1
|
Mendoza-Garcia P, Basu S, Sukumar SK, Arefin B, Wolfstetter G, Anthonydhason V, Molander L, Uçkun E, Lindehell H, Lebrero-Fernandez C, Larsson J, Larsson E, Bemark M, Palmer RH. DamID transcriptional profiling identifies the Snail/Scratch transcription factor Kahuli as an Alk target in the Drosophila visceral mesoderm. Development 2021; 148:dev199465. [PMID: 34905617 PMCID: PMC8722224 DOI: 10.1242/dev.199465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Development of the Drosophila visceral muscle depends on Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) signaling, which specifies founder cells (FCs) in the circular visceral mesoderm (VM). Although Alk activation by its ligand Jelly Belly (Jeb) is well characterized, few target molecules have been identified. Here, we used targeted DamID (TaDa) to identify Alk targets in embryos overexpressing Jeb versus embryos with abrogated Alk activity, revealing differentially expressed genes, including the Snail/Scratch family transcription factor Kahuli (Kah). We confirmed Kah mRNA and protein expression in the VM, and identified midgut constriction defects in Kah mutants similar to those of pointed (pnt). ChIP and RNA-Seq data analysis defined a Kah target-binding site similar to that of Snail, and identified a set of common target genes putatively regulated by Kah and Pnt during midgut constriction. Taken together, we report a rich dataset of Alk-responsive loci in the embryonic VM and functionally characterize the role of Kah in the regulation of embryonic midgut morphogenesis.
Collapse
Affiliation(s)
- Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Swaraj Basu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Sanjay Kumar Sukumar
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Linnea Molander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Henrik Lindehell
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Cristina Lebrero-Fernandez
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jan Larsson
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, SE-41346 Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
2
|
Stultz BG, Hursh DA. Gene Regulation of BMP Ligands in Drosophila. Methods Mol Biol 2018; 1891:75-89. [PMID: 30414127 DOI: 10.1007/978-1-4939-8904-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Drosophila is a valuable system to study bone morphogenetic proteins (BMPs) due to the high functional conservation of the pathway and the molecular genetic tools available. Drosophila has three BMP ligands, decapentaplegic (BMP2/4), screw, and glass bottom boat (BMP5/6/7/8). Of these genes, the transcriptional regulation of decapentaplegic has been studied, and some of the enhancers directing its spatially specific gene expression have been described. These analyses have used many of the standard tools of molecular biology, but a valuable method of analysis often used in Drosophila is the creation of patches of mutant tissue at any stage and in any location by induced somatic recombination. The ability to create transgenic flies and manipulate the Drosophila genome with recombinases is well established. This method can be used to evaluate the requirements for specific transcription factors to act on enhancer elements in vivo, in stage- and tissue-specific manners. The yeast FLP/FRT recombination system facilitates experiments to interrogate loss- or gain-of-function for transcription factor activity on known enhancers. This chapter will outline the necessary steps to create the tools needed and conduct somatic cell recombination experiments to interrogate the function of transcription factors on BMP enhancers.
Collapse
Affiliation(s)
- Brian G Stultz
- Division of Cell and Gene Therapy, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Deborah A Hursh
- Division of Cell and Gene Therapy, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
3
|
Dpp regulates autophagy-dependent midgut removal and signals to block ecdysone production. Cell Death Differ 2018; 26:763-778. [PMID: 29959404 PMCID: PMC6460390 DOI: 10.1038/s41418-018-0154-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/08/2023] Open
Abstract
Animal development and homeostasis require the programmed removal of cells. Autophagy-dependent cell deletion is a unique form of cell death often involved in bulk degradation of tissues. In Drosophila the steroid hormone ecdysone controls developmental transitions and triggers the autophagy-dependent removal of the obsolete larval midgut. The production of ecdysone is exquisitely coordinated with signals from numerous organ systems to mediate the correct timing of such developmental programs. Here we report an unexpected role for the Drosophila bone morphogenetic protein/transforming growth factor β ligand, Decapentaplegic (Dpp), in the regulation of ecdysone-mediated midgut degradation. We show that blocking Dpp signaling induces premature autophagy, rapid cell death, and midgut degradation, whereas sustained Dpp signaling inhibits autophagy induction. Furthermore, Dpp signaling in the midgut prevents the expression of ecdysone responsive genes and impairs ecdysone production in the prothoracic gland. We propose that Dpp has dual roles: one within the midgut to prevent improper tissue degradation, and one in interorgan communication to coordinate ecdysone biosynthesis and developmental timing.
Collapse
|
4
|
Galeone A, Han SY, Huang C, Hosomi A, Suzuki T, Jafar-Nejad H. Tissue-specific regulation of BMP signaling by Drosophila N-glycanase 1. eLife 2017; 6:27612. [PMID: 28826503 PMCID: PMC5599231 DOI: 10.7554/elife.27612] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Mutations in the human N-glycanase 1 (NGLY1) cause a rare, multisystem congenital disorder with global developmental delay. However, the mechanisms by which NGLY1 and its homologs regulate embryonic development are not known. Here we show that Drosophila Pngl encodes an N-glycanase and exhibits a high degree of functional conservation with human NGLY1. Loss of Pngl results in developmental midgut defects reminiscent of midgut-specific loss of BMP signaling. Pngl mutant larvae also exhibit a severe midgut clearance defect, which cannot be fully explained by impaired BMP signaling. Genetic experiments indicate that Pngl is primarily required in the mesoderm during Drosophila development. Loss of Pngl results in a severe decrease in the level of Dpp homodimers and abolishes BMP autoregulation in the visceral mesoderm mediated by Dpp and Tkv homodimers. Thus, our studies uncover a novel mechanism for the tissue-specific regulation of an evolutionarily conserved signaling pathway by an N-glycanase enzyme. DNA carries the information needed to build and maintain an organism, and units of DNA known as genes contain coded instructions to build other molecules, including enzymes. Sometimes, genes can become faulty and develop mutations that can affect how an embryo develops and lead to diseases. For example, people with mutations in the gene that encodes an enzyme called N-glycanase 1 experience many problems with their nervous system, gut and other organs. Normally, N-glycanase 1 helps the body remove specific sugar molecules from some proteins in the cells, and is also thought to be important during embryonic development. As an embryo develops, its cells undergo a series of transformations, which is regulated by different molecules and signaling pathways. For example, a pathway known as BMP signaling plays an important role in many tissues. Problems with this pathway can lead to many diseases throughout the body, including the gut, where it helps cells to develop. Previous research has shown that fruit flies lacking the gene that codes for an equivalent N-glycanase enzyme (which is called Pngl in flies) cannot develop properly into adults. However, until now it was not known what type of cells need the N-glycanase enzyme in any organism, or if NGLY1 is essential for important signaling pathways like BMP signaling. Now, Galeone et al. have used genetically modified flies to test how losing Pngl affected their development. The results first showed that engineering Pngl-deficient fruit flies to produce the human enzyme eliminated their problems; these flies developed and survived like normal flies. This confirmed that that the human and fly enzymes can perform equivalent roles. Galeone et al. then discovered that Pngl plays two distinct roles in a group of cells that surround the fruit fly’s gut tissue and give rise to the cells that eventually form the muscle layer in the gut. In the larvae, Pngl was required to empty the gut, which is a necessary step before the larvae can develop into an adult. Moreover, Pngl is needed for BMP signaling in the gut, and when flies had the enzyme removed, some parts of their gut could not from properly. This study will provide a framework to improve our understanding of how BMP signaling is regulated in humans. A next step will be to test if some of the symptoms experienced by patients without a working copy of the gene for N-glycanase 1 are caused by a faulty BMP-signaling system in specific tissues. If this is the case, it could provide new opportunities to treat some of these symptoms.
Collapse
Affiliation(s)
- Antonio Galeone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Seung Yeop Han
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Chengcheng Huang
- Glycometabolome Team, RIKEN Global Research Cluster, Saitama, Japan
| | - Akira Hosomi
- Glycometabolome Team, RIKEN Global Research Cluster, Saitama, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, RIKEN Global Research Cluster, Saitama, Japan
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
5
|
|
6
|
The Drosophila COMPASS-like Cmi-Trr coactivator complex regulates dpp/BMP signaling in pattern formation. Dev Biol 2013; 380:185-98. [DOI: 10.1016/j.ydbio.2013.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/01/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023]
|
7
|
Humphreys GB, Jud MC, Monroe KM, Kimball SS, Higley M, Shipley D, Vrablik MC, Bates KL, Letsou A. Mummy, A UDP-N-acetylglucosamine pyrophosphorylase, modulates DPP signaling in the embryonic epidermis of Drosophila. Dev Biol 2013; 381:434-45. [PMID: 23796903 DOI: 10.1016/j.ydbio.2013.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved JNK/AP-1 (Jun N-terminal kinase/activator protein 1) and BMP (Bone Morphogenetic Protein) signaling cascades are deployed hierarchically to regulate dorsal closure in the fruit fly Drosophila melanogaster. In this developmental context, the JNK/AP-1 signaling cascade transcriptionally activates BMP signaling in leading edge epidermal cells. Here we show that the mummy (mmy) gene product, which is required for dorsal closure, functions as a BMP signaling antagonist. Genetic and biochemical tests of Mmy's role as a BMP-antagonist indicate that its function is independent of AP-1, the transcriptional trigger of BMP signal transduction in leading edge cells. pMAD (phosphorylated Mothers Against Dpp) activity data show the mmy gene product to be a new type of epidermal BMP regulator - one which transforms a BMP ligand from a long- to a short-range signal. mmy codes for the single UDP-N-acetylglucosamine pyrophosphorylase in Drosophila, and its requirement for attenuating epidermal BMP signaling during dorsal closure points to a new role for glycosylation in defining a highly restricted BMP activity field in the fly. These findings add a new dimension to our understanding of mechanisms modulating the BMP signaling gradient.
