1
|
Kozoriz A, Mora S, Damiano MA, Carballo-Carbajal I, Parent A, Kumarasinghe L, Vila M, Lassot I, Desagher S. ZSCAN21 mediates the pathogenic transcriptional induction of α-synuclein in cellular and animal models of Parkinson's disease. Cell Death Dis 2025; 16:394. [PMID: 40379611 DOI: 10.1038/s41419-025-07722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
The expression level of α-synuclein is thought to play a crucial role in the pathogenesis of Parkinson's disease. However, little is known about the molecular mechanisms regulating the transcription of its gene, SNCA, particularly in the context of the disease. The transcription factor ZSCAN21 has been shown to act on SNCA, but whether ZSCAN21 is actually involved in the induction of SNCA transcription in Parkinson's disease is unknown. To address this question, we used the MPTP mouse model and LUHMES-derived dopaminergic neuronal spheroids, subjected to Parkinson's disease-related neurotoxins and mutations. We show that MPP+-treated spheroids recapitulate the main features of α-synuclein pathology and that MPP+-triggered transcriptional induction of SNCA is associated with ZSCAN21 stabilisation. Importantly, knock-down of ZSCAN21 prevents both the MPP+-triggered increase in α-synuclein mRNA and pre-mRNA levels in LUHMES-derived spheroids and the death of dopaminergic neurons in the substantia nigra of MPTP-treated mice. These effects are recapitulated by knockdown of TRIM17, a ZSCAN21 stabiliser which prevents its ubiquitination and degradation mediated by TRIM41. Moreover, reducing the interaction between ZSCAN21 and TRIM41, either by inserting Parkinson's disease-associated mutations into the TRIM41 gene or by preventing SUMOylation of ZSCAN21, results in both stabilisation of ZSCAN21 and induction of SNCA. Taken together, our data strongly suggest that ZSCAN21 is a crucial transcription factor for pathogenic α-synuclein expression and neurodegeneration in Parkinson's disease, pointing to its regulators, TRIM17 and TRIM41, as original therapeutic targets for a neuroprotective treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Alina Kozoriz
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | - Stéphan Mora
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | | | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | | | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institut de Neurociències (INc-UAB), Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Iréna Lassot
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | - Solange Desagher
- IGMM, University of Montpellier, CNRS, Montpellier, France.
- IRIM, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
2
|
Sadria M, Layton A, Goyal S, Bader GD. Fatecode enables cell fate regulator prediction using classification-supervised autoencoder perturbation. CELL REPORTS METHODS 2024; 4:100819. [PMID: 38986613 PMCID: PMC11294839 DOI: 10.1016/j.crmeth.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 11/20/2023] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. We propose Fatecode, a computational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq) data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classification-supervised autoencoder and then performs in silico perturbation experiments on the latent representation to predict genes that, when perturbed, would alter the original cell type distribution to increase or decrease the population size of a cell type of interest. We assessed Fatecode's performance using simulations from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell transcriptomics datasets.
Collapse
Affiliation(s)
- Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Anita Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada; Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada; Department of Biology, University of Waterloo, Waterloo, ON, Canada; School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
3
|
González Maciel A, Rosas López LE, Romero-Velázquez RM, Ramos-Morales A, Ponce-Macotela M, Calderón-Guzmán D, Trujillo-Jiménez F, Alfaro-Rodríguez A, Reynoso-Robles R. Postnatal zinc deficiency due to giardiasis disrupts hippocampal and cerebellar development. PLoS Negl Trop Dis 2024; 18:e0012302. [PMID: 38950061 PMCID: PMC11244800 DOI: 10.1371/journal.pntd.0012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/12/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Giardiasis and zinc deficiency have been identified as serious health problems worldwide. Although Zn depletion is known to occur in giardiasis, no work has investigated whether changes occur in brain structures. METHODS Three groups of gerbils were used: control (1), orogastrically inoculated on day 3 after birth with trophozoites of two isolates of Giardia intestinalis (HGINV/WB) group (2 and 3). Estimates were made at five ages covering: establishment of infection, Giardia population growth, natural parasite clearance and a post-infection age. QuantiChrome zinc assay kit, cresyl violet staining and TUNEL technique were used. RESULTS A significant decrease (p<0.01) in tissue zinc was observed and persisted after infection. Cytoarchitectural changes were observed in 75% of gerbils in the HGINV or WB groups. Ectopic pyramidal neurons were found in the cornus ammonis (CA1-CA3). At 60 and 90 days of age loss of lamination was clearly visible in CA1. In the dentate gyrus (DG), thinning of the dorsal lamina and abnormal thickening of the ventral lamina were observed from 30 days of age. In the cerebellum, we found an increase (p<0.01) in the thickness of the external granular layer (EGL) at 14 days of age that persisted until day 21 (C 3 ± 0.3 μm; HGINV 37 ± 5 μm; WB 28 ± 3 μm); Purkinje cell population estimation showed a significant decrease; a large number of apoptotic somas were observed scattered in the molecular layer; in 60 and 90 days old gerbils we found granular cell heterotopia and Purkinje cell ectopia. The pattern of apoptosis was different in the cerebellum and hippocampus of parasitized gerbils. CONCLUSION The morphological changes found suggest that neuronal migration is affected by zinc depletion caused by giardiasis in early postnatal life; for the first time, the link between giardiasis-zinc depletion and damaged brain structures is shown. This damage may explain the psychomotor/cognitive delay associated with giardiasis. These findings are alarming. Alterations in zinc metabolism and signalling are known to be involved in many brain disorders, including autism.
Collapse
Affiliation(s)
- Angélica González Maciel
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Laura Elizabeth Rosas López
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Rosa María Romero-Velázquez
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Andrea Ramos-Morales
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Martha Ponce-Macotela
- Laboratory of Experimental Parasitology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - David Calderón-Guzmán
- Laboratory of Neuroscience, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | | | - Alfonso Alfaro-Rodríguez
- Division of Neurosciences, Instituto Nacional de Rehabilitación, "Luis Guillermo Ibarra Ibarra", Secretaría de Salud, Mexico City, Mexico
| | - Rafael Reynoso-Robles
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
4
|
Basu-Shrivastava M, Kozoriz A, Desagher S, Lassot I. To Ubiquitinate or Not to Ubiquitinate: TRIM17 in Cell Life and Death. Cells 2021; 10:1235. [PMID: 34069831 PMCID: PMC8157266 DOI: 10.3390/cells10051235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.
Collapse
Affiliation(s)
| | - Alina Kozoriz
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, Montpellier, France
| |
Collapse
|
5
|
Lassot I, Mora S, Lesage S, Zieba BA, Coque E, Condroyer C, Bossowski JP, Mojsa B, Marelli C, Soulet C, Tesson C, Carballo-Carbajal I, Laguna A, Mangone G, Vila M, Brice A, Desagher S. The E3 Ubiquitin Ligases TRIM17 and TRIM41 Modulate α-Synuclein Expression by Regulating ZSCAN21. Cell Rep 2019; 25:2484-2496.e9. [PMID: 30485814 DOI: 10.1016/j.celrep.2018.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Stéphan Mora
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Suzanne Lesage
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Barbara A Zieba
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Emmanuelle Coque
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Christel Condroyer
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Jozef Piotr Bossowski
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Barbara Mojsa
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Cecilia Marelli
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Caroline Soulet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Christelle Tesson
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Graziella Mangone
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Alexis Brice
- Sorbonne Universités, UPMC Université de Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France; INSERM U 1127, CNRS UMR 7225, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
6
|
Dermentzaki G, Paschalidis N, Politis PK, Stefanis L. Complex Effects of the ZSCAN21 Transcription Factor on Transcriptional Regulation of α-Synuclein in Primary Neuronal Cultures and in Vivo. J Biol Chem 2016; 291:8756-72. [PMID: 26907683 DOI: 10.1074/jbc.m115.704973] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein, a presynaptic neuronal protein encoded by the SNCA gene, is strongly implicated in Parkinson disease (PD). PD pathogenesis is linked to increased SNCA levels; however, the transcriptional elements that control SNCA expression are still elusive. Previous experiments in PC12 cells demonstrated that the transcription factor zinc finger and SCAN domain containing 21 (ZSCAN21) plays an important regulatory role in SNCA transcription. Currently, we characterized the role of ZSCAN21 in SNCA transcription in primary neuronal cultures and in vivo We found that ZSCAN21 is developmentally expressed in neurons in different rat brain regions. We confirmed its binding in the intron 1 region of SNCA in rat cortical cultures. Lentivirus-mediated silencing of ZSCAN21 increased significantly SNCA promoter activity, mRNA, and protein levels in such cultures. In contrast, ZSCAN21 silencing reduced SNCA in neurosphere cultures. Interestingly, ZSCAN21 overexpression in cortical neurons led to robust mRNA but negligible protein expression, suggesting that ZSCAN21 protein levels are tightly regulated post-transcriptionally and/or post-translationally in primary neurons. Efficient adeno-associated virus-mediated knockdown of ZSCAN21 in the postnatal and adult hippocampus, an area linked with non-motor PD symptoms, revealed no significant alterations in SNCA levels. Overall, our study demonstrates that ZSCAN21 is involved in the transcriptional regulation of SNCA in primary neuronal cultures, but the direction of the effect is variable, likely depending on neuronal maturation. However, the unaltered SNCA levels observed following ZSCAN21 down-regulation in the rat brain, possibly due to compensatory mechanisms, imply that ZSCAN21 is not a master regulator of SNCA in vivo.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and
| | - Nikolaos Paschalidis
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and
| | - Panagiotis K Politis
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and
| | - Leonidas Stefanis
- From the Biomedical Research Foundation of the Academy of Athens, Athens 11527 and the Second Department of Neurology, National and Kapodistrian University of Athens Medical School, Hospital Attikon, Athens 12462, Greece,
| |
Collapse
|
7
|
Sotelo C. Molecular layer interneurons of the cerebellum: developmental and morphological aspects. CEREBELLUM (LONDON, ENGLAND) 2015; 14:534-56. [PMID: 25599913 DOI: 10.1007/s12311-015-0648-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the past 25 years, our knowledge on the development of basket and stellate cells (molecular layer interneurons [MLIs]) has completely changed, not only regarding their origin from the ventricular zone, corresponding to the primitive cerebellar neuroepithelium, instead of the external granular layer, but above all by providing an almost complete account of the genetic regulations (transcription factors and other genes) involved in their differentiation and synaptogenesis. Moreover, it has been shown that MLIs' precursors (dividing neuroblasts) and not young postmitotic neurons, as in other germinal neuroepithelia, leave the germinative zone and migrate all along a complex and lengthy path throughout the presumptive cerebellar white matter, which provides suitable niches exerting epigenetic influences on their ultimate neuronal identities. Recent studies carried out on the anatomical-functional properties of adult MLIs emphasize the importance of these interneurons in regulating PC inhibition, and point out the crucial role played by electrical synaptic transmission between MLIs as well as ephaptic interactions between them and Purkinje cells at the pinceaux level, in the regulation of this inhibition.
