
31
|
Shparberg RA, Glover HJ, Morris MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol 2019; 10:705. [PMID: 31354503 PMCID: PMC6637848 DOI: 10.3389/fphys.2019.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. Due to the complexity of this circuitry and the relative inaccessibility of the mammalian embryo in utero, mammalian neural commitment remains one of the most challenging and poorly understood areas of developmental biology. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. The germ layer definitive ectoderm, in turn, is the substrate for multipotent neurectoderm (neural plate and neural tube) formation, representing the first morphological signs of nervous system development. Subsequent patterning of the neural tube is then responsible for the formation of most of the central and peripheral nervous systems. While a large number of studies have assessed how a competent neurectoderm produces mature neural cells, less is known about the molecular signatures of definitive ectoderm and neurectoderm and the key molecular mechanisms driving their formation. Using pluripotent stem cells as a model, we will discuss the current understanding of how the pluripotent inner cell mass transitions to pluripotent primitive ectoderm and sequentially to the multipotent definitive ectoderm and neurectoderm. We will focus on the integration of cell signaling, gene activation, and epigenetic control that govern these developmental steps, and provide insight into the novel growth factor-like role that specific amino acids, such as L-proline, play in this process.
Collapse
Affiliation(s)
| | | | - Michael B. Morris
- Embryonic Stem Cell Laboratory, Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Rostampour N, Appelt CM, Abid A, Boughner JC. Expression of new genes in vertebrate tooth development and p63 signaling. Dev Dyn 2019; 248:744-755. [PMID: 30875130 DOI: 10.1002/dvdy.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND p63 is an evolutionarily ancient transcription factor essential to vertebrate tooth development. Our recent gene expression screen comparing wild-type and "toothless" p63-/- mouse embryos implicated in tooth development several new genes that we hypothesized act downstream of p63 in dental epithelium, where p63 is also expressed. RESULTS Via in situ hybridization and immunohistochemistry, we probed mouse embryos (embryonic days 10.5-14.5) and spotted gar fish embryos (14 days postfertilization) for these newly linked genes, Cbln1, Cldn23, Fermt1, Krt15, Pltp and Prss8, which were expressed in mouse and gar dental epithelium. Loss of p63 altered expression levels but not domains. Expression was comparable between murine upper and lower tooth organs, implying conserved gene functions in maxillary and mandibular dentitions. Our meta-analysis of gene expression databases supported that these genes act within a p63-driven gene regulatory network important to tooth development in mammals and more evolutionary ancient vertebrates (fish, amphibians). CONCLUSIONS Cbln1, Cldn23, Fermt1, Krt15, Pltp, and Prss8 were expressed in mouse and fish dental epithelium at placode, bud, and/or cap stages. We theorize that these genes participate in cell-cell adhesion, cell polarity, and extracellular matrix signaling to support dental epithelium integrity, folding, and epithelial-mesenchymal cross talk during tooth development.
Collapse
Affiliation(s)
- Nasim Rostampour
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Cassy M Appelt
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Aunum Abid
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Julia C Boughner
- Department of Anatomy & Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
33
|
Somerville TDD, Xu Y, Miyabayashi K, Tiriac H, Cleary CR, Maia-Silva D, Milazzo JP, Tuveson DA, Vakoc CR. TP63-Mediated Enhancer Reprogramming Drives the Squamous Subtype of Pancreatic Ductal Adenocarcinoma. Cell Rep 2018; 25:1741-1755.e7. [PMID: 30428345 PMCID: PMC6296757 DOI: 10.1016/j.celrep.2018.10.051] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
The aberrant expression of squamous lineage markers in pancreatic ductal adenocarcinoma (PDA) has been correlated with poor clinical outcomes. However, the functional role of this putative transdifferentiation event in PDA pathogenesis remains unclear. Here, we show that expression of the transcription factor TP63 (ΔNp63) is sufficient to install and sustain the enhancer landscape and transcriptional signature of the squamous lineage in human PDA cells. We also demonstrate that TP63-driven enhancer reprogramming promotes aggressive tumor phenotypes, including enhanced cell motility and invasion, and an accelerated growth of primary PDA tumors and metastases in vivo. This process ultimately leads to a powerful addiction of squamous PDA cells to continuous TP63 expression. Our study demonstrates the functional significance of squamous transdifferentiation in PDA and reveals TP63-based reprogramming as an experimental tool for investigating mechanisms and vulnerabilities linked to this aberrant cell fate transition.