Collapse
Affiliation(s)
- Gregory B Humphreys
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schaub C, Frasch M. Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis. Dev Biol 2013; 376:245-59. [PMID: 23380635 DOI: 10.1016/j.ydbio.2013.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/23/2013] [Indexed: 02/08/2023]
Abstract
The T-Box family of transcription factors plays fundamental roles in the generation of appropriate spatial and temporal gene expression profiles during cellular differentiation and organogenesis in animals. In this study we report that the Drosophila Tbx1 orthologue optomotor-blind-related-gene-1 (org-1) exerts a pivotal function in the diversification of circular visceral muscle founder cell identities in Drosophila. In embryos mutant for org-1, the specification of the midgut musculature per se is not affected, but the differentiating midgut fails to form the anterior and central midgut constrictions and lacks the gastric caeca. We demonstrate that this phenotype results from the nearly complete loss of the founder cell specific expression domains of several genes known to regulate midgut morphogenesis, including odd-paired (opa), teashirt (tsh), Ultrabithorax (Ubx), decapentaplegic (dpp) and wingless (wg). To address the mechanisms that mediate the regulatory inputs from org-1 towards Ubx, dpp, and wg in these founder cells we genetically dissected known visceral mesoderm specific cis-regulatory-modules (CRMs) of these genes. The analyses revealed that the activities of the dpp and wg CRMs depend on org-1, the CRMs are bound by Org-1 in vivo and their T-Box binding sites are essential for their activation in the visceral muscle founder cells. We conclude that Org-1 acts within a well-defined signaling and transcriptional network of the trunk visceral mesoderm as a crucial founder cell-specific competence factor, in concert with the general visceral mesodermal factor Biniou. As such, it directly regulates several key genes involved in the establishment of morphogenetic centers along the anteroposterior axis of the visceral mesoderm, which subsequently organize the formation of midgut constrictions and gastric caeca and thereby determine the morphology of the midgut.
Collapse
Affiliation(s)
- Christoph Schaub
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | |
Collapse
|
9
|
Stultz BG, Park SY, Mortin MA, Kennison JA, Hursh DA. Hox proteins coordinate peripodial decapentaplegic expression to direct adult head morphogenesis in Drosophila. Dev Biol 2012; 369:362-76. [PMID: 22824425 DOI: 10.1016/j.ydbio.2012.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/29/2012] [Accepted: 07/12/2012] [Indexed: 02/04/2023]
Abstract
The Drosophila BMP, decapentaplegic (dpp), controls morphogenesis of the ventral adult head through expression limited to the lateral peripodial epithelium of the eye-antennal disc by a 3.5 kb enhancer in the 5' end of the gene. We recovered a 15 bp deletion mutation within this enhancer that identified a homeotic (Hox) response element that is a direct target of labial and the homeotic cofactors homothorax and extradenticle. Expression of labial and homothorax are required for dpp expression in the peripodial epithelium, while the Hox gene Deformed represses labial in this location, thus limiting its expression and indirectly that of dpp to the lateral side of the disc. The expression of these homeodomain genes is in turn regulated by the dpp pathway, as dpp signalling is required for labial expression but represses homothorax. This Hox-BMP regulatory network is limited to the peripodial epithelium of the eye-antennal disc, yet is crucial to the morphogenesis of the head, which fate maps suggest arises primarily from the disc proper, not the peripodial epithelium. Thus Hox/BMP interactions in the peripodial epithelium of the eye-antennal disc contribute inductively to the shape of the external form of the adult Drosophila head.
Collapse
Affiliation(s)
- Brian G Stultz
- Division of Cell and Gene Therapy, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
10
|
Sen A, Stultz BG, Lee H, Hursh DA. Odd paired transcriptional activation of decapentaplegic in the Drosophila eye/antennal disc is cell autonomous but indirect. Dev Biol 2010; 343:167-77. [PMID: 20403347 DOI: 10.1016/j.ydbio.2010.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/17/2010] [Accepted: 04/07/2010] [Indexed: 11/15/2022]
Abstract
The gene odd paired (opa), a Drosophila homolog of the Zinc finger protein of the cerebellum (Zic) family of mammalian transcription factors, plays roles in embryonic segmentation and development of the adult head. We have determined the preferred DNA binding sequence of Opa by SELEX and shown that it is necessary and sufficient to activate transcription of reporter gene constructs under Opa control in transgenic flies. We have found a related sequence in the enhancer region of an opa-responsive gene, sloppy paired 1. This site also responds to Opa in reporter constructs in vivo. However, nucleotide alterations that abolish the ability of Opa to bind this site in vitro have no effect on the ability of Opa to activate expression from constructs bearing these mutations in vivo. These data suggest that while Opa can function in vivo as a sequence specific transcriptional regulator, it does not require DNA binding for transcriptional activation.
Collapse
Affiliation(s)
- Aditya Sen
- Cell and Tissue Therapy Branch, Center for Biologics, Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
11
|
Bolouri H, Davidson EH. The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example. Dev Biol 2010; 340:170-8. [PMID: 19523466 PMCID: PMC2854306 DOI: 10.1016/j.ydbio.2009.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/20/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
The "Community Effect" denotes intra-territorial signaling amongst cells which constitute a particular tissue or embryonic progenitor field. The cells of the territory express the same transcriptional regulatory state, and the intra-territorial signaling is essential to maintenance of this specific regulatory state. The structure of the underlying gene regulatory network (GRN) subcircuitry explains the genomically wired mechanism by which community effect signaling is linked to the continuing transcriptional generation of the territorial regulatory state. A clear example is afforded by the oral ectoderm GRN of the sea urchin embryo where cis-regulatory evidence, experimental embryology, and network analysis combine to provide a complete picture. We review this example and consider less well known but similar cases in other developing systems where the same subcircuit GRN topology is present. To resolve mechanistic issues that arise in considering how community effect signaling could operate to produce its observed effects, we construct and analyze the behavior of a quantitative model of community effect signaling in the sea urchin embryo oral ectoderm. Community effect network topology could constitute part of the genomic regulatory code that defines transcriptional function in multicellular tissues composed of cells in contact, and hence may have arisen as a metazoan developmental strategy.
Collapse
Affiliation(s)
- Hamid Bolouri
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
12
|
Reed HC, Hoare T, Thomsen S, Weaver TA, White RAH, Akam M, Alonso CR. Alternative splicing modulates Ubx protein function in Drosophila melanogaster. Genetics 2010; 184:745-58. [PMID: 20038634 PMCID: PMC2845342 DOI: 10.1534/genetics.109.112086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/17/2009] [Indexed: 01/02/2023] Open
Abstract
The Drosophila Hox gene Ultrabithorax (Ubx) produces a family of protein isoforms through alternative splicing. Isoforms differ from one another by the presence of optional segments-encoded by individual exons-that modify the distance between the homeodomain and a cofactor-interaction module termed the "YPWM" motif. To investigate the functional implications of Ubx alternative splicing, here we analyze the in vivo effects of the individual Ubx isoforms on the activation of a natural Ubx molecular target, the decapentaplegic (dpp) gene, within the embryonic mesoderm. These experiments show that the Ubx isoforms differ in their abilities to activate dpp in mesodermal tissues during embryogenesis. Furthermore, using a Ubx mutant that reduces the full Ubx protein repertoire to just one single isoform, we obtain specific anomalies affecting the patterning of anterior abdominal muscles, demonstrating that Ubx isoforms are not functionally interchangeable during embryonic mesoderm development. Finally, a series of experiments in vitro reveals that Ubx isoforms also vary in their capacity to bind DNA in presence of the cofactor Extradenticle (Exd). Altogether, our results indicate that the structural changes produced by alternative splicing have functional implications for Ubx protein function in vivo and in vitro. Since other Hox genes also produce splicing isoforms affecting similar protein domains, we suggest that alternative splicing may represent an underestimated regulatory system modulating Hox gene specificity during fly development.