Collapse
Affiliation(s)
- Constantino Sotelo
- INSERM, UMRS_U968, Institut de la Vision, 17 Rue Moreau, Paris, 75012, France.
- Institut de la Vision, Sorbonne Université, UPMC Univ Paris 06, Paris, 75012, France.
- CNRS, UMR_7210, Paris, 75012, France.
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández (UMH), Avenida Ramón y Cajal s/n, 03550, San Juan de Alicante, Spain.
| |
Collapse
|
8
|
Erceg S, Lukovic D, Moreno-Manzano V, Stojkovic M, Bhattacharya SS. Derivation of cerebellar neurons from human pluripotent stem cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2012; Chapter 1:Unit 1H.5. [PMID: 22415839 DOI: 10.1002/9780470151808.sc01h05s20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Here we provide a protocol for differentiation of human embryonic stem cells (hESC) into cerebellar neurons using a novel defined culture method. This protocol is based on the application of inductive signaling factors involved in the early patterning of the cerebellar region of the neural tube, followed by the application of factors responsible for cerebellar neuron specification. Human pluripotent stem cells are induced to form spherical embryonic-like structures called embryoid bodies (EBs) and neuroepithelial tube-like rosettes using defined chemical conditions. In the presence of FGF, Wnt, and RA signaling factors the rosettes were specified to OTX2-expressing cells. Further specification of derived cells involves application of BMP factors involved in early development of granule cell progenitors, followed by mitogens and neurotrophins. It typically takes 5 weeks to generate the functional cerebellar granule neurons. This protocol is feeder-free, applies human recombinant factors, and produces high yield of desired neurons.
Collapse
Affiliation(s)
- Slaven Erceg
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Sevilla, Spain
| | | | | | | | | |
Collapse
|
9
|
Aden P, Paulsen RE, Mæhlen J, Løberg EM, Goverud IL, Liestøl K, Lømo J. Glucocorticoids dexamethasone and hydrocortisone inhibit proliferation and accelerate maturation of chicken cerebellar granule neurons. Brain Res 2011; 1418:32-41. [DOI: 10.1016/j.brainres.2011.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/27/2011] [Accepted: 08/22/2011] [Indexed: 11/16/2022]
|
10
|
Erceg S, Ronaghi M, Zipancic I, Lainez S, Roselló MG, Xiong C, Moreno-Manzano V, Rodríguez-Jiménez FJ, Planells R, Alvarez-Dolado M, Bhattacharya SS, Stojkovic M. Efficient differentiation of human embryonic stem cells into functional cerebellar-like cells. Stem Cells Dev 2010; 19:1745-56. [PMID: 20521974 DOI: 10.1089/scd.2009.0498] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cerebellum has critical roles in motor and sensory learning and motor coordination. Many cerebellum-related disorders indicate cell therapy as a possible treatment of neural loss. Here we show that application of inductive signals involved in early patterning of the cerebellar region followed by application of different factors directs human embryonic stem cell differentiation into cerebellar-like cells such as granule neurons, Purkinje cells, interneuron, and glial cells. Neurons derived using our protocol showed a T-shaped polarity phenotype and express similar markers to the developed human cerebellum. Electrophysiological measurements confirmed functional electrical properties compatible with these cells. In vivo implantation of differentiated human embryonic stem cells transfected with MATH1-GFP construct into neonatal mice resulted in cell migration across the molecular and the Purkinje cell layers and settlement in the internal molecular layers. Our findings demonstrate that the universal mechanisms involved in the development of cerebellum can be efficiently recapitulated in vitro, which enables the design of new strategies for cell replacement therapy, to study early human development and pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Slaven Erceg
- Cellular Reprogramming Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Khalfallah O, Ravassard P, Lagache CS, Fligny C, Serre A, Bayard E, Faucon-Biguet N, Mallet J, Meloni R, Nardelli J. Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem Cells 2009; 27:1643-53. [PMID: 19544452 DOI: 10.1002/stem.88] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The identification of the factors that allow better monitoring of stem cell renewal and differentiation is of paramount importance for the implementation of new regenerative therapies, especially with regard to the nervous and hematopoietic systems. In this article, we present new information on the function of zinc finger protein 191 (ZNF/Zfp191), a factor isolated in hematopoietic cell lines, within progenitors of the central nervous system (CNS). ZNF/Zfp191 has been found to be principally expressed in progenitors of the developing CNS of humans and mice. Such an overlap of the expression patterns in addition to the high homology of the protein in mammals suggested that ZNF/Zfp191 exerts a conserved function within such progenitors. Indeed, ZNF191 knockdown in human neural progenitors inhibits proliferation and leads to the exit of the cell cycle. Conversely, ZNF191 misexpression maintains progenitors in cycle and exerts negative control on the Notch pathway, which prevents them from differentiating. The present data, together with the fact that the inactivation of Zfp191 leads to embryonic lethality, confirm ZNF191 as an essential factor acting for the promotion of the cell cycle and thus maintenance in the progenitor stage. On the bases of expression data, such a function can be extended to progenitor cells of other tissues such as the hematopoietic system, which emphasizes the important issue of further understanding the molecular events controlled by ZNF/Zfp191.
Collapse
Affiliation(s)
- Olfa Khalfallah
- CRICM UPMC/Inserm UMR_S 975;CNRS UMR 7225, Biotechnology and Biotherapy Laboratory F-75005, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Louboutin JP, Agrawal L, Liu B, Strayer DS. In vivogene transfer to the CNS using recombinant SV40-derived vectors. Expert Opin Biol Ther 2008; 8:1319-35. [DOI: 10.1517/14712598.8.9.1319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Induction of zinc-finger proliferation 1 expression in non-myelinating Schwann cells after denervation. Neuroscience 2008; 153:975-85. [PMID: 18440155 DOI: 10.1016/j.neuroscience.2008.02.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 11/22/2022]
Abstract
Terminal Schwann cells (tSCs) are non-myelinating glia that wrap the nerve terminal at the neuromuscular junction. They are required for the maintenance of the neuromuscular synapse and are likely to play essential roles in the restoration of synaptic connections after nerve injury. tSCs acquire a reactive phenotype after nerve damage characterized by the extension of cellular processes that may facilitate reinnervation. The molecular signaling events underpinning the tSC reactive state remain elusive, in particular, little is known about transcription factors involved in the transcriptional reprogramming during tSC activation. Prior research implicated nine members of the zinc-finger transcription factor family in Schwann cell (SC) development and myelination, and levels of one such protein were reported increased in other non-myelinating SCs after denervation. We hypothesize that zinc-finger transcription factors could play a role during tSC activation. Because of their relative paucity, tSCs are difficult to study molecularly. Here, we used the rat cervical sympathetic trunk (CST), an autonomic nerve in which non-myelinating SCs are the predominant cell type, to isolate zinc-finger protein (ZFP) cDNAs by reverse transcriptase-polymerase chain reaction. We isolated 29 unique ZFP sequences of which zinc proliferation 1 (Zipro1) was the most abundant. We found that after CST transection, levels for Zipro1 mRNA doubled and that Zipro1 protein expression increased in non-myelinating CST SCs. We also determined that Zipro1 is expressed in tSCs and its levels increased following skeletal muscle denervation. Thus, Zipro1 is a good candidate for a transcription factor involved in activation of non-myelinating SCs in general, and tSCs in particular.