Collapse
Affiliation(s)
| | - Yali Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Koji Miyabayashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Cristian R Cleary
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Diogo Maia-Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joseph P Milazzo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
34
|
Mesenchymal stem cell-mediated Notch2 activation overcomes radiation-induced injury of the hematopoietic system. Sci Rep 2018; 8:9277. [PMID: 29915190 PMCID: PMC6006282 DOI: 10.1038/s41598-018-27666-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
Radiation exposure severely damages the hematopoietic system. Although several radio-protectors have been proposed to prevent radiation-induced damage, most agents have limited efficacy. In the present study, we investigated whether mesenchymal stem cells (MSCs) could contribute to the expansion of hematopoietic cells and mitigate radiation-induced hematopoietic injury in vitro and in vivo. We found that co-culture with MSCs promoted hematopoietic progenitor/stem cell (HPSCs) maintenance by providing a bone marrow-like microenvironment. In addition, we showed that MSCs prevented radiation-induced damage to HPSCs, as evidenced by the lack of DNA damage and apoptosis. Intravenously injected MSCs rapidly migrated to the bone marrow (BM) and prevented loss of BM cellularity, which reduced lethality and ameliorated pancytopenia in the BM of whole body-irradiated mice. We demonstrated that MSC-derived Jagged1 attenuated radiation-induced cytotoxicity of HPSCs, and that this was mediated by Notch signaling and expression of downstream proteins Bcl2 and p63 in HPSCs. In addition, Notch2 depletion significantly reduced the MSC-mediated radio-protective effect in human- and mouse-derived HPSCs. Collectively, our data show that activation of Notch and its associated downstream signaling pathways prevent radiation-induced hematopoietic injury. Therefore, enhancing Jagged1-Notch2 signaling could provide therapeutic benefit by protecting the hematopoietic system against damage after radiation.
Collapse
|
35
|
Lilja AM, Rodilla V, Huyghe M, Hannezo E, Landragin C, Renaud O, Leroy O, Rulands S, Simons BD, Fre S. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nat Cell Biol 2018; 20:677-687. [PMID: 29784917 DOI: 10.1038/s41556-018-0108-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/23/2018] [Indexed: 01/15/2023]
Abstract
Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.
Collapse
Affiliation(s)
- Anna M Lilja
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France.,Sorbonne University, UPMC University of Paris VI, Paris, France
| | - Veronica Rodilla
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France. .,Sorbonne University, UPMC University of Paris VI, Paris, France. .,Preclinical Research Program; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| | - Mathilde Huyghe
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France.,Sorbonne University, UPMC University of Paris VI, Paris, France
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.,The Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Camille Landragin
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France.,Sorbonne University, UPMC University of Paris VI, Paris, France
| | - Olivier Renaud
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France.,Sorbonne University, UPMC University of Paris VI, Paris, France.,Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, Paris, France
| | - Olivier Leroy
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France.,Sorbonne University, UPMC University of Paris VI, Paris, France.,Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, Paris, France
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.,The Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Silvia Fre
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France. .,Sorbonne University, UPMC University of Paris VI, Paris, France.