Collapse
Affiliation(s)
- Hilary C. Reed
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Tim Hoare
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Stefan Thomsen
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Thomas A. Weaver
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Robert A. H. White
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Claudio R. Alonso
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
13
|
Christoforou CP, Greer CE, Challoner BR, Charizanos D, Ray RP. The detached locus encodes Drosophila Dystrophin, which acts with other components of the Dystrophin Associated Protein Complex to influence intercellular signalling in developing wing veins. Dev Biol 2008; 313:519-32. [PMID: 18093579 DOI: 10.1016/j.ydbio.2007.09.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 11/29/2022]
Abstract
Dystrophin and Dystroglycan are the two central components of the multimeric Dystrophin Associated Protein Complex, or DAPC, that is thought to provide a mechanical link between the extracellular matrix and the actin cytoskeleton, disruption of which leads to muscular dystrophy in humans. We present the characterization of the Drosophila 'crossveinless' mutation detached (det), and show that the gene encodes the fly ortholog of Dystrophin. Our genetic analysis shows that, in flies, Dystrophin is a non-essential gene, and the sole overt morphological defect associated with null mutations in the locus is the variable loss of the posterior crossvein that has been described for alleles of det. Null mutations in Drosophila Dystroglycan (Dg) are similarly viable and exhibit this crossvein defect, indicating that both of the central DAPC components have been co-opted for this atypical function of the complex. In the developing wing, the Drosophila DAPC affects the intercellular signalling pathways involved in vein specification. In det and Dg mutant wings, the early BMP signalling that initiates crossvein specification is not maintained, particularly in the pro-vein territories adjacent to the longitudinal veins, and this results in the production of a crossvein fragment in the intervein between the two longitudinal veins. Genetic interaction studies suggest that the DAPC may exert this effect indirectly by down-regulating Notch signalling in pro-vein territories, leading to enhanced BMP signalling in the intervein by diffusion of BMP ligands from the longitudinal veins.
Collapse
Affiliation(s)
- Christina P Christoforou
- Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | | | |
Collapse
|
14
|
Friend virus utilizes the BMP4-dependent stress erythropoiesis pathway to induce erythroleukemia. J Virol 2007; 82:382-93. [PMID: 17942544 DOI: 10.1128/jvi.02487-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 50 years of genetic analysis has identified a number of host genes that are required for the expansion of infected cells during the progression of Friend-virus-induced erythroleukemia. In this report, we show that Friend virus induces the bone morphogenetic protein 4 (BMP4)-dependent stress erythropoiesis pathway in the spleen, which rapidly amplifies target cells, propagating their infection and resulting in acute splenomegaly. This mechanism mimics the response to acute anemia, in which BMP4 expressed in the spleen drives the expansion of a specialized population of stress erythroid progenitors. Previously we demonstrated that these progenitors, termed stress BFU-E, are targets for Friend virus in the spleen (A. Subramanian, H. E. Teal, P. H. Correll, and R. F. Paulson, J. Virol. 79:14586-14594, 2005). Here, we extend those findings by showing that Friend virus infects two distinct populations of bone marrow cells. One population, when infected, differentiates into mature erythrocytes in an Epo-independent manner, while a second population migrates to the spleen after infection, where it induces BMP4 expression and acts as a reservoir of virus. The activation of the stress erythropoiesis pathway in the spleen by Friend virus results in the rapid expansion of stress BFU-E, providing abundant target cells for viral infection. These observations suggest a novel mechanism by which a virus induces a stress response pathway that amplifies target cells for the virus, leading to acute expansion of infected cells.
Collapse
|
15
|
Davis GK, Srinivasan DG, Wittkopp PJ, Stern DL. The function and regulation of Ultrabithorax in the legs of Drosophila melanogaster. Dev Biol 2007; 308:621-31. [PMID: 17640629 PMCID: PMC2040266 DOI: 10.1016/j.ydbio.2007.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/23/2007] [Accepted: 06/06/2007] [Indexed: 11/17/2022]
Abstract
Alterations in Hox gene expression patterns have been implicated in both large and small-scale morphological evolution. An improved understanding of these changes requires a detailed understanding of Hox gene cis-regulatory function and evolution. cis-regulatory evolution of the Hox gene Ultrabithorax (Ubx) has been shown to contribute to evolution of trichome patterns on the posterior second femur (T2p) of Drosophila species. As a step toward determining how this function of Ubx has evolved, we performed a series of experiments to clarify the role of Ubx in patterning femurs and to identify the cis-regulatory regions of Ubx that drive expression in T2p. We first performed clonal analysis to further define Ubx function in patterning bristle and trichome patterns in the legs. We found that low levels of Ubx expression are sufficient to repress an eighth bristle row on the posterior second and third femurs, whereas higher levels of expression are required to promote the development and migration of other bristles on the third femur and to repress trichomes. We then tested the hypothesis that the evolutionary difference in T2p trichome patterns due to Ubx was caused by a change in the global cis-regulation of Ubx expression. We found no evidence to support this view, suggesting that the evolved difference in Ubx function reflects evolution of a leg-specific enhancer. We then searched for the regulatory regions of the Ubx locus that drive expression in the second and third femur by assaying all existing regulatory mutations of the Ubx locus and new deficiencies in the large intron of Ubx that we generated by P-element-induced male recombination. We found that two enhancer regions previously known to regulate Ubx expression in the legs, abx and pbx, are required for Ubx expression in the third femur, but that they do not contribute to pupal expression of Ubx in the second femur. This analysis allowed us to rule out at least 100 kb of DNA in and around the Ubx locus as containing a T2p-specific enhancer. We then surveyed an additional approximately 30 kb using enhancer constructs. None of these enhancer constructs produced an expression pattern similar to Ubx expression in T2p. Thus, after surveying over 95% of the Ubx locus, we have not been able to localize a T2p-specific enhancer. While the enhancer could reside within the small regions we have not surveyed, it is also possible that the enhancer is structurally complex and/or acts only within its native genomic context.
Collapse
Affiliation(s)
- Gregory K. Davis
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Dayalan G. Srinivasan
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Patricia J. Wittkopp
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - David L. Stern
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Stultz BG, Lee H, Ramon K, Hursh DA. Decapentaplegic head capsule mutations disrupt novel peripodial expression controlling the morphogenesis of the Drosophila ventral head. Dev Biol 2006; 296:329-39. [PMID: 16814276 DOI: 10.1016/j.ydbio.2006.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/24/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Drosophila adult structures derive from imaginal discs, which are sacs with apposed epithelial sheets, the disc proper (DP) and the peripodial epithelium (PE). The Drosophila TGF-beta family member decapentaplegic (dpp) contributes to the development of adult structures through expression in all imaginal discs, driven by enhancers from the 3' cis-regulatory region of the gene. In the eye/antennal disc, there is 3' directed dpp expression in both the DP and PE associated with cell proliferation and eye formation. Here, we analyze a new class of dpp cis-regulatory mutations, which specifically disrupt a previously unknown region of dpp expression, controlled by enhancers in the 5' regulatory region of the gene and limited to the PE of eye/antennal discs. These are the first described Drosophila mutations that act by solely disrupting PE gene expression. The mutants display defects in the ventral adult head and alter peripodial but not DP expression of known dpp targets. However, apoptosis is observed in the underlying DP, suggesting that this peripodial dpp signaling source supports cell survival in the DP.