Collapse
|
14
|
Characterization of a cerebellar granule progenitor cell line, EtC.1, and its responsiveness to 17-beta-estradiol. Brain Res 2007; 1186:29-40. [PMID: 17980864 DOI: 10.1016/j.brainres.2007.08.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/17/2007] [Accepted: 08/23/2007] [Indexed: 01/19/2023]
Abstract
Mouse cerebellar development occurs at late embryonic stages and through the first few weeks of postnatal life. Hormones such as 17-beta-estradiol (E2) have been implicated in cerebellar development, through the expression of E2 receptors (ER). However, the role of E2 in the development and function of cerebellar neurons has yet to be fully elucidated. To gain insight into E2's actions on the developing cerebellum, we characterized a cloned neuronal cell line, E(t)C.1, derived from late embryonic cerebellum for its neural properties and responsiveness to E2. Our results revealed that E(t)C.1 cells express markers characteristic of neural progenitor cells such as Nestin, Musashi, and Doublecortin (DCX), and of the granule cell lineage such as Math1 and Zipro1. The ER alpha and beta (ERalpha and ERbeta) were also identified in this cell line. Functionality of ERs was verified using an Estrogen Response Element (ERE)-Luciferase reporter plasmid. E2 modulated ERalpha, FMRP, and IL-6, which were expressed in these cells. However, E2 did not induce changes in neural proteins nor induce maturation of E(t)C.1 cells. CREB and ERK(1/2) protein kinases were not modulated by E2 either. Interestingly, E(t)C.1 expressed active p450 Aromatase (P450arom), which was confirmed by the aromatization of androstenedione (AD) to E2 and other estrogen metabolites. Collectively, our results show that the E(t)C.1 cell line may serve as a model to study early development of cerebellar progenitor granule cells, and their responsiveness to E2.
Collapse
|
15
|
Louboutin JP, Liu B, Reyes BAS, Van Bockstaele EJ, Strayer DS. Rat bone marrow progenitor cells transduced in situ by rSV40 vectors differentiate into multiple central nervous system cell lineages. Stem Cells 2006; 24:2801-9. [PMID: 16960137 DOI: 10.1634/stemcells.2006-0124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using bone marrow-directed gene transfer, we tested whether bone marrow-derived cells may function as progenitors of central nervous system (CNS) cells in adult animals. SV40-derived gene delivery vectors were injected directly into femoral bone marrow, and we examined transgene expression in blood and brain for 0-16 months thereafter by immunostaining for FLAG epitope marker. An average of 5% of peripheral blood cells and 25% of femoral marrow cells were FLAG(+) throughout the study. CNS FLAG-expressing cells were mainly detected in the dentate gyrus (DG) and periventricular subependymal zone (PSZ). Although absent before 1 month and rare at 4 months, DG and PSZ FLAG(+) cells were abundant 16 months after bone marrow injection. Approximately 5% of DG cells expressed FLAG, including neurons (48.6%) and microglia (49.7%), and occasional astrocytes (1.6%), as determined by double immunostaining for FLAG and lineage markers. These data suggest that one or more populations of cells resident within adult bone marrow can migrate to the brain and differentiate into CNS-specific cells.
Collapse
Affiliation(s)
- Jean-Pierre Louboutin
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|
16
|
Shakhova O, Leung C, van Montfort E, Berns A, Marino S. Lack of Rb and p53 delays cerebellar development and predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and Ptch2. Cancer Res 2006; 66:5190-200. [PMID: 16707443 DOI: 10.1158/0008-5472.can-05-3545] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medulloblastomas are among the most common malignant brain tumors in childhood. They typically arise from neoplastic transformation of granule cell precursors in the cerebellum via deregulation of molecular pathways involved in normal cerebellar development. In a mouse model, we show here that impairment of the balance between proliferation and differentiation of granule cell precursors in the external granular layer of the developing cerebellum predisposes but is not sufficient to induce neoplastic transformation of these progenitor cells. Using array-based chromosomal comparative genomic hybridization, we show that genetic instability resulting from inactivation of the p53 pathway together with deregulation of proliferation induced by Rb loss eventually leads to neoplastic transformation of these cells by acquiring additional genetic mutations, mainly affecting N-Myc and Ptch2 genes. Moreover, we show that p53 loss influences molecular mechanisms that cannot be mimicked by the loss of either p19(ARF), p21, or ATM.
Collapse
Affiliation(s)
- Olga Shakhova
- Institute of Clinical Pathology, University Hospital, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Louie CM, Gleeson JG. Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum Mol Genet 2006; 14 Spec No. 2:R235-42. [PMID: 16244321 DOI: 10.1093/hmg/ddi264] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Over three decades have passed since Marie Joubert described the original proband for Joubert syndrome, a rare neurological disorder featuring absence of the cerebellar vermis (i.e. midline). Efforts at deciphering the molecular basis for this disease have been complicated by the clinical and genetic heterogeneity as well as extensive phenotypic overlap with other syndromes. However, progress has been made in recent years with the mapping of three genetic loci and the identification of mutations in two genes, AHI1 and NPHP1. These genes encode proteins with some shared functional domains, but their role in brain development is unclear. Clues may come from studies of related syndromes, including Bardet-Biedl syndrome and nephronophthisis, for which all of the encoded proteins localize to primary cilia. The data suggest a tantalizing connection between intraflagellar transport in cilia and brain development.
Collapse
Affiliation(s)
- Carrie M Louie
- Biomedical Sciences Graduate Program, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0691, USA
| | | |
Collapse
|
18
|
Carneiro FRG, Silva TCL, Alves AC, Haline-Vaz T, Gozzo FC, Zanchin NIT. Spectroscopic characterization of the tumor antigen NY-REN-21 and identification of heterodimer formation with SCAND1. Biochem Biophys Res Commun 2006; 343:260-8. [PMID: 16540086 DOI: 10.1016/j.bbrc.2006.02.140] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/23/2022]
Abstract
Human NY-REN-21 is a C2H2 type multi-finger protein, with a SCAN domain in the N-terminal region and a predicted coil central region. It represents a putative ortholog of mouse ZFP38, a transcriptional factor that recognizes a bipartite DNA motif and is unable to form homodimers. As shown in this work, NY-REN-21 contains a SCAN domain able to form homodimers and a central region that behaves as an intrinsically disordered protein. The SCAN domain is found in 71 human proteins and its ability to form homo- and heterodimers widens the number of genes that are regulated by this group of transcription factors. NY-REN-21 interaction with SCAND1 was identified using the yeast two-hybrid system and confirmed using recombinant proteins. SCAND1 is a truncated SCAN box protein, lacking the zinc finger region and the NY-REN-21/SCAND1 heterodimer is asymmetric concerning the DNA binding region. This result indicates that NY-REN-21 can function either as a homodimer or as a heterodimer with SCAND1.
Collapse
Affiliation(s)
- Flávia R G Carneiro
- Center for Structural Molecular Biology, Brazilian Synchrotron Light Laboratory, LNLS, Rua Giuseppe Maximo Scolfaro 10000, P.O. Box 6192, CEP 13084-971, Campinas SP, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Cho JH, Tsai MJ. Preferential posterior cerebellum defect in BETA2/NeuroD1 knockout mice is the result of differential expression of BETA2/NeuroD1 along anterior–posterior axis. Dev Biol 2006; 290:125-38. [PMID: 16368089 DOI: 10.1016/j.ydbio.2005.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
BETA2/NeuroD1 has been shown to play a major role in terminal differentiation of the pancreatic and enteroendocrine cells, as well as for the survival of photoreceptors. Here, we report that the loss of BETA2/NeuroD1 affected the cerebellar development with a major reduction of granule cell number. However, there is a differential reduction of granule cells along the anterior and posterior axis of the cerebellum; while the reduction of granule cells in the anterior lobes is substantial, there is an almost complete loss of granule cells in the posterior compartment. To understand the mechanism for this anterior-posterior difference, we carried out detailed analyses. We found that both BETA2/NeuroD1 and its direct target TrkC, expression commence earlier in the posterior part than those in the anterior part during cerebellum development. Consequently, loss of BETA2/NeuroD1 enhances granule cell death in the posterior 2 days earlier than the anterior. Furthermore, the higher rate of cell death in the posterior of the cerebellum is concomitant with the reduction of TrkC expression in knockout mice. Thus, our data indicate that preferential expression of BETA2/NeuroD1 and TrkC in posterior lobes explains the earlier start of cell apoptosis and preferential loss of granule cells in the posterior lobes.