| |
Collapse
|
36
|
Ku HJ, Park JH, Kim SH, Park JW. Isocitrate dehydrogenase 2 deficiency exacerbates dermis damage by ultraviolet-B via ΔNp63 downregulation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1138-1147. [DOI: 10.1016/j.bbadis.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
|
37
|
Soares E, Zhou H. Master regulatory role of p63 in epidermal development and disease. Cell Mol Life Sci 2018; 75:1179-1190. [PMID: 29103147 PMCID: PMC5843667 DOI: 10.1007/s00018-017-2701-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 01/19/2023]
Abstract
The transcription factor p63 is a master regulator of epidermal development. Mutations in p63 give rise to human developmental diseases that often manifest epidermal defects. In this review, we summarize major p63 isoforms identified so far and p63 mutation-associated human diseases that show epidermal defects. We discuss key roles of p63 in epidermal keratinocyte proliferation and differentiation, emphasizing its master regulatory control of the gene expression pattern and epigenetic landscape that define epidermal fate. We subsequently review the essential function of p63 during epidermal commitment and transdifferentiation towards epithelial lineages, highlighting the notion that p63 is the guardian of the epithelial lineage. Finally, we discuss current therapeutic development strategies for p63 mutation-associated diseases. Our review proposes future directions for dissecting p63-controlled mechanisms in normal and diseased epidermal development and for developing therapeutic options.
Collapse
Affiliation(s)
- Eduardo Soares
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 274, Postbus 9101, 6500HB, Nijmegen, The Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 274, Postbus 9101, 6500HB, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, 855, Postbus 9101, 6500HB, Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Bozorgui B, Kolomeisky AB, Teimouri H. Physical-chemical mechanisms of pattern formation during gastrulation. J Chem Phys 2018; 148:123302. [DOI: 10.1063/1.4993879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Behnaz Bozorgui
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | - Anatoly B. Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | - Hamid Teimouri
- Department of Physics and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
39
|
Boughner JC, van Eede MC, Spring S, Yu LX, Rostampour N, Henkelman RM. P63 expression plays a role in developmental rate, embryo size, and local morphogenesis. Dev Dyn 2018; 247:779-787. [DOI: 10.1002/dvdy.24622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Julia C. Boughner
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | | | - Shoshana Spring
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Lisa X. Yu
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Nasim Rostampour
- Department of Anatomy & Cell Biology, College of Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
40
|
Erickson JR, Echeverri K. Learning from regeneration research organisms: The circuitous road to scar free wound healing. Dev Biol 2018; 433:144-154. [PMID: 29179946 PMCID: PMC5914521 DOI: 10.1016/j.ydbio.2017.09.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 11/29/2022]
Abstract
The skin is the largest organ in the body and plays multiple essential roles ranging from regulating temperature, preventing infection and ultimately defining who we are physically. It is a highly dynamic organ that constantly replaces the outermost cells throughout life. However, when faced with a major injury, human skin cannot restore a significant lesion to its original functionality, instead a reparative scar is formed. In contrast to this, many other species have the unique ability to regenerate full thickness skin without formation of scar tissue. Here we review recent advances in the field that shed light on how the skin cells in regenerative species react to injury to prevent scar formation versus scar forming humans.
Collapse
Affiliation(s)
- Jami R Erickson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
41
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Hutchins AP, Yang Z, Li Y, He F, Fu X, Wang X, Li D, Liu K, He J, Wang Y, Chen J, Esteban MA, Pei D. Models of global gene expression define major domains of cell type and tissue identity. Nucleic Acids Res 2017; 45:2354-2367. [PMID: 28426095 PMCID: PMC5389706 DOI: 10.1093/nar/gkx054] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/22/2017] [Indexed: 01/22/2023] Open
Abstract