Collapse
Affiliation(s)
- Brian G Stultz
- Division of Cell and Gene Therapy, Cellular and Tissue Therapy Branch, Center for Biologics Evaluation and Research, Food and Drug Administration, HFM-740, Bldg. 29B, Rm. 1E16, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
17
|
Stultz BG, Jackson DG, Mortin MA, Yang X, Beachy PA, Hursh DA. Transcriptional activation by extradenticle in the Drosophila visceral mesoderm. Dev Biol 2006; 290:482-94. [PMID: 16403493 DOI: 10.1016/j.ydbio.2005.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 11/22/2005] [Accepted: 11/22/2005] [Indexed: 11/16/2022]
Abstract
decapentaplegic (dpp) is a direct target of Ultrabithorax (Ubx) in parasegment 7 (PS7) of the embryonic visceral mesoderm. We demonstrate that extradenticle (exd) and homothorax (hth) are also required for dpp expression in this location, as well as in PS3, at the site of the developing gastric caecae. A 420 bp element from dpp contains EXD binding sites necessary for expressing a reporter gene in both these locations. Using a specificity swap, we demonstrate that EXD directly activates this element in vivo. Activation does not require Ubx, demonstrating that EXD can activate transcription independently of homeotic proteins. Restoration is restricted to the domains of endogenous dpp expression, despite ubiquitous expression of altered specificity EXD. We demonstrate that nuclear EXD is more extensively phosphorylated than the cytoplasmic form, suggesting that EXD is a target of signal transduction by protein kinases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Binding Sites
- Blotting, Western
- Body Patterning
- Cell Nucleus/metabolism
- Crosses, Genetic
- Cytoplasm/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila Proteins/physiology
- Electrophoresis, Gel, Two-Dimensional
- Embryo, Nonmammalian/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/physiology
- Immunoblotting
- Immunohistochemistry
- Mesoderm/metabolism
- Molecular Sequence Data
- Phosphorylation
- Protein Binding
- Protein Structure, Tertiary
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcriptional Activation
- Transgenes
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Brian G Stultz
- Cellular and Tissue Therapy Branch, Center for Biologics Evaluation and Research, Food and Drug Administration, HFM-730, Bldg. 29B, Rm. 1E16, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sotillos S, de Celis JF. Regulation of decapentaplegic expression during Drosophila wing veins pupal development. Mech Dev 2006; 123:241-51. [PMID: 16423512 DOI: 10.1016/j.mod.2005.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/07/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
The differentiation of veins in the Drosophila wing relies on localised expression of decapentaplegic (dpp) in pro-vein territories during pupal development. The expression of dpp in the pupal veins requires the integrity of the shortvein region (shv), localised 5' to the coding region. It is likely that this DNA integrates positive and negative regulatory signals directing dpp transcription during pupal development. Here, we identify a minimal 0.9 kb fragment giving localised expression in the vein L5 and a 0.5 kb fragment giving expression in all longitudinal veins. Using a combination of in vivo expression of reporter genes regulated by shv sequences, in vitro binding assays and sequence comparisons between the shv region of different Drosophila species, we found binding sites for the vein-specific transciption factors Araucan, Knirps and Ventral veinless, as well as binding sites for the Dpp pathway effectors Mad and Med. We conclude that conserved vein-specific enhancers regulated by transcription factors expressed in individual veins collaborate with general vein and intervein regulators to establish and maintain the expression of dpp confined to the veins during pupal development.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Crta. de Utrera Km1, 41013 Sevilla, Spain.
| | | |
Collapse
|
19
|
Stultz BG, Ray RP, Hursh DA. Analysis of the shortvein cis-regulatory region of thedecapentaplegic gene ofDrosophila melanogaster. Genesis 2005; 42:181-92. [PMID: 15986479 DOI: 10.1002/gene.20134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mammals, the Transforming Growth Factor-beta (TGF-beta) superfamily controls a variety of developmental processes. In Drosophila, by contrast, a single member of the superfamily, decapentaplegic (dpp) performs most TGF-beta developmental functions. The complexity of dpp functions is reflected in the complex cis-regulatory sequences that flank the gene. Dpp is divided into three regions: Hin, including the protein-coding exons; disk, including 3' cis-regulatory sequences; and shortvein (shv), including noncoding exons and 5' cis-regulatory sequences. We analyzed the cis-regulatory structure of the shortvein region using a nested series of rearrangement breakpoints and rescue constructs. We delimit the molecular regions responsible for three mutant phenotypes: larval lethality, wing venation defects, and head capsule defects. Multiple overlapping elements are responsible for larval lethality and wing venation defects. However, the area regulating head capsule formation is distinct, and resides 5' to these elements. We have demonstrated this by isolating and describing two novel dpp alleles, which affect only the adult head capsule.
Collapse
Affiliation(s)
- Brian G Stultz
- Division of Cell and Gene Therapy, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
20
|
Abstract
The evolutionarily conserved Hox gene family of transcriptional regulators has originally been known for specifying positional identities along the longitudinal body axis of bilateral metazoans, including mouse and man. It is believed that subsequent to this archaic role, subsets of Hox genes have been co-opted for patterning functions in phylogenetically more recent structures, such as limbs and epithelial appendages. Among these, the hair follicle is of particular interest, as it is the only organ undergoing cyclical phases of regression and regeneration during the entire life span of an organism. Furthermore, the hair follicle is increasingly capturing the attention of developmental geneticists, as this abundantly available miniature organ mimics key aspects of embryonic patterning and, in addition, presents a model for studying organ renewal. The first Hox gene shown to play a universal role in hair follicle development is Hoxc13, as both Hoxc13-deficient and overexpressing mice exhibit severe hair growth and patterning defects. Differential gene expression analyses in the skin of these mutants, as well as in vitro DNA binding studies performed with potential targets for HOXC13 transcriptional regulation in human hair, identified genes encoding hair-specific keratins and keratin-associated proteins (KAPs) as major groups of presumptive Hoxc13 downstream effectors in the control of hair growth. The Hoxc13 mutant might thus serve as a paradigm for studying hair-specific roles of Hoxc13 and other members of this gene family, whose distinct spatio-temporally restricted expression patterns during hair development and cycling suggest discrete functions in follicular patterning and hair cycle control. The main conclusion from a discussion of these potential roles vis-à-vis current expression data in mouse and man, and from the perspective of the results obtained with the Hoxc13 transgenic models, is that members of the Hox family are likely to fulfill essential roles of great functional diversity in hair that require complex transcriptional control mechanisms to ensure proper spatio-temporal patterns of Hox gene expression at homeostatic levels.
Collapse
Affiliation(s)
- Alexander Awgulewitsch
- Departments of Medicine and Dermatology, and Hollings Cancer Center, Medical University of South Carolina, 96 Jonathan Lucas St., CSB 912, Charleston, SC 29425, USA.
| |
Collapse
|
21
|
Bi X, Kajava AV, Jones T, Demidenko ZN, Mortin MA. The carboxy terminus of Prospero regulates its subcellular localization. Mol Cell Biol 2003; 23:1014-24. [PMID: 12529405 PMCID: PMC140706 DOI: 10.1128/mcb.23.3.1014-1024.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subcellular localization of the transcription factor Prospero is dynamic. For example, the protein is cytoplasmic in neuroblasts, nuclear in sheath cells, and degraded in newly formed neurons. The carboxy terminus of Prospero, including the homeodomain and Prospero domain, plays roles in regulating these changes. The homeodomain has two distinct subdomains, which exclude proteins from the nucleus, while the intact homeo/Prospero domain masks this effect. One subdomain is an Exportin-dependent nuclear export signal requiring three conserved hydrophobic residues, which models onto helix 1. Another, including helices 2 and 3, requires proteasome activity to degrade nuclear protein. Finally, the Prospero domain is missing in pros(I13) embryos, thus unmasking nuclear exclusion, resulting in constitutively cytoplasmic protein. Multiple processes direct Prospero regulation of cell fate in embryonic nervous system development.
Collapse
Affiliation(s)
- Xiaolin Bi
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
22
|
Zaffran S, Küchler A, Lee HH, Frasch M. biniou (FoxF), a central component in a regulatory network controlling visceral mesoderm development and midgut morphogenesis in Drosophila. Genes Dev 2001; 15:2900-15. [PMID: 11691840 PMCID: PMC312807 DOI: 10.1101/gad.917101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The subdivision of the lateral mesoderm into a visceral (splanchnic) and a somatic layer is a crucial event during early mesoderm development in both arthropod and vertebrate embryos. In Drosophila, this subdivision leads to the differential development of gut musculature versus body wall musculature. Here we report that biniou, the sole Drosophila representative of the FoxF subfamily of forkhead domain genes, has a key role in the development of the visceral mesoderm and the derived gut musculature. biniou expression is activated in the trunk visceral mesoderm primordia downstream of dpp, tinman, and bagpipe and is maintained in all types of developing gut muscles. We show that biniou activity is essential for maintaining the distinction between splanchnic and somatic mesoderm and for differentiation of the splanchnic mesoderm into midgut musculature. biniou is required not only for the activation of differentiation genes that are expressed ubiquitously in the trunk visceral mesoderm but also for the expression of dpp in parasegment 7, which governs proper midgut morphogenesis. Activation of dpp is mediated by specific Biniou binding sites in a dpp enhancer element, which suggests that Biniou serves as a tissue-specific cofactor of homeotic gene products in visceral mesoderm patterning. Based upon these and other data, we propose that the splanchnic mesoderm layers in Drosophila and vertebrate embryos are homologous structures whose development into gut musculature and other visceral organs is critically dependent on FoxF genes.
Collapse
Affiliation(s)
- S Zaffran
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
23
|
Torres-Vazquez J, Park S, Warrior R, Arora K. The transcription factor Schnurri plays a dual role in mediating Dpp signaling during embryogenesis. Development 2001; 128:1657-70. [PMID: 11290303 DOI: 10.1242/dev.128.9.1657] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Decapentaplegic (Dpp), a homolog of vertebrate bone morphogenic protein 2/4, is crucial for embryonic patterning and cell fate specification in Drosophila. Dpp signaling triggers nuclear accumulation of the Smads Mad and Medea, which affect gene expression through two distinct mechanisms: direct activation of target genes and relief of repression by the nuclear protein Brinker (Brk). The zinc-finger transcription factor Schnurri (Shn) has been implicated as a co-factor for Mad, based on its DNA-binding ability and evidence of signaling dependent interactions between the two proteins. A key question is whether Shn contributes to both repression of brk as well as to activation of target genes. We find that during embryogenesis, brk expression is derepressed in shn mutants. However, while Mad is essential for Dpp-mediated repression of brk, the requirement for shn is stage specific. Analysis of brk; shn double mutants reveals that upregulation of brk does not account for all aspects of the shn mutant phenotype. Several Dpp target genes are expressed at intermediate levels in double mutant embryos, demonstrating that shn also provides a brk-independent positive input to gene activation. We find that Shn-mediated relief of brk repression establishes broad domains of gene activation, while the brk-independent input from Shn is crucial for defining the precise limits and levels of Dpp target gene expression in the embryo.