Collapse
Affiliation(s)
- Jang-Hyeon Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
20
|
Su HL, Muguruma K, Matsuo-Takasaki M, Kengaku M, Watanabe K, Sasai Y. Generation of cerebellar neuron precursors from embryonic stem cells. Dev Biol 2006; 290:287-96. [PMID: 16406324 DOI: 10.1016/j.ydbio.2005.11.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 10/24/2005] [Accepted: 11/04/2005] [Indexed: 11/15/2022]
Abstract
Here, we report in vitro generation of Math1+ cerebellar granule cell precursors and Purkinje cells from ES cells by using soluble patterning signals. When neural progenitors induced from ES cells in a serum-free suspension culture are subsequently treated with BMP4 and Wnt3a, a significant proportion of these neural cells become Math1+. The induced Math1+ cells are mitotically active and express markers characteristic of granule cell precursors (Pax6, Zic1, and Zipro1). After purification by FACS and coculture with postnatal cerebellar neurons, ES cell-derived Math1+ cells exhibit typical features of neurons of the external granule cell layer, including extensive motility and a T-shaped morphology. Interestingly, differentiation of L7+/Calbindin-D28K+ neurons (characteristic of Purkinje cells) is induced under similar culture conditions but exhibits a higher degree of enhancement by Fgf8 rather than by Wnt3a. This is the first report of in vitro recapitulation of early differentiation of cerebellar neurons by using the ES cell system.
Collapse
Affiliation(s)
- Hong-Lin Su
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo, Kobe 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
21
|
El-Tahir HM, Dietz F, Dringen R, Schwabe K, Strenge K, Kelm S, Abouzied MM, Gieselmann V, Franken S. Expression of hepatoma-derived growth factor family members in the adult central nervous system. BMC Neurosci 2006; 7:6. [PMID: 16430771 PMCID: PMC1363353 DOI: 10.1186/1471-2202-7-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 01/23/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatoma-derived growth factor (HDGF) belongs to a polypeptide family containing five additional members called HDGF related proteins 1-4 (HRP-1 to -4) and Lens epithelial derived growth factor. Whereas some family members such as HDGF and HRP-2 are expressed in a wide range of tissues, the expression of others is very restricted. HRP-1 and -4 are only expressed in testis, HRP-3 only in the nervous system. Here we investigated the expression of HDGF, HRP-2 and HRP-3 in the central nervous system of adult rats on the cellular level by immunohistochemistry. In addition we performed Western blot analysis of various brain regions as well as neuronal and glial cell cultures. RESULTS HDGF was rather evenly expressed throughout all brain regions tested with the lowest expression in the substantia nigra. HRP-2 was strongly expressed in the thalamus, prefrontal and parietal cortex, neurohypophysis, and the cerebellum, HRP-3 in the bulbus olfactorius, piriform cortex and amygdala complex. HDGF and HRP-2 were found to be expressed by neurons, astrocytes and oligodendrocytes. In contrast, strong expression of HRP-3 in the adult nervous system is restricted to neurons, except for very weak expression in oligodendrocytes in the brain stem. Although the majority of neurons are HRP-3 positive, some like cerebellar granule cells are negative. CONCLUSION The coexpression of HDGF and HRP-2 in glia and neurons as well as the coexpression of all three proteins in many neurons suggests different functions of members of the HDGF protein family in cells of the central nervous system that might include proliferation as well as cell survival. In addition the restricted expression of HRP-3 point to a special function of this family member for neuronal cells.
Collapse
Affiliation(s)
- Heba M El-Tahir
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms Universität, Nussallee 11, 53115 Bonn, Germany
| | - Frank Dietz
- Centre for Biomolecular Interactions Bremen, Universität Bremen, Leobener Straße, 28359 Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Universität Bremen, Leobener Straße, 28359 Bremen, Germany
| | - Kerstin Schwabe
- Institut für Hirnforschung, Universität Bremen, Leobener Straße, 28334 Bremen, Germany
| | - Karen Strenge
- Centre for Biomolecular Interactions Bremen, Universität Bremen, Leobener Straße, 28359 Bremen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Universität Bremen, Leobener Straße, 28359 Bremen, Germany
| | - Mekky M Abouzied
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms Universität, Nussallee 11, 53115 Bonn, Germany
| | - Volkmar Gieselmann
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms Universität, Nussallee 11, 53115 Bonn, Germany
| | - Sebastian Franken
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms Universität, Nussallee 11, 53115 Bonn, Germany
| |
Collapse
|
22
|
Swanson DJ, Tong Y, Goldowitz D. Disruption of cerebellar granule cell development in the Pax6 mutant, Sey mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:176-93. [PMID: 16289327 DOI: 10.1016/j.devbrainres.2005.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 09/01/2005] [Accepted: 09/04/2005] [Indexed: 10/25/2022]
Abstract
The transcriptional regulator Pax6 is expressed in cerebellar granule cells and a mutation in that gene (Sey) has been shown to affect cerebellar development. We have defined novel phenotypes in the Sey/Sey cerebellum, indicating that the mutation of Pax6 alters granule cell behavior in vitro and also the interaction between granule cells and Purkinje cells in vivo. In culture, Sey/Sey granule cell precursors show the following abnormal phenotypes: enhanced proliferation, increased apoptotic cell death, and decreased number of morphologically differentiating beta-III tubulin-positive cells. There is an overlap in the populations of Sey/Sey cells that express markers for proliferation and neuronal differentiation indicating an abnormality in the transition between these states in granule cells. In vivo, Purkinje cell ectopias were found deep in the cerebellum and extending into the inferior colliculus. Coincident with this, Purkinje cell phenotype was the alteration in the pattern and levels of Reelin expression in granule cells of the external germinal layer (EGL). The finding of increased staining for Disabled-1, a signaling pathway intermediary that is normally downregulated by a Reelin signal, throughout the Purkinje cell population suggests that in the Sey/Sey cerebellum there is a disruption in Reelin signaling from the EGL to Purkinje cells. These findings suggest that Pax6 is critical for the proper differentiation of granule cells and their communication with developing Purkinje cells. Thus, through its guidance of granule cell development, Pax6 also has a strong influence on many of the cellular programs that guide the morphogenesis of the entire cerebellum.
Collapse
Affiliation(s)
- Douglas James Swanson
- Department of Anatomy and Neurobiology, Center of Excellence in Genomics and Bioinformatics, University of Tennessee Health Sciences Center, 515 LINK Building, 855 Monroe Avenue, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
23
|
Kanumilli S, Tringham EW, Payne CE, Dupere JRB, Venkateswarlu K, Usowicz MM. Alternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum. Physiol Genomics 2005; 24:86-96. [PMID: 16278278 DOI: 10.1152/physiolgenomics.00149.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P/Q-type calcium channels control many calcium-driven functions in the brain. The CACNA1A gene encoding the pore-forming CaV2.1 (alpha1A) subunit of P/Q-type channels undergoes alternative splicing at multiple loci. This results in channel variants with different phenotypes. However, the combinatorial patterns of alternative splice events at two or more loci, and hence the diversity of CaV2.1 transcripts, are incompletely defined for specific brain regions and types of brain neurons. Using RT-PCR and splice variant-specific primers, we have identified multiple CaV2.1 transcript variants defined by different pairs of splice events in the cerebellum of adult rat. We have uncovered new splice variations between exons 28 and 34 (some of which predict a premature stop codon) and a new variation in exon 47 (which predicts a novel extended COOH-terminus). Single cell RT-PCR reveals that each individual cerebellar Purkinje neuron also expresses multiple alternative CaV2.1 transcripts, but the assortment is smaller than in the cerebellum. Two of these variants encode different extended COOH-termini which are not the same as those previously reported in Purkinje cells of the mouse. Our patch-clamp recordings show that calcium channel currents in the soma and dendrites of Purkinje cells are largely inhibited by a concentration of omega-agatoxin IVA selective for P-type over Q-type channels, suggesting that the different transcripts may form phenotypic variants of P-type calcium channels in Purkinje cells. These results expand the known diversity of CaV2.1 transcripts in cerebellar Purkinje cells, and propose the selective expression of distinct assortments of CaV2.1 transcripts in different brain neurons and species.