The current classification of cells in an organism is largely based on their anatomic and developmental origin. Cells types and tissues are traditionally classified into those that arise from the three embryonic germ layers, the ectoderm, mesoderm and endoderm, but this model does not take into account the organization of cell type-specific patterns of gene expression. Here, we present computational models for cell type and tissue specification derived from a collection of 921 RNA-sequencing samples from 272 distinct mouse cell types or tissues. In an unbiased fashion, this analysis accurately predicts the three known germ layers. Unexpectedly, this analysis also suggests that in total there are eight major domains of cell type-specification, corresponding to the neurectoderm, neural crest, surface ectoderm, endoderm, mesoderm, blood mesoderm, germ cells and the embryonic domain. Further, we identify putative genes responsible for specifying the domain and the cell type. This model has implications for understanding trans-lineage differentiation for stem cells, developmental cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhongzhou Yang
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yuhao Li
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Fangfang He
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Xiuling Fu
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Xiaoshan Wang
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Dongwei Li
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Kairong Liu
- Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100080, China.,Beihang University, Beijing 100191, China
| | - Jiangping He
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yong Wang
- Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100080, China
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Miguel A Esteban
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,Laboratory of RNA, Chromatin and Human disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| |
Collapse
|
43
|
Notch1 maintains dormancy of olfactory horizontal basal cells, a reserve neural stem cell. Proc Natl Acad Sci U S A 2017. [PMID: 28637720 DOI: 10.1073/pnas.1701333114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The remarkable capacity of the adult olfactory epithelium (OE) to regenerate fully both neurosensory and nonneuronal cell types after severe epithelial injury depends on life-long persistence of two stem cell populations: the horizontal basal cells (HBCs), which are quiescent and held in reserve, and mitotically active globose basal cells. It has recently been demonstrated that down-regulation of the ΔN form of the transcription factor p63 is both necessary and sufficient to release HBCs from dormancy. However, the mechanisms by which p63 is down-regulated after acute OE injury remain unknown. To identify the cellular source of potential signaling mechanisms, we assessed HBC activation after neuron-only and sustentacular cell death. We found that ablation of sustentacular cells is sufficient for HBC activation to multipotency. By expression analysis, next-generation sequencing, and immunohistochemical examination, down-regulation of Notch pathway signaling is coincident with HBC activation. Therefore, using HBC-specific conditional knockout of Notch receptors and overexpression of N1ICD, we show that Notch signaling maintains p63 levels and HBC dormancy, in contrast to its suppression of p63 expression in other tissues. Additionally, Notch1, but not Notch2, is required to maintain HBC dormancy after selective neuronal degeneration. Taken together, our data indicate that the activation of HBCs observed after tissue injury or sustentacular cell ablation is caused by the reduction/elimination of Notch signaling on HBCs; elimination of Jagged1 expressed by sustentacular cells may be the ligand responsible.
Collapse
|
44
|
Stacy AJ, Craig MP, Sakaram S, Kadakia M. ΔNp63α and microRNAs: leveraging the epithelial-mesenchymal transition. Oncotarget 2017; 8:2114-2129. [PMID: 27924063 PMCID: PMC5356785 DOI: 10.18632/oncotarget.13797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular reprogramming mechanism that is an underlying cause of cancer metastasis. Recent investigations have uncovered an intricate network of regulation involving the TGFβ, Wnt, and Notch signaling pathways and small regulatory RNA species called microRNAs (miRNAs). The activity of a transcription factor vital to the maintenance of epithelial stemness, ΔNp63α, has been shown to modulate the activity of these EMT pathways to either repress or promote EMT. Furthermore, ΔNp63α is a known regulator of miRNA, including those directly involved in EMT. This review discusses the evidence of ΔNp63α as a master regulator of EMT components and miRNA, highlighting the need for a deeper understanding of its role in EMT. This expanded knowledge may provide a basis for new developments in the diagnosis and treatment of metastatic cancer.