Collapse
Affiliation(s)
- J Torres-Vazquez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
24
|
Demidenko Z, Badenhorst P, Jones T, Bi X, Mortin MA. Regulated nuclear export of the homeodomain transcription factor Prospero. Development 2001; 128:1359-67. [PMID: 11262236 DOI: 10.1242/dev.128.8.1359] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subcellular distribution of the Prospero protein is dynamically regulated during Drosophila embryonic nervous system development. Prospero is first detected in neuroblasts where it becomes cortically localized and tethered by the adapter protein, Miranda. After division, Prospero enters the nucleus of daughter ganglion mother cells where it functions as a transcription factor. We have isolated a mutation that removes the C-terminal 30 amino acids from the highly conserved 100 amino acid Prospero domain. Molecular dissection of the homeo- and Prospero domains, and expression of chimeric Prospero proteins in mammalian and insect cultured cells indicates that Prospero contains a nuclear export signal that is masked by the Prospero domain. Nuclear export of Prospero, which is sensitive to the drug leptomycin B, is mediated by Exportin. Mutation of the nuclear export signal-mask in Drosophila embryos prevents Prospero nuclear localization in ganglion mother cells. We propose that a combination of cortical tethering and regulated nuclear export controls Prospero subcellular distribution and function in all higher eukaryotes.
Collapse
Affiliation(s)
- Z Demidenko
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Saller E, Bienz M. Direct competition between Brinker and Drosophila Mad in Dpp target gene transcription. EMBO Rep 2001; 2:298-305. [PMID: 11306550 PMCID: PMC1083865 DOI: 10.1093/embo-reports/kve068] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Brinker is a nuclear protein that antagonizes Dpp signalling in Drosophila. Its expression is negatively regulated by Dpp. Here, we show that Brinker represses Ultrabithorax (Ubx) in the embryonic midgut, a HOX gene that activates, and responds to, the localized expression of Dpp during endoderm induction. We find that the functional target for Brinker repression coincides with the Dpp response sequence in the Ubx midgut enhancer, namely a tandem of binding sites for the Dpp effector Mad. We show that Brinker efficiently competes with Mad in vitro, preventing the latter from binding to these sites. Brinker also competes with activated Mad in vivo, blocking the stimulation of the Ubx enhancer in response to simultaneous Dpp signalling. These results indicate how Brinker acts as a dominant repressor of Dpp target genes, and explain why Brinker is a potent antagonist of Dpp.
Collapse
Affiliation(s)
- E Saller
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | |
Collapse
|
26
|
Miller DF, Rogers BT, Kalkbrenner A, Hamilton B, Holtzman SL, Kaufman T. Cross-regulation of Hox genes in the Drosophila melanogaster embryo. Mech Dev 2001; 102:3-16. [PMID: 11287177 DOI: 10.1016/s0925-4773(01)00301-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cross-regulation of Homeotic Complex (Hox) genes by ectopic Hox proteins during the embryonic development of Drosophila melanogaster was examined using Gal4 directed transcriptional regulation. The expression patterns of the endogenous Hox genes were analyzed to identify cross-regulation while ectopic expression patterns and timing were altered using different Gal4 drivers. We provide evidence for tissue specific interactions between various Hox genes and demonstrate the induction of endodermal labial (lab) by ectopically expressed Ultrabithorax outside the visceral mesoderm (VMS). Similarly, activation and repression of Hox genes in the VMS from outside tissues seems to be mediated by decapentaplegic (dpp) gene activation. Additionally, we find that proboscipedia (pb) is activated in the epidermis by ectopically driven Sex combs reduced (Scr) and Deformed (Dfd); however, mesodermal pb expression is repressed by ectopic Scr in this tissue. Mutant analyses demonstrate that Scr and Dfd regulate pb in their normal domains of expression during embryogenesis. Ectopic Ultrabithorax and Abdominal-A repress only lab and Scr in the central nervous system (CNS) in a timing dependent manner; otherwise, overlapping expression in the CNS in tolerated. A summary of Hox gene cross-regulation by ectopically driven Hox proteins is tabulated for embryogenesis.
Collapse
Affiliation(s)
- D F Miller
- Department of Biology, Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
27
|
Miller DF, Holtzman SL, Kalkbrenner A, Kaufman TC. Homeotic Complex (Hox) gene regulation and homeosis in the mesoderm of the Drosophila melanogaster embryo: the roles of signal transduction and cell autonomous regulation. Mech Dev 2001; 102:17-32. [PMID: 11287178 DOI: 10.1016/s0925-4773(01)00300-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this paper we evaluate homeosis and Homeotic Complex (Hox) regulatory hierarchies in the somatic and visceral mesoderm. We demonstrate that both Hox control of signal transduction and cell autonomous regulation are critical for establishing normal Hox expression patterns and the specification of segmental identity and morphology. We present data identifying novel regulatory interactions associated with the segmental register shift in Hox expression domains between the epidermis/somatic mesoderm and visceral mesoderm. A proposed mechanism for the gap between the expression domains of Sex combs reduced (Scr) and Antennapedia (Antp) in the visceral mesoderm is provided. Previously, Hox gene interactions have been shown to occur on multiple levels: direct cross-regulation, competition for binding sites at downstream targets and through indirect feedback involving signal transduction. We find that extrinsic specification of cell fate by signaling can be overridden by Hox protein expression in mesodermal cells and propose the term autonomic dominance for this phenomenon.
Collapse
Affiliation(s)
- D F Miller
- Department of Biology, Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
28
|
Schuler-Metz A, Knöchel S, Kaufmann E, Knöchel W. The homeodomain transcription factor Xvent-2 mediates autocatalytic regulation of BMP-4 expression in Xenopus embryos. J Biol Chem 2000; 275:34365-74. [PMID: 10938274 DOI: 10.1074/jbc.m003915200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Like other genes of the transforming growth factor-beta family, the BMP-4 gene is regulated by an autocatalytic loop. In Xenopus embryos this loop can be ectopically induced by injection of BMP-2 RNA. However, cycloheximide treatment subsequent to BMP-2 overexpression revealed that BMP signaling is not direct but requires additional factor(s). As putative mediator we have identified Xvent-2 which is activated by BMP-2/4 signaling and, in turn, activates BMP-4 transcription. Using promoter/reporter assays we have delineated Xvent-2 responsive elements within the BMP-4 gene. We further demonstrate that Xvent-2 which has recently been characterized as a transcriptional repressor can also act, context dependent, as an activator binding two copies of a 5'-CTAATT-3' motif in the second intron of the BMP-4 gene. Replacement of Xvent-2 target sites within the goosecoid (gsc) promoter by the BMP-4 enhancer converts Xvent-2 caused repression of gsc to strong activation. This switch is obviously due to adjacent nucleotides probably binding a transcriptional co-activator interacting with Xvent-2. A model is presented describing the mechanism of BMP-4 gene activation in Xenopus embryos at the early gastrula stage.
Collapse
Affiliation(s)
- A Schuler-Metz
- Abteilung Biochemie, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|
29
|
Abstract
The endoderm of Drosophila is patterned during embryogenesis by an inductive cascade emanating from the adhering mesoderm. An immediate-early endodermal target gene of this induction is Dfos whose expression is upregulated in the middle midgut by Dpp signalling. Previous evidence based on a dominant-negative Dfos construct indicated that Dfos may cooperate with Dpp signalling to induce the HOX gene labial, the ultimate target gene of the inductive cascade. Here, we examine kayak mutants that lack Dfos to establish that Dfos is indeed required for labial induction. We provide evidence that Dfos acts through a CRE-like sequence, previously identified to be a target for signalling by Dpp and by the Epidermal growth factor receptor (Egfr) in the embryonic midgut. We show that Dfos expression is stimulated by Egfr signalling. Finally, we find that Dfos function is required for its own upregulation. Thus, endoderm induction is based on at least four tiers of positive autoregulatory feedback loops.