Collapse
|
24
|
Canterini S, Mangia F, Fiorenza MT. Thg-1 pit gene expression in granule cells of the developing mouse brain and in their synaptic targets, mature Purkinje, and mitral cells. Dev Dyn 2005; 234:689-97. [PMID: 15895388 DOI: 10.1002/dvdy.20428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have studied the expression of Thg-1 pit in developing and adult mouse brain by in situ hybridization analysis. We show that, at day 12.5 of embryo development, Thg-1 pit expression is restricted to the rhombic lip, subventricular neuroepithelium/mantle zone, and lateral ganglionic eminence, namely the embryonic brain areas where granule cell precursors originate. Thereafter, Thg-1 pit expression landmarks both differentiative steps and the mature function of granule/interneuron cells in several brain districts, including cerebellum, basal forebrain, olfactory bulb, and hippocampus. In the adult, Thg-1 pit becomes also activated in mitral cells of olfactory bulb and in Purkinje cells of cerebellum, in concomitance with full development of the synaptic contacts that Purkinje and mitral cells establish with granule cells. We conclude that Thg-1 pit is relevant to specification, proliferation/migration, differentiation, and mature function of granule/interneuron cells in different brain districts, as well as to the function of mature, but not immature, Purkinje cells and mitral cells.
Collapse
Affiliation(s)
- Sonia Canterini
- Department of Psychology, Section of Neuroscience, University "La Sapienza" of Rome
| | | | | |
Collapse
|
25
|
Abstract
Recently discovered multipotent astrocytic stem cells are discussed in light of current nomenclature for glial precursor and lineage-associated cells in the developing, postnatal, and adult mammalian brain. Defining the phenotype of any immature cell in the nervous system is a challenge, and a position is stated that includes the need for categorizing cells within a continuum of differentiation potential. The possibility for dedifferentiating glial cells into clonogenic stem-like cells offers numerous possibilities for translating knowledge and technology from this subfield of stem cell biology to regenerative medicine. Along with the need for developing a new lexicon for defining the cellular players that contribute to the generation of glia and neurons in the developing and mature central nervous system, the relationships also need to be established among potency, repopulation attempts, and tumorigenesis of cells meeting the criteria of glial stem cells. Finally, it is possible that understanding the normal differentiation, de- and transdifferentiation potential of glial stem-like cells in the mature central nervous system will provide insights into the possible use of these cells, or biogenic factors associated with their growth and differentiation, in therapeutic approaches for a variety of neurological disorders.
Collapse
Affiliation(s)
- Dennis A Steindler
- Department of Neuroscience, McKnight Brain Institute and Shands Cancer Center, and Program in Stem Cell Biology and Regenerative Medicine, University of Florida, Gainesville, Florida
| | - Eric D Laywell
- Department of Neuroscience, McKnight Brain Institute and Shands Cancer Center, and Program in Stem Cell Biology and Regenerative Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Yano R, Yap CC, Yamazaki Y, Muto Y, Kishida H, Okada D, Hashikawa T. Sast124, a novel splice variant of syntrophin-associated serine/threonine kinase (SAST), is specifically localized in the restricted brain regions. Neuroscience 2003; 117:373-81. [PMID: 12614677 DOI: 10.1016/s0306-4522(02)00785-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Syntrophin is an adaptor protein that binds signaling molecules to the dystrophin-associated protein complex, which connects extracellular matrix to intracellular cytoskeleton for construction and maintenance of the postsynaptic structures in the neuromuscular junction and the CNS. Among these signaling molecules, a family of microtubule-associated serine/threonine kinases has a unique structural feature with a serine/threonine kinase domain and a postsynaptic density protein-95/discs large/zona occludens-1 domain. In the present study, we identified syntrophin-associated serine/threonine kinase-124, a novel splice variant of the syntrophin-associated serine/threonine kinase which is a member of the microtubule-associated serine/threonine kinases family. Comparing to the original clone (syntrophin-associated serine/threonine kinase-170), syntrophin-associated serine/threonine kinase-124 is truncated just downstream of the postsynaptic density protein-95/discs large/zona occludens-1 domain. Using a monoclonal antibody specifically recognizing syntrophin-associated serine/threonine kinase-124, strong expression of the protein was observed in neurons of the subventricular zone and granule cells of the olfactory bulb, Islands of Calleja, hippocampal dentate gyrus and cerebellum. syntrophin-associated serine/threonine kinase-124 is selectively localized in the nuclei of neurons and distinct from syntrophin-associated serine/threonine kinase-170, which is interacting with syntrophin on the cell surface. Considering the tissue and subcellular distributions of syntrophin-associated serine/threonine kinase-124, it is suggested that syntrophin-associated serine/threonine kinase-124 may have functions in transcriptional regulation for the features commonly shared by these neurons. On the other hand, syntrophin-associated serine/threonine kinase-124 was also localized in glia-like cell bodies in the corpus callosum and fiber bundles in the spinal trigeminal and solitary tracts, suggesting syntrophin-associated serine/threonine kinase-124 may have other functions in these types of cells.
Collapse
Affiliation(s)
- R Yano
- Laboratory for Cellular Information Processing, Brain Science Institute, RIKEN, Wako, Saitama351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
To study the development of the cerebellum, we generated a transgenic mouse line Tg(malpha6-cre)B1LFR that expresses CRE recombinase under the GABA(A) receptor alpha6 subunit promoter. In this line, recombination of an R26R reporter allele occurred postnatally in granule cells of the cerebellum and dorsal cochlear nucleus, as well as in a subset of precerebellar nuclei in the brainstem. All neurons in which recombination occurred originated during embryogenesis from the rhombic lip. This might be explained by a very early specification event at the rhombic lip that primes cells derived from this structure to express the transgene during neuronal maturation. As no recombination occurred in the inferior olive, it may be derived from a distinct subset of precursors at the rhombic lip. No recombination occurred in any of the interneurons in the cerebellum (stellate cells, basket cells, and Golgi cells), consistent with the hypothesis that they are not derived from the same embryonic tissue as the granule cells.
Collapse
Affiliation(s)
| | - Louis F. Reichardt
- Correspondence to: Louis F. Reichardt, UCSF/HHMI, Room U-322, Box 0723, 533 Parnassus Avenue, San Francisco, CA 94141-0723. E-mail:
| |
Collapse
|
28
|
Tanaka K, Tsumaki N, Kozak CA, Matsumoto Y, Nakatani F, Iwamoto Y, Yamada Y. A Krüppel-associated box-zinc finger protein, NT2, represses cell-type-specific promoter activity of the alpha 2(XI) collagen gene. Mol Cell Biol 2002; 22:4256-67. [PMID: 12024037 PMCID: PMC133841 DOI: 10.1128/mcb.22.12.4256-4267.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type XI collagen is composed of three chains, alpha 1(XI), alpha 2(XI), and alpha 3(XI), and plays a critical role in the formation of cartilage collagen fibrils and in skeletal morphogenesis. It was previously reported that the -530-bp promoter segment of the alpha 2(XI) collagen gene (Col11a2) was sufficient for cartilage-specific expression and that a 24-bp sequence from this segment was able to switch promoter activity from neural tissues to cartilage in transgenic mice when this sequence was placed in the heterologous neurofilament light gene (NFL) promoter. To identify a protein factor that bound to the 24-bp sequence of the Col11a2 promoter, we screened a mouse limb bud cDNA expression library in the yeast one-hybrid screening system and obtained the cDNA clone NT2. Sequence analysis revealed that NT2 is a zinc finger protein consisting of a Krüppel-associated box (KRAB) and is a homologue of human FPM315, which was previously isolated by random cloning and sequencing. The KRAB domain has been found in a number of zinc finger proteins and implicated as a transcriptional repression domain, although few target genes for KRAB-containing zinc finger proteins has been identified. Here, we demonstrate that NT2 functions as a negative regulator of Col11a2. In situ hybridization analysis of developing mouse cartilage showed that NT2 mRNA is highly expressed by hypertrophic chondrocytes but is minimally expressed by resting and proliferating chondrocytes, in an inverse correlation with the expression patterns of Col11a2. Gel shift assays showed that NT2 bound a specific sequence within the 24-bp site of the Col11a2 promoter. We found that Col11a2 promoter activity was inhibited by transfection of the NT2 expression vector in RSC cells, a chondrosarcoma cell line. The expression vector for mutant NT2 lacking the KRAB domain failed to inhibit Col11a2 promoter activity. These results demonstrate that KRAB-zinc finger protein NT2 inhibits transcription of its physiological target gene, suggesting a novel regulatory mechanism of cartilage-specific expression of Col11a2.
Collapse
Affiliation(s)
- Kazuhiro Tanaka
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Stem cells in adult tissues have attracted a great deal of interest. These cells are self-renewing and can give rise to diverse progeny. An extraordinary finding was the presence of stem cells in the mature human brain. This tissue was previously believed incapable of generating new neurons, but neuropoiesis is now an established phenomenon in the adult brains of mammals, including human beings. This persistent neurogenesis has potential therapeutic applications for various neurological disorders as a source for tissue engraftment and as self-repair by a person's own indigenous population of pluripotent cells or biogenic by-products of their proliferation and differentiation.