Collapse
Affiliation(s)
- Andrew J. Stacy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael P. Craig
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Suraj Sakaram
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Madhavi Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
45
|
Schwob JE, Jang W, Holbrook EH, Lin B, Herrick DB, Peterson JN, Hewitt Coleman J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol 2016; 525:1034-1054. [PMID: 27560601 DOI: 10.1002/cne.24105] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022]
Abstract
The capacity of the olfactory epithelium (OE) for lifelong neurogenesis and regeneration depends on the persistence of neurocompetent stem cells, which self-renew as well as generating all of the cell types found within the nasal epithelium. This Review focuses on the types of stem and progenitor cells in the epithelium and their regulation. Both horizontal basal cells (HBCs) and some among the population of globose basal cells (GBCs) are stem cells, but the two types plays vastly different roles. The GBC population includes the basal cells that proliferate in the uninjured OE and is heterogeneous with respect to transcription factor expression. From upstream in the hierarchy to downstream, GBCs encompass 1) Sox2+ /Pax6+ stem-like cells that are totipotent and self-renew over the long term, 2) Ascl1+ transit-amplifying progenitors with a limited capacity for expansive proliferation, and 3) Neurog1+ /NeuroD1+ immediate precursor cells that make neurons directly. In contrast, the normally quiescent HBCs are activated to multipotency and proliferate when sustentacular cells are killed, but not when only OSNs die, indicating that HBCs are reserve stem cells that respond to severe epithelial injury. The master regulator of HBC activation is the ΔN isoform of the transcription factor p63; eliminating ΔNp63 unleashes HBC multipotency. Notch signaling, via Jagged1 ligand on Sus cells and Notch1 and Notch2 receptors on HBCs, is likely to play a major role in setting the level of p63 expression. Thus, ΔNp63 becomes a potential therapeutic target for reversing the neurogenic exhaustion characteristic of the aged OE. J. Comp. Neurol. 525:1034-1054, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Eric H Holbrook
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Brian Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Daniel B Herrick
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Jesse N Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| | - Julie Hewitt Coleman
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, 02132
| |
Collapse
|
46
|
Eghtedari Y, Richardson A, Mai K, Heng B, Guillemin GJ, Wakefield D, Di Girolamo N. Keratin 14 Expression in Epithelial Progenitor Cells of the Developing Human Cornea. Stem Cells Dev 2016; 25:699-711. [DOI: 10.1089/scd.2016.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yas Eghtedari
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Alexander Richardson
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Kelly Mai
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, Australia
| | - Denis Wakefield
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nick Di Girolamo
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
47
|
Handra-Luca A, Dragoescu E. Cytokeratin 5/6 and P63 immunophenotype of thyroid lymphoepithelial complexes. Ann Diagn Pathol 2016; 23:58-61. [PMID: 27130144 DOI: 10.1016/j.anndiagpath.2016.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Thyroid lymphoepithelial complexes (LECos) are rare, being reported in lymphoma, Graves-Basedow disease, Hashimoto thyroiditis, pericarcinomatous thyroid or in the context of branchial cleft-like cysts. Here we report immunohistochemical expression of cytokeratin 5/6, P63 and TTF1 in 6 cases of thyroid LECos. Two cases had carbimazole treatment for hyperthyroidia and Graves disease. Anti-thyroglobulin, -thyroperoxidase or -TSH antibodies were detected in 4 cases. NSAID or poviodone iodine allergy were present in 2 cases. The treatment consisted in total thyroidectomy or lobectomy. Microscopy showed nodular goiter and focal lymphocytic thyroiditis. Basaloid LECos were seen in all thyroids while squamoid LECos in 2. Associated lesions were papillary thyroid microcarcinoma (2 cases), solid cell nest, thyroglosal duct remnant, lymphoepithelial cyst and thymus-parathyroid unit (one case each). Cytokeratin 5/6 was expressed in both squamoid and basaloid LECos along with P63. TTF1 expression was faint or absent. In conclusion LECos may occur in the context of autoimmune thyroiditis or of a specific immune susceptibility background. The expression of CK5/6 and of P63 suggests a squamous differentiation including in the basaloid LECos. The etiologic relevance of these immunostainings remains limited although rather suggestive of a metaplastic process than of migration-abnormalities.