Collapse
Affiliation(s)
- D Szüts
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK
| | | |
Collapse
|
30
|
Abstract
Zygotic expression of the BMP-4 gene in Xenopus embryos is regulated by an auto-regulatory loop. Since AP-1 is known as a mediator of auto-regulatory loops both in the case of the Drosophila dpp and the mammalian TGF-beta genes, we have analysed the potential of Xenopus c-Jun (AP-1) as a mediator of BMP-4 expression during Xenopus development. RNA injection experiments revealed that both heteromeric c-Fos/c-Jun and homodimeric c-Jun/c-Jun strongly activate BMP-4 transcription, whereas BMP signaling was found to activate the Xenopus c-Jun gene only at a rather low extent. In addition, the lack of zygotic c-Jun transcripts until the end of gastrulation should exclude a role of AP-1 in the activation and the early expression of BMP-4 during gastrulation in vivo. However, at later stages of Xenopus development, we find a spatial overlap of c-Jun and BMP-4 transcripts which suggests that AP-1 might serve as an additional activatory component for the auto-regulation of BMP-4. Promoter/reporter and gel mobility shift assays demonstrate multiple responsive sites for AP-1 in the 5' flanking region and two in the second intron of the BMP-4 gene. We further demonstrate that AP-1 acts independently of Xvent-2 which has recently been shown to mediate the early expression of BMP-4 in gastrula stage embryos.
Collapse
Affiliation(s)
- S Knöchel
- Abteilung Biochemie, Universität Ulm, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | | | | |
Collapse
|
31
|
Yang X, van Beest M, Clevers H, Jones T, Hursh DA, Mortin MA. decapentaplegic is a direct target of dTcf repression in the Drosophila visceral mesoderm. Development 2000; 127:3695-702. [PMID: 10934014 DOI: 10.1242/dev.127.17.3695] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila T cell factor (dTcf) mediates transcriptional activation in the presence of Wingless signalling and repression in its absence. Wingless signalling is required for the correct expression of decapentaplegic (dpp), a Transforming Growth Factor (beta) family member, in parasegments 3 and 7 of the Drosophila visceral mesoderm. Here we demonstrate that a dpp enhancer element, which directs expression of a reporter gene in the visceral mesoderm in a pattern indistinguishable from dpp, has two functional dTcf binding sites. Mutations that reduce or eliminate Wingless signalling abolish dpp reporter gene expression in parasegment 3 and reduce it in parasegment 7 while ectopic expression of Wingless signalling components expand reporter gene expression anteriorly in the visceral mesoderm. However, mutation of the dTcf binding sites in the dpp enhancer results in ectopic expression of reporter gene expression throughout the visceral mesoderm, with no diminution of expression in the endogenous sites of expression. These results demonstrate that the primary function of dTcf binding to the dpp enhancer is repression throughout the visceral mesoderm and that activation by Wingless signalling is probably not mediated via these dTcf binding sites to facilitate correct dpp expression in the visceral mesoderm.
Collapse
Affiliation(s)
- X Yang
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
32
|
Raftery LA, Sutherland DJ. TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Dev Biol 1999; 210:251-68. [PMID: 10357889 DOI: 10.1006/dbio.1999.9282] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily encompasses a large group of soluble extracellular proteins that are potent regulators of development in both vertebrates and invertebrates. Drosophila TGF-beta family members include three proteins with homology to vertebrate bone morphogenetic proteins (BMPs): Decapentaplegic (Dpp), Screw, and Glass bottom boat-60A. Genetic studies of Dpp signaling led to the identification of Smad proteins as central mediators of signal transduction by TGF-beta family members. Work in mammalian tissue culture has elucidated a biochemical model for signal transduction, in which activation of receptor serine-threonine kinase activity leads to phosphorylation of specific Smad proteins and translocation of heteromeric Smad protein complexes to the nucleus. Once in the nucleus Smad proteins interact with other DNA binding proteins to regulate transcription of specific target genes. Dissection of Dpp-response elements from genes expressed during embryonic mesoderm patterning and midgut morphogenesis provides important insights into the contributions of Smad proteins and tissue-specific transcription factors to spatial regulation of gene expression. Genetic studies in Drosophila are now expanding to include multiple BMP ligands and receptors and have uncovered activities not explained by the current signal transduction model. Identification of more ligand sequences and demonstration of a functional Drosophila activin-like signal transduction pathway suggest that all TGF-beta signal transduction pathways are present in flies.
Collapse
Affiliation(s)
- L A Raftery
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Building 149 13th Street, Charlestown, Massachusetts, 02129, USA
| | | |
Collapse
|
33
|
Wharton KA, Cook JM, Torres-Schumann S, de Castro K, Borod E, Phillips DA. Genetic analysis of the bone morphogenetic protein-related gene, gbb, identifies multiple requirements during Drosophila development. Genetics 1999; 152:629-40. [PMID: 10353905 PMCID: PMC1460618 DOI: 10.1093/genetics/152.2.629] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have isolated mutations in the Drosophila melanogaster gene glass bottom boat (gbb), which encodes a TGF-beta signaling molecule (formerly referred to as 60A) with highest sequence similarity to members of the bone morphogenetic protein (BMP) subgroup including vertebrate BMPs 5-8. Genetic analysis of both null and hypomorphic gbb alleles indicates that the gene is required in many developmental processes, including embryonic midgut morphogenesis, patterning of the larval cuticle, fat body morphology, and development and patterning of the imaginal discs. In the embryonic midgut, we show that gbb is required for the formation of the anterior constriction and for maintenance of the homeotic gene Antennapedia in the visceral mesoderm. In addition, we show a requirement for gbb in the anterior and posterior cells of the underlying endoderm and in the formation and extension of the gastric caecae. gbb is required in all the imaginal discs for proper disc growth and for specification of veins in the wing and of macrochaete in the notum. Significantly, some of these tissues have been shown to also require the Drosophila BMP2/4 homolog decapentaplegic (dpp), while others do not. These results indicate that signaling by both gbb and dpp may contribute to the development of some tissues, while in others, gbb may signal independently of dpp.
Collapse
Affiliation(s)
- K A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Breen TR. Mutant alleles of the Drosophila trithorax gene produce common and unusual homeotic and other developmental phenotypes. Genetics 1999; 152:319-44. [PMID: 10224264 PMCID: PMC1460610 DOI: 10.1093/genetics/152.1.319] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
trithorax (trx) encodes chromosome-binding proteins required throughout embryogenesis and imaginal development for tissue- and cell-specific levels of transcription of many genes including homeotic genes of the ANT-C and BX-C. trx encodes two protein isoforms that contain conserved motifs including a C-terminal SET domain, central PHD fingers, an N-terminal DNA-binding homology, and two short motifs also found in the TRX human homologue, ALL1. As a first step to characterizing specific developmental functions of TRX, I examined phenotypes of 420 combinations of 21 trx alleles. Among these are 8 hypomorphic alleles that are sufficient for embryogenesis but provide different levels of trx function at homeotic genes in imaginal cells. One allele alters the N terminus of TRX, which severely impairs larval and imaginal growth. Hypomorphic alleles that alter different regions of TRX equivalently reduce function at affected genes, suggesting TRX interacts with common factors at different target genes. All hypomorphic alleles examined complement one another, suggesting cooperative TRX function at target genes. Comparative effects of hypomorphic genotypes support previous findings that TRX has tissue-specific interactions with other factors at each target gene. Some hypomorphic genotypes also produce phenotypes that suggest TRX may be a component of signal transduction pathways that provide tissue- and cell-specific levels of target gene transcription.
Collapse
Affiliation(s)
- T R Breen
- Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901-6501, USA.
| |
Collapse
|
35
|
Newfeld SJ, Takaesu NT. Local transposition of a hobo element within the decapentaplegic locus of Drosophila. Genetics 1999; 151:177-87. [PMID: 9872958 PMCID: PMC1460446 DOI: 10.1093/genetics/151.1.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have efficiently mobilized a phenotypically silent hobo transgene inserted within the cis-regulatory heldout region of the decapentaplegic (dpp) locus in Drosophila melanogaster. The goal of our experiment was to identify germline transmission of a local transposition event within the dpp locus that meets two specific criteria. First, excision of the hobo construct does not generate an adult mutant phenotype, suggesting minimal alteration to the original site of insertion. Second, we required a new insertion of the hobo transgene into the Haploinsufficient region of the locus approximately 25 kb away. Genetic and molecular criteria are used to evaluate candidate germlines. In a pilot study, this local transposition event occurred independently in two individuals. Both of the transposition events appear to be new insertions into the dpp transcription unit. One insertion is between the two protein-coding exons, and the other is in the 3'-untranslated region of exon three. Strains carrying these insertions are valuable new reagents for the analysis of dpp function and molecular evolution. These results further support the use of the hobo system as an important tool in Drosophila genetics.
Collapse
Affiliation(s)
- S J Newfeld
- Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, USA.
| | | |
Collapse
|
36
|
Capovilla M, Botas J. Functional dominance among Hox genes: repression dominates activation in the regulation of Dpp. Development 1998; 125:4949-57. [PMID: 9811579 DOI: 10.1242/dev.125.24.4949] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we investigate the mechanisms by which Hox genes compete for the control of positional identity. Functional dominance is often observed where different Hox genes are co-expressed, and frequently the more posteriorly expressed Hox gene is the one that prevails, a phenomenon known as posterior prevalence. We use dpp674, a visceral mesoderm-specific enhancer of decapentaplegic (dpp), to investigate functional dominance among Hox genes molecularly. We find that posterior prevalence does not adequately describe the regulation of dpp by Hox genes. Instead, we find that abdominal-A (abd-A) dominates over the more posterior Abdominal-B (Abd-B) and the more anterior Ultrabithorax (Ubx). In the context of the dpp674 enhancer, abd-A functions as a repressor whereas Ubx and Abd-B function as activators. Thus, these results suggest that other cases of Hox competition and functional dominance may also be understood in terms of competition for target gene regulation in which repression dominates over activation.