Collapse
Affiliation(s)
- Dennis A Steindler
- Department of Neuroscience, McKnight Brain Institute and Shands Cancer Center, University of Florida Program in Stem Cell Biology, College of Medicine, Gainesville, FL 32610, USA.
| | | |
Collapse
|
30
|
Stewart RR, Hoge GJ, Zigova T, Luskin MB. Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. JOURNAL OF NEUROBIOLOGY 2002; 50:305-22. [PMID: 11891665 DOI: 10.1002/neu.10038] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interneurons of the olfactory bulb arise from precursor cells in the anterior part of the neonatal subventricular zone, the SVZa, and are distinctive in that they possess a neuronal phenotype and yet undergo cell division. To characterize the differentiation of neonatal SVZa progenitor cells, we analyzed the complement of ionotropic neurotransmitter receptors that they express in vitro. For this analysis, we tested the sensitivity of SVZa progenitor cells to gamma-amino-n-butyric acid (GABA), adenosine triphosphate (ATP), kainate, N-methyl-D-aspartate (NMDA), and acetylcholine (ACh) after 1 day in vitro. SVZa progenitor cells had chloride currents activated by GABA and muscimol, the GABA(A) receptor-specific agonist, but were insensitive to ATP, kainate, NMDA, and ACh. In addition, GABA- or muscimol-activated chloride currents were blocked nearly completely by 30 microM bicuculline, the GABA(A) receptor-specific antagonist, suggesting that GABA(B) and GABA(C) receptors are absent. Measurements of the chloride reversal potential by gramicidin-perforated patch clamp revealed that currents generated by activation of GABA(A) receptors were inward, and thus, depolarizing. A set of complementary experiments was undertaken to determine by reverse transcription and polymerase chain reaction (RT-PCR) whether SVZa progenitor cells express the messenger RNA (mRNA) coding for glutamic acid decarboxylase 67 (GAD67), used in the synthesis of GABA and for GABA(A) receptor subunits. Both postnatal day (P0) SVZa and olfactory bulb possessed detectable mRNA coding for GAD67. In P0 SVZa, the GABA(A) receptor subunits detected with RT-PCR included alpha 2-4, beta 1-3, and gamma 2S (short form). By comparison, the P0 olfactory bulb expressed all of the subunits detectable in the SVZa and additional subunit mRNAs: alpha 1, alpha 5, gamma 1, gamma 2L (long form), gamma 3, and delta subunit mRNAs. Antibodies recognizing GABA, GAD, and various GABA(A) receptor subunits were used to label SVZa cells harvested from P0-1 rats and cultured for 1 day. The cells were immunoreactive for GABA, GAD, and the GABA(A) receptor subunits alpha 2-5, beta 1-3, and gamma 2. To relate the characteristics of GABA(A) receptors in cultured SVZa precursor cells to particular combinations of subunits, the open reading frames of the dominant subunits detected by RT-PCR (alpha 2-4, beta 3, and gamma 2S) were cloned into a mammalian cell expression vector and different combinations were transfected into Chinese hamster ovary-K1 (CHO-K1) cells. A comparison of the sensitivity to inhibition by zinc of GABA(A) receptors in SVZa precursor cells and in CHO-K1 cells expressing various combinations of recombinant GABA(A) receptor subunits suggested that the gamma 2S subunit was present and functional in the GABA(A) receptor chloride channel complex. Thus, SVZa precursor cells are GABAergic and a subset of the GABA(A) receptor subunits detected in the olfactory bulb was found in the SVZa, as might be expected because SVZa progenitor cells migrate to the bulb as they differentiate.
Collapse
Affiliation(s)
- R R Stewart
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 12420 Parklawn Drive, Bethesda, Maryland 20892-8115, USA.
| | | | | | | |
Collapse
|
31
|
Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 2001; 31:557-68. [PMID: 11545715 DOI: 10.1016/s0896-6273(01)00395-6] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the developing cerebellar cortex, granule neuron precursors (GNPs) proliferate and commence differentiation in a superficial zone, the external granule layer (EGL). The molecular basis of the transition from proliferating precursors to immature differentiating neurons remains unknown. Notch signaling is an evolutionarily conserved pathway regulating the differentiation of precursor cells of many lineages. Notch2 is specifically expressed in proliferating GNPs in the EGL. Treatment of GNPs with soluble Notch ligand Jagged1, or overexpression of activated Notch2 or its downstream target HES1, maintains precursor proliferation. The addition of GNP mitogens Jagged1 or Sonic Hedgehog (Shh) upregulates the expression of HES1, suggesting a role for HES1 in maintaining precursor proliferation.
Collapse
Affiliation(s)
- D J Solecki
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- V Y Wang
- Programme in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
33
|
Lovas G, Li W, Pott U, Verga T, Hudson LD. Expression of the Krüppel-type zinc finger protein rKr2 in the developing nervous system. Glia 2001; 34:110-20. [PMID: 11307160 DOI: 10.1002/glia.1046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Zinc finger transcription factors of the Krüppel-class figure prominently in cell fate specification and differentiation in the nervous system. One of the Krüppel-type genes that was originally cloned from an oligodendrocyte library by virtue of its homology with the prototypic Krüppel motif is the rat rKr2 gene (Pott et al., 1995). In primary cultures of rat glial cells, the rKr2 protein was only present in the oligodendrocyte lineage, predominantly in progenitors. Ninety percent of A2B5(+) oligodendrocyte progenitors displayed rKr2 immunoreactivity, while most MBP(+) oligodendrocytes lacked detectable rKr2. A similar pattern was found in vivo, in which the peak expression of rKr2 in the oligodendrocyte lineage of rats coincided with the wave of progenitor proliferation in early postnatal life. The subventricular zone, a source of neuronal and glial progenitors, displayed intense staining for rKr2 at late embryonic and postnatal stages. In the adult, cells within the remnants of this germinal zone continued to express rKr2 protein strongly. Some populations of mature neurons also displayed rKr2 immunostaining. Astrocytes and microglia were not labeled with the polyclonal anti-rKr2 antibody in vitro or in vivo. At all developmental stages, the rKr2 protein was localized to the nucleus. The stage-specific expression pattern and the subcellular localization of rKr2 recommend a role for this Krüppel-type gene in the progression of neural stem cells and in the early development of the oligodendrocyte lineage.
Collapse
Affiliation(s)
- G Lovas
- Laboratory of Developmental Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4160, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Recent studies have transformed our understanding of the embryonic rhombic lip by revealing the inductive cues, regional origins and guidance molecules that pattern the development of this important structure and its derivatives. In the cerebellum, a precise combination of anteroposterior and dorsalising cues induces a stream of migratory progenitors that give rise to the external granule cell layer, while more caudally, Netrin orchestrates the migration of hindbrain rhombic lip derivatives to form the precerebellar nuclei. The rhombic lip is thus emerging as a spatiotemporally distinct epithelium whose late appearance in both development and evolution is instrumental in generating a complex, functionally related but spatially distributed neural system.
Collapse
Affiliation(s)
- R J Wingate
- MRC Centre for Developmental Neurobiology, King's College London, 4th floor New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
35
|
Hayes WP, Yangco N, Chin H, Mill JF, Pu LP, Taira M, Dawid IB, Gallo V. Expression and regulation of the LIM-class homeobox gene rlim-1 in neuronal progenitors of the rat cerebellum. J Neurosci Res 2001; 63:237-51. [PMID: 11170173 DOI: 10.1002/1097-4547(20010201)63:3<237::aid-jnr1017>3.0.co;2-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To investigate LIM gene function in the rat cerebellar system, we analyzed expression and regulation of the rat homologue of frog Xlim-1 (rlim-1) in vivo and in cultured cells. In developing cerebellum, peak levels of rlim-1 mRNA at postnatal day 8 (p8) are coincident with the peak period of granule cell proliferation. Analysis of rlim-1 protein with a specific antibody showed that expression was also maximal at p8. In situ hybridization showed that at p8 rlim-1 mRNA was expressed in Purkinje and granule cells. Both the proliferative and the premigratory granule cells in the external germinal zone displayed high levels of rlim-1 mRNA expression. Immunocytochemical staining demonstrated that at p8 rlim-1 protein was also present in proliferative and premigratory granule cells. In adult cerebellum (p30), rlim-1 mRNA and protein expression in granule cells was strongly attenuated. The down-regulation of rlim-1 mRNA occurred in granule cells just after the time of final division, coinciding with the onset of their migration. rlim-1 protein was detected in migratory granule neurons. The developmental decrease in rlim-1 mRNA and protein found in vivo was reproduced in pure cerebellar granule cell cultures. In these cultures, granule neurons were postmitotic 1 day after plating but still displayed high levels of rlim-1 protein expression up to 3 days in vitro. Our findings indicate that 1) rlim-1 is likely to act in concert with other genes to specify granule cell fate, 2) rlim-1 expression in granule neurons is regulated autonomously, and 3) rlim-1 protein may also play an important role in granule neuron differentiation and survival. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- W P Hayes
- Department of Biology, Catholic University of America, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Zn is an essential trace element for all organisms. In human subjects body growth and development is strictly dependent on Zn. The nervous, reproductive and immune systems are particularly influenced by Zn deficiency, as well as by increased levels of Zn. The relationship between Zn and the immune system is complex, since there are four different types of influence associated with Zn. (1) The dietary intake and the resorption of Zn depends on the composition of the diet and also on age and disease status. (2) Zn is a cofactor in more than 300 enzymes influencing various organ functions having a secondary effect on the immune system. (3) Direct effects of Zn on the production, maturation and function of leucocytes. (4) Zn influences the function of immunostimulants used in the experimental systems. Here we summarize all four types of influence on the immune function. Nutritional aspects of Zn, the physiology of Zn, the influence of Zn on enzymes and cellular functions, direct effects of Zn on leucocytes at the cellular and molecular level, Zn-altered function of immunostimulants and the therapeutic use of Zn will be discussed in detail.