Collapse
|
48
|
Turkoz M, Townsend RR, Kopan R. The Notch Intracellular Domain Has an RBPj-Independent Role during Mouse Hair Follicular Development. J Invest Dermatol 2016; 136:1106-1115. [PMID: 26940862 DOI: 10.1016/j.jid.2016.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/15/2016] [Accepted: 02/07/2016] [Indexed: 01/02/2023]
Abstract
Ligand-dependent activation, γ-secretase-processed cleavage, and recombining binding protein Jk (RBPj)-mediated downstream transcriptional activities of Notch receptors constitute the "canonical" Notch signaling pathway, which is essential for skin organogenesis. However, in Msx2-Cre mice, keratinocyte-specific deletion of the Rbpj gene in utero produced a significantly milder phenotype than either global Notch or γ-secretase loss. Herein, we investigated the underlying mechanisms for this apparent noncanonical signal using mouse genetics. We found no evidence that ligand back-signaling contributed to skin organogenesis. The perdurance of RBPj protein did not establish an epigenetic memory of a canonical signal in the youngest epidermal stem cells, and Notch targets were not derepressed. We provide evidence that γ-secretase-dependent but RBPj-independent Notch intracellular domain activity operating in the first hair follicles is responsible for a delay in follicular destruction, which results in lower serum thymic stromal lymphopoietin levels, milder B-cell lymphoproliferative disease, and improved survival in Msx2-Cre(+/tg);Rbpj(f/f) mice. Minimal amounts of the Notch intracellular domain were sufficient for rescue, which was not mediated by transcription, suggesting that the Notch intracellular domain is acting through a novel mechanism.
Collapse
Affiliation(s)
- Mustafa Turkoz
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - R Reid Townsend
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Raphael Kopan
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
49
|
Spatiotemporal Expression of p63 in Mouse Epidermal Commitment. Int J Mol Sci 2015; 16:29542-53. [PMID: 26690418 PMCID: PMC4691128 DOI: 10.3390/ijms161226185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022] Open
Abstract
The embryonic surface ectoderm is a simple flat epithelium consisting of cells that express the cytokeratins K8/K18. Before stratification, K5/K14 expression substitutes K8/K18 expression, marking the event called epidermal commitment. Previous studies show that the transcription factor p63 plays an essential role in epidermal commitment. However, detailed expression information of p63 during early epidermal development in mice is still unclear. We systematically studied the expression pattern of p63 in mouse epidermal commitment, together with K8 and K5. We show that p63 expression could be detected as early as E8.5 in mouse embryos preceding epidermal commitment. p63 expression first appears near the newly formed somites and the posterior part of the embryo, further expanding to the whole embryonic surface with particular enrichment in the first branchial arches and the limb buds. ΔNp63 is the major class of isoforms expressed in this period. Relative expression intensity of p63 depends on the embryonic position. In summary, there is a sequential and regular expression pattern of K8, p63 and K5 in mouse epidermal commitment. Our study not only contributes to understanding the early events during epidermal development but also provides a basal tool to study the function of p63 in mammals.
Collapse
|
50
|
Nakashima R, Morooka M, Shiraki N, Sakano D, Ogaki S, Kume K, Kume S. Neural cells play an inhibitory role in pancreatic differentiation of pluripotent stem cells. Genes Cells 2015; 20:1028-45. [PMID: 26514269 PMCID: PMC4738370 DOI: 10.1111/gtc.12308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic endocrine β-cells derived from embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have received attention as screening systems for therapeutic drugs and as the basis for cell-based therapies. Here, we used a 12-day β-cell differentiation protocol for mouse ES cells and obtained several hit compounds that promoted β-cell differentiation. One of these compounds, mycophenolic acid (MPA), effectively promoted ES cell differentiation with a concomitant reduction of neuronal cells. The existence of neural cell-derived inhibitory humoral factors for β-cell differentiation was suggested using a co-culture system. Based on gene array analysis, we focused on the Wnt/β-catenin pathway and showed that the Wnt pathway inhibitor reversed MPA-induced β-cell differentiation. Wnt pathway activation promoted β-cell differentiation also in human iPS cells. Our results showed that Wnt signaling activation positively regulates β-cell differentiation, and represent a downstream target of the neural inhibitory factor.
Collapse
Affiliation(s)
- Ryutaro Nakashima
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Mayu Morooka
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Nobuaki Shiraki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Daisuke Sakano
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Soichiro Ogaki
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Street, Mizuho, Nagoya, 467-8603, Japan
| | - Shoen Kume
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO), Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| |
Collapse
|