Collapse
Affiliation(s)
- M Capovilla
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
37
|
Xie T, Spradling AC. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 1998; 94:251-60. [PMID: 9695953 DOI: 10.1016/s0092-8674(00)81424-5] [Citation(s) in RCA: 533] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stem cells are thought to occupy special local environments, or niches, established by neighboring cells that give them the capability for self-renewal. Each ovariole in the Drosophila ovary contains two germline stem cells surrounded by a group of differentiated somatic cells that express hedgehog and wingless. Here we show that the BMP2/4 homolog decapentaplegic (dpp) is specifically required to maintain female germline stem cells and promote their division. Overexpression of dpp blocks germline stem cell differentiation. Conversely, mutations in dpp or its receptor (saxophone) accelerate stem cell loss and retard stem cell division. We constructed mutant germline stem cell clones to show that the dpp signal is directly received by germline stem cells. Thus, dpp signaling helps define a niche that controls germline stem cell proliferation.
Collapse
Affiliation(s)
- T Xie
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | |
Collapse
|
38
|
Saunders HH, Koizumi K, Odenwald W, Nirenberg M. Neuroblast pattern formation: regulatory DNA that confers the vnd/NK-2 homeobox gene pattern on a reporter gene in transgenic lines of Drosophila. Proc Natl Acad Sci U S A 1998; 95:8316-21. [PMID: 9653184 PMCID: PMC20973 DOI: 10.1073/pnas.95.14.8316] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA fragments -0.57, -2.2, -2.9, -5.3, and -8.4 kb in length from the upstream regulatory region of the vnd/NK-2 gene were cloned in the 5'-flanking region of a beta-galactosidase (beta-gal) reporter gene in the P-element pCaSpeR-AUG-beta-gal, and the effects of the DNA on the pattern and time of expression of beta-gal were determined in transgenic embryos. Embryos from 11 lines transformed with -8.4 kb of vnd/NK-2 regulatory DNA expressed beta-gal patterns that closely resemble those of vnd/NK-2. In embryos from four lines transformed with -5.3 kb of vnd/NK-2 DNA, beta-gal was found in the normal vnd/NK-2 pattern in the nerve cord but not in part of the cephalic region. beta-Gal patterns in embryos from transgenic lines containing -0.57, -2.2, or -2.9 kb of vnd/NK-2 DNA did not resemble vnd/NK-2. Null vnd/NK-2 mutant embryos containing the homozygous P-element p[-8.4 to +0.34 beta-gal] expressed little beta-gal in contrast to siblings with a wild-type vnd/NK-2 gene. We conclude that (i) the 8.4-kb DNA fragment from the vnd/NK-2 gene contains the nucleotide sequences required to generate the normal pattern of vnd/NK-2 gene expression, sequences that may be involved in the switch between neuroblast vs. epidermoblast pathways of development, (ii) the 5'-flanking region of the vnd/NK-2 gene between -5.3 and -8. 4 kb is required for vnd/NK-2 gene expression in the most dorsoanterior part of the cephalic region, and (iii) vnd/NK-2 protein is required, directly or indirectly, for maintenance of vnd/NK-2 gene expression.
Collapse
Affiliation(s)
- H H Saunders
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
39
|
Szüts D, Eresh S, Bienz M. Functional intertwining of Dpp and EGFR signaling during Drosophila endoderm induction. Genes Dev 1998; 12:2022-35. [PMID: 9649506 PMCID: PMC316971 DOI: 10.1101/gad.12.13.2022] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Endoderm induction in Drosophila is mediated by the extracellular signals Decapentaplegic (Dpp) and Wingless (Wg). We discovered a secondary signal with a permissive role in this process, namely Vein, a neuregulin-like ligand that stimulates the epidermal growth factor receptor (EGFR) and Ras signaling. Dpp and Wg up-regulate vein expression in the midgut mesoderm in two regions overlapping the Dpp sources. Experiments based on lack of function and ectopic stimulation of Dpp and EGFR signaling show that these two pathways are functionally interdependent and that they synergize with each other, revealing functional intertwining. The transcriptional response elements for the Dpp signal in midgut enhancers from homeotic target genes are bipartite, comprising CRE sites as well as binding sites for the Dpp signal-transducing protein Mad. Of these sites, the CRE seems to function primarily in the response to Ras, the secondary signal of Dpp. We discuss the potential significance of why an inductive process might use a secondary signal whose function is intertwined with that of the primary signal.
Collapse
Affiliation(s)
- D Szüts
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
40
|
Nicholls RE, Gelbart WM. Identification of chromosomal regions involved in decapentaplegic function in Drosophila. Genetics 1998; 149:203-15. [PMID: 9584097 PMCID: PMC1460128 DOI: 10.1093/genetics/149.1.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Signaling molecules of the transforming growth factor beta (TGF-beta) family contribute to numerous developmental processes in a variety of organisms. However, our understanding of the mechanisms which regulate the activity of and mediate the response to TGF-beta family members remains incomplete. The product of the Drosophila decapentaplegic (dpp) locus is a well-characterized member of this family. We have taken a genetic approach to identify factors required for TGF-beta function in Drosophila by testing for genetic interactions between mutant alleles of dpp and a collection of chromosomal deficiencies. Our survey identified two deficiencies that act as maternal enhancers of recessive embryonic lethal alleles of dpp. The enhanced individuals die with weakly ventralized phenotypes. These phenotypes are consistent with a mechanism whereby the deficiencies deplete two maternally provided factors required for dpp's role in embryonic dorsal-ventral pattern formation. One of these deficiencies also appears to delete a factor required for dpp function in wing vein formation. These deficiencies remove material from the 54F-55A and 66B-66C polytene chromosomal regions, respectively. As neither of these regions has been previously implicated in dpp function, we propose that each of the deficiencies removes a novel factor or factors required for dpp function.
Collapse
Affiliation(s)
- R E Nicholls
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
41
|
Chen Y, Riese MJ, Killinger MA, Hoffmann FM. A genetic screen for modifiers of Drosophila decapentaplegic signaling identifies mutations in punt, Mothers against dpp and the BMP-7 homologue, 60A. Development 1998; 125:1759-68. [PMID: 9521913 DOI: 10.1242/dev.125.9.1759] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
decapentaplegic (dpp) is a Transforming Growth Factor beta (TGF-beta)-related growth factor that controls multiple developmental processes in Drosophila. To identify components involved in dpp signaling, we carried out a genetic screen for dominant enhancer mutations of a hypomorphic allele of thick veins (tkv), a type I receptor for dpp. We recovered new alleles of tkv, punt, Mothers against dpp (Mad) and Medea (Med), all of which are known to mediate dpp signaling. We also recovered mutations in the 60A gene which encodes another TGF-beta-related factor in Drosophila. DNA sequence analysis established that all three 60A alleles were nonsense mutations in the prodomain of the 60A polypeptide. These mutations in 60A caused defects in midgut morphogenesis and fat body differentiation. We present evidence that when dpp signaling is compromised, lowering the level of 60A impairs several dpp-dependent developmental processes examined, including the patterning of the visceral mesoderm, the embryonic ectoderm and the imaginal discs. These results provide the first in vivo evidence for the involvement of 60A in the dpp pathway. We propose that 60A activity is required to maintain optimal signaling capacity of the dpp pathway, possibly by forming biologically active heterodimers with Dpp proteins.
Collapse
Affiliation(s)
- Y Chen
- McArdle Laboratory for Cancer Research, Medical School, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
42
|
Pearlstein RP, Benninger MS, Carey TE, Zarbo RJ, Torres FX, Rybicki BA, Dyke DL. Loss of 18q predicts poor survival of patients with squamous cell carcinoma of the head and neck. Genes Chromosomes Cancer 1998; 21:333-9. [PMID: 9559345 DOI: 10.1002/(sici)1098-2264(199804)21:4<333::aid-gcc7>3.0.co;2-#] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor suppressor genes play an important role in normal growth regulation. Loss or inactivation of these genes has been implicated in the development of squamous cell cancer and progression of neoplasia. Previous studies in our laboratories have implicated chromosome 18 long-arm deletions as a possible marker of progression in head and neck squamous cell cancer (HNSCC). To test this hypothesis, we evaluated DNA from 67 HNSCC patients for loss of heterozygosity (LOH) at 18q loci, and for association of LOH with survival. Tumor and normal DNA were extracted from fresh tissue and paraffin blocks and were amplified by PCR using primers for three microsatellite repeat polymorphisms in 18q (D18S336, D18S34, and MBP). A total of 27 (40%) patients had LOH of 18q, and these patients had a statistically significantly poorer two-year survival compared to those without 18q LOH (30% vs. 63%; P = 0.008). In a Cox proportional hazards model in which time from diagnosis to death was the outcome variable, patients with 18q LOH had an unadjusted relative risk (RR) of death of 2.46 (P = 0.005). When 18q LOH was placed in a multivariate model controlling for possible confounders in the study, the RR for death was still elevated (RR = 2.10; P = 0.025). The observation of a prognostic association between 18q LOH and poor patient survival suggests that loss of an 18q tumor suppressor gene or genes is important in the progression of HNSCC.