Collapse
Affiliation(s)
- L Rink
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | |
Collapse
|
37
|
Jones A, Paterlini M, Wisden W, Merlo D. Transgenic methods for directing gene expression to specific neuronal types: cerebellar granule cells. PROGRESS IN BRAIN RESEARCH 2000; 124:69-80. [PMID: 10943117 DOI: 10.1016/s0079-6123(00)24008-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- A Jones
- MRC Laboratory of Molecular Biology, MRC Centre, Cambridge, UK
| | | | | | | |
Collapse
|
38
|
Sander TL, Haas AL, Peterson MJ, Morris JF. Identification of a novel SCAN box-related protein that interacts with MZF1B. The leucine-rich SCAN box mediates hetero- and homoprotein associations. J Biol Chem 2000; 275:12857-67. [PMID: 10777584 DOI: 10.1074/jbc.275.17.12857] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SCAN box or leucine-rich (LeR) domain is a conserved motif found within a subfamily of C(2)H(2) zinc finger proteins. The function of a SCAN box is unknown, but it is predicted to form alpha-helices that may be involved in protein-protein interactions. Myeloid zinc finger gene-1B (MZF1B) is an alternatively spliced human cDNA isoform of the zinc finger transcription factor, MZF1. MZF1 and MZF1B contain 13 C(2)H(2) zinc finger motifs, but only MZF1B contains an amino-terminal SCAN box. A bone marrow cDNA library was screened for proteins interacting with the MZF1B SCAN box domain and RAZ1 (SCAN-related protein associated with MZF1B) was identified. RAZ1 is a novel cDNA that encodes a SCAN-related domain and arginine-rich region but no zinc finger motifs. Co-immunoprecipitation assays demonstrate that the SCAN box domain of MZF1B is necessary for association with RAZ1. By yeast two-hybrid analysis, the carboxyl terminus of RAZ1 is sufficient for interaction with the MZF1B SCAN box. Furthermore, MZF1B and RAZ1 each self-associate in vitro via a SCAN box-dependent mechanism. These data provide evidence that the SCAN box is a protein interaction domain that mediates both hetero- and homoprotein associations.
Collapse
Affiliation(s)
- T L Sander
- Kelly Weil Laboratory of Pediatric Molecular Oncology, Medical College of Wisconsin, Departments of Pediatrics and Biochemistry, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
39
|
Hauser KF, Houdi AA, Turbek CS, Elde RP, Maxson W. Opioids intrinsically inhibit the genesis of mouse cerebellar granule neuron precursors in vitro: differential impact of mu and delta receptor activation on proliferation and neurite elongation. Eur J Neurosci 2000; 12:1281-93. [PMID: 10762357 PMCID: PMC4306580 DOI: 10.1046/j.1460-9568.2000.01015.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although opioids are known to affect neurogenesis in vivo, it is uncertain the extent to which opioids directly or indirectly affect the proliferation, differentiation or death of neuronal precursors. To address these questions, the intrinsic role of the opioid system in neurogenesis was systematically explored in cerebellar external granular layer (EGL) neuronal precursors isolated from postnatal mice and maintained in vitro. Isolated neuronal precursors expressed proenkephalin-derived peptides, as well as specific mu and delta, but negligible kappa, opioid receptors. The developmental effects of opioids were highly selective. Morphine-induced mu receptor activation inhibited DNA synthesis, while a preferential delta2-receptor agonist ([D-Ala2]-deltorphin II) or Met-enkephalin, but not the delta1 agonist [D-Pen2, D-Pen5]-enkephalin, inhibited differentiation within the same neuronal population. If similar patterns occur in the developing cerebellum, spatiotemporal differences in endogenous mu and delta opioid ligand-receptor interactions may coordinate distinct aspects of granule neuron maturation. The data additionally suggest that perinatal exposure to opiate drugs of abuse directly interfere with cerebellar maturation by disrupting normal opioid signalling and inhibiting the proliferation of granule neuron precursors.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Antimetabolites/metabolism
- Antimetabolites/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Bromodeoxyuridine/metabolism
- Bromodeoxyuridine/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Cerebellum/chemistry
- Cerebellum/cytology
- DNA/biosynthesis
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enkephalin, Methionine/pharmacology
- Enkephalins/analysis
- In Vitro Techniques
- Mice
- Microscopy, Electron
- Morphine/pharmacology
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurites/physiology
- Neurites/ultrastructure
- Neurons/chemistry
- Neurons/metabolism
- Neurons/ultrastructure
- Oligopeptides/pharmacology
- Opioid-Related Disorders/metabolism
- Protein Precursors/analysis
- Receptors, Opioid, delta/analysis
- Receptors, Opioid, delta/immunology
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/analysis
- Receptors, Opioid, mu/immunology
- Receptors, Opioid, mu/metabolism
- Stem Cells/chemistry
- Stem Cells/metabolism
- Stem Cells/ultrastructure
Collapse
Affiliation(s)
- K F Hauser
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA.
| | | | | | | | | |
Collapse
|
40
|
Williams AJ, Blacklow SC, Collins T. The zinc finger-associated SCAN box is a conserved oligomerization domain. Mol Cell Biol 1999; 19:8526-35. [PMID: 10567577 PMCID: PMC84969 DOI: 10.1128/mcb.19.12.8526] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of Cys(2)His(2) zinc finger proteins contain a highly conserved amino-terminal motif termed the SCAN domain. This element is an 80-residue, leucine-rich region that contains three segments strongly predicted to be alpha-helices. In this report, we show that the SCAN motif functions as an oligomerization domain mediating self-association or association with other proteins bearing SCAN domains. These findings suggest that the SCAN domain plays an important role in the assembly and function of this newly defined subclass of transcriptional regulators.
Collapse
Affiliation(s)
- A J Williams
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
41
|
Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron 1999; 24:833-46. [PMID: 10624947 DOI: 10.1016/s0896-6273(00)81031-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The formation of the cerebellar circuitry depends on the outgrowth of connections between the two principal classes of neurons, granule neurons and Purkinje neurons. To identify genes that function in axon outgrowth, we have isolated a mouse homolog of C. elegans UNC51, which is required for axon formation, and tested its function in cerebellar granule neurons. Murine Unc51.1 encodes a novel serine/threonine kinase and is expressed in granule cells in the cerebellar cortex. Retroviral infection of immature granule cells with a dominant negative Unc51.1 results in inhibition of neurite outgrowth in vitro and in vivo. Moreover, infected neurons fail to express TAG-1 or neuron-specific beta-tubulin, suggesting that development is arrested prior to this initial step of differentiation. Thus, Unc51.1 signals the program of gene expression leading to the formation of granule cell axons.
Collapse
Affiliation(s)
- T Tomoda
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
42
|
Prost JF, Nègre D, Cornet-Javaux F, Cortay JC, Cozzone AJ, Herbage D, Mallein-Gerin F. Isolation, cloning, and expression of a new murine zinc finger encoding gene. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:278-83. [PMID: 10542327 DOI: 10.1016/s0167-4781(99)00157-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the aim of identifying genes involved in cartilage differentiation, we have used a subtractive hybridization strategy with cDNAs from a chondrocytic cell line (MC615) and mRNAs from a mesenchymal precursor cell line (10T1/2). We have isolated a cDNA clone representing a novel mouse gene. The predicted 368-amino acid protein, designated ZF-12, contains four C(2)H(2)-type zinc finger motifs and one region homologous to the LeR domain, a finger-associated structural domain. ZF-12 mRNAs are expressed during embryonic development and in different organs in adult, including rib cartilage. These data suggest that ZF-12 might play an important role not only in cartilage differentiation, but also in basic cellular processes.
Collapse
Affiliation(s)
- J F Prost
- Institut de Biologie et Chimie des Protéines, CNRS UPR 412, 7 passage du Vercors 69367, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
We have used a combination of quail-chick fate-mapping techniques and dye labelling to investigate the development of the avian cerebellum. Using Hoxa2 as a guide for the microsurgical construction of quail-chick chimaeras, we show that the caudal boundary of the presumptive cerebellum at E6 maps to the caudal boundary of rhombomere 1. By fate mapping the dorsoventral axis of rhombomere 1, we demonstrate that granule cell precursors are generated at the rhombic lip together with neurons of the lateral pontine nucleus. DiI-labelling of cerebellum explants reveals that external germinal layer precursors have a characteristic unipolar morphology and undergo an orientated, active migration away from the rhombic lip, which is apparently independent of either glial or axon guidance or ‘chain’ formation.
Collapse
Affiliation(s)
- R J Wingate
- Laboratory of Developmental Neurobiology, Rockefeller University, New York, NY 10021-10034, USA.
| | | |
Collapse
|
44
|
Palm K, Metsis M, Timmusk T. Neuron-specific splicing of zinc finger transcription factor REST/NRSF/XBR is frequent in neuroblastomas and conserved in human, mouse and rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:30-9. [PMID: 10521596 DOI: 10.1016/s0169-328x(99)00196-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuron-restrictive silencer factor (NRSF), also known as repressor element RE1 binding transcription factor (REST) or repressor binding to the X2 box (XBR) (REST/NRSF/XBR), is a zinc finger transcription factor that during early embryogenesis is required to repress a subset of neuron-specific genes in non-neural tissues and undifferentiated neural precursors. We have previously shown that splicing within the coding region of rat REST/NRSF/XBR (rREST) generates several different transcripts all of which are expressed in the adult nervous system. rREST transcripts with short neuron-specific exons (exon N) have in-frame stop codons and encode truncated proteins which have an N-terminal repressor domain and weakened DNA binding activity. The aim of this study was to analyze the regulatory mechanisms underlying REST/NRSF/XBR activity in human and mouse as compared to rat. We show that the structure of REST/NRSF/XBR gene and its regulation by neuron-specific splicing is conserved in human, mouse and rat. Expression levels of REST/NRSF/XBR transcripts with the insertion of exon N are increased during the neuronal differentiation of mouse teratocarcinoma PCC7 and rat pheocromocytoma PC12 cells and are high in several human and mouse neuroblastoma cells as compared to the relatively low levels in the developing and adult nervous system. The exclusive expression of the neuronal forms of REST/NRSF/XBR mRNAs in mouse neuroblastoma Neuro-2A cells is not caused by rearrangement of the REST/NRSF/XBR gene nor by mutations in the sequence of the splice sites flanking exon N. These data suggest that changes in REST/NRSF/XBR splicing pattern may result from altered levels of splicing factors reflecting the formation and/or progression of neuroblastoma tumors.
Collapse
Affiliation(s)
- K Palm
- Department of Neuroscience, Developmental Neuroscience, Biomedical Center, Uppsala University, Box 587, S-751 23, Uppsala, Sweden
| | | | | |
Collapse
|
45
|
Millen KJ, Millonig JH, Wingate RJ, Alder J, Hatten ME. Neurogenetics of the cerebellar system. J Child Neurol 1999; 14:574-81; discussion 581-2. [PMID: 10488902 DOI: 10.1177/088307389901400905] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of the cerebellum occurs in four basic steps. During the first epoch, genes that mark the cerebellar territory are expressed in a restricted pattern along the anterioposterior axis of the embryo. In the second, an embryonic region termed the rhombic lip generates precursors of the granule cell population of the cerebellar cortex, and the lateral pontine nucleus and olivary nucleus of the brain stem. In the third period, the program of neurogenesis of the granule neuron gives rise to the formation of the fundamental layers of the cerebellum and to the pattern of foliation. Concomitantly, programs of gene expression define the principal neuronal classes, the granule cell and Purkinje cell, that will establish the cerebellar circuitry in the postnatal period. Understanding the molecular mechanisms underlying these steps of development is likely to yield important insights into malformations such as Joubert syndrome.
Collapse
Affiliation(s)
- K J Millen
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10021-6399, USA
| | | | | | | | | |
Collapse
|
46
|
Uittenbogaard M, Peavy DR, Chiaramello A. Expression of the bHLH gene NSCL-1 suggests a role in regulating cerebellar granule cell growth and differentiation. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990915)57:6<770::aid-jnr2>3.0.co;2-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Scheffler B, Horn M, Blumcke I, Laywell ED, Coomes D, Kukekov VG, Steindler DA. Marrow-mindedness: a perspective on neuropoiesis. Trends Neurosci 1999; 22:348-57. [PMID: 10407420 DOI: 10.1016/s0166-2236(99)01416-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are pluripotent stem cells in the adult brain that might not be very different from those found in bone marrow. Recent and profound advances in the field of neuropoiesis, which often rely on insights from studies of hematopoiesis and in some instances use cross-paradigms with this field, have already revealed that bone marrow has much in common with so-called 'brain marrow'. Proliferative primogenitors and developmentally regulated molecules are hallmarks of both neuropoiesis and hematopoiesis. This article will focus on recent advances in neuropoiesis within a central core of the mature brain that is referred to as brain marrow, discussing its pluripotency and proliferative capacity, in vitro and molecular assays used in its study, and markers of neuropoietic stem/progenitor cells. As hematopoiesis research has led to the discovery of numerous morphogenetic factors, it is anticipated that studies of neuropoiesis should also uncover many new factors and genes that affect the growth and differentiation of neural cells. Recent breakthroughs in the stem-cell field prompt an inclusion of rationale for the persistence of normal stem/progenitor cells even in the aged brain. By analogy with hematopoiesis research, a thorough investigation of brain marrow should provide basic insights into developmental and persistent neurogenesis while anticipating cell-transplant and gene therapies for debilitating neurological diseases.
Collapse
Affiliation(s)
- B Scheffler
- Dept of Anatomy and Neurobiology, University of Tennessee, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Yang XW, Wynder C, Doughty ML, Heintz N. BAC-mediated gene-dosage analysis reveals a role for Zipro1 (Ru49/Zfp38) in progenitor cell proliferation in cerebellum and skin. Nat Genet 1999; 22:327-35. [PMID: 10431235 DOI: 10.1038/11896] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic analysis in mice has most commonly employed two general strategies: phenotypic screens for spontaneous or induced mutations and genotypic analysis using homologous recombination or gene trapping to produce deletion or insertion mutants. Here we use bacterial artificial chromosome (BAC)-mediated gene-dosage analysis in transgenic mice to reveal novel genetic functions that are not evident from conventional loss-of-function mutations. We demonstrate a role for the zinc-finger transcription factor Zipro1 (formerly Ru49 and Zfp38) in the proliferation of granule cell precursors in the developing cerebellum, and document the contribution of this process to the final stages of cerebellar morphogenesis. We also show that Zipro1 is expressed in skin, and increased Zipro1 dosage results in a hair-loss phenotype associated with increased epithelial cell proliferation and abnormal hair follicle development.
Collapse
Affiliation(s)
- X W Yang
- Laboratory of Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The molecular bases of brain development and CNS malignancies remain poorly understood. Here we show that Sonic hedgehog (Shh) signaling controls the development of the cerebellum at multiple levels. SHH is produced by Purkinje neurons, it is required for the proliferation of granule neuron precursors and it induces the differentiation of Bergmann glia. Blocking SHH function in vivo results in deficient granule neuron and Bergmann glia differentiation as well as in abnormal Purkinje neuron development. Thus, our findings provide a molecular model for the growth and patterning of the cerebellum by SHH through the coordination of the development of cortical cerebellar cell types. In addition, they provide a cellular context for medulloblastomas, childhood cancers of the cerebellum.
Collapse
Affiliation(s)
- N Dahmane
- The Skirball Institute, Developmental Genetics Program and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
50
|
Bahn S, Wisden W, Dunnett SB, Svendsen C. The intrinsic specification of gamma-aminobutyric acid type A receptor alpha6 subunit gene expression in cerebellar granule cells. Eur J Neurosci 1999; 11:2194-8. [PMID: 10336690 DOI: 10.1046/j.1460-9568.1999.00662.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The patterns of gamma-aminobutyric acid type A (GABAA) receptor subunit gene expression in the brain are complex. For example, mouse hippocampal dentate granule cells express many subunit genes, whereas adult cerebellar granule cells, which may share differentiation mechanisms, have a smaller compliment and uniquely express the alpha6 subunit gene. To see how the alpha6 expression component arises, i.e. if intrinsically or environmentally specified, we used a mouse line (Deltaalpha6lacZ) with a beta-galactosidase reporter inserted into the alpha6 gene. Precursor cells from postnatal day 1 Deltaalpha6lacZ cerebellum were transplanted to the adult hippocampus and cerebellum of wild-type mice; 4 weeks after transplantation, Deltaalpha6lacZ cells expressed alpha6-lacZ in the hippocampus, amygdala and cerebellum. Thus, different adult environments support both the development and maintenance of alpha6 gene expression from cerebellar granule cell precursors. Establishing alpha6 gene expression is not likely to require specific patterns of neurotransmitter innervation or other factors present only in the developing brain; instead, alpha6 expression can be timed and maintained autonomously.
Collapse
Affiliation(s)
- S Bahn
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|