Collapse
Affiliation(s)
- R P Pearlstein
- Department of Otolaryngology, Head and Neck Surgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
The Smad5 Gene Is Involved in the Intracellular Signaling Pathways That Mediate the Inhibitory Effects of Transforming Growth Factor-β on Human Hematopoiesis. Blood 1998. [DOI: 10.1182/blood.v91.6.1917] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSignals from transforming growth factor-β (TGF-β), a bifunctional regulator of the proliferation of hematopoietic progenitor cells, have been recently shown to be transduced by five novel human genes related to a Drosophila gene termed MAD (mothers against the decapentaplegic gene). We showed by reverse transcriptase polymerase chain reaction that the RNA from one homologue gene, Smad5, was present in the immortalized myeloid leukemia cell lines, KG1 and HL60, in bone marrow mononuclear and polymorphonuclear cells, as well as in purified CD34+ bone marrow cells. Therefore, we studied the role of this gene in the regulation of human hematopoiesis by TGF-β. TGF-β1 and TGF-β2 significantly inhibited myeloid, erythroid, megakaryocyte, and multilineage colony formation as assayed in semisolid culture systems. The levels of Smad5 mRNA in CD34+ cells were decreased by antisense but not sense oligonucleotides to Smad5. Preincubation of CD34+ marrow cells with two sense oligonucleotides to Smad5 did not reverse the inhibitory effects of TGF-β on hematopoietic colony formation. However, preincubation with two antisense oligonucleotides to Smad5 reversed the inhibitory effects of TGF-β. These data show that the Smad5 gene is involved in the signaling pathway by which TGF-β inhibits primitive human hematopoietic progenitor cell proliferation and that Smad5 antisense oligonucleotides can interrupt this signal.
Collapse
|
44
|
The Smad5 Gene Is Involved in the Intracellular Signaling Pathways That Mediate the Inhibitory Effects of Transforming Growth Factor-β on Human Hematopoiesis. Blood 1998. [DOI: 10.1182/blood.v91.6.1917.1917_1917_1923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signals from transforming growth factor-β (TGF-β), a bifunctional regulator of the proliferation of hematopoietic progenitor cells, have been recently shown to be transduced by five novel human genes related to a Drosophila gene termed MAD (mothers against the decapentaplegic gene). We showed by reverse transcriptase polymerase chain reaction that the RNA from one homologue gene, Smad5, was present in the immortalized myeloid leukemia cell lines, KG1 and HL60, in bone marrow mononuclear and polymorphonuclear cells, as well as in purified CD34+ bone marrow cells. Therefore, we studied the role of this gene in the regulation of human hematopoiesis by TGF-β. TGF-β1 and TGF-β2 significantly inhibited myeloid, erythroid, megakaryocyte, and multilineage colony formation as assayed in semisolid culture systems. The levels of Smad5 mRNA in CD34+ cells were decreased by antisense but not sense oligonucleotides to Smad5. Preincubation of CD34+ marrow cells with two sense oligonucleotides to Smad5 did not reverse the inhibitory effects of TGF-β on hematopoietic colony formation. However, preincubation with two antisense oligonucleotides to Smad5 reversed the inhibitory effects of TGF-β. These data show that the Smad5 gene is involved in the signaling pathway by which TGF-β inhibits primitive human hematopoietic progenitor cell proliferation and that Smad5 antisense oligonucleotides can interrupt this signal.
Collapse
|
45
|
Sluss HK, Davis RJ. Embryonic morphogenesis signaling pathway mediated by JNK targets the transcription factor JUN and the TGF-β homologuedecapentaplegic. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(19971001)67:1<1::aid-jcb1>3.0.co;2-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Affiliation(s)
- M Bienz
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
47
|
Newfeld SJ, Mehra A, Singer MA, Wrana JL, Attisano L, Gelbart WM. Mothers against dpp participates in a DDP/TGF-beta responsive serine-threonine kinase signal transduction cascade. Development 1997; 124:3167-76. [PMID: 9272957 DOI: 10.1242/dev.124.16.3167] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mothers against dpp (Mad) is the prototype of a family of genes required for signaling by TGF-beta related ligands. In Drosophila, Mad is specifically required in cells responding to Decapentaplegic (DPP) signals. We further specify the role of Mad in DPP-mediated signaling by utilizing tkvQ199D, an activated form of the DPP type I receptor serine-threonine kinase thick veins (tkv). In the embryonic midgut, tkvQ199D mimics DPP-mediated inductive interactions. Homozygous Mad mutations block signaling by tkvQ199D. Appropriate responses to signaling by tkvQ199D are restored by expression of MAD protein in DPP-target cells. Endogenous MAD is phosphorylated in a ligand-dependent manner in Drosophila cell culture. DPP overexpression in the embryonic midgut induces MAD nuclear accumulation; after withdrawal of the overexpressed DPP signal, MAD is detected only in the cytoplasm. However, in three different tissues and developmental stages actively responding to endogenous DPP, MAD protein is detected in the cytoplasm but not in the nucleus. From these observations, we discuss possible roles for MAD in a DPP-dependent serine-threonine kinase signal transduction cascade integral to the proper interpretation of DPP signals.
Collapse
Affiliation(s)
- S J Newfeld
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
48
|
Graba Y, Aragnol D, Pradel J. Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays 1997; 19:379-88. [PMID: 9174403 DOI: 10.1002/bies.950190505] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hox complex genes are key developmental regulators highly conserved throughout evolution. The encoded proteins share a 60-amino-acid DNA-binding motif, the homeodomain, and function as transcription factors to control axial patterning. An important question concerns the nature and function of genes acting downstream of Hox proteins. This review focuses on Drosophila, as little is known about this question in other organisms. The noticeable progress gained in the field during the past few years has significantly improved our current understanding of how Hox genes control diversified morphogenesis. Here we summarise the strategies deployed to identify Hox target genes and discuss how their function contributes to pattern formation and morphogenesis. The regulation of target genes is also considered with special emphasis on the mechanisms underlying the specificity of action of Hox proteins in the whole animal.
Collapse
Affiliation(s)
- Y Graba
- Laboratoire de Génétique et de Biologie du Développement, Institut de Biologie du Développement de Marseille, CNRS Case 907, Marseille, France
| | | | | |
Collapse
|
49
|
Jedlicka P, Mortin MA, Wu C. Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 1997; 16:2452-62. [PMID: 9171358 PMCID: PMC1169845 DOI: 10.1093/emboj/16.9.2452] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heat shock transcription factor (HSF) is a transcriptional activator of heat shock protein (hsp) genes in eukaryotes. In order to elucidate the physiological functions of HSF in Drosophila, we have isolated lethal mutations in the hsf gene. Using a conditional allele, we show that HSF has an essential role in the ability of the organism to survive extreme heat stress. In contrast to previous results obtained with yeast HSF, the Drosophila protein is dispensable for general cell growth or viability. However, it is required under normal growth conditions for oogenesis and early larval development. These two developmental functions of Drosophila HSF are genetically separable and appear not to be mediated through the induction of HSPs, implicating a novel action of HSF that may be unrelated to its characteristic function as a stress-responsive transcriptional activator.
Collapse
Affiliation(s)
- P Jedlicka
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
50
|
van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 1997; 88:789-99. [PMID: 9118222 DOI: 10.1016/s0092-8674(00)81925-x] [Citation(s) in RCA: 986] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vertebrate transcription factors TCF (T cell factor) and LEF (lymphocyte enhancer binding factor) interact with beta-catenin and are hypothesized to mediate Wingless/Wnt signaling. We have cloned a maternally expressed Drosophila TCF family member, dTCF. dTCF binds a canonical TCF DNA motif and interacts with the beta-catenin homolog Armadillo. Previous studies have identified two regions in Armadillo required for Wingless signaling. One of these interacts with dTCF, while the other constitutes a transactivation domain. Mutations in dTCF and expression of a dominant-negative dTCF transgene cause a segment polarity phenotype and affect expression of the Wingless target genes engrailed and Ultrabithorax. Epistasis analysis positions dTCF downstream of armadillo. The Armadillo-dTCF complex mediates Wingless signaling as a bipartite transcription factor.
Collapse
Affiliation(s)
- M van de Wetering
- Department of Immunology, University Hospital, